1
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
3
|
Silencing Nfix rescues muscular dystrophy by delaying muscle regeneration. Nat Commun 2017; 8:1055. [PMID: 29057908 PMCID: PMC5651883 DOI: 10.1038/s41467-017-01098-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 08/17/2017] [Indexed: 11/30/2022] Open
Abstract
Muscular dystrophies are severe disorders due to mutations in structural genes, and are characterized by skeletal muscle wasting, compromised patient mobility, and respiratory functions. Although previous works suggested enhancing regeneration and muscle mass as therapeutic strategies, these led to no long-term benefits in humans. Mice lacking the transcription factor Nfix have delayed regeneration and a shift toward an oxidative fiber type. Here, we show that ablating or silencing the transcription factor Nfix ameliorates pathology in several forms of muscular dystrophy. Silencing Nfix in postnatal dystrophic mice, when the first signs of the disease already occurred, rescues the pathology and, conversely, Nfix overexpression in dystrophic muscles increases regeneration and markedly exacerbates the pathology. We therefore offer a proof of principle for a novel therapeutic approach for muscular dystrophies based on delaying muscle regeneration. Strategies aimed at promoting muscle regeneration to treat muscular dystrophy have met with limited success. Here the authors show instead that delaying muscle regeneration, by ablation of the transcription factor Nfix, ameliorates muscular dystrophy in mice.
Collapse
|
4
|
Santolini M, Sakakibara I, Gauthier M, Ribas-Aulinas F, Takahashi H, Sawasaki T, Mouly V, Concordet JP, Defossez PA, Hakim V, Maire P. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis. Nucleic Acids Res 2016; 44:8621-8640. [PMID: 27302134 PMCID: PMC5062961 DOI: 10.1093/nar/gkw512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/12/2022] Open
Abstract
Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.
Collapse
Affiliation(s)
- Marc Santolini
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Iori Sakakibara
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Morgane Gauthier
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Francesc Ribas-Aulinas
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | | | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Jean-Paul Concordet
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Vincent Hakim
- Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
5
|
Rossi G, Antonini S, Bonfanti C, Monteverde S, Vezzali C, Tajbakhsh S, Cossu G, Messina G. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression. Cell Rep 2016; 14:2238-2249. [PMID: 26923583 PMCID: PMC4793149 DOI: 10.1016/j.celrep.2016.02.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 10/25/2022] Open
Abstract
Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Antonini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Monteverde
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Chiara Vezzali
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Giulio Cossu
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy; Institute of Inflammation and Repair, University of Manchester, Oxford Road, M13 9PL Manchester, UK
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
6
|
Wu W, Ren Z, Zhang L, Liu Y, Li H, Xiong Y. Overexpression of Six1 gene suppresses proliferation and enhances expression of fast-type muscle genes in C2C12 myoblasts. Mol Cell Biochem 2013; 380:23-32. [PMID: 23613228 DOI: 10.1007/s11010-013-1653-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
Sine oculis homeobox 1 (Six1) homeodomain transcription factor is implicated in the genesis of muscle fiber type diversity, but its regulatory mechanisms on the formation of muscle fiber type are still poorly understood. To elucidate the biological roles of Six1 gene in muscle fiber formation, we established C2C12 cell line overexpressing Six1 and determined the effects of forced Six1 expression on muscle-specific genes expression, cell proliferation, and cell cycles. Our results indicated that Six1 overexpression could significantly promote the expression of fast-type muscle genes Atp2a1, Srl, and Mylpf. Furthermore, Six1 overexpressing C2C12 cells displayed a relative lower proliferative potential, and cell cycle analysis showed that Six1 exerted its role in cell cycle primarily through the regulation of G1/S and G2/M phases. In conclusion, Six1 plays an essential role in modulation of the fast-twitch muscle fiber phenotype through up-regulating fast-type muscle genes expression, and it could suppress the proliferation of muscle cells.
Collapse
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | |
Collapse
|
7
|
Wickenheisser JK, Biegler JM, Nelson-DeGrave VL, Legro RS, Strauss JF, McAllister JM. Cholesterol side-chain cleavage gene expression in theca cells: augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PLoS One 2012; 7:e48963. [PMID: 23155436 PMCID: PMC3498373 DOI: 10.1371/journal.pone.0048963] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/03/2012] [Indexed: 11/17/2022] Open
Abstract
Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between -160 and -90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/-1.62 h in normal cells, to 22.38+/-0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5'-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP11A1 promoter and increased CYP11A1 mRNA stability.
Collapse
Affiliation(s)
- Jessica K. Wickenheisser
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jessica M. Biegler
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Velen L. Nelson-DeGrave
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Richard S. Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jan M. McAllister
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
8
|
Liu Y, Nandi S, Martel A, Antoun A, Ioshikhes I, Blais A. Discovery, optimization and validation of an optimal DNA-binding sequence for the Six1 homeodomain transcription factor. Nucleic Acids Res 2012; 40:8227-39. [PMID: 22730291 PMCID: PMC3458543 DOI: 10.1093/nar/gks587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Six1 transcription factor is a homeodomain protein involved in controlling gene expression during embryonic development. Six1 establishes gene expression profiles that enable skeletal myogenesis and nephrogenesis, among others. While several homeodomain factors have been extensively characterized with regards to their DNA-binding properties, relatively little is known of the properties of Six1. We have used the genomic binding profile of Six1 during the myogenic differentiation of myoblasts to obtain a better understanding of its preferences for recognizing certain DNA sequences. DNA sequence analyses on our genomic binding dataset, combined with biochemical characterization using binding assays, reveal that Six1 has a much broader DNA-binding sequence spectrum than had been previously determined. Moreover, using a position weight matrix optimization algorithm, we generated a highly sensitive and specific matrix that can be used to predict novel Six1-binding sites with highest accuracy. Furthermore, our results support the idea of a mode of DNA recognition by this factor where Six1 itself is sufficient for sequence discrimination, and where Six1 domains outside of its homeodomain contribute to binding site selection. Together, our results provide new light on the properties of this important transcription factor, and will enable more accurate modeling of Six1 function in bioinformatic studies.
