1
|
Kizhakethil RV, Varma AK, Barage SH, Ramesh Kumar N, Nagarajan K, Santhosh Kumar AW, Kamble SS. Repercussions of the Calpain Cleavage-Related Missense Mutations in the Cytosolic Domains of Human Integrin-β Subunits on the Calpain-Integrin Signaling Axis. Int J Mol Sci 2025; 26:4246. [PMID: 40362482 PMCID: PMC12071666 DOI: 10.3390/ijms26094246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 05/15/2025] Open
Abstract
Calpains, calcium-dependent cytosolic cysteine proteases, perform controlled proteolysis of their substrates for various cellular and physiological activities. In different cancers, missense mutations accumulate in the genes coding for the calpain cleavage sites in various calpain substrates termed as the calpain cleavage-related mutations (CCRMs). However, the impact of such CCRMs on the calpain-substrate interaction is yet to be explored. This study focuses on the interaction of wild-type and mutant β-integrins with calpain-1 and 2 in uterine corpus endometrial carcinoma (UCEC). A total of 48 calpain substrates with 176 CCRMs were retrieved from different datasets and shortlisted on the basis of their involvement in cancer pathways. Finally, three calpain substrates, ITGB1, ITGB3, and ITGB7, were selected to assess the structural changes due to CCRMs. These CCRMs were observed towards the C-terminal of the cytoplasmic domain within the calpain cleavage site. The wild-type and mutant proteins were docked with calpain-1 and 2, followed by molecular simulation. The interaction between mutant substrates and calpains showcased variations compared to their respective wild-type counterparts. This may be attributed to mutations in the calpain cleavage sites, highlighting the importance of the cytoplasmic domain of β-integrins in the interactions with calpains and subsequent cellular signaling. Highlights: 1. Calpain cleavage-related mutations (CCRMs) can alter cellular signaling. 2. CCRMs impact the structure of C-domains of human integrin-β subunits. 3. Altered structure influences the cleavability of human integrin-β subunits by human calpains. 4. Altered cleavability impacts the cell signaling mediated through calpain-integrin-β axis. 5. Presence of CCRMS may influence the progression of uterine corpus endometrial carcinoma (UCEC).
Collapse
Affiliation(s)
- Reshma V. Kizhakethil
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India; (R.V.K.); (S.H.B.); (N.R.K.); (A.W.S.K.)
| | - Ashok K. Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai 410210, Maharashtra, India;
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sagar H. Barage
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India; (R.V.K.); (S.H.B.); (N.R.K.); (A.W.S.K.)
- Centre for Computational Biology and Translational Research, Amity University, Mumbai 410206, Maharashtra, India
| | - Neelmegam Ramesh Kumar
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India; (R.V.K.); (S.H.B.); (N.R.K.); (A.W.S.K.)
| | - Kayalvizhi Nagarajan
- Department of Zoology, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Nadu, India;
| | - Aruni Wilson Santhosh Kumar
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India; (R.V.K.); (S.H.B.); (N.R.K.); (A.W.S.K.)
- California University of Science and Medicine, Colton, CA 92324, USA
| | - Shashank S. Kamble
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India; (R.V.K.); (S.H.B.); (N.R.K.); (A.W.S.K.)
- Centre for Drug Discovery and Development, Amity University, Mumbai 410206, Maharashtra, India
| |
Collapse
|
2
|
Watanabe K, Zhao Q, Iwatsuki R, Fukui R, Ren W, Sugita Y, Nishida N. Deciphering the Multi-state Conformational Equilibrium of HDM2 in the Regulation of p53 Binding: Perspectives from Molecular Dynamics Simulation and NMR Analysis. J Am Chem Soc 2024; 146:9790-9800. [PMID: 38549219 DOI: 10.1021/jacs.3c14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryosuke Iwatsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryota Fukui
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Weitong Ren
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
García-Trevijano ER, Ortiz-Zapater E, Gimeno A, Viña JR, Zaragozá R. Calpains, the proteases of two faces controlling the epithelial homeostasis in mammary gland. Front Cell Dev Biol 2023; 11:1249317. [PMID: 37795261 PMCID: PMC10546029 DOI: 10.3389/fcell.2023.1249317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Calpain-1 and calpain-2 are calcium-dependent Cys-proteases ubiquitously expressed in mammalian tissues with a processive, rather than degradative activity. They are crucial for physiological mammary gland homeostasis as well as for breast cancer progression. A growing number of evidences indicate that their pleiotropic functions depend on the cell type, tissue and biological context where they are expressed or dysregulated. This review considers these standpoints to cover the paradoxical role of calpain-1 and -2 in the mammary tissue either, under the physiological conditions of the postlactational mammary gland regression or the pathological context of breast cancer. The role of both calpains will be examined and discussed in both conditions, followed by a brief snapshot on the present and future challenges for calpains, the two-gateway proteases towards tissue homeostasis or tumor development.
Collapse
Affiliation(s)
- Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Amparo Gimeno
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Rosa Zaragozá
- INLIVA Biomedical Research Institute, Valencia, Spain
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Liu GY, Xie WL, Wang YT, Chen L, Xu ZZ, Lv Y, Wu QP. Calpain: the regulatory point of myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1194402. [PMID: 37456811 PMCID: PMC10346867 DOI: 10.3389/fcvm.2023.1194402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Calpain is a conserved cysteine protease readily expressed in several mammalian tissues, which is usually activated by Ca2+ and with maximum activity at neutral pH. The activity of calpain is tightly regulated because its aberrant activation will nonspecifically cleave various proteins in cells. Abnormally elevation of Ca2+ promotes the abnormal activation of calpain during myocardial ischemia-reperfusion, resulting in myocardial injury and cardiac dysfunction. In this paper, we mainly reviewed the effects of calpain in various programmed cell death (such as apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, and parthanatos) in myocardial ischemia-reperfusion. In addition, we also discussed the abnormal activation of calpain during myocardial ischemia-reperfusion, the effect of calpain on myocardial repair, and the possible future research directions of calpain.
Collapse
Affiliation(s)
- Guo-Yang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wan-Li Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yan-Ting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhen-Zhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qing-Ping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
5
|
Frolova AS, Chepikova OE, Deviataikina AS, Solonkina AD, Zamyatnin AA. New Perspectives on the Role of Nuclear Proteases in Cell Death Pathways. BIOLOGY 2023; 12:797. [PMID: 37372081 DOI: 10.3390/biology12060797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Multiple factors can trigger cell death via various pathways, and nuclear proteases have emerged as essential regulators of these processes. While certain nuclear proteases have been extensively studied and their mechanisms of action are well understood, others remain poorly characterized. Regulation of nuclear protease activity is a promising therapeutic strategy that could selectively induce favorable cell death pathways in specific tissues or organs. Thus, by understanding the roles of newly discovered or predicted nuclear proteases in cell death processes, we can identify new pharmacological targets for improving therapeutic outcomes. In this article, we delved into the role of nuclear proteases in several types of cell death and explore potential avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Anastasia S Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anna S Deviataikina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alena D Solonkina
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Stillger MN, Chen CY, Lai ZW, Li M, Schäfer A, Pagenstecher A, Nimsky C, Bartsch JW, Schilling O. Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int 2023; 23:49. [PMID: 36932402 PMCID: PMC10022304 DOI: 10.1186/s12935-023-02889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Zon Weng Lai
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. .,Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Wang P, Wang HY, Gao XJ, Zhu HX, Zhang XP, Liu F, Wang W. Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells 2023; 12:cells12030490. [PMID: 36766831 PMCID: PMC9914463 DOI: 10.3390/cells12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the cellular response to stresses, the tumor suppressor p53 is activated to maintain genomic integrity and fidelity. As a transcription factor, p53 exhibits rich dynamics to allow for discrimination of the type and intensity of stresses and to direct the selective activation of target genes involved in different processes including cell cycle arrest and apoptosis. In this review, we focused on how stresses are encoded into p53 dynamics and how the dynamics are decoded into cellular outcomes. Theoretical modeling may provide a global view of signaling in the p53 network by coupling the encoding and decoding processes. We discussed the significance of modeling in revealing the mechanisms of the transition between p53 dynamic modes. Moreover, we shed light on the crosstalk between the p53 network and other signaling networks. This review may advance the understanding of operating principles of the p53 signaling network comprehensively and provide insights into p53 dynamics-based cancer therapy.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science, Xihua University, Chengdu 610039, China
| | - Hang-Yu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xing-Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hua-Xia Zhu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| | - Feng Liu
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| |
Collapse
|
8
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
9
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
10
|
Potz BA, Sabe AA, Sabe SA, Lawandy IJ, Abid MR, Clements RT, Sellke FW. Calpain inhibition decreases myocardial fibrosis in chronically ischemic hypercholesterolemic swine. J Thorac Cardiovasc Surg 2022; 163:e11-e27. [PMID: 32359903 PMCID: PMC7529741 DOI: 10.1016/j.jtcvs.2019.11.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank W. Sellke
- Dr. Frank W. Sellke, 2 Dudley Street, MOC 360, Division of Cardiothoracic Surgery, Providence, RI 02905, Phone: (401) 444-2732, Fax: (401) 444-2380,
| |
Collapse
|
11
|
Chamberlain V, Drew Y, Lunec J. Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53 WT Uterine Leiomyosarcoma. Cancers (Basel) 2021; 14:cancers14010014. [PMID: 35008180 PMCID: PMC8750798 DOI: 10.3390/cancers14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
As there is no optimal therapeutic strategy defined for women with advanced or recurrent uLMS, there is an urgent need for the discovery of novel, targeted approaches. One such area of interest is the pharmacological inhibition of the MDM2-p53 interaction with small-molecular-weight MDM2 inhibitors. Growth inhibition and cytotoxic assays were used to evaluate uLMS cell line responses to MDM2 inhibitors as single agents and in combination, qRT-PCR to assess transcriptional changes and Caspase-Glo 3/7 assay to detect apoptosis. RG7388 and HDM201 are potent, selective antagonists of the MDM2-p53 interaction that can effectively stabilise and activate p53 in a dose-dependent manner. GSK2830371, a potent and selective WIP1 phosphatase inhibitor, was shown to significantly potentiate the growth inhibitory effects of RG7388 and HDM201, and significantly increase the mRNA expression of p53 transcriptional target genes in a p53WT cell line at a concentration that has no growth inhibitory effects as a single agent. RG7388, HDM201 and GSK2830371 failed to induce apoptosis as single agents; however, a combination treatment tipped cells into apoptosis from senescence. These data present the possibility of MDM2 and WIP1 inhibitor combinations as a potential treatment option for p53WT uLMS patients that warrants further investigation.
Collapse
Affiliation(s)
- Victoria Chamberlain
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
| | - Yvette Drew
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- BC Cancer Centre Vancouver and Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 4EH, Canada
| | - John Lunec
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- Correspondence:
| |
Collapse
|
12
|
Lan C, Tang H, Liu S, Ma L, Li J, Wang X, Hou Y. Comprehensive analysis of prognostic value and immune infiltration of calpains in pancreatic cancer. J Gastrointest Oncol 2021; 12:2600-2621. [PMID: 35070391 PMCID: PMC8748070 DOI: 10.21037/jgo-21-705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Calpains (CAPNs) are intracellular calcium-activated neutral cysteine proteinases involved in cancer initiation, progression, and metastasis. However, its role in pancreatic cancer (PC) is still unclear. This study aims to identify the prognostic value and immune infiltration of CAPNs for PC patients using comprehensive bioinformatics analyzes. METHODS We analyzed the transcription levels of CAPNs in different cancers from Oncomine, differential gene expression in tumor/normal tissues and pathological stage through GEPIA database, the prognostic value of the mRNA expression of CAPNs by Kaplan-Meier plotter, the protein expression comparison of different CAPNs in human tumor/normal tissues from The Human Protein Atla, the CAPNs gene alterations through cBioPortal, the prediction of protein-protein interactions by STRING and GeneMANIA, the functional enrichment of discrepant CAPNs by GO and KEGG, and the immune infiltration of CAPNs by ssGSEA. RESULTS Our results showed that CAPN1, 2, 4, 5, 6, 8, 9, 10, and 12 were highly expressed in PC. CAPN1, 5, 8, and 12 expression levels were positively correlated with individual cancer stages. Furthermore, CAPN1, 2, 5, and 8 expression levels were negatively correlated with overall survival (OS) and recurrence-free survival (RFS), while CAPN10 was positively correlated with OS and RFS. We found that CAPN1, 2, 5, and 8 were correlated with tumor-infiltrating T follicular helper cells and CAPN10 with tumor-infiltrating T helper 2 cells. Functional enrichment analysis showed that differentially expressed CAPNs (CAPN1, 2, 5, 8, and 10) are involved in axonogenesis, cell-substrate adhesion, immune response-activating cell surface receptor signaling pathway, and cell junction organization in PC. CONCLUSIONS These results suggested that CAPN1, 2, 5, 8, and 10 could be used as prognostic biomarkers in PC and improve individualized treatment strategies.
Collapse
Affiliation(s)
- Chuan Lan
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haoyou Tang
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Ma
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianshui Li
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Wang
- Department of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Wang SE, Wu CH. Tau phosphorylation and cochlear apoptosis cause hearing loss in 3×Tg-AD Mouse Model of Alzheimer's Disease. CHINESE J PHYSIOL 2021; 64:61-71. [PMID: 33938816 DOI: 10.4103/cjp.cjp_79_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinically typical dementia Alzheimer's disease (AD) is associated with abnormal auditory processing. However, possible molecular mechanisms responsible for the auditory pathology of AD patients are not known. According to our past research findings that the thresholds of auditory brainstem response, but not distortion product otoacoustic emissions, were significantly increased in AD mice from 9 months of age and thereafter. Thus, we further explored the possible mechanism of auditory degradation of 3×Tg-AD mice in this study. Our histochemical staining evidence showed the cochlear spiral ganglion neurons (SGN), but not the cochlear hair cells, were lost significantly in the cochlea of 3×Tg-AD mice from 9 months of age and thereafter. Our immunostaining and western blotting evidence showed that phosphorylated tau protein (p-Tau), p-glycogen synthase kinase 3, neurofilament, and apoptosis-related p53, Bcl2-associated X protein, cytochrome c, caspase-9, and caspase-3 were gradually increased, but B-cell lymphoma 2 was gradually decreased with age growth in the cochlea of 3×Tg-AD mice. We suggested that tau hyperphosphorylation and p-Tau 181 aggregation, and mitochondria- and endoplasmic reticulum stress-mediated apoptosis may play a role in the degeneration of SGN in the cochlea. Progressive SGN degeneration in the cochlea may contribute to hearing loss of aging 3×Tg-AD mice.
Collapse
Affiliation(s)
- Sheue-Er Wang
- School of Life Sciences, National Taiwan Normal University, Taipei; Department of Pathological, Saint Paul's Hospital, Taoyuan City, Taiwan
| | - Chung-Hsin Wu
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
14
|
Maitra S, Sornjai W, Smith DR, Vincent B. Phenanthroline impairs βAPP processing and expression, increases p53 protein levels and induces cell cycle arrest in human neuroblastoma cells. Brain Res Bull 2021; 170:29-38. [PMID: 33556560 DOI: 10.1016/j.brainresbull.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
Mis-functional βAPP processing is deemed to be the major phenomenon resulting in increased neuronal cell death, impaired neurogenesis and the loss of synapses, which eventually manifest as the complex symptoms of Alzheimer's disease. Despite of several milestones having been achieved in the field of drug development, the stigma of the disorder as an incurable disease still remains. Some ADAM proteases mediate the physiological non-amyloidogenic α-secretase processing of βAPP that generates neuroprotective sAPPα production. Earlier studies have also pointed out the role of p53 in Alzheimer's disease neuropathology, although a direct link with metalloprotease activities remains to be established. In this study, we explored the consequences of α-secretase inhibition on p53 status in cultured human neuroblastoma SH-SY5Y cells by means of specific inhibitors of ADAM10 and ADAM17 and the metal chelator and general metalloprotease inhibitor phenanthroline. We establish that, beyond the ability of all inhibitors to affect sAPPα production to varying degrees, phenanthroline specifically and dose-dependently lessened βAPP expression, a phenomenon that correlated with a strong increase in p53 protein levels and a concomitant decrease of the p53-degrading calpain protease. Furthermore, treatment of cells at concentrations of phenanthroline similar to those inducing increased levels of p53 induced cell cycle arrest leading to apoptosis. Altogether, our results identify new roles of phenanthroline in perturbing βAPP, p53 and calpain biology, and suggest that the use of this compound and its derivatives as antimicrobial and anti-cancer therapies might trigger Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Subhamita Maitra
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 rue Michel Ange, Paris, 75016, France.
| |
Collapse
|
15
|
Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 2021; 96:961-975. [PMID: 33470511 DOI: 10.1111/brv.12686] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain-calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.
Collapse
Affiliation(s)
- Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
16
|
Lin Y, Liao K, Miao Y, Qian Z, Fang Z, Yang X, Nie Q, Jiang G, Liu J, Yu Y, Wan J, Zhang X, Hu Y, Jiang J, Qiu Y. Role of Asparagine Endopeptidase in Mediating Wild-Type p53 Inactivation of Glioblastoma. J Natl Cancer Inst 2020; 112:343-355. [PMID: 31400201 DOI: 10.1093/jnci/djz155] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Isocitrate dehydrogenase wild-type (WT) glioblastoma (GBM) accounts for 90% of all GBMs, yet only 27% of isocitrate dehydrogenase WT-GBMs have p53 mutations. However, the tumor surveillance function of WT-p53 in GBM is subverted by mechanisms that are not fully understood. METHODS We investigated the proteolytic inactivation of WT-p53 by asparaginyl endopeptidase (AEP) and its effects on GBM progression in cancer cells, murine models, and patients' specimens using biochemical and functional assays. The sera of healthy donors (n = 48) and GBM patients (n = 20) were examined by enzyme-linked immunosorbent assay. Furthermore, effects of AEP inhibitors on GBM progression were evaluated in murine models (n = 6-8 per group). The statistical significance between groups was determined using two-tailed Student t tests. RESULTS We demonstrate that AEP binds to and directly cleaves WT-p53, resulting in the inhibition of WT-p53-mediated tumor suppressor function in both tumor cells and stromal cells via extracellular vesicle communication. High expression of uncleavable p53-N311A-mutant rescue AEP-induced tumorigenesis, proliferation, and anti-apoptotic abilities. Knock down or pharmacological inhibition of AEP reduced tumorigenesis and prolonged survival in murine models. However, overexpression of AEP promoted tumorigenesis and shortened the survival time. Moreover, high AEP levels in GBM tissues were associated with a poor prognosis of GBM patients (n = 83; hazard ratio = 3.94, 95% confidence interval = 1.87 to 8.28; P < .001). A correlation was found between high plasma AEP levels and a larger tumor size in GBM patients (r = 0.6, P = .03), which decreased dramatically after surgery. CONCLUSIONS Our results indicate that AEP promotes GBM progression via inactivation of WT-p53 and may serve as a prognostic and therapeutic target for GBM.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keman Liao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Miao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongrun Qian
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyuan Fang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi Yang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanmin Nie
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Liu
- Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaomin Hu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Good Cop, Bad Cop: Defining the Roles of Δ40p53 in Cancer and Aging. Cancers (Basel) 2020; 12:cancers12061659. [PMID: 32585821 PMCID: PMC7352174 DOI: 10.3390/cancers12061659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
The tumour suppressor p53 is essential for maintaining DNA integrity, and plays a major role in cellular senescence and aging. Understanding the mechanisms that contribute to p53 dysfunction can uncover novel possibilities for improving cancer therapies and diagnosis, as well as cognitive decline associated with aging. In recent years, the complexity of p53 signalling has become increasingly apparent owing to the discovery of the p53 isoforms. These isoforms play important roles in regulating cell growth and turnover in response to different stressors, depending on the cellular context. In this review, we focus on Δ40p53, an N-terminally truncated p53 isoform. Δ40p53 can alter p53 target gene expression in both a positive and negative manner, modulating the biological outcome of p53 activation; it also functions independently of p53. Therefore, proper control of the Δ40p53: p53 ratio is essential for normal cell growth, aging, and responses to cancer therapy. Defining the contexts and the mechanisms by which Δ40p53 behaves as a "good cop or bad cop" is critical if we are to target this isoform therapeutically.
Collapse
|
18
|
Snoeck HW. Calcium regulation of stem cells. EMBO Rep 2020; 21:e50028. [PMID: 32419314 DOI: 10.15252/embr.202050028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Pluripotent and post-natal, tissue-specific stem cells share functional features such as the capacity to differentiate into multiple lineages and to self-renew, and are endowed with specific cell maintenance mechanism as well as transcriptional and epigenetic signatures that determine stem cell identity and distinguish them from their progeny. Calcium is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Specific roles of calcium in stem cell niches and stem cell maintenance mechanisms are only beginning to be explored, however. In this review, I discuss stem cell-specific regulation and roles of calcium, focusing on its potential involvement in the intertwined metabolic and epigenetic regulation of stem cells.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY, USA.,Division of Pulmonary Medicine, Allergy and Critical Care, Columbia University Irving Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Xue Y, San Luis B, Lane DP. Intratumour heterogeneity of p53 expression; causes and consequences. J Pathol 2019; 249:274-285. [PMID: 31322742 DOI: 10.1002/path.5328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/23/2022]
Abstract
Genomic alterations in different types of cancer have been identified by comprehensive sequencing methodologies, revealing TP53 as the most frequently mutated gene across the majority of human cancer types. Cytotoxic treatments are still major cancer therapy strategies but cancer recurrence due to therapy resistance is a major challenge. Resistant cell populations may be associated with TP53 mutant clones exhibiting abnormal p53 expression patterns in tumours. Given data that levels of mutant p53 influence cancer cell growth and survival, understanding the mechanisms underlying intratumour heterogeneity of p53 can be exploited to design strategies that improve patient survival. The patterns of p53 protein examined by immunohistochemistry of both premalignant and malignant tissues are complex, ranging from intense staining of all tumour cell nuclei to complete absence of staining and with many intermediate phenotypes. Animal models that express only mutant proteins and adoption of international standards for terminology have brought greater clarity to understanding the causes of variation and are at the same time demonstrating the utility of p53 in oncology. In addition to p53 mutation, MDM2 and chaperone activities, gene copy number and TP53 mRNA levels linked to proliferative activity and differentiation are all now established as causes of variation in p53 staining, with clinical implications. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuezhen Xue
- p53 Laboratory, A*STAR, Singapore, Singapore
| | | | | |
Collapse
|
20
|
Bazanov DR, Pervushin NV, Savitskaya VY, Anikina LV, Proskurnina MV, Lozinskaya NA, Kopeina GS. 2,4,5-Tris(alkoxyaryl)imidazoline derivatives as potent scaffold for novel p53-MDM2 interaction inhibitors: Design, synthesis, and biological evaluation. Bioorg Med Chem Lett 2019; 29:2364-2368. [PMID: 31196710 DOI: 10.1016/j.bmcl.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Imidazoline-based small molecule inhibitors of p53-MDM2 interaction intended for the treatment of p53 wild-type tumors are the promising structures for design of anticancer drugs. Based on fragment approach we have investigated a key role of substituents in cis-imidazoline core for biological activity of nutlin family compounds. Although the necessity of the substituents in the phenyl rings of cis-imidazoline has been shown, there are no studies in which the replacements of a halogen by other substituents have been investigated. A series of simple cis-imidazoline derivatives containing halogen, hydroxy and alkoxy-substituents were synthesized. The biological activity of the compounds was studied using assays of cytotoxicity (MTT) and p53 level. It was found that the hydroxyl-derivatives were not cytotoxic whereas the alkoxy analogues were the same or more active as halogen-substituted compounds in cell viability test. The synthesized alkoxy derivatives induced an increase of p53 level and did not promote necrotic cell death in the concentration up to 40 µM.
Collapse
Affiliation(s)
- Daniil R Bazanov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1, Leninskie Gory, 119992 Moscow, Russian Federation
| | - Nikolay V Pervushin
- Department of Medicine, M. V. Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russian Federation
| | - Victoria Yu Savitskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1, Leninskie Gory, 119992 Moscow, Russian Federation
| | - Lada V Anikina
- Institute of Physiologically Active Substances of RAS, 1, Northern Passage, 142432 Moscow Region, Russian Federation
| | - Marina V Proskurnina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1, Leninskie Gory, 119992 Moscow, Russian Federation; Institute of Physiologically Active Substances of RAS, 1, Northern Passage, 142432 Moscow Region, Russian Federation
| | - Natalia A Lozinskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1, Leninskie Gory, 119992 Moscow, Russian Federation; Institute of Physiologically Active Substances of RAS, 1, Northern Passage, 142432 Moscow Region, Russian Federation.
| | - Gelina S Kopeina
- Department of Medicine, M. V. Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russian Federation.
| |
Collapse
|
21
|
Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int J Mol Sci 2019; 20:ijms20092236. [PMID: 31067653 PMCID: PMC6539965 DOI: 10.3390/ijms20092236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, great interest has been devoted to finding alternative sources for human stem cells which can be easily isolated, ideally without raising ethical objections. These stem cells should furthermore have a high proliferation rate and the ability to differentiate into all three germ layers. Amniotic fluid, ordinarily discarded as medical waste, is potentially such a novel source of stem cells, and these amniotic fluid derived stem cells are currently gaining a lot of attention. However, further information will be required about the properties of these cells before they can be used for therapeutic purposes. For example, the risk of tumor formation after cell transplantation needs to be explored. The tumor suppressor protein p53, well known for its activity in controlling Cell Prolif.eration and cell death in differentiated cells, has more recently been found to be also active in amniotic fluid stem cells. In this review, we summarize the major findings about human amniotic fluid stem cells since their discovery, followed by a brief overview of the important role played by p53 in embryonic and adult stem cells. In addition, we explore what is known about p53 in amniotic fluid stem cells to date, and emphasize the need to investigate its role, particularly in the context of cell tumorigenicity.
Collapse
|
22
|
Chen Z, Boor PJ, Finnerty CC, Herndon DN, Albrecht T. Calpain-mediated cleavage of p53 in human cytomegalovirus-infected lung fibroblasts. FASEB Bioadv 2019; 1:151-166. [PMID: 32123827 PMCID: PMC6996331 DOI: 10.1096/fba.1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Endogenous fragments of p53 protein were identified in human cytomegalovirus (HCMV)-infected human lung fibroblasts, particularly a 44-kDa N-terminal fragment [hereafter referred to as p53(ΔCp44)], generated via calpain cleavage. The fragment abundance increased in a biphasic manner, peaking at 6-9 hours and 48 hours post infection. Treatment of LU cells with calpain inhibitors eliminated most detectable p53 fragments. In cell-free experiments, exogenous m-calpain cleavage generated p53(ΔCp44). Attempts to preserve p53 proteins by treating cells with the calpain inhibitor E64d for 6 hours before harvesting increased the sensitivity of p53 to calpain cleavage. p53 in mock-infected cell lysates was much more sensitive to cleavage and degradation by exogenous calpain than that in HCMV-infected cells. The proteasome inhibitor MG132 stabilized p53(ΔCp44), particularly in mock-infected cells. p53(ΔCp44) appeared to be tightly associated with a chromatin-rich fraction. The abundance of p53β was unchanged over a 96-h time course and very similar in mock- and HCMV-infected cells, making it unlikely that p53(ΔCp44) was p53β. The biological activities of this and other fragments lacking C-terminal sequences are unknown, but deserve further investigation, given the association of p53(ΔCp44) with the chromatin-rich (or buffer C insoluble) fraction in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhenping Chen
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
| | - Paul J. Boor
- Department of PathologyUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Celeste C. Finnerty
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - David N. Herndon
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexas
- Shriners Hospitals for Children—GalvestonGalvestonTexas
| | - Thomas Albrecht
- Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexas
- Infectious Disease and Toxicology Optical Imaging CoreUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
23
|
Alon M, Arafeh R, Lee JS, Madan S, Kalaora S, Nagler A, Abgarian T, Greenberg P, Ruppin E, Samuels Y. CAPN1 is a novel binding partner and regulator of the tumor suppressor NF1 in melanoma. Oncotarget 2018; 9:31264-31277. [PMID: 30131853 PMCID: PMC6101293 DOI: 10.18632/oncotarget.25805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 11/25/2022] Open
Abstract
Neurofibromin 1 (NF1), a tumor suppressor that negatively regulates RAS through its GTPase activity, is highly mutated in various types of sporadic human cancers, including melanoma. However, the binding partners of NF1 and the pathways in which it is involved in melanoma have not been characterized in an in depth manner. Utilizing a mass spectrometry analysis of NF1 binding partners, we revealed Calpain1 (CAPN1), a calcium-dependent neutral cysteine protease, as a novel NF1 binding partner that regulates NF1 degradation in melanoma cells. ShRNA-mediated knockdown of CAPN1 or treatment with a CAPN1 inhibitor stabilizes NF1 protein levels, downregulates AKT signaling and melanoma cell growth. Combination treatment of Calpain inhibitor I with MEKi Trametinib in different melanoma cells is more effective in reducing melanoma cell growth compared to treatment with Trametinib alone, suggesting that this combination may have a therapeutic potential in melanoma. This novel mechanism for regulating NF1 in melanoma provides a molecular basis for targeting CAPN1 in order to stabilize NF1 levels and, in doing so, suppressing Ras activation; this mechanism can be exploited therapeutically in melanoma and other cancers.
Collapse
Affiliation(s)
- Michal Alon
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Rand Arafeh
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Joo Sang Lee
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Sanna Madan
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Shelly Kalaora
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Tereza Abgarian
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Polina Greenberg
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eytan Ruppin
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, USA
- Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Yardena Samuels
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Ermakov A, Daks A, Fedorova O, Shuvalov O, Barlev NA. Ca 2+ -depended signaling pathways regulate self-renewal and pluripotency of stem cells. Cell Biol Int 2018; 42:1086-1096. [PMID: 29851182 DOI: 10.1002/cbin.10998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
Ca2+ -mediated signaling is widely spread in nature and plays critical role in the individual development of various organisms ranging from microorganisms to mammals. In vertebrates, Ca2+ is involved in important developmental events: fertilization, body plan establishment, and organogenesis. The two later events are defined by embryonic stem cells (ESCs). ESCs are capable of self-renewal and are pluripotent by nature, that is, can give rise to all types of cells that make up the body. Given the paramount importance of Ca2+ signalization in the development, it is therefore not surprising this process also plays role in the biology of stem cells. In this review, we scrutinize the published experimental data on the role of Ca2+ ions in embryonic stem cells self-renewal and pluripotency. In line with this, we also discuss possible mechanisms of p53 inhibition as a major hindrance to self-renewal of ESCs. Finally, we argue about the role of G-protein-coupled receptors (GPCRs), the largest family of heteromeric transmembrane receptors, and GPCR-mediated signalization in stem cells, and propose the role for the GPCR-G-protein-PLC-Ca2+ -downstream signaling pathway in the regulation of pluripotency of both mouse and human ESCs.
Collapse
Affiliation(s)
| | - Alexandra Daks
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | - Olga Fedorova
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | - Oleg Shuvalov
- Institute of Cytology RAS, Saint-Petersburg 194064, Russia
| | | |
Collapse
|
25
|
Kalathil D, Prasad M, Chelladurai M, John S, Nair AS. Thiostrepton degrades mutant p53 by eliciting an autophagic response in SW480 cells. J Cell Physiol 2018; 233:6938-6950. [PMID: 29665004 DOI: 10.1002/jcp.26601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Mutations in p53 gene are one of the hallmarks of tumor development. Specific targeting of mutant p53 protein has a promising role in cancer therapeutics. Our preliminary observation showed destabilization of mutant p53 protein in SW480, MiaPaCa and MDAMB231 cell lines upon thiostrepton treatment. In order to elucidate the mechanism of thiostrepton triggered mutant p53 degradation, we explored the impact of proteasome inhibition on activation of autophagy. Combined treatment of thiostrepton and cycloheximide/chloroquine prevented the degradation of mutant p53 protein, reinforcing autophagy as the means of mutant p53 destabilization. Our initial studies suggested that mutant p53 degradation post THSP treatment was carried out by BAG3 mediated autophagy, based on the evidence of BAG1 to BAG3 switching. Subsequent interactome analysis performed post thiostrepton treatment revealed an association of p53 with autophagosome complex associated proteins such as BAG3, p62 and HSC70. Reaccumulation of p53 was seen in BAG3 silenced cells treated with thiostrepton, thereby confirming the role of BAG3 in destabilization of this molecule. Further, localization of p53 into the lysosome upon THSP treatment substantiated our findings that mutant p53 was degraded by an autopahgic process.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Manu Prasad
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Maharrish Chelladurai
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
26
|
Pahima H, Reina S, Tadmor N, Dadon-Klein D, Shteinfer-Kuzmine A, Mazure NM, De Pinto V, Shoshan-Barmatz V. Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities. Oncotarget 2018; 9:12825-12841. [PMID: 29560113 PMCID: PMC5849177 DOI: 10.18632/oncotarget.24377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1), an outer mitochondria membrane (OMM)
protein, serves as a mitochondrial gatekeeper, mediating the transport of
nucleotides, Ca2+ and other metabolites across the OMM. VDAC1 also
plays a central role in mitochondria-mediated apoptosis by facilitating the release
of apoptotic proteins and by association with both pro- and anti-apoptotic proteins.
Tumor cells, which are constantly exposed to hypoxic conditions, affect the cell via
the transcription factor hypoxia-inducible factor (HIF) that induces transcriptional
activity. In cultured cells and in lung cancer patients, hypoxia induces VDAC1
truncation at the C-terminus (VDAC1-ΔC). However, the molecular mechanisms
involved in VDAC1-ΔC formation are unknown. Here, we show that hypoxia-induced
VDAC1-ΔC formation is inhibited by the Ca2+ chelator
BAPTA-AM, by calpain inhibitor-1, by inhibitor of the asparagine endopeptidase (AEP)
and by si-RNA targeting HIF1-α or Ca2+-activated protease
calpain-1 expression but not that of calpain-2. Finally, VDAC1-ΔC expressed in
bacteria and reconstituted into a planar lipid bilayer exhibited decreased channel
conductance relative to the full-length protein, yet retained voltage-dependent
conductance. These findings suggest that hypoxia, acting via HIF-1α
expression, leads to VDAC1 cleavage involving the activation of calpain 1 and
AEP.
Collapse
Affiliation(s)
- Hadas Pahima
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Simona Reina
- Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy.,Department of Biological, Geological and Environmental Sciences, University of Catania, Catania 95125, Italy
| | - Noa Tadmor
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniella Dadon-Klein
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nathalie M Mazure
- Institute for Research on Cancer and Aging of Nice, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, Nice 06189, France.,Present address: INSERM U1065, C3M, Nice 06204, France
| | - Vito De Pinto
- Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Yoon AR, Hong J, Yun CO. Adenovirus-mediated decorin expression induces cancer cell death through activation of p53 and mitochondrial apoptosis. Oncotarget 2017; 8:76666-76685. [PMID: 29100340 PMCID: PMC5652734 DOI: 10.18632/oncotarget.20800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
Decorin (DCN) is a small leucine-rich proteoglycan that plays an important role in the regulation of apoptosis, proliferation, intercellular contact, and cell migration. Here we have investigated the detailed mechanism of apoptotic cell death induced by DCN expression. A marked increase in cytotoxicity was observed for both DCN-expressing replication-incompetent (dE1/DCN) and -competent (dB/DCN) adenoviruses (Ads) compared to the corresponding control Ads. FACS and TUNEL assays revealed that the expression of DCN induced apoptotic cell death. Specifically, the expression and stability of p53 were increased by DCN. In addition, western blot data showed that DCN expression activated mitochondrial apoptosis by increasing the expression level of p53. Similarly, DCN-expressing oncolytic Ads induced a greater antitumor effect in a murine xenograft model compared with control Ads. Tissue staining and western blot data from in vivo experiments demonstrated significantly higher levels of apoptosis in tumor tissues from mice treated with DCN-expressing Ads compared to those treated with control Ads. Collectively, these data support that cell killing effect is enhanced with Ad-mediated DCN expression via the induction of p53-mediated mitochondrial apoptosis, which could be a valuable benefit for antitumor efficacy.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
28
|
Liu L, Lou N, Li X, Xu G, Ruan H, Xiao W, Qiu B, Bao L, Yuan C, Huang X, Wang K, Cao Q, Chen K, Yang H, Zhang X. Calpain and AR-V7: Two potential therapeutic targets to overcome acquired docetaxel resistance in castration-resistant prostate cancer cells. Oncol Rep 2017; 37:3651-3659. [DOI: 10.3892/or.2017.5623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
|
29
|
Guan Y, Huang D, Chen F, Gao C, Tao T, Shi H, Zhao S, Liao Z, Lo LJ, Wang Y, Chen J, Peng J. Phosphorylation of Def Regulates Nucleolar p53 Turnover and Cell Cycle Progression through Def Recruitment of Calpain3. PLoS Biol 2016; 14:e1002555. [PMID: 27657329 PMCID: PMC5033581 DOI: 10.1371/journal.pbio.1002555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023] Open
Abstract
Digestive organ expansion factor (Def) is a nucleolar protein that plays dual functions: it serves as a component of the ribosomal small subunit processome for the biogenesis of ribosomes and also mediates p53 degradation through the cysteine proteinase calpain-3 (CAPN3). However, nothing is known about the exact relationship between Def and CAPN3 or the regulation of the Def function. In this report, we show that CAPN3 degrades p53 and its mutant proteins p53A138V, p53M237I, p53R248W, and p53R273P but not the p53R175H mutant protein. Importantly, we show that Def directly interacts with CAPN3 in the nucleoli and determines the nucleolar localisation of CAPN3, which is a prerequisite for the degradation of p53 in the nucleolus. Furthermore, we find that Def is modified by phosphorylation at five serine residues: S50, S58, S62, S87, and S92. We further show that simultaneous phosphorylations at S87 and S92 facilitate the nucleolar localisation of Capn3 that is not only essential for the degradation of p53 but is also important for regulating cell cycle progression. Hence, we propose that the Def-CAPN3 pathway serves as a nucleolar checkpoint for cell proliferation by selective inactivation of cell cycle-related substrates during organogenesis.
Collapse
Affiliation(s)
- Yihong Guan
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zuyuan Liao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| |
Collapse
|
30
|
Hwang JY, Lee J, Oh CK, Kang HW, Hwang IY, Um JW, Park HC, Kim S, Shin JH, Park WY, Darnell RB, Um HD, Chung KC, Kim K, Oh YJ. Proteolytic degradation and potential role of onconeural protein cdr2 in neurodegeneration. Cell Death Dis 2016; 7:e2240. [PMID: 27253404 PMCID: PMC5143381 DOI: 10.1038/cddis.2016.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Cerebellar degeneration-related protein 2 (cdr2) is expressed in the central nervous system, and its ectopic expression in tumor cells of patients with gynecological malignancies elicits immune responses by cdr2-specific autoantibodies and T lymphocytes, leading to neurological symptoms. However, little is known about the regulation and function of cdr2 in neurodegenerative diseases. Because we found that cdr2 is highly expressed in the midbrain, we investigated the role of cdr2 in experimental models of Parkinson's disease (PD). We found that cdr2 levels were significantly reduced after stereotaxic injection of 1-methyl-4-phenylpyridinium (MPP(+)) into the striatum. cdr2 levels were also decreased in the brains of post-mortem PD patients. Using primary cultures of mesencephalic neurons and MN9D cells, we confirmed that MPP(+) reduces cdr2 in tyrosine hydroxylase-positive dopaminergic neuronal cells. The MPP(+)-induced decrease of cdr2 was primarily caused by calpain- and ubiquitin proteasome system-mediated degradation, and cotreatment with pharmacological inhibitors of these enzymes or overexpression of calcium-binding protein rendered cells less vulnerable to MPP(+)-mediated cytotoxicity. Consequently, overexpression of cdr2 rescued cells from MPP(+)-induced cytotoxicity, whereas knockdown of cdr2 accelerated toxicity. Collectively, our findings provide insights into the novel regulatory mechanism and potentially protective role of onconeural protein during dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- J-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - C-K Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H W Kang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - I-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J W Um
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H C Park
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - S Kim
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - J-H Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - W-Y Park
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - R B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - H-D Um
- Division of Radiation Cancer Biology, Korean Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - K C Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - K Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
31
|
Abstract
Despite many advances in percutaneous and surgical interventions in the treatment of coronary artery disease (CAD), up to one-third of patients are still either not candidates or receive suboptimal revascularization. Calpains are a class of calcium-activated non-lysosomal cysteine proteases that serve as a proteolytic unit for cellular homeostasis. Uncontrolled activation of calpain has been found to be involved in the pathogenesis of myocardial reperfusion injury, cardiac hypertrophy, myocardial stunning and cardiac ischemia. Inhibition of calpains has been shown to significantly attenuate myocardial stunning and reduced infarct size after ischemia-reperfusion. Calpain inhibition therefore serves as a potential medical therapy for patients suffering from a number of diseases, including CAD.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert Medical School Brown University
| | | | | | | |
Collapse
|
32
|
Storr SJ, Thompson N, Pu X, Zhang Y, Martin SG. Calpain in Breast Cancer: Role in Disease Progression and Treatment Response. Pathobiology 2015; 82:133-41. [PMID: 26330354 DOI: 10.1159/000430464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The calpains are a family of intracellular cysteine proteases that function in a wide array of cellular activities, including cytoskeletal remodelling, survival and apoptosis. The ubiquitously expressed micro (µ)-calpain and milli (m)-calpain are archetypal family members that require calcium for function and can be inhibited by their endogenous inhibitor calpastatin. This review describes the role of the calpain system in the prognosis of breast cancer and disease progression, in addition to the role of the calpain system in the response to breast cancer treatments, including chemotherapeutic, endocrine and targeted therapies.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham City Hospital Campus, Nottingham, UK
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
34
|
Rew Y, Sun D, Yan X, Beck HP, Canon J, Chen A, Duquette J, Eksterowicz J, Fox BM, Fu J, Gonzalez AZ, Houze J, Huang X, Jiang M, Jin L, Li Y, Li Z, Ling Y, Lo MC, Long AM, McGee LR, McIntosh J, Oliner JD, Osgood T, Saiki AY, Shaffer P, Wang YC, Wortman S, Yakowec P, Ye Q, Yu D, Zhao X, Zhou J, Medina JC, Olson SH. Discovery of AM-7209, a potent and selective 4-amidobenzoic acid inhibitor of the MDM2-p53 interaction. J Med Chem 2014; 57:10499-511. [PMID: 25384157 DOI: 10.1021/jm501550p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-based rational design and extensive structure-activity relationship studies led to the discovery of AMG 232 (1), a potent piperidinone inhibitor of the MDM2-p53 association, which is currently being evaluated in human clinical trials for the treatment of cancer. Further modifications of 1, including replacing the carboxylic acid with a 4-amidobenzoic acid, afforded AM-7209 (25), featuring improved potency (KD from ITC competition was 38 pM, SJSA-1 EdU IC50 = 1.6 nM), remarkable pharmacokinetic properties, and in vivo antitumor activity in both the SJSA-1 osteosarcoma xenograft model (ED50 = 2.6 mg/kg QD) and the HCT-116 colorectal carcinoma xenograft model (ED50 = 10 mg/kg QD). In addition, 25 possesses distinct mechanisms of elimination compared to 1.
Collapse
Affiliation(s)
- Yosup Rew
- Department of Therapeutic Discovery, ‡Department of Pharmaceutics, and §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Moretti D, Del Bello B, Allavena G, Maellaro E. Calpains and cancer: Friends or enemies? Arch Biochem Biophys 2014; 564:26-36. [DOI: 10.1016/j.abb.2014.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
|
36
|
Kim KA, Min A, Lee YA, Shin MH. Degradation of the transcription factors NF-κB, STAT3, and STAT5 is involved in Entamoeba histolytica-induced cell death in Caco-2 colonic epithelial cells. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:459-69. [PMID: 25352693 PMCID: PMC4210727 DOI: 10.3347/kjp.2014.52.5.459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
Entamoeba histolytica is a tissue-invasive protozoan parasite causing dysentery in humans. During infection of colonic tissues, amoebic trophozoites are able to kill host cells via apoptosis or necrosis, both of which trigger IL-8-mediated acute inflammatory responses. However, the signaling pathways involved in host cell death induced by E. histolytica have not yet been fully defined. In this study, we examined whether calpain plays a role in the cleavage of pro-survival transcription factors during cell death of colonic epithelial cells, induced by live E. histolytica trophozoites. Incubation with amoebic trophozoites induced activation of m-calpain in a time- and dose-dependent manner. Moreover, incubation with amoebae resulted in marked degradation of STAT proteins (STAT3 and STAT5) and NF-κB (p65) in Caco-2 cells. However, IκB, an inhibitor of NF-κB, was not cleaved in Caco-2 cells following adherence of E. histolytica. Entamoeba-induced cleavage of STAT proteins and NF-κB was partially inhibited by pretreatment of cells with a cell-permeable calpain inhibitor, calpeptin. In contrast, E. histolytica did not induce cleavage of caspase-3 in Caco-2 cells. Furthermore, pretreatment of Caco-2 cells with a calpain inhibitor, calpeptin (but not the pan-caspase inhibitor, z-VAD-fmk) or m-calpain siRNA partially reduced Entamoeba-induced DNA fragmentation in Caco-2 cells. These results suggest that calpain plays an important role in E. histolytica-induced degradation of NF-κB and STATs in colonic epithelial cells, which ultimately accelerates cell death.
Collapse
Affiliation(s)
- Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
37
|
Rew Y, Sun D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J Med Chem 2014; 57:6332-41. [PMID: 24967612 DOI: 10.1021/jm500627s] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently reported the discovery of AMG 232 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 protein-protein interaction. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer. This article provides an overview of its discovery from the de novo design of the piperidinone series to the structure-activity studies leading to the identification of 1. In addition, this article also describes the preclinical pharmacology and pharmacokinetics of 1, along with its drug metabolism and safety assessment.
Collapse
Affiliation(s)
- Yosup Rew
- Department of Therapeutic Discovery, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | | |
Collapse
|
38
|
Winkle CC, McClain LM, Valtschanoff JG, Park CS, Maglione C, Gupton SL. A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching. ACTA ACUST UNITED AC 2014; 205:217-32. [PMID: 24778312 PMCID: PMC4003241 DOI: 10.1083/jcb.201311003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localized plasma membrane expansion during axon branching mediated by Netrin-1 occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion. Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neuroscience Center and Curriculum in Neurobiology, 2 Department of Cell Biology and Physiology, and 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | | | | | | |
Collapse
|
39
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
40
|
Protein profiling of Helicobacter pylori-associated gastric cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1343-54. [PMID: 24589339 DOI: 10.1016/j.ajpath.2014.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 02/02/2023]
Abstract
Helicobacter pylori infection is an initiating factor in the development of gastric cancer. Gastric cancer can be divided into two groups on the basis of H. pylori serological status; seropositive H. pylori status predicts favorable prognosis in patients with gastric cancer. By using the protein pathway array, we identified 20 differentially expressed proteins in primary gastric cancer tissues between the H. pylori-seropositive and H. pylori-seronegative groups. Our results indicate that both brassinosteroid insensitive 1-associated kinase 1 and calpastatin are favorable prognostic factors in H. pylori-seropositive gastric cancer patients. In contrast, dachshund homolog 1 is a favorable prognostic factor in H. pylori-seronegative gastric cancer patients. Different signaling pathways were found to be altered between H. pylori-seropositive and H. pylori-seronegative gastric cancer, which may account for the different tumorigenesis and outcomes between these two subsets of patients.
Collapse
|
41
|
Gao S, Hsieh CL, Zhou J, Shemshedini L. Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells. PLoS One 2013; 8:e78766. [PMID: 24236047 PMCID: PMC3827277 DOI: 10.1371/journal.pone.0078766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022] Open
Abstract
The Zinc Finger (ZNF) 280B protein was identified as an unexpected target of an shRNA designed for sGCα1. Further analysis showed that these two proteins are connected in another way, with 280B up-regulation of sGCα1 expression. Knock-down and over-expression experiments showed that 280B serves pro-growth and pro-survival functions in prostate cancer. Surprisingly however, these pro-cancer functions of 280B are not mediated by sGCα1, which itself has similar functions in prostate cancer, but by down-regulated p53. The p53 protein is a second target of 280B in prostate cancer, but unlike sGCα1, p53 is down-regulated by 280B. 280B induces p53 nuclear export, leading to subsequent proteasomal degradation. The protein responsible for p53 regulation by 280B is Mdm2, the E3 ubiquitin ligase that promotes p53 degradation by inducing its nuclear export. We show here that 280B up-regulates expression of Mdm2 in prostate cancer cells, and this regulation is via the Mdm2 promoter. To demonstrate an in vivo relevance to this interaction, expression studies show that 280B protein levels are up-regulated in prostate cancer and these levels correspond to reduced levels of p53. Thus, by enhancing the expression of Mdm2, the uncharacterized 280B protein provides a novel mechanism of p53 suppression in prostate cancer.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Chen-Lin Hsieh
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Jun Zhou
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Sermeus A, Rebucci M, Fransolet M, Flamant L, Desmet D, Delaive E, Arnould T, Michiels C. Differential effect of hypoxia on etoposide-induced DNA damage response and p53 regulation in different cell types. J Cell Physiol 2013; 228:2365-76. [DOI: 10.1002/jcp.24409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Magali Rebucci
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Lionel Flamant
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Déborah Desmet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Edouard Delaive
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| |
Collapse
|
43
|
Fei B, Yu S, Geahlen RL. Modulation by Syk of Bcl-2, calcium and the calpain-calpastatin proteolytic system in human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2153-64. [PMID: 23684705 DOI: 10.1016/j.bbamcr.2013.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 01/02/2023]
Abstract
Syk is a 72kDa non-receptor tyrosine kinase that is best characterized in hematopoietic cells. While Syk is pro-tumorigenic in some cancer cell types, it also has been reported as a negative regulator of metastatic cell growth in others. An examination of the RelA (p65) subunit of NF-κB expressed in MCF7 breast cancer cells indicated that either treatment with pervanadate or stable expression of Syk protected RelA from calpain-mediated proteolysis. Similar results were observed with the tyrosine phosphatase, PTP1B, another sensitive calpain substrate. The activity of calpain in MCF7 cell lysates was inhibited by both treatment with hydrogen peroxide and expression of Syk, the former due to oxidative inactivation of calpain and the latter to enhanced expression of calpastatin (CAST), the endogenous calpain inhibitor. The level of CAST was elevated in the cytosolic fraction of Syk-positive breast cancer cells resulting in more CAST present in complex with calpain in cell lysates. The high levels of CAST coincided with elevated basal levels of calcium-and of intracellular calpain activity-in Syk-expressing cells resulting from decreased levels of Bcl-2, an inhibitor of IP3-receptor-mediated calcium release. The inhibition of cellular calpain stimulated the Syk-mediated enhancement of NF-κB induced by TNF-α, enhanced tyrosine phosphorylation resulting from integrin crosslinking, and increased the localization of Syk to the plasma membrane.
Collapse
Affiliation(s)
- Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
44
|
Raimbourg Q, Perez J, Vandermeersch S, Prignon A, Hanouna G, Haymann JP, Baud L, Letavernier E. The calpain/calpastatin system has opposing roles in growth and metastatic dissemination of melanoma. PLoS One 2013; 8:e60469. [PMID: 23565252 PMCID: PMC3614974 DOI: 10.1371/journal.pone.0060469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
Conventional calpains are ubiquitous cysteine proteases whose activity is promoted by calcium signaling and specifically limited by calpastatin. Calpain expression has been shown to be increased in human malignant cells, but the contribution of the calpain/calpastatin system in tumorigenesis remains unclear. It may play an important role in tumor cells themselves (cell growth, migration, and a contrario cell death) and/or in tumor niche (tissue infiltration by immune cells, neo-angiogenesis). In this study, we have used a mouse model of melanoma as a tool to gain further understanding of the role of calpains in tumor progression. To determine the respective importance of each target, we overexpressed calpastatin in tumor and/or host in isolation. Our data demonstrate that calpain inhibition in both tumor and host blunts tumor growth, while paradoxically increasing metastatic dissemination to regional lymph nodes. Specifically, calpain inhibition in melanoma cells limits tumor growth in vitro and in vivo but increases dissemination by amplifying cell resistance to apoptosis and accelerating migration process. Meanwhile, calpain inhibition restricted to host cells blunts tumor infiltration by immune cells and angiogenesis required for antitumor immunity, allowing tumor cells to escape tumor niche and disseminate. The development of highly specific calpain inhibitors with potential medical applications in cancer should take into account the opposing roles of the calpain/calpastatin system in initial tumor growth and subsequent metastatic dissemination.
Collapse
Affiliation(s)
- Quentin Raimbourg
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI et Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
| | - Joëlle Perez
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI et Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
| | - Sophie Vandermeersch
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI et Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
| | - Aurélie Prignon
- Département de Médecine Nucléaire et Université Pierre-et-Marie-Curie Paris VI, Hôpital Tenon, Paris, France
| | - Guillaume Hanouna
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI et Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
| | - Jean-Philippe Haymann
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI, Institut National de la Santé et de la Recherche Médicale et Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Laurent Baud
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI, Institut National de la Santé et de la Recherche Médicale et Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Emmanuel Letavernier
- Unité Mixte de Recherche 702 (UMR S 702), Université Pierre-et-Marie-Curie Paris VI, Institut National de la Santé et de la Recherche Médicale et Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Abstract
The intracellular levels of the p53 tumor suppressor protein are regulated through various pathways and involve numerous regulatory components. A recent study published in Cell Research identifies a proteasome-independent pathway of p53 protein degradation in the nucleolus that is dependent on Def and Calpain3.
Collapse
Affiliation(s)
- Mais M Nuaaman
- Department of Biology, York University, Toronto, ON, Canada
| | | |
Collapse
|
46
|
Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation. Cell Res 2013; 23:620-34. [PMID: 23357851 PMCID: PMC3641591 DOI: 10.1038/cr.2013.16] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however, little is known about p53 turnover through proteasome-independent pathway(s). The digestive organ expansion factor (Def) protein is essential for the development of digestive organs. In zebrafish, loss of function of def selectively upregulates the expression of p53 response genes, which raises a question as to what is the relationship between Def and p53. We report here that Def is a nucleolar protein and that loss of function of def leads to the upregulation of p53 protein, which surprisingly accumulates in the nucleoli. Our extensive studies have demonstrated that Def can mediate the degradation of p53 protein and that this process is independent of the proteasome pathway, but dependent on the activity of Calpain3, a cysteine protease. Our findings define a novel nucleolar pathway that regulates the turnover function of p53, which will advance our understanding of p53's role in organogenesis and tumorigenesis.
Collapse
|
47
|
Varricchio E, Russolillo MG, Maruccio L, Velotto S, Campanile G, Paolucci M, Russo F. Immunological detection of m- and µ-calpains in the skeletal muscle of Marchigiana cattle. Eur J Histochem 2013; 57:e2. [PMID: 23549461 PMCID: PMC3683609 DOI: 10.4081/ejh.2013.e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 10/22/2012] [Accepted: 11/14/2012] [Indexed: 01/18/2023] Open
Abstract
Calpains are Ca2+-dependent proteases able to cleave a large number of proteins involved in many biological functions. Particularly, in skeletal muscle they are involved in meat tenderizing during post mortem storage. In this report we analyzed the presence and expression of µ- and m-calpains in two skeletal muscles of the Marchigiana cattle soon after slaughter, using immunocytochemical and immunohistochemical techniques, Western blotting analysis and Casein Zymography. Therefore, the presence and the activity of these proteases was investigated until 15th day post mortem during normal process of meat tenderizing. The results showed m- and µ-calpain immunosignals in the cytoplasm both along the Z disk/I band regions and in the form of intracellular stores. Moreover, the expression level of µ-calpain but not m-calpain decreased after 10 days of storage. Such a decrease in µ-calpain was accompanied by a gradual reduction of activity. On the contrary, m-calpain activity persisted up to 15 days of post mortem storage. Such data indicate that expression and activity of both µ-calpain and m-calpain analyzed in the Marchigiana cattle persist longer than reported in literature for other bovines and may be related to both the type of muscle and breed examined.
Collapse
Affiliation(s)
- E Varricchio
- Department of Biological, Geological and Environmental Sciences, University of Sannio, Benevento, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Apoptotic cell death is characterized by cell shrinkage, chromatin condensation and fragmentation, formation of apoptotic bodies and phagocytosis (Kerr et al., 1972). At the molecular level, activation of a family of cysteine proteases, caspases, related to interleukin-1beta-converting enzyme is believed to be a crucial event in apoptosis. This is associated with the proteolysis of nuclear and cytoskeletal proteins, cell shrinkage, glutathione efflux, exposure of phosphatidylserine on the cell surface, membrane blebbing, etc. In CD95- or TNF-mediated apoptosis, the proteolytic cascade is believed to be triggered directly by caspase binding to the activated plasma membrane receptor complex. In other forms of apoptosis, the mechanisms of activation of the proteolytic cascade are less well established but may involve imported proteases, such as granzyme B, or factors released from the mitochondria and, possibly, other organelles. Recently, the possibility that cytochrome c released from the mitochondria may serve to activate dormant caspases in the cytosol, and thereby to propagate the apoptotic process, has attracted considerable attention. A perturbation of intracellular Ca(2+) homeostasis has been found to trigger apoptosis in many experimental systems, and the apoptotic process has been related to either a sustained increase in cytosolic free Ca(2+) level or a depletion of intracellular Ca(2+) stores. Although many of the biochemical events involved in the apoptotic process are Ca(2+) dependent, the exact mechanism by which Ca(2+) triggers apoptosis remains unknown. The bcl-2 gene family, which includes both inhibitors and inducers of apoptosis, appears to regulate intracellular Ca(2+) compartmentalization. The induction of apoptosis by Ca(2+)-mobilizing agents results in caspase activation, which is similar to what is seen with other inducers of apoptosis. In addition, Ca(2+)-dependent proteases, such as calpain and a Ca(2+)-dependent nuclear scaffold-associated serine protease, are also activated by Ca(2+) signalling in some cell types where they appear to be involved in alpha-fodrin and lamin beta cleavage, respectively. Thus, a spectrum of proteases are activated during apoptosis depending on both cell type and inducer. This proteolytic cascade can involve both caspases and Ca(2+)-dependent proteases, which seem to interact during the apoptotic process.
Collapse
Affiliation(s)
- M I Pörn-Ares
- Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein. PLoS One 2012; 7:e44518. [PMID: 22952988 PMCID: PMC3432114 DOI: 10.1371/journal.pone.0044518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/08/2012] [Indexed: 01/31/2023] Open
Abstract
Background Extracellular high mobility group box 1 (HMGB1) protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. Principal Findings Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130–139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1(130–139) peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. Conclusion We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.
Collapse
|
50
|
Bergounioux J, Elisee R, Prunier AL, Donnadieu F, Sperandio B, Sansonetti P, Arbibe L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 2012; 11:240-52. [PMID: 22423964 DOI: 10.1016/j.chom.2012.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/15/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
The enteropathogen Shigella flexneri invades epithelial cells, leading to inflammation and tissue destruction. We report that Shigella infection of epithelial cells induces an early genotoxic stress, but the resulting p53 response and cell death are impaired due to the bacterium's ability to promote p53 degradation, mainly through calpain protease activation. Calpain activation is promoted by the Shigella virulence effector VirA and dependent on calcium flux and the depletion of the endogenous calpain inhibitor calpastatin. Further, although VirA-induced calpain activity is critical for regulating cytoskeletal events driving bacterial uptake, calpain activation ultimately leads to necrotic cell death, thereby restricting Shigella intracellular growth. Therefore, calpains work at multiple steps in regulating Shigella pathogenesis by disrupting the p53-dependent DNA repair response early during infection and regulating both formation and ultimate death of the Shigella epithelial replicative niche.
Collapse
Affiliation(s)
- Jean Bergounioux
- Unité de Pathogénie Microbienne Moléculaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|