1
|
Bosart K, Petreaca RC, Bouley RA. In silico analysis of several frequent SLX4 mutations appearing in human cancers. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001216. [PMID: 38828439 PMCID: PMC11143449 DOI: 10.17912/micropub.biology.001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
SLX4 is an interactor and activator of structure-specific exonuclease that helps resolve tangled recombination intermediates arising at stalled replication forks. It is one of the many factors that assist with homologous recombination, the major mechanism for restarting replication. SLX4 mutations have been reported in many cancers but a pan cancer map of all the mutations has not been undertaken. Here, using data from the Catalogue of Somatic Mutations in Cancers (COSMIC), we show that mutations occur in almost every cancer and many of them truncate the protein which should severely alter the function of the enzyme. We identified a frequent R1779W point mutation that occurs in the SLX4 domain required for heterodimerization with its partner, SLX1. In silico protein structure analysis of this mutation shows that it significantly alters the protein structure and is likely to destabilize the interaction with SLX1. Although this brief communication is limited to only in silico analysis, it identifies certain high frequency SLX4 mutations in human cancers that would warrant further in vivo studies. Additionally, these mutations may be potentially actionable for drug therapies.
Collapse
Affiliation(s)
- Korey Bosart
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Ruben C Petreaca
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Molecular Genetics, The Ohio State University at Marion, Marion, Ohio, United States
| | - Renee A Bouley
- Chemistry and Biochemistry, The Ohio State University at Marion, Marion, Ohio, United States
| |
Collapse
|
2
|
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CI, Lopes M, Zain R, Mirkin S. Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res 2023; 51:8532-8549. [PMID: 37216608 PMCID: PMC10484681 DOI: 10.1093/nar/gkad441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.
Collapse
Affiliation(s)
| | - Jorge Cebrián
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | | | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Center for Rare Diseases, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
4
|
Afshar N, Argunhan B, Palihati M, Taniguchi G, Tsubouchi H, Iwasaki H. A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors. eLife 2021; 10:64131. [PMID: 33493431 PMCID: PMC7837696 DOI: 10.7554/elife.64131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Homologous recombination (HR) is essential for maintaining genome stability. Although Rad51 is the key protein that drives HR, multiple auxiliary factors interact with Rad51 to potentiate its activity. Here, we present an interdisciplinary characterization of the interactions between Rad51 and these factors. Through structural analysis, we identified an evolutionarily conserved acidic patch of Rad51. The neutralization of this patch completely abolished recombinational DNA repair due to defects in the recruitment of Rad51 to DNA damage sites. This acidic patch was found to be important for the interaction with Rad55-Rad57 and essential for the interaction with Rad52. Furthermore, biochemical reconstitutions demonstrated that neutralization of this acidic patch also impaired the interaction with Rad54, indicating that a single motif is important for the interaction with multiple auxiliary factors. We propose that this patch is a fundamental motif that facilitates interactions with auxiliary factors and is therefore essential for recombinational DNA repair.
Collapse
Affiliation(s)
- Negar Afshar
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Bilge Argunhan
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Maierdan Palihati
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Goki Taniguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Hideo Tsubouchi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Iwasaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
5
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|
6
|
RecQ DNA Helicase Rqh1 Promotes Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint Pathway of Fission Yeast. Mol Cell Biol 2020; 40:MCB.00145-20. [PMID: 32541066 DOI: 10.1128/mcb.00145-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Rad3 is the orthologue of ATR and the sensor kinase of the DNA replication checkpoint in Schizosaccharomyces pombe Under replication stress, it initiates checkpoint signaling at the forks necessary for maintaining genome stability and cell survival. To better understand the checkpoint initiation process, we have carried out a genetic screen in fission yeast by random mutation of the genome, looking for mutants defective in response to the replication stress induced by hydroxyurea. In addition to the previously reported mutant with a C-to-Y change at position 307 encoded by tel2 (tel2-C307Y mutant) (Y.-J. Xu, S. Khan, A. C. Didier, M. Wozniak, et al., Mol Cell Biol 39:e00175-19, 2019, https://doi.org/10.1128/MCB.00175-19), this screen has identified six mutations in rqh1 encoding a RecQ DNA helicase. Surprisingly, these rqh1 mutations, except for a start codon mutation, are all in the helicase domain, indicating that the helicase activity of Rqh1 plays an important role in the replication checkpoint. In support of this notion, integration of two helicase-inactive mutations or deletion of rqh1 generated a similar Rad3 signaling defect, and heterologous expression of human RECQ1, BLM, and RECQ4 restored the Rad3 signaling and partially rescued a rqh1 helicase mutant. Therefore, the replication checkpoint function of Rqh1 is highly conserved, and mutations in the helicase domain of these human enzymes may cause the checkpoint defect and contribute to the cancer predisposition syndromes.
Collapse
|
7
|
Davé A, Pai CC, Durley SC, Hulme L, Sarkar S, Wee BY, Prudden J, Tinline-Purvis H, Cullen JK, Walker C, Watson A, Carr AM, Murray JM, Humphrey TC. Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks. Nucleic Acids Res 2020; 48:1271-1284. [PMID: 31828313 PMCID: PMC7026635 DOI: 10.1093/nar/gkz1109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
Collapse
Affiliation(s)
- Anoushka Davé
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Chen-Chun Pai
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Samuel C Durley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Lydia Hulme
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - John Prudden
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jason K Cullen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Carol Walker
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Adam Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
8
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Sanyal S, Molnarova L, Richterova J, Huraiova B, Benko Z, Polakova S, Cipakova I, Sevcovicova A, Gaplovska-Kysela K, Mechtler K, Cipak L, Gregan J. Mutations that prevent methylation of cohesin render sensitivity to DNA damage in S. pombe. J Cell Sci 2018; 131:jcs214924. [PMID: 29898918 PMCID: PMC6051343 DOI: 10.1242/jcs.214924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/04/2018] [Indexed: 01/18/2023] Open
Abstract
The canonical role of cohesin is to mediate sister chromatid cohesion. In addition, cohesin plays important roles in processes such as DNA repair and regulation of gene expression. Mounting evidence suggests that various post-translational modifications, including phosphorylation, acetylation and sumoylation regulate cohesin functions. Our mass spectrometry analysis of cohesin purified from Schizosaccharomyces pombe cells revealed that the cohesin subunit Psm1 is methylated on two evolutionarily conserved lysine residues, K536 and K1200. We found that mutations that prevent methylation of Psm1 K536 and K1200 render sensitivity to DNA-damaging agents and show positive genetic interactions with mutations in genes encoding the Mus81-Eme1 endonuclease. Yeast two-hybrid and co-immunoprecipitation assays showed that there were interactions between subunits of the cohesin and Mus81-Eme1 complexes. We conclude that cohesin is methylated and that mutations that prevent methylation of Psm1 K536 and K1200 show synthetic phenotypes with mutants defective in the homologous recombination DNA repair pathway.
Collapse
Affiliation(s)
- Swastika Sanyal
- Department of Chromosome Biology, MFPL, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Lucia Molnarova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Judita Richterova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Barbora Huraiova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Zsigmond Benko
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Silvia Polakova
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Katarina Gaplovska-Kysela
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, MFPL, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Advanced Microscopy Facility, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
10
|
Sanchez A, Gadaleta MC, Limbo O, Russell P. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast. PLoS Genet 2017; 13:e1007013. [PMID: 28922417 PMCID: PMC5626526 DOI: 10.1371/journal.pgen.1007013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/03/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs). In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR) of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ) cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1) and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A) at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2) double-strand break (DSB) resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1) DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.
Collapse
Affiliation(s)
- Arancha Sanchez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mariana C. Gadaleta
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Spivey EC, Jones SK, Rybarski JR, Saifuddin FA, Finkelstein IJ. An aging-independent replicative lifespan in a symmetrically dividing eukaryote. eLife 2017; 6:e20340. [PMID: 28139976 PMCID: PMC5332158 DOI: 10.7554/elife.20340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/27/2017] [Indexed: 12/28/2022] Open
Abstract
The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.
Collapse
Affiliation(s)
- Eric C Spivey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - Stephen K Jones
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - James R Rybarski
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Fatema A Saifuddin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| |
Collapse
|
12
|
Rahman F, Tarique M, Ahmad M, Tuteja R. Plasmodium falciparum Werner homologue is a nuclear protein and its biochemical activities reside in the N-terminal region. PROTOPLASMA 2016; 253:45-60. [PMID: 25824666 DOI: 10.1007/s00709-015-0785-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
RecQ helicases, also addressed as a gatekeeper of genome, are an inevitable family of genome scrutiny proteins conserved from prokaryotes to eukaryotes and play a vital role in DNA metabolism. The deficiencies of three RecQ proteins out of five are involved in genetic abnormalities like Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS). It is noteworthy that Plasmodium falciparum contains only two members of the RecQ family as opposed to five members present in the host Homo sapiens. In the present study, we report the biochemical characterization of the homologue of Werner (Wrn) helicase from P. falciparum 3D7 strain. Although there are significant sequence conservations between Wrn helicases of both H. sapiens and P. falciparum as well as among all the other Plasmodium species, they contain some peculiar differences also. In silico studies reveal that PfWrn is evolutionarily close to the bacterial RecQ protein. The N-terminal fragment (PfWrnN) contains all the helicase motifs along with all the functional domains and the predicted structure resembles with the human RecQ1 protein, whereas the C-terminal fragment (PfWrnC) contains no significant domain. Biochemical characterization further revealed that purified recombinant PfWrnN shows ATPase and DNA helicase activity in 3' to 5' direction, but PfWrnC lacks the ATPase and helicase activities. Immunofluorescence study shows that PfWrn is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain and localizes distinctly in the nucleus. This study can be used for further characterization of RecQ helicases that will aid in understanding the physiological significance of these helicases in the malaria parasite.
Collapse
Affiliation(s)
- Farhana Rahman
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
13
|
Rad51-dependent aberrant chromosome structures at telomeres and ribosomal DNA activate the spindle assembly checkpoint. Mol Cell Biol 2014; 34:1389-97. [PMID: 24469396 DOI: 10.1128/mcb.01704-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors defects in kinetochore-microtubule attachment or lack of tension at kinetochores and arrests cells at prometaphase. In fission yeast, the double mutant between pot1Δ and the helicase-dead point mutant of the RecQ helicase Rqh1 gene (rqh1-hd) accumulates Rad51-dependent recombination intermediates at telomeres and enters mitosis with those intermediates. Here, we found that SAC-dependent prometaphase arrest occurred more frequently in pot1Δ rqh1-hd double mutants than in rqh1-hd single mutants. SAC-dependent prometaphase arrest also occurred more frequently in rqh1-hd single mutants after cells were released from DNA replication block compared to the rqh1-hd single mutant in the absence of exogenous insult to the DNA. In both cases, Mad2 foci persisted longer than usual at kinetochores, suggesting a defect in kinetochore-microtubule attachment. In pot1Δ rqh1-hd double mutants and rqh1-hd single mutants released from DNA replication block, SAC-dependent prometaphase arrest was suppressed by the removal of the recombination or replication intermediates. Our results indicate that the accumulation of recombination or replication intermediates induces SAC-dependent prometaphase arrest, possibly by affecting kinetochore-microtubule attachment.
Collapse
|
14
|
Dziadkowiec D, Kramarz K, Kanik K, Wisniewski P, Carr AM. Involvement of Schizosaccharomyces pombe rrp1+ and rrp2+ in the Srs2- and Swi5/Sfr1-dependent pathway in response to DNA damage and replication inhibition. Nucleic Acids Res 2013; 41:8196-209. [PMID: 23828040 PMCID: PMC3783160 DOI: 10.1093/nar/gkt564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate-induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.
Collapse
Affiliation(s)
- Dorota Dziadkowiec
- Faculty of Biotechnology, Wrocław University, Przybyszewskiego 63-77, 51-148 Wrocław, Poland, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
15
|
Norman-Axelsson U, Durand-Dubief M, Prasad P, Ekwall K. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast. PLoS Genet 2013; 9:e1003371. [PMID: 23516381 PMCID: PMC3597498 DOI: 10.1371/journal.pgen.1003371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/25/2013] [Indexed: 11/21/2022] Open
Abstract
Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-ACnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-ACnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-ACnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-ACnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-ACnp1 nucleosomes. Centromeres are unique regions on eukaryotic chromosomes that are essential for chromosome segregation at mitosis and meiosis. Centromere identity and function depends on the presence of specialized chromatin with nucleosomes containing the centromere-specific histone H3 variant CENP-A. Assembly and disassembly of nucleosomes have previously been shown to involve a family of enzymes known as DNA topoisomerases. We show that centromeres are unique in that they are associated with high levels of Top3, but low levels of Top1 and Top2, suggesting that Top3 is particularly important for centromeric DNA topology. Impaired function of Top3 or its partner Rqh1 results in chromosome segregation defects and increased levels of CENP-ACnp1 at centromeres. This role in limiting the levels of CENP-ACnp1 at centromeres is independent of the established role for the Top3-Rqh1 complex in homologous recombination. Therefore, we hypothesize that the Top3-Rqh1 complex exerts this effect by regulating centromere DNA topology, which in turn affects CENP-ACnp1 nucleosome dynamics. Specific removal of negative supercoiling by Top3 could directly have a negative effect on assembly of CENP-ACnp1 nucleosomes with left-handed negative wrapping of DNA and/or act indirectly by inhibiting transcription-coupled CENP-ACnp1 assembly. Alternatively, Top3 may be a factor that promotes formation of CENP-ACnp1 hemisomes with right-handed wrapping of DNA over conventional octamers. This suggests a new role for the Top3-Rqh1 complex at centromeres and may contribute to the understanding of the structural and functional specification of centromeres.
Collapse
Affiliation(s)
- Ulrika Norman-Axelsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mickaël Durand-Dubief
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Punit Prasad
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Ekwall
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
16
|
Fission yeast RecQ helicase Rqh1 is required for the maintenance of circular chromosomes. Mol Cell Biol 2013; 33:1175-87. [PMID: 23297345 DOI: 10.1128/mcb.01713-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protection of telomeres protein 1 (Pot1) binds to single-stranded telomere overhangs and protects chromosome ends. RecQ helicases regulate homologous recombination at multiple stages, including resection, strand displacement, and resolution. Fission yeast pot1 and RecQ helicase rqh1 double mutants are synthetically lethal, but the mechanism is not fully understood. Here, we show that the synthetic lethality of pot1Δ rqh1Δ double mutants is due to inappropriate homologous recombination, as it is suppressed by the deletion of rad51(+). The expression of Rad51 in the pot1Δ rqh1Δ rad51Δ triple mutant, which has circular chromosomes, is lethal. Reduction of the expression of Rqh1 in a pot1 disruptant with circular chromosomes caused chromosome missegregation, and this defect was partially suppressed by the deletion of rad51(+). Taken together, our results suggest that Rqh1 is required for the maintenance of circular chromosomes when homologous recombination is active. Crossovers between circular monomeric chromosomes generate dimers that cannot segregate properly in Escherichia coli. We propose that Rqh1 inhibits crossovers between circular monomeric chromosomes to suppress the generation of circular dimers.
Collapse
|
17
|
Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 2011; 714:33-43. [PMID: 21741981 DOI: 10.1016/j.mrfmmm.2011.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.
Collapse
|
18
|
Frazer C, Young PG. Redundant mechanisms prevent mitotic entry following replication arrest in the absence of Cdc25 hyper-phosphorylation in fission yeast. PLoS One 2011; 6:e21348. [PMID: 21731711 PMCID: PMC3121752 DOI: 10.1371/journal.pone.0021348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/27/2011] [Indexed: 11/18/2022] Open
Abstract
Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation.
Collapse
Affiliation(s)
- Corey Frazer
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul G. Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage. Proc Natl Acad Sci U S A 2011; 108:4944-9. [PMID: 21383164 DOI: 10.1073/pnas.1014240108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.
Collapse
|
20
|
Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation. Mol Cell Biol 2010; 31:495-506. [PMID: 21098121 DOI: 10.1128/mcb.00613-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.
Collapse
|
21
|
Boyd LK, Mercer B, Thompson D, Main E, Watts FZ. Characterisation of the SUMO-like domains of Schizosaccharomyces pombe Rad60. PLoS One 2010; 5:e13009. [PMID: 20885950 PMCID: PMC2946365 DOI: 10.1371/journal.pone.0013009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/24/2010] [Indexed: 11/25/2022] Open
Abstract
The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is essential for cell viability. It has two SUMO-like domains (SLDs) at its C-terminus, an SXS motif and three sequences that have been proposed to be SUMO-binding motifs (SBMs). SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3 is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2Δ cells are sensitive to DNA damaging agents and hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies, FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-SLD2Δ, implying that as well as having a role in the sumoylation process as previously described [1], Rad60 has a Hus5-independent function.
Collapse
Affiliation(s)
- Lara K. Boyd
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brenda Mercer
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Darren Thompson
- Division of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Ewan Main
- Division of Chemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Felicity Z. Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Rozenzhak S, Mejía-Ramírez E, Williams JS, Schaffer L, Hammond JA, Head SR, Russell P. Rad3 decorates critical chromosomal domains with gammaH2A to protect genome integrity during S-Phase in fission yeast. PLoS Genet 2010; 6:e1001032. [PMID: 20661445 PMCID: PMC2908685 DOI: 10.1371/journal.pgen.1001032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/17/2010] [Indexed: 01/24/2023] Open
Abstract
Schizosaccharomyces pombe Rad3 checkpoint kinase and its human ortholog ATR are essential for maintaining genome integrity in cells treated with genotoxins that damage DNA or arrest replication forks. Rad3 and ATR also function during unperturbed growth, although the events triggering their activation and their critical functions are largely unknown. Here, we use ChIP-on-chip analysis to map genomic loci decorated by phosphorylated histone H2A (gammaH2A), a Rad3 substrate that establishes a chromatin-based recruitment platform for Crb2 and Brc1 DNA repair/checkpoint proteins. Unexpectedly, gammaH2A marks a diverse array of genomic features during S-phase, including natural replication fork barriers and a fork breakage site, retrotransposons, heterochromatin in the centromeres and telomeres, and ribosomal RNA (rDNA) repeats. gammaH2A formation at the centromeres and telomeres is associated with heterochromatin establishment by Clr4 histone methyltransferase. We show that gammaH2A domains recruit Brc1, a factor involved in repair of damaged replication forks. Brc1 C-terminal BRCT domain binding to gammaH2A is crucial in the absence of Rqh1(Sgs1), a RecQ DNA helicase required for rDNA maintenance whose human homologs are mutated in patients with Werner, Bloom, and Rothmund-Thomson syndromes that are characterized by cancer-predisposition or accelerated aging. We conclude that Rad3 phosphorylates histone H2A to mobilize Brc1 to critical genomic domains during S-phase, and this pathway functions in parallel with Rqh1 DNA helicase in maintaining genome integrity.
Collapse
Affiliation(s)
- Sophie Rozenzhak
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eva Mejía-Ramírez
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jessica S. Williams
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Lana Schaffer
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jennifer A. Hammond
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- DNA Array Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
23
|
Abstract
Mutations in the highly conserved RecQ helicase, BLM, cause the rare cancer predisposition disorder, Bloom's syndrome. The orthologues of BLM in Saccharomyces cerevisiae and Schizosaccharomyces pombe are SGS1 and rqh1(+), respectively. Studies in these yeast species have revealed a plethora of roles for the Sgs1 and Rqh1 proteins in repair of double strand breaks, restart of stalled replication forks, processing of aberrant intermediates that arise during meiotic recombination, and maintenance of telomeres. In this review, we focus on the known roles of Sgs1 and Rqh1 and how studies in yeast species have improved our knowledge of how BLM suppresses neoplastic transformation.
Collapse
Affiliation(s)
- Thomas M Ashton
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
24
|
Abstract
The six Saccharomyces cerevisiae SLX genes were identified in a screen for factors required for the viability of cells lacking Sgs1, a member of the RecQ helicase family involved in processing stalled replisomes and in the maintenance of genome stability. The six SLX gene products form three distinct heterodimeric complexes, and all three have catalytic activity. Slx3-Slx2 (also known as Mus81-Mms4) and Slx1-Slx4 are both heterodimeric endonucleases with a marked specificity for branched replication fork-like DNA species, whereas Slx5-Slx8 is a SUMO (small ubiquitin-related modifier)-targeted E3 ubiquitin ligase. All three complexes play important, but distinct, roles in different aspects of the cellular response to DNA damage and perturbed DNA replication. Slx4 interacts physically not only with Slx1, but also with Rad1-Rad10 [XPF (xeroderma pigmentosum complementation group F)-ERCC1 (excision repair cross-complementing 1) in humans], another structure-specific endonuclease that participates in the repair of UV-induced DNA damage and in a subpathway of recombinational DNA DSB (double-strand break) repair. Curiously, Slx4 is essential for repair of DSBs by Rad1-Rad10, but is not required for repair of UV damage. Slx4 also promotes cellular resistance to DNA-alkylating agents that block the progression of replisomes during DNA replication, by facilitating the error-free mode of lesion bypass. This does not require Slx1 or Rad1-Rad10, and so Slx4 has several distinct roles in protecting genome stability. In the present article, I provide an overview of our current understanding of the cellular roles of the Slx proteins, paying particular attention to the advances that have been made in understanding the cellular roles of Slx4. In particular, protein-protein interactions and underlying molecular mechanisms are discussed and I draw attention to the many questions that have yet to be answered.
Collapse
|
25
|
Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres. Mol Cell 2009; 33:559-69. [PMID: 19285940 DOI: 10.1016/j.molcel.2009.01.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 11/18/2008] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
Genome stability depends upon the RecQ helicases, which are conserved from bacteria to man, but little is known about how their myriad activities are regulated. Fission yeast lacking the telomere protein Taz1 (mammalian TRF1/TRF2 ortholog) lose many hallmarks of telomeres, including accurate replication and local protection from DNA repair reactions. Here we show that the RecQ homolog, Rqh1, is sumoylated. Surprisingly, Rqh1 acts on taz1Delta telomeres in a deleterious way, promoting telomere breakage and entanglement. Mutation of Rqh1 sumoylation sites rescues taz1Delta cells from these hazards without dramatically affecting nontelomeric Rqh1 functions. The prominence of Rqh1 in the etiology of several different telomere defects supports the idea that they originate from a common underlying lesion--aberrant processing of the stalled telomeric replication forks that accumulate in the absence of Taz1. Our work underscores the principle that RecQ helicases are "double-edged swords" whose activity, while necessary for maintaining genome-wide stability, must be vigilantly controlled.
Collapse
|
26
|
Porter-Goff ME, Rhind N. The role of MRN in the S-phase DNA damage checkpoint is independent of its Ctp1-dependent roles in double-strand break repair and checkpoint signaling. Mol Biol Cell 2009; 20:2096-107. [PMID: 19211838 DOI: 10.1091/mbc.e08-09-0986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex has many biological functions: processing of double-strand breaks in meiosis, homologous recombination, telomere maintenance, S-phase checkpoint, and genome stability during replication. In the S-phase DNA damage checkpoint, MRN acts both in activation of checkpoint signaling and downstream of the checkpoint kinases to slow DNA replication. Mechanistically, MRN, along with its cofactor Ctp1, is involved in 5' resection to create single-stranded DNA that is required for both signaling and homologous recombination. However, it is unclear whether resection is essential for all of the cellular functions of MRN. To dissect the various roles of MRN, we performed a structure-function analysis of nuclease dead alleles and potential separation-of-function alleles analogous to those found in the human disease ataxia telangiectasia-like disorder, which is caused by mutations in Mre11. We find that several alleles of rad32 (the fission yeast homologue of mre11), along with ctp1Delta, are defective in double-strand break repair and most other functions of the complex, but they maintain an intact S phase DNA damage checkpoint. Thus, the MRN S-phase checkpoint role is separate from its Ctp1- and resection-dependent role in double-strand break repair. This observation leads us to conclude that other functions of MRN, possibly its role in replication fork metabolism, are required for S-phase DNA damage checkpoint function.
Collapse
Affiliation(s)
- Mary E Porter-Goff
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
27
|
Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Mol Genet Genomics 2009; 281:497-509. [PMID: 19205745 DOI: 10.1007/s00438-009-0426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizosaccharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2 rad3 ( ts ) cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (approximately 100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2 cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance.
Collapse
|
28
|
Tomita K, Cooper JP. Fission yeast Ccq1 is telomerase recruiter and local checkpoint controller. Genes Dev 2009; 22:3461-74. [PMID: 19141478 DOI: 10.1101/gad.498608] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Telomeres recruit telomerase and differentiate chromosome ends from sites of DNA damage. Although the DNA damage checkpoint PI3-kinases ATM and ATR localize to telomeres and promote telomerase activation, activation of their downstream checkpoint pathway targets is inhibited. Here, we show that the fission yeast telomeric protein Ccq1 is required for telomerase recruitment and inhibition of ATR target activation at telomeres. The loss of Ccq1 results in progressive telomere shortening and persistent ATR-dependent activation of Chk1. Unlike the checkpoint activation that follows loss of telomerase, this checkpoint activation occurs prior to detectable levels of critically short telomeres. When ccq1Delta telomeres do become critically short, activated Chk1 promotes an unusual homologous recombination-based telomere maintenance process. We find that the previously reported meiotic segregation defects of cells lacking Ccq1 stem from its role in telomere maintenance rather than from a role in formation of the meiotic bouquet. These findings demonstrate the existence of a novel telomerase recruitment factor that also serves to suppress local checkpoint activation.
Collapse
Affiliation(s)
- Kazunori Tomita
- Telomere Biology Laboratory, Cancer Research UK, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
29
|
Dziadkowiec D, Petters E, Dyjankiewicz A, Karpiński P, Garcia V, Watson A, Carr AM. The role of novel genes rrp1(+) and rrp2(+) in the repair of DNA damage in Schizosaccharomyces pombe. DNA Repair (Amst) 2009; 8:627-36. [PMID: 19185548 DOI: 10.1016/j.dnarep.2008.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 12/08/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Deltarrp1 and Deltarrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Deltarrp1 Deltarhp51 and Deltarrp2 Deltarhp51 plus the triple Deltarrp1 Deltarrp2 Deltarhp51 mutant did not display significant additional sensitivity. However, the double mutants Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Deltarhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Deltarrp1 Deltasfr1 and Deltarrp2 Deltasfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 mutants, but not Deltarrp1 Deltasfr1 or Deltarrp2 Deltasfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Deltarhp51.
Collapse
Affiliation(s)
- Dorota Dziadkowiec
- Faculty of Biotechnology, Wrocław University, Przybyszewskiego 63-77, 51-148 Wrocław, Poland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol Biol Cell 2009; 20:1671-82. [PMID: 19158389 DOI: 10.1091/mbc.e08-08-0875] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination is important for DNA repair, but it can also contribute to genome rearrangements. RecQ helicases, including yeast Sgs1 and human BLM, safeguard genome integrity through their functions in DNA recombination. Sgs1 prevents the accumulation of Rad51-dependent sister chromatid junctions at damaged replication forks, and its functionality seems to be regulated by Ubc9- and Mms21-dependent sumoylation. We show that mutations in Smc5-6 and Esc2 also lead to an accumulation of recombinogenic structures at damaged replication forks. Because Smc5-6 is sumoylated in an Mms21-dependent manner, this finding suggests that Smc5-6 may be a crucial target of Mms21 implicated in this process. Our data reveal that Smc5-6 and Esc2 are required to tolerate DNA damage and that their functionality is critical in genotoxic conditions in the absence of Sgs1. As reported previously for Sgs1 and Smc5-6, we find that Esc2 physically interacts with Ubc9 and SUMO. This interaction is correlated with the ability of Esc2 to promote DNA damage tolerance. Collectively, these data suggest that Esc2 and Smc5-6 act in concert with Sgs1 to prevent the accumulation of recombinogenic structures at damaged replication forks, likely by integrating sumoylation activities to regulate the repair pathways in response to damaged DNA.
Collapse
Affiliation(s)
- Julie Sollier
- IFOM, The FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Mankouri HW, Ngo HP, Hickson ID. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:1683-94. [PMID: 19158388 DOI: 10.1091/mbc.e08-08-0877] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Esc2 is a member of the RENi family of SUMO-like domain proteins and is implicated in gene silencing in Saccharomyces cerevisiae. Here, we identify a dual role for Esc2 during S-phase in mediating both intra-S-phase DNA damage checkpoint signaling and preventing the accumulation of Rad51-dependent homologous recombination repair (HRR) intermediates. These roles are qualitatively similar to those of Sgs1, the yeast ortholog of the human Bloom's syndrome protein, BLM. However, whereas mutation of either ESC2 or SGS1 leads to the accumulation of unprocessed HRR intermediates in the presence of MMS, the accumulation of these structures in esc2 (but not sgs1) mutants is entirely dependent on Mph1, a protein that shows structural similarity to the Fanconi anemia group M protein (FANCM). In the absence of both Esc2 and Sgs1, the intra-S-phase DNA damage checkpoint response is compromised after exposure to MMS, and sgs1esc2 cells attempt to undergo mitosis with unprocessed HRR intermediates. We propose a model whereby Esc2 acts in an Mph1-dependent process, separately from Sgs1, to influence the repair/tolerance of MMS-induced lesions during S-phase.
Collapse
Affiliation(s)
- Hocine W Mankouri
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | |
Collapse
|
32
|
Willis N, Rhind N. Mus81, Rhp51(Rad51), and Rqh1 form an epistatic pathway required for the S-phase DNA damage checkpoint. Mol Biol Cell 2008; 20:819-33. [PMID: 19037101 DOI: 10.1091/mbc.e08-08-0798] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The S-phase DNA damage checkpoint slows the rate of DNA synthesis in response to damage during replication. In the fission yeast Schizosaccharomyces pombe, Cds1, the S-phase-specific checkpoint effector kinase, is required for checkpoint signaling and replication slowing; upon treatment with the alkylating agent methyl methane sulfonate, cds1Delta mutants display a complete checkpoint defect. We have identified proteins downstream of Cds1 required for checkpoint-dependant slowing, including the structure-specific endonuclease Mus81 and the helicase Rqh1, which are implicated in replication fork stability and the negative regulation of recombination. Removing Rhp51, the Rad51 recombinase homologue, suppresses the slowing defect of rqh1Delta mutants, but not that of mus81Delta mutant, defining an epistatic pathway in which mus81 is epistatic to rhp51 and rhp51 is epistatic to rqh1. We propose that restraining recombination is required for the slowing of replication in response to DNA damage.
Collapse
Affiliation(s)
- Nicholas Willis
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
33
|
Franchitto A, Pirzio LM, Prosperi E, Sapora O, Bignami M, Pichierri P. Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway. ACTA ACUST UNITED AC 2008; 183:241-52. [PMID: 18852298 PMCID: PMC2568021 DOI: 10.1083/jcb.200803173] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Failure to stabilize and properly process stalled replication forks results in chromosome instability, which is a hallmark of cancer cells and several human genetic conditions that are characterized by cancer predisposition. Loss of WRN, a RecQ-like enzyme mutated in the cancer-prone disease Werner syndrome (WS), leads to rapid accumulation of double-strand breaks (DSBs) and proliferating cell nuclear antigen removal from chromatin upon DNA replication arrest. Knockdown of the MUS81 endonuclease in WRN-deficient cells completely prevents the accumulation of DSBs after fork stalling. Also, MUS81 knockdown in WS cells results in reduced chromatin recruitment of recombination enzymes, decreased yield of sister chromatid exchanges, and reduced survival after replication arrest. Thus, we provide novel evidence that WRN is required to avoid accumulation of DSBs and fork collapse after replication perturbation, and that prompt MUS81-dependent generation of DSBs is instrumental for recovery from hydroxyurea-mediated replication arrest under such pathological conditions.
Collapse
Affiliation(s)
- Annapaola Franchitto
- Section of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Khasanov FK, Salakhova AF, Khasanova OS, Grishchuk AL, Chepurnaja OV, Korolev VG, Kohli J, Bashkirov VI. Genetic analysis reveals different roles of Schizosaccharomyces pombe sfr1/dds20 in meiotic and mitotic DNA recombination and repair. Curr Genet 2008; 54:197-211. [PMID: 18769921 DOI: 10.1007/s00294-008-0212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/15/2008] [Indexed: 11/26/2022]
Abstract
DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Delta is epistatic to rad18 (-) and rad60 (-), and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Delta strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.
Collapse
Affiliation(s)
- Fuat K Khasanov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Singh VK, Nurmohamed S, Davey SK, Jia Z. Tri-cistronic cloning, overexpression and purification of human Rad9, Rad1, Hus1 protein complex. Protein Expr Purif 2007; 54:204-11. [PMID: 17493829 DOI: 10.1016/j.pep.2007.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 12/16/2022]
Abstract
The least understood components of the DNA damage checkpoint are the DNA damage sensors. Genetic studies of Schizosaccharomyces pombe identified six yeast genes, Rad3, Rad17, Rad9, Rad1, Hus1, and Rad26, which encode proteins thought to sense DNA damage and activate the checkpoint-signaling cascade. It has been suggested that Rad9, Rad1 and Hus1 make a heterotrimeric complex forming a PCNA-like structure. In order to carry out structural and biophysical studies of the complex and its associated proteins, the cDNAs encoding full length human Rad9, Rad1 and Hus1 were cloned together into the pET28a vector using a one-step ligation procedure. Here we report successful tri-cistronic cloning, overexpression and purification of this three-protein complex using a single hexa-histidine tag. The trimeric protein complex of Rad9, Rad1 and Hus1 was purified to near homogeneity, yielding approximately 10mg of protein from one liter of Escherichia coli culture.
Collapse
Affiliation(s)
- Vinay Kumar Singh
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | |
Collapse
|
36
|
Dovey CL, Russell P. Mms22 preserves genomic integrity during DNA replication in Schizosaccharomyces pombe. Genetics 2007; 177:47-61. [PMID: 17660542 PMCID: PMC2013719 DOI: 10.1534/genetics.107.077255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The faithful replication of the genome, coupled with the accurate repair of DNA damage, is essential for the maintenance of chromosomal integrity. The MMS22 gene of Saccharomyces cerevisiae plays an important but poorly understood role in preservation of genome integrity. Here we describe a novel gene in Schizosaccharomyces pombe that we propose is a highly diverged ortholog of MMS22. Fission yeast Mms22 functions in the recovery from replication-associated DNA damage. Loss of Mms22 results in the accumulation of spontaneous DNA damage in the S- and G2-phases of the cell cycle and elevated genomic instability. There are severe synthetic interactions involving mms22 and most of the homologous recombination proteins but not the structure-specific endonuclease Mus81-Eme1, which is required for survival of broken replication forks. Mms22 forms spontaneous nuclear foci and colocalizes with Rad22 in cells treated with camptothecin, suggesting that it has a direct role in repair of broken replication forks. Moreover, genetic interactions with components of the DNA replication fork suggest that Mms2 functions in the coordination of DNA synthesis following damage. We propose that Mms22 functions directly at the replication fork to maintain genomic integrity in a pathway involving Mus81-Eme1.
Collapse
Affiliation(s)
- Claire L Dovey
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 90237, USA
| | | |
Collapse
|
37
|
Raji H, Hartsuiker E. Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast 2007; 23:963-76. [PMID: 17072889 DOI: 10.1002/yea.1414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The study of double-strand break repair and homologous recombination in Saccharomyces cerevisiae meiosis has provided important information about the mechanisms involved. However, it has become clear that the resulting recombination models are only partially applicable to repair in mitotic cells, where crossover formation is suppressed. In recent years our understanding of double-strand break repair and homologous recombination in Schizosaccharomyces pombe has increased significantly, and the identification of novel pathways and genes with homologues in higher eukaryotes has increased its value as a model organism for double-strand break repair. In this review we will focus on the involvement of homologous recombination and repair in different aspects of genome stability in Sz. pombe meiosis, replication and telomere maintenance. We will also discuss anti-recombination pathways (that suppress crossover formation), non-homologous end-joining, single-strand annealing and factors that influence the choice and prevalence of the different repair pathways in Sz. pombe.
Collapse
Affiliation(s)
- Hayatu Raji
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
38
|
Salakhova AF, Bashkirov VI, Khasanov FK. Dds20 operates in Cds1-independent mechanism of tolerance to UV-induced DNA damage in Schizosaccharomyces pombe cells. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Kearsey SE, Stevenson AL, Toda T, Wang SW. Fission yeast Cut8 is required for the repair of DNA double-strand breaks, ribosomal DNA maintenance, and cell survival in the absence of Rqh1 helicase. Mol Cell Biol 2006; 27:1558-67. [PMID: 17178839 PMCID: PMC1820446 DOI: 10.1128/mcb.01495-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe Rqh1 is a member of the RecQ DNA helicase family. Members of this protein family are mutated in cancer predisposition diseases, causing Bloom's, Werner, and Rothmund-Thomson syndromes. Rqh1 forms a complex with topoisomerase III and is proposed to process or disrupt aberrant recombination structures that arise during S phase to allow proper chromosome segregation during mitosis. Intriguingly, in the absence of Rqh1, processing of these structures appears to be dependent on Rad3 (human ATR) in a manner that is distinct from its role in checkpoint control. Here, we show that rad3 rqh1 mutants are normally committed to a lethal pathway of DNA repair requiring homologous recombination, but blocking this pathway by Rhp51 inactivation restores viability. Remarkably, viability is also restored by overexpression of Cut8, a nuclear envelope protein involved in tethering and proper function of the proteasome. In keeping with a recently described function of the proteasome in the repair of DNA double-strand breaks, we found that Cut8 is also required for DNA double-strand break repair and is essential for proper chromosome segregation in the absence of Rqh1, suggesting that these proteins might function in a common pathway in homologous recombination repair to ensure accurate nuclear division in S. pombe.
Collapse
Affiliation(s)
- Stephen E Kearsey
- Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Callegari AJ, Kelly TJ. UV irradiation induces a postreplication DNA damage checkpoint. Proc Natl Acad Sci U S A 2006; 103:15877-82. [PMID: 17043220 PMCID: PMC1613229 DOI: 10.1073/pnas.0607343103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic cells irradiated with high doses of UV exhibit cell-cycle responses referred to as G(1)/S, intraS, and G(2)/M checkpoints. After a moderate UV dose that approximates sunlight exposure and is lethal to fission yeast checkpoint mutants, we found unexpectedly that these cell-cycle responses do not occur. Instead, cells at all stages of the cell cycle carry lesions into S phase and delay cell-cycle progression for hours after the completion of bulk DNA synthesis. Both DNA replication and the checkpoint kinase, Chk1, are required to generate this cell-cycle response. UV-irradiation of Deltachk1 cells causes chromosome damage and loss of viability only after cells have replicated irradiated DNA and entered mitosis. These data suggest that an important physiological role of the cell-cycle response to UV is to provide time for postreplication repair.
Collapse
Affiliation(s)
- A. John Callegari
- *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J. Kelly
- *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Wagner M, Price G, Rothstein R. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics 2006; 174:555-73. [PMID: 16816432 PMCID: PMC1602079 DOI: 10.1534/genetics.104.036905] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 06/30/2006] [Indexed: 12/25/2022] Open
Abstract
RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.
Collapse
Affiliation(s)
- Marisa Wagner
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
42
|
Abstract
RecQ DNA helicases function during DNA replication and are essential for the maintenance of genome stability. There is increasing evidence that spontaneous genomic instability occurs primarily during DNA replication, and that proteins involved in the S-phase checkpoint are a principal defence against such instability. Cells that lack functional RecQ helicases exhibit phenotypes consistent with an inability to fully resume replication fork progress after encountering DNA damage or fork arrest. In this review we will concentrate on the various functions of RecQ helicases during S phase in model organisms.
Collapse
Affiliation(s)
- Jennifer A Cobb
- Frontiers in Genetics NCCR Program, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
43
|
Saotome A, Kimura S, Mori Y, Uchiyama Y, Morohashi K, Sakaguchi K. Characterization of four RecQ homologues from rice (Oryza sativa L. cv. Nipponbare). Biochem Biophys Res Commun 2006; 345:1283-91. [PMID: 16730655 DOI: 10.1016/j.bbrc.2006.04.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/14/2006] [Indexed: 11/19/2022]
Abstract
The RecQ family of DNA helicases is conserved throughout the biological kingdoms. In this report, we have characterized four RecQ homologues clearly expressed in rice. OsRecQ1, OsRecQ886, and OsRecQsim expressions were strongly detected in meristematic tissues. Transcription of the OsRecQ homologues was differentially induced by several types of DNA-damaging agents. The expression of four OsRecQ homologues was induced by MMS and bleomycin. OsRecQ1 and OsRecQ886 were induced by H(2)O(2), and MitomycinC strongly induced the expression of OsRecQ1. Transient expression of OsRecQ/GFP fusion proteins demonstrated that OsRecQ2 and OsRecQ886 are found in nuclei, whereas OsRecQ1 and OsRecQsim are found in plastids. Neither OsRecQ1 nor OsRecQsim are induced by light. These results indicate that four of the RecQ homologues have different and specific functions in DNA repair pathways, and that OsRecQ1 and OsRecQsim may not involve in plastid differentiation but different aspects of a plastid-specific DNA repair system.
Collapse
Affiliation(s)
- Ai Saotome
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Bachrati CZ, Borts RH, Hickson ID. Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Res 2006; 34:2269-79. [PMID: 16670433 PMCID: PMC1456333 DOI: 10.1093/nar/gkl258] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Bloom's syndrome helicase, BLM, is a member of the highly conserved RecQ family, and possesses both DNA unwinding and DNA strand annealing activities. BLM also promotes branch migration of Holliday junctions. One role for BLM is to act in conjunction with topoisomerase IIIalpha to process homologous recombination (HR) intermediates containing a double Holliday junction by a process termed dissolution. However, several lines of evidence suggest that BLM may also act early in one or more of the recombination pathways to eliminate illegitimate or aberrantly paired DNA joint molecules. We have investigated whether BLM can disrupt DNA displacement loops (D-loops), which represent the initial strand invasion step of HR. We show that mobile D-loops created by the RecA recombinase are a highly preferred substrate for BLM with the invading strand being displaced from the duplex. We have identified structural features of the D-loop that determine the efficiency with which BLM promotes D-loop dissociation. We discuss these results in the context of models for the role of BLM as an 'anti-recombinase'.
Collapse
Affiliation(s)
| | - Rhona H. Borts
- Department of Genetics, University of LeicesterLeicester LE1 7RH, UK
| | - Ian D. Hickson
- To whom correspondence should be addressed. Tel: +44 1865 222 417; Fax: +44 1865 222 431;
| |
Collapse
|
45
|
Pebernard S, Wohlschlegel J, McDonald WH, Yates JR, Boddy MN. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol Cell Biol 2006; 26:1617-30. [PMID: 16478984 PMCID: PMC1430260 DOI: 10.1128/mcb.26.5.1617-1630.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stabilization and processing of stalled replication forks is critical for cell survival and genomic integrity. We characterize a novel DNA repair heterodimer of Nse5 and Nse6, which are nonessential nuclear proteins critical for chromosome segregation in fission yeast. The Nse5/6 dimer facilitates DNA repair as part of the Smc5-Smc6 holocomplex (Smc5/6), the basic architecture of which we define. Nse5-Nse6 [corrected] (Nse5 and Nse6) [corrected] mutants display a high level of spontaneous DNA damage and mitotic catastrophe in the absence of the master checkpoint regulator Rad3 (hATR). Nse5/6 mutants are required for the response to genotoxic agents that block the progression of replication forks, acting in a pathway that allows the tolerance of irreparable UV lesions. Interestingly, the UV sensitivity of Nse5/6 [corrected] is suppressed by concomitant deletion of the homologous recombination repair factor, Rhp51 (Rad51). Further, the viability of Nse5/6 mutants depends on Mus81 and Rqh1, factors that resolve or prevent the formation of Holliday junctions. Consistently, the UV sensitivity of cells lacking Nse5/6 can be partially suppressed by overexpressing the bacterial resolvase RusA. We propose a role for Nse5/6 mutants in suppressing recombination that results in Holliday junction formation or in Holliday junction resolution.
Collapse
Affiliation(s)
- Stephanie Pebernard
- The Scripps Research Institute, Rm. MB107, 10550 North Torrey Pines Rd., Molecular Biology, MB-3, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
46
|
Hope JC, Mense SM, Jalakas M, Mitsumoto J, Freyer GA. Rqh1 blocks recombination between sister chromatids during double strand break repair, independent of its helicase activity. Proc Natl Acad Sci U S A 2006; 103:5875-80. [PMID: 16595622 PMCID: PMC1458666 DOI: 10.1073/pnas.0601571103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many questions remain about the process of DNA double strand break (DSB) repair by homologous recombination (HR), particularly concerning the exact function played by individual proteins and the details of specific steps in this process. Some recent studies have shown that RecQ DNA helicases have a function in HR. We studied the role of the RecQ helicase Rqh1 with HR proteins in the repair of a DSB created at a unique site within the Schizosaccharomyces pombe genome. We found that DSBs in rqh1(+) cells, are predominantly repaired by interchromosomal gene conversion, with HR between sister chromatids [sister-chromatid conversion (SCC)], occurring less frequently. In Deltarqh1 cells, repair by SCC is favored, and gene conversion rates slow significantly. When we limited the potential for SCC in Deltarqh1 cells by reducing the length of the G2 phase of the cell cycle, DSB repair continued to be predominated by SCC, whereas it was essentially eliminated in wild-type cells. These data indicate that Rqh1 acts to regulate DSB repair by blocking SCC. Interestingly, we found that this role for Rqh1 is independent of its helicase activity. In the course of these studies, we also found nonhomologous end joining to be largely faithful in S. pombe, contrary to current belief. These findings provide insight into the regulation of DSB repair by RecQ helicases.
Collapse
Affiliation(s)
| | - Sarah M. Mense
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Merle Jalakas
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Jun Mitsumoto
- Graduate Program in Environmental Health Sciences, Columbia University, Kolb Building Room 140, 722 West 168th Street, New York, NY 10032
| | - Greg A. Freyer
- *Graduate Program in Anatomy and Cell Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Watts FZ. Sumoylation of PCNA: Wrestling with recombination at stalled replication forks. DNA Repair (Amst) 2005; 5:399-403. [PMID: 16368276 DOI: 10.1016/j.dnarep.2005.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/10/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
Post-replication repair encompassses error-prone and error-free processes for bypassing lesions encountered during DNA replication. In Saccharomyces cerevisiae, proteins acting in the Rad6-dependent pathway are required to channel lesions into these pathways. Until recently there was little information as to how this channelling was regulated. However, several recent papers, and in particular from the Jentsch and Ulrich groups have provided striking insights into the role of modified forms of PCNA in these events [C. Hoege, B. Pfander, G.L. Moldovan, G. Pyrowolakis, S. Jentsch, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO, Nature 419 (2002) 135-141; P. Stelter, H.D. Ulrich, Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation, Nature 425 (2003) 188-191; B. Pfander, G.L. Moldovan, M. Sacher, C. Hoege, S. Jentsch, SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase, Nature 436 (2005) 428-433; E. Papouli, S. Chen, A.A. Davies, D. Huttner, L. Krejci, P. Sung, H.D. Ulrich, Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p, Mol. Cell. 19 (2005) 123-133]. In particular they have shown that mono-ubiquitinated PCNA directs translesion synthesis via DNA polymerases with low stringency, and that polyubiquitinated PCNA is associated with error-free avoidance of lesions. Recent data have shown that the role of small ubiquitin-like modifier (SUMO) modification of PCNA is not an event that occurs merely in the absence of ubiquitination, rather it serves to recruit Srs2 to replication forks in order to inhibit recombination. The implications of these findings for post-replication repair in S. cerevisiae and other eukaryotes are discussed.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RR, United Kingdom.
| |
Collapse
|
48
|
Win TZ, Mankouri HW, Hickson ID, Wang SW. A role for the fission yeast Rqh1 helicase in chromosome segregation. J Cell Sci 2005; 118:5777-84. [PMID: 16303848 DOI: 10.1242/jcs.02694] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Schizosaccharomyces pombe Rqh1 protein is a member of the RecQ DNA helicase family. Members of this protein family are mutated in several human genome instability syndromes, including Bloom, Werner and Rothmund-Thomson syndromes. RecQ helicases participate in recombination repair of stalled replication forks or DNA breaks, but the precise mechanisms that lead to the development of cancer in these diseases have remained obscure. Here, we reveal a function for Rqh1 in chromosome segregation even in the absence of exogenous insult to the DNA. We show that cells lacking Rqh1 are delayed in anaphase progression, and show lagging chromosomal DNA, which is particularly apparent in the rDNA locus. This mitotic delay is dependent on the spindle checkpoint, as deletion of mad2 abolishes the delay as well as the accumulation of Cut2 in rqh1delta cells. Furthermore, relieving replication fork arrest in the rDNA repeat by deletion of reb1+ partially suppresses rqh1delta phenotypes. These data are consistent with the function of the Top3-RecQ complex in maintenance of the rDNA structure by processing aberrant chromosome structures arising from DNA replication. The chromosome segregation defects seen in the absence of functional RecQ helicases may contribute to the pathogenesis of human RecQ helicase disorders.
Collapse
Affiliation(s)
- Thein Z Win
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | | | | | |
Collapse
|
49
|
Ii M, Brill SJ. Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae. Curr Genet 2005; 48:213-25. [PMID: 16193328 PMCID: PMC1828632 DOI: 10.1007/s00294-005-0014-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/08/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Yeast cells lacking the SGS1 DNA helicase and the MUS81 structure-specific endonuclease display a synthetic lethality that is suppressed by loss of the RAD51 recombinase. This epistatic interaction suggests that the primary function of SGS1 or MUS81, or both genes, is downstream of RAD51. To identify RAD51-independent functions of SGS1 and MUS81, a synthetic-lethal screen was performed on the sgs1 mus81 rad51triple mutant. We found that mutation of RNH202, which encodes a subunit of the hetero-trimeric RNase H2, generates a profound synthetic-sickness in this background. RNase H2 is thought to play a non-essential role in Okazaki fragment maturation. Cells lacking RNH202 showed synthetic growth defects when combined with either mus81 or sgs1 alone. But, whereas the loss of RAD51 had little effect on rnh202 sgs1 double mutants, it strongly inhibited the growth of rnh202 mus81 cells. These data indicate that the primary function of SGS1, but not MUS81, is downstream of RAD51. SGS1 must have some RAD51-independent function, however, since the growth of rnh202 mus81 rad51cells was further compromised by the loss of SGS1. Consistent with these results, we show that rnh202 cells display a sensitivity to DNA-damaging agents that is exacerbated in the absence of RAD51 or MUS81. These data support a model in which defects in lagging-strand replication are repaired by the Mus81 endonuclease or through a pathway dependent on Rad51 and Sgs1.
Collapse
Affiliation(s)
- Miki Ii
- Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
50
|
Morishita T, Furukawa F, Sakaguchi C, Toda T, Carr AM, Iwasaki H, Shinagawa H. Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates. Mol Cell Biol 2005; 25:8074-83. [PMID: 16135799 PMCID: PMC1234317 DOI: 10.1128/mcb.25.18.8074-8083.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51.
Collapse
Affiliation(s)
- Takashi Morishita
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|