Collapse
Affiliation(s)
- Yubing Liu
- Ottawa Institute of Systems Biology and Biochemistry, Microbiology and Immunology Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Havis E, Coumailleau P, Bonnet A, Bismuth K, Bonnin MA, Johnson R, Fan CM, Relaix F, Shi DL, Duprez D. Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis. Development 2012; 139:1910-20. [PMID: 22513369 DOI: 10.1242/dev.072561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of Sim2 (single-minded 2) in limb embryonic myogenesis. Sim2 is a bHLH-PAS transcription factor that inhibits transcription by active repression and displays enhanced expression in ventral limb muscle masses during chick and mouse embryonic myogenesis. We have demonstrated that Sim2 is expressed in muscle progenitors that have not entered the myogenic program, in different experimental conditions. MyoD expression is transiently upregulated in limb muscle masses of Sim2(-/-) mice. Conversely, Sim2 gain-of-function experiments in chick and Xenopus embryos showed that Sim2 represses MyoD expression. In addition, we show that Sim2 represses the activity of the mouse MyoD promoter in primary myoblasts and is recruited to the MyoD core enhancer in embryonic mouse limbs. Sim2 expression is non-autonomously and negatively regulated by the dorsalising factor Lmx1b. We propose that Sim2 represses MyoD transcription in limb muscle masses, through Sim2 recruitment to the MyoD core enhancer, in order to prevent premature entry into the myogenic program. This MyoD repression is predominant in ventral limb regions and is likely to contribute to the differential increase of the global mass of ventral muscles versus dorsal muscles.
Collapse
|
10
|
Transcriptional regulation of the human Raver2 ribonucleoprotein gene. Gene 2011; 493:243-52. [PMID: 22146317 DOI: 10.1016/j.gene.2011.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 01/11/2023]
Abstract
Raver2 is a putative modulator of the activity of the polypyrimidine-tract binding protein (PTB), one of the most intensively studied splicing repressors. Little is known about Raver2 expression, and all current data is from mice where it shows tissue specificity. In the present study, by comparing Raver2 transcript expression in human and mouse tissues, we found that human Raver2 is ubiquitously expressed in adult tissues. In order to investigate human Raver2 transcription regulation, we identified and characterized a putative promoter region in a 1000bp region upstream of the transcription starting site of the gene. Dual luciferase reporter assays demonstrated that this region had promoter activity conferred by the first 160bp. By mutagenic analyses of putative cis-acting regulatory sequences, we identified an individual site that decreased the promoter activity by up to 40% when mutated. Together, our results suggest that regulation of human Raver2 expression involves TATA-less transcriptional activity.
Collapse
|
11
|
Richard AF, Demignon J, Sakakibara I, Pujol J, Favier M, Strochlic L, Le Grand F, Sgarioto N, Guernec A, Schmitt A, Cagnard N, Huang R, Legay C, Guillet-Deniau I, Maire P. Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 2011; 359:303-20. [DOI: 10.1016/j.ydbio.2011.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/22/2011] [Accepted: 08/15/2011] [Indexed: 01/28/2023]
|
12
|
Tai PW, Fisher-Aylor KI, Himeda CL, Smith CL, Mackenzie AP, Helterline DL, Angello JC, Welikson RE, Wold BJ, Hauschka SD. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet Muscle 2011; 1:25. [PMID: 21797989 PMCID: PMC3157005 DOI: 10.1186/2044-5040-1-25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hundreds of genes, including muscle creatine kinase (MCK), are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. RESULTS Modulatory region 1 (MR1) is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE) containing a paired E-box/myocyte enhancer factor 2 (MEF2) regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively), but is not required for expression in fast-twitch muscle fibers (types IIb and IId). CONCLUSIONS In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.
Collapse
Affiliation(s)
- Phillip Wl Tai
- Department of Biochemistry, 1705 NE Pacific St,, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Niro C, Demignon J, Vincent S, Liu Y, Giordani J, Sgarioto N, Favier M, Guillet-Deniau I, Blais A, Maire P. Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Dev Biol 2010; 338:168-82. [DOI: 10.1016/j.ydbio.2009.11.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/18/2023]
|
14
|
GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data. Bioinform Biol Insights 2009; 1:49-62. [PMID: 20066124 PMCID: PMC2789691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently. RESULTS We have developed (gene set matrix analysis) GSMA as a useful method for the rapid testing of group-wise up- or down-regulation of gene expression simultaneously for multiple lists of genes (gene sets) against entire distributions of gene expression changes (datasets) for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously. CONCLUSIONS GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.
Collapse
|
15
|
Mourkioti F, Slonimsky E, Huth M, Berno V, Rosenthal N. Analysis of CRE-mediated recombination driven by myosin light chain 1/3 regulatory elements in embryonic and adult skeletal muscle: a tool to study fiber specification. Genesis 2008; 46:424-30. [PMID: 18693277 DOI: 10.1002/dvg.20419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An increasing number of genes have been implicated in skeletal muscle fiber diversity. To study the contribution of diverse genetic elements to the regulation of fiber-type composition, we generated a transgenic mouse in which CRE recombinase expression is driven by muscle-specific regulatory sequences of the myosin light chain 1/3 locus (MLC). Using ROSA26 conditional reporter mice, we detected expression of the MLC-Cre transgene starting from embryonic day 12.5 (E12.5). By E15, recombination was detected in all muscle-derived structures. Immunohistochemical analysis revealed CRE activity was restricted to fast-twitch (type II) and excluded from slow-twitch (type I) fibers of skeletal muscle. The MLC-Cre transgenic mouse can be used in conjunction with conditional alleles to study both developmental patterning and maintenance of fast fiber-type phenotypes.
Collapse
|
16
|
Sarkar C, Maitra A. Deciphering the cis-regulatory elements of co-expressed genes in PCOS by in silico analysis. Gene 2008; 408:72-84. [DOI: 10.1016/j.gene.2007.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/11/2007] [Accepted: 10/17/2007] [Indexed: 01/30/2023]
|
17
|
Cheadle C, Watkins T, Fan J, Williams MA, Georas S, Hall J, Rosen A, Barnes KC. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data. Bioinform Biol Insights 2007. [DOI: 10.1177/117793220700100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently. Results We have developed (gene set matrix analysis) GSMA as a useful method for the rapid testing of group-wise up- or down-regulation of gene expression simultaneously for multiple lists of genes (gene sets) against entire distributions of gene expression changes (datasets) for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously. Conclusions GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.
Collapse
Affiliation(s)
- Chris Cheadle
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Tonya Watkins
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Jinshui Fan
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Marc A. Williams
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| | - Steven Georas
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| | - John Hall
- Division of Rheumatology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Antony Rosen
- Division of Rheumatology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Kathleen C. Barnes
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| |
Collapse
|
18
|
Driller K, Pagenstecher A, Uhl M, Omran H, Berlis A, Gründer A, Sippel AE. Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 2007; 27:3855-3867. [PMID: 17353270 PMCID: PMC1899988 DOI: 10.1128/mcb.02293-06] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor family of nuclear factor I (NFI) proteins is encoded by four closely related genes: Nfia, Nfib, Nfic, and Nfix. A potential role for NFI proteins in regulating developmental processes has been implicated by their specific expression pattern during embryonic development and by analysis of NFI-deficient mice. It was shown that loss of NFIA results in hydrocephalus and agenesis of the corpus callosum and that NFIB deficiency leads to neurological defects and to severe lung hypoplasia, whereas Nfic knockout mice exhibit specific tooth defects. Here we report the knockout analysis of the fourth and last member of this gene family, Nfix. Loss of NFIX is postnatally lethal and leads to hydrocephalus and to a partial agenesis of the corpus callosum. Furthermore, NFIX-deficient mice develop a deformation of the spine, which is due to a delay in ossification of vertebral bodies and a progressive degeneration of intervertebral disks. Impaired endochondral ossification and decreased mineralization were also observed in femoral sections of Nfix-/- mice. Consistent with the defects in bone ossification we could show that the expression level of tetranectin, a plasminogen-binding protein involved in mineralization, is specifically downregulated in bones of NFIX-deficient mice.
Collapse
Affiliation(s)
- Katrin Driller
- Institut für Biologie III, Fakultät für Biologie, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Xu P, Tan X, Zhang Y, Zhang PJ, Xu Y. Cloning and expression analysis of myogenin from flounder (Paralichthys olivaceus) and promoter analysis of muscle-specific expression. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:135-45. [PMID: 17336560 DOI: 10.1016/j.cbpb.2007.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/07/2007] [Accepted: 01/08/2007] [Indexed: 01/26/2023]
Abstract
Myogenin is a bHLH transcription factor of the MyoD family. It plays a crucial role in myoblast differentiation and maturation. We report here the isolation of flounder myogenin gene and the characterization of its expression patterns. Sequence analysis indicated that flounder myogenin shared a similar structure and the conserved bHLH domain with other vertebrate myogenin genes. Flounder myogenin gene contains 3 exons and 2 introns. Sequence alignment and phylogenetic showed that flounder myogenin was more homologous with halibut (Hippoglossus hippoglossus) myogenin and striped bass (Morone saxatilis) myogenin. Whole-mount embryo in situ hybridization revealed that flounder myogenin was first detected in the medial region of somites that give rise to slow muscles, and expanded later to the lateral region of the somite that become fast muscles. The levels of myogenin transcripts dropped significantly in matured somites at the trunk region. Its expression could only be detected in the caudal somites, which was consistent with the timing of somite maturation. Transient expression analysis showed that the 546 bp flounder myogenin promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos.
Collapse
Affiliation(s)
- Peng Xu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | |
Collapse
|
20
|
Reverter A, Hudson NJ, Wang Y, Tan SH, Barris W, Byrne KA, McWilliam SM, Bottema CDK, Kister A, Greenwood PL, Harper GS, Lehnert SA, Dalrymple BP. A gene coexpression network for bovine skeletal muscle inferred from microarray data. Physiol Genomics 2006; 28:76-83. [PMID: 16985009 DOI: 10.1152/physiolgenomics.00105.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present the application of large-scale multivariate mixed-model equations to the joint analysis of nine gene expression experiments in beef cattle muscle and fat tissues with a total of 147 hybridizations, and we explore 47 experimental conditions or treatments. Using a correlation-based method, we constructed a gene network for 822 genes. Modules of muscle structural proteins and enzymes, extracellular matrix, fat metabolism, and protein synthesis were clearly evident. Detailed analysis of the network identified groupings of proteins on the basis of physical association. For example, expression of three components of the z-disk, MYOZ1, TCAP, and PDLIM3, was significantly correlated. In contrast, expression of these z-disk proteins was not highly correlated with the expression of a cluster of thick (myosins) and thin (actin and tropomyosins) filament proteins or of titin, the third major filament system. However, expression of titin was itself not significantly correlated with the cluster of thick and thin filament proteins and enzymes. Correlation in expression of many fast-twitch muscle structural proteins and enzymes was observed, but slow-twitch-specific proteins were not correlated with the fast-twitch proteins or with each other. In addition, a number of significant associations between genes and transcription factors were also identified. Our results not only recapitulate the known biology of muscle but have also started to reveal some of the underlying associations between and within the structural components of skeletal muscle.
Collapse
Affiliation(s)
- Antonio Reverter
- Bioinformatics Group, Commonwealth Scientific and Industrial Research Organisation Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD 4067, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lazakovitch E, Kalb JM, Matsumoto R, Hirono K, Kohara Y, Gronostajski RM. nfi-I affects behavior and life-span in C. elegans but is not essential for DNA replication or survival. BMC DEVELOPMENTAL BIOLOGY 2005; 5:24. [PMID: 16242019 PMCID: PMC1277823 DOI: 10.1186/1471-213x-5-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Nuclear Factor I (one) (NFI) family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. RESULTS C. elegans NFI protein (CeNFI) binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. CONCLUSION NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C. elegans, likely regulating genes that function in motility, egg-laying, pharyngeal pumping and lifespan maintenance.
Collapse
Affiliation(s)
- Elena Lazakovitch
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - John M Kalb
- Dept. of Biology, Canisius College, Buffalo, NY, USA
| | - Reiko Matsumoto
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Keiko Hirono
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Yuji Kohara
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Richard M Gronostajski
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| |
Collapse
|
22
|
Abstract
The basic helix-loop-helix myogenic regulatory factors MyoD, Myf5, myogenin and MRF4 have critical roles in skeletal muscle development. Together with the Mef2 proteins and E proteins, these transcription factors are responsible for coordinating muscle-specific gene expression in the developing embryo. This review highlights recent studies regarding the molecular mechanisms by which the muscle-specific myogenic bHLH proteins interact with other regulatory factors to coordinate gene expression in a controlled and ordered manner.
Collapse
|
23
|
Kislinger T, Gramolini AO, Pan Y, Rahman K, MacLennan DH, Emili A. Proteome Dynamics during C2C12 Myoblast Differentiation. Mol Cell Proteomics 2005; 4:887-901. [PMID: 15824125 DOI: 10.1074/mcp.m400182-mcp200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse-derived C2C12 myoblasts serve as an experimentally tractable model system for investigating the molecular basis of skeletal muscle cell specification and development. To examine the biochemical adaptations associated with myocyte formation comprehensively, we used large scale gel-free tandem mass spectrometry to monitor global proteome alterations throughout a time course analysis of the myogenic C2C12 differentiation program. The relative abundance of approximately 1,800 high confidence proteins was tracked across multiple time points using capillary scale multidimensional liquid chromatography coupled to high throughput shotgun sequencing. Hierarchical clustering of the resulting profiles revealed differential waves of expression of proteins linked to intracellular signaling, transcription, cytoarchitecture, adhesion, metabolism, and muscle contraction across the early, mid, and late stages of differentiation. Several hundred previously uncharacterized proteins were likewise detected in a stage-specific manner, suggesting novel roles in myogenesis and/or muscle function. These proteomic data are complementary to recent microarray-based studies of gene expression patterns in developing myotubes and provide a holistic framework for understanding how diverse biochemical processes are coordinated at the cellular level during skeletal muscle development.
Collapse
Affiliation(s)
- Thomas Kislinger
- Program in Proteomics and Bioinformatics, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Wang W, Stock RE, Gronostajski RM, Wong YW, Schachner M, Kilpatrick DL. A Role for Nuclear Factor I in the Intrinsic Control of Cerebellar Granule Neuron Gene Expression. J Biol Chem 2004; 279:53491-7. [PMID: 15466411 DOI: 10.1074/jbc.m410370200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nervous system formation requires the elaboration of a complex series of differentiation events in both a spatially and maturation-regulated manner. A fundamental question is how neuronal subtype specification and developmental gene expression are controlled within maturing neurons. The alpha6 subunit of the gamma-aminobutyric acid type A (GABA(A)) receptor (GABRA6) is preferentially expressed in cerebellar granule neurons and is part of an intrinsic program directing their differentiation. We have employed a lentiviral approach to examine the transcriptional mechanisms controlling neuronal subtype-selective expression of this gene. These studies demonstrated that nuclear factor I (NFI) proteins are required for both transgenic GABRA6 promoter activity as well as endogenous expression of this gene in cerebellar granule neurons. Chromatin immunoprecipitation also showed that NFI proteins are bound to the GABRA6 promoter in these cells in vivo. Furthermore, analyses of gene knockout mice revealed that Nfia is specifically required for normal expression of the GABRA6 gene in cerebellar granule neurons. NFI expression and DNA binding activity are highly enriched in granule neurons, implicating this transcription factor family in the neuronal subtype-selective expression of the GABRA6 gene. These studies define a new role for NFI proteins as neuronal subtype-enriched transcriptional regulators that participate in an intrinsic transcriptional program directing the differentiation of cerebellar granule neurons.
Collapse
Affiliation(s)
- Wei Wang
- University of Massachusetts Medical School, Department of Molecular and Cellular Physiology, 55 Lake Ave N., Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sun YM, Da Costa N, Chang KC. Cluster characterisation and temporal expression of porcine sarcomeric myosin heavy chain genes. J Muscle Res Cell Motil 2004; 24:561-70. [PMID: 14870971 DOI: 10.1023/b:jure.0000009895.03111.b3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Members of the myosin heavy chain (MyHC) gene family are subjected to temporal regulation of gene switching during development. One strategy to the identification of cis-acting regulatory elements that are involved in temporal or fibre-type specific regulation is to undertake a comparative analysis of the MyHC gene family between the pig, an important target species, and other mammals, like human whose entire genome has been recently sequenced. Towards this end, we report here on the isolation, and characterisation of the porcine cardiac (MyHC slow/beta and alpha) and skeletal MyHC (embryonic, 2a, 2x, 2b and perinatal) gene clusters, and their structural comparisons with mouse and human clusters. The genome organisation of both clusters in the pig, human and mouse is conserved as having the same gene order, similar intergenic distances, and in the same head-to-tail orientation. For a period of pre-natal muscle growth, relative expression of MyHC isoforms, as determined by TaqMan real-time RT-PCR, correlated with the gene order in the skeletal MyHC cluster (embryonic > 2a > 2x > 2b) suggesting the possible presence of DNA elements on the same side as the MyHC embryonic gene that direct temporal regulation.
Collapse
Affiliation(s)
- Y M Sun
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
26
|
Grifone R, Laclef C, Spitz F, Lopez S, Demignon J, Guidotti JE, Kawakami K, Xu PX, Kelly R, Petrof BJ, Daegelen D, Concordet JP, Maire P. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 2004; 24:6253-67. [PMID: 15226428 PMCID: PMC434262 DOI: 10.1128/mcb.24.14.6253-6267.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muscle fibers show great differences in their contractile and metabolic properties. This diversity enables skeletal muscles to fulfill and adapt to different tasks. In this report, we show that the Six/Eya pathway is implicated in the establishment and maintenance of the fast-twitch skeletal muscle phenotype. We demonstrate that the MEF3/Six DNA binding element present in the aldolase A pM promoter mediates the high level of activation of this promoter in fast-twitch glycolytic (but not in slow-twitch) muscle fibers. We also show that among the Six and Eya gene products expressed in mouse skeletal muscle, Six1 and Eya1 proteins accumulate preferentially in the nuclei of fast-twitch muscles. The forced expression of Six1 and Eya1 together in the slow-twitch soleus muscle induced a fiber-type transition characterized by the replacement of myosin heavy chain I and IIA isoforms by the faster IIB and/or IIX isoforms, the activation of fast-twitch fiber-specific genes, and a switch toward glycolytic metabolism. Collectively, these data identify Six1 and Eya1 as the first transcriptional complex that is able to reprogram adult slow-twitch oxidative fibers toward a fast-twitch glycolytic phenotype.
Collapse
Affiliation(s)
- Raphaelle Grifone
- Departement Génétique, Développement et Pathologie Moléculaire, Institut Cochin-INSERM 567, CNRS UMR 8104, Université Paris V, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ngô-Muller V, Bertrand A, Concordet JP, Daegelen D. Mouse muscle identity: the position-dependent and fast fiber-specific expression of a transgene in limb muscles is methylation-independent and cell-autonomous. Dev Dyn 2004; 228:594-605. [PMID: 14648836 DOI: 10.1002/dvdy.10402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We previously characterised transgenic mice in which fast-muscle-specific regulatory sequences from the human aldolase A pM promoter drive the chloramphenicol acetyltransferase gene expression. Mutation of a NF1/MEF2 binding site (M2 motif) in this promoter does not affect fibre-type specificity of the transgene but modifies its expression in a subset of fast-twitch fibres at the limb level, preferentially affecting distal limb muscles. We investigated the molecular and cellular bases of this peculiar expression pattern that provided an adequate model to characterise the mechanisms responsible for muscle positional information. By direct electrotransfer of mutated M2 construct in adult muscle, we demonstrate that positional differences in mutated M2 transgene expression are not observed when the transgene is not integrated into chromatin. Also, this transgene expression pattern does not seem to be correlated with the extent of CpG methylation in its promoter sequence. Finally, we show that positional values reflected by CAT levels are maintained in primary cultures established from different adult limb muscles, as well as in heterotopically transplanted muscles. Our results suggest that mutation of the M2 site contributes to reveal a molecular memory of fibre fate that would be set up on pM promoter during development and persist into adulthood possibly through a chromatin imprint maintained in satellite cells associated with various limb muscles.
Collapse
Affiliation(s)
- Valerie Ngô-Muller
- Département de Génétique, Développement et Pathologie Moléculaire, Institut Cochin-INSERM U 567, CNRS UMR 8104, and Université René Descartes Paris V, 24 rue du Faubourg St-Jacques, Paris, France
| | | | | | | |
Collapse
|
28
|
Delgado-Olguín P, Rosas-Vargas H, Recillas-Targa F, Zentella-Dehesa A, Bermúdez de León M, Cisneros B, Salamanca F, Coral-Vázquez R. NFI-C2 negatively regulates α-sarcoglycan promoter activity in C2C12 myoblasts. Biochem Biophys Res Commun 2004; 319:1032-9. [PMID: 15184085 DOI: 10.1016/j.bbrc.2004.05.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Indexed: 10/26/2022]
Abstract
alpha-Sarcoglycan striated muscle-specific protein is a member of the sarcoglycan-sarcospan complex. Positive and negative transcriptional regulation of sarcoglycan genes are important in sarcoglycan's intracellular localization and sarcolemmal stability. In the present work we assessed the function of NFI transcription factors in the regulation of alpha-sarcoglycan promoter through the C2C12 cell line differentiation. NFI factors act alternatively as activators and negative modulators of alpha-sarcoglycan promoter activity. In myoblasts NFI-A1.1 and NFI-B2 are activators, whereas NFI-C2 and NFI-X2 are negative regulators. In myotubes, all NFI members are activators, being NFI-C2 the less potent. We identified the alpha-sarcoglycan promoter NFI-C2 response element by testing progressive deletion constructs and point mutations in C2C12 cells over-expressing NFI-C2. Gel-shift and chromatin immunoprecipitation experiments demonstrated that NFI factors are indeed interacting in vitro and in vivo with the binding sequence. These results suggest a NFI role in C2C12 cell differentiation.
Collapse
Affiliation(s)
- Paul Delgado-Olguín
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 2004; 24:2132-43. [PMID: 14966291 PMCID: PMC350548 DOI: 10.1128/mcb.24.5.2132-2143.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/09/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- Creatine Kinase, MM Form
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Enzymologic
- Genes, Regulator
- HeLa Cells
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunomagnetic Separation
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteomics
- Trans-Activators
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bertrand A, Ngô-Muller V, Hentzen D, Concordet JP, Daegelen D, Tuil D. Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am J Physiol Cell Physiol 2003; 285:C1071-81. [PMID: 12839830 DOI: 10.1152/ajpcell.00104.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle electrotransfer has recently become a promising tool for efficient delivery of plasmids and transgene expression in skeletal muscle. This technology has been mainly applied to use of muscle as a bioreactor for production of therapeutic proteins. However, it remains to be determined whether muscle electrotransfer may also be accurately used as an alternative tool to transgenesis for studying aspects of muscle-specific gene control that must be explored in fully mature muscle fibers in vivo, such as fiber specificity and nerve dependence. It was also not known to what extent the initial electrical stimulations alter muscle physiology and gene expression. Therefore, optimized conditions of skeletal muscle electroporation were first tested for their effects on muscles of transgenic mice harboring a pM310-CAT transgene in which the CAT reporter gene was under control of the fast IIB fiber-specific and nerve-dependent aldolase A pM promoter. Surprisingly, electrostimulation led to a drastic but transient shutdown of pM310-CAT transgene expression concomitant with very transient activation of MyoD and, mostly, with activation of myogenin, suggesting profound alterations in transcriptional status of the electroporated muscle. Return to a normal transcriptional state was observed 7-10 days after electroporation. Therefore, we investigated whether a reporter construct placed under control of pM could exhibit fiber-specific expression 10 days after electrotransfer in either fast tibialis anterior or slow soleus muscle. We show that not only fiber specificity, but also nerve dependence, of a pM-driven construct can be reproduced. However, after electrotransfer, pM displayed a less tight control than previously observed for the same promoter when integrated in a chromatin context.
Collapse
Affiliation(s)
- Anne Bertrand
- INSERM U567, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut Cochin, Université René Descartes Paris V, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Fougerousse F, Durand M, Lopez S, Suel L, Demignon J, Thornton C, Ozaki H, Kawakami K, Barbet P, Beckmann JS, Maire P. Six and Eya expression during human somitogenesis and MyoD gene family activation. J Muscle Res Cell Motil 2003; 23:255-64. [PMID: 12500905 DOI: 10.1023/a:1020990825644] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This report describes the characterisation of the expression profile of several myogenic determination genes during human embryogenesis. The data were obtained from axial structures and limb buds of human embryos aged between 3 and 8 weeks of development. Using in situ hybridisation to detect Pax3 and MyoD gene family mRNAs, and immunochemistry to follow Six and Eya protein accumulation, we have been able to establish the chronology of accumulation of these gene products. As in mouse, the first transcripts detected in myotomes of 3 week-old embryos are Pax3 and Myf5, followed by the expression of myogenin. MyoD appears to be activated well after Myf5, myogenin and MRF4 in the early myotome, whereas, in limb bud muscles, the presence of all four of these mRNAs is concomitant from 6 weeks. Six1, Six4 and Six5 homeoproteins are detected later than Myf5 activation. These Six homeoproteins are first observed in the cytoplasm of myogenin expressing cells. At later stages of development, Six1 and Six5, but not Six4, are translocated into the nuclei of myogenic cells, concomitantly with MyHCemb expression. Eya1 and Eya2 proteins, potential Six cofactors, were also detected in myogenin positive cells, but their accumulation was delayed and was mainly cytoplasmic. These results preclude that early activation of Myf5, myogenin and MRF4 is under the control of Six and Eya proteins, while Six and Eya proteins would be involved in later steps of myogenic differentiation.
Collapse
|
32
|
Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P. Altered myogenesis in Six1-deficient mice. Development 2003; 130:2239-52. [PMID: 12668636 DOI: 10.1242/dev.00440] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six homeoproteins are expressed in several tissues, including muscle, during vertebrate embryogenesis, suggesting that they may be involved in diverse differentiation processes. To determine the functions of the Six1 gene during myogenesis, we constructed Six1-deficient mice by replacing its first exon with the lacZ gene. Mice lacking Six1 die at birth because of severe rib malformations and show extensive muscle hypoplasia affecting most of the body muscles in particular certain hypaxial muscles. Six1(-/-) embryos have impaired primary myogenesis, characterized, at E13.5, by a severe reduction and disorganisation of primary myofibers in most body muscles. While Myf5, MyoD and myogenin are correctly expressed in the somitic compartment in early Six1(-/-) embryos, by E11.5 MyoD and myogenin gene activation is reduced and delayed in limb buds. However, this is not the consequence of a reduced ability of myogenic precursor cells to migrate into the limb buds or of an abnormal apoptosis of myoblasts lacking Six1. It appears therefore that Six1 plays a specific role in hypaxial muscle differentiation, distinct from those of other hypaxial determinants such as Pax3, cMet, Lbx1 or Mox2.
Collapse
Affiliation(s)
- Christine Laclef
- Département Génétique, Développement et Pathologie Moléculaire, Institut Cochin - INSERM 567, CNRS UMR 8104, Université Paris V, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Lee YC, Lai HL, Sun CN, Chien CL, Chern Y. Identification of nuclear factor 1 (NF1) as a transcriptional modulator of rat A(2A) adenosine receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:61-73. [PMID: 12654506 DOI: 10.1016/s0169-328x(02)00670-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
By a combination of PCR and DNA walking technique, we isolated a 4.8-kb DNA fragment containing a 4.3 kb 5'-flanking region and a 0.5-kb 5'-untranslated region of the rat A(2A) adenosine receptor (A(2A)-R) gene. Various lengths of the 5'-flanking region of the A(2A)-R gene were inserted into an expression vector and transfected into several different cell lines for promoter analysis. Our results reveal that a consensus NF1 element (designated as A(2A)-R/NF1), located between bases -2846 and -2827 of the A(2A)-R gene, functions as a repressor for A(2A)-R promoters in the rat brain-derived type-2 astrocyte cell line (RBA2), which expresses no A(2A)-R. Electrophoretic gel mobility shift assay (EMSA) revealed that two A(2A)-R/NF1-protein complexes of RBA2 nuclear extract were formed. Supershift experiments using an anti-NF1 antibody suggest that NF1 proteins exist in both A(2A)-R/NF1-protein complexes. Furthermore, mutations in the conserved NF1 binding site of this A(2A)-R/NF1 element disturbed DNA-protein formation. Thus, NF1 proteins appear to mediate this cell line-specific suppression of A(2A)-R promoters in RBA2 cells. The importance of NF1 proteins in regulating A(2A)-R promoters was further confirmed in another cell line (Siha) which expresses no endogenous A(2A)-R. Moreover, addition of the A(2A)-R/NF1element upstream of an irrelevant thymidine kinase (TK) promoter suppressed its promoter activity in Siha cells, but not in RBA2 cells. Thus, the NF1-mediated inhibition of the A(2A)-R promoter was promoter- and cell line-specific. In summary, we have defined a distal negative element (A(2A)-R/NF1) that plays a functional role in modulating the expression of A(2A)-R.
Collapse
Affiliation(s)
- Yi Chao Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Vullhorst D, Buonanno A. Characterization of general transcription factor 3, a transcription factor involved in slow muscle-specific gene expression. J Biol Chem 2003; 278:8370-9. [PMID: 12475981 DOI: 10.1074/jbc.m209361200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
General transcription factor 3 (GTF3) binds specifically to the bicoid-like motif of the troponin I(slow) upstream enhancer. This motif is part of a sequence that restricts enhancer activity to slow muscle fibers. GTF3 contains multiple helix-loop-helix domains and an amino-terminal leucine zipper motif. Here we show that helix-loop-helix domain 4 is necessary and sufficient for binding the bicoid-like motif. Moreover, the affinity of this interaction is enhanced upon removal of amino-terminal sequences including domains 1 and 2, suggesting that an unmasking of the DNA binding surface may be a precondition for GTF3 to bind DNA in vivo. We have also investigated the interactions of six GTF3 splice variants of the mouse, three of which were identified in this study, with the troponin enhancer. The gamma-isoform lacking exon 23, and exons 26-28 that encode domain 6, interacted most avidly with the bicoid-like motif; the alpha- and beta- isoforms that include these exons fail to bind in gel retardation assays. We also show that GTF3 polypeptides associate with each other via the leucine zipper. We speculate that cells can generate a large number of GTF3 proteins with distinct DNA binding properties by alternative splicing and combinatorial association of GTF3 polypeptides.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Du SJ, Gao J, Anyangwe V. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:123-34. [PMID: 12524040 DOI: 10.1016/s1096-4959(02)00194-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myogenin is a member of the basic Helix-Loop-Helix transcription factor family that play key roles in myoblast specification and differentiation. Myogenin is specifically expressed in developing somite and skeletal muscles in zebrafish embryos. To determine the regulation of myogenin expression, we reported here the characterization of zebrafish myogenin gene and analysis of its promoter activity in zebrafish embryos. Our data showed that a 0.8-kb myogenin promoter was sufficient to direct correct temporal and spatial muscle-specific green fluorescence protein expression in zebrafish embryos. Sequence analysis identified two putative E box sites in the myogenin gene promoter. In addition, a MEF2 recognition site and a MEF3 binding site were also found in the promoter. Mutation of the E boxes, MEF2 or MEF3 binding site individually had little effect on the muscle-specificity and activity of the myogenin promoter. However, mutating these sites in various combinations, e.g. E boxes and MEF2 binding site, or MEF2 and MEF3 sites significantly reduced the activity of the promoter. Moreover, mutating the E boxes, MEF2 and MEF3 sites together almost abolished the activity of the promoter. These data indicate that muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. In addition, because these regulatory elements control myogenin expression in mouse and human embryos, these data suggest that the regulatory mechanism controlling myogenin expression might be conserved during evolution.
Collapse
Affiliation(s)
- Shao Jun Du
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | | | | |
Collapse
|
36
|
Lantinga-van Leeuwen IS, Timmermans-Sprang EAP, Mol JA. Cloning and characterization of the 5'-flanking region of the canine growth hormone gene. Mol Cell Endocrinol 2002; 197:133-41. [PMID: 12431806 DOI: 10.1016/s0303-7207(02)00257-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The growth hormone (GH) gene is expressed in a variety of tissues outside the pituitary, including the mammary gland. GH expression in the mammary gland is stimulated by progestins. The local synthesis of mammary GH may provide a highly proliferative environment within the mammary gland that may contribute to the development or progression of mammary tumours. To elucidate the mechanism regulating mammary GH expression, we cloned the 5'-flanking region of the canine GH gene using inverse polymerase chain reaction. Gel-shift experiments showed that several sequences in the 5'-flanking region of the GH gene bind mammary nuclear proteins and may be involved in basal and progesterone-induced mammary GH expression. Sequence analysis and comparison with the GH promoters of human, rat, and mouse genes revealed a number of shared binding sites for transcription factors such as Pit-1, which is involved in pituitary GH expression, and for factors involved in the differentiation of lymphoid cells. Moreover, a putative binding site for the progesterone receptor (PR) was identified in all promoters, indicating that the progestin-induced expression of GH in mammary tissue is most probably a direct effect of activated PRs on the GH gene promoter and that this may occur in various species.
Collapse
Affiliation(s)
- Irma S Lantinga-van Leeuwen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 8, 3584 CM Utrecht, The Netherlands
| | | | | |
Collapse
|
37
|
Spitz F, Benbacer L, Sabourin JC, Salminen M, Chen F, Cywiner C, Kahn A, Chatelet F, Maire P, Daegelen D. Fiber-type specific and position-dependent expression of a transgene in limb muscles. Differentiation 2002; 70:457-67. [PMID: 12366383 DOI: 10.1046/j.1432-0436.2002.700808.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that the proximal sequences of the human aldolase A fast-muscle-specific promoter (pM) are sufficient to target the expression of a linked CAT reporter gene to all fast, glycolytic trunk and limb muscles of transgenic mice (pM310CAT lines) in a manner mimicking the activity of the endogenous mouse promoter. When a NF1-binding site (motif M2) in this proximal regulatory region is mutated, the activity of the corresponding mM2 transgene is strongly affected but only in a some fast muscles. Here we show that the mutation of the M2 motif has only mild effects on pM activity in axial and proximal limb, while it drastically reduces this activity in both fore and hind limb distal muscles. At the cellular level, we show that both the pM310CAT and mM2 transgenes are highly expressed in fast glycolytic 2B fibers. However, by contrast to the pM310CAT transgene, whose expression is mainly restricted to fast glycolytic 2B fibers, the mM2 transgene is also active in a high proportion of 2X fibers. This result suggests that the M2 sequence could play a role in restricting the expression of pM to the 2B fibers. The variable expression of the mM2 transgene along the limb axis already exists at post-natal day 10 and seems to result from a change in the proportion of expressing fast fibers per muscle. Altogether, these results suggest that, although considered as phenotypically similar, different populations of fast glycolytic fibers exist, in which the requirement of the NF1 activity for pM expression varies according to the proximal versus distal position of the muscle along the limb axis.
Collapse
Affiliation(s)
- François Spitz
- INSERM U567, CNRS UMR 8104, Institut Cochin; Department Génétique, Développement et Pathologie Moléculaire, Universiteé René Descartes Paris V, 24 rue du Faubourg Saint Jacques, 75014 Paris
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hallauer PL, Hastings KEM. TnIfast IRE enhancer: multistep developmental regulation during skeletal muscle fiber type differentiation. Dev Dyn 2002; 224:422-31. [PMID: 12203734 DOI: 10.1002/dvdy.10122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify developmental steps leading to adult skeletal muscle fiber-type-specific gene expression, we carried out transgenic mouse studies of the IRE enhancer of the quail TnIfast gene. Histochemical analysis of IRE/herpesvirus tk promoter/beta-galactosidase reporter transgene expression in adult muscle directly demonstrated IRE-driven fast vs. slow fiber-type specificity, and IIB>IIX>IIA differential expression among the fast fiber types: patterns similar to those of native-promoter TnIfast constructs. These tissue- and cell-type specificities are autonomous to the IRE and do not depend on interactions with a muscle gene promoter. Developmental studies showed that the adult pattern of IRE-driven transgene expression emerges in three steps: (1) activation during the formation of primary embryonic (presumptive slow) muscle fibers; (2) activation, to markedly higher levels, during formation of secondary (presumptive fast) fibers, and (3) differential augmentation of expression during early postnatal maturation of the IIB, IIX, IIA fast fiber types. These results provide insight into the roles of gene activation and gene repression mechanisms in fiber-type specificity and can account for apparently disparate results obtained in previous studies of TnI isoform expression in development. Each of the three IRE-driven developmental steps is spatiotemporally associated with a different major regulatory event at the fast myosin heavy chain gene cluster, suggesting that diverse muscle gene families respond to common, or tightly integrated, regulatory signals during multiple steps of muscle fiber differentiation.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Embryo, Mammalian
- Embryo, Nonmammalian
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Genes, Reporter
- In Situ Hybridization
- Mice
- Mice, Transgenic
- Multigene Family
- Muscle Development
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/physiology
- Promoter Regions, Genetic
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Quail
- Transcriptional Activation
- Transgenes
- Troponin I/genetics
- Troponin I/metabolism
Collapse
Affiliation(s)
- Patricia L Hallauer
- Montreal Neurological Institute, and Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
39
|
Talmadge RJ, Castro MJ, Apple DF, Dudley GA. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol (1985) 2002; 92:147-54. [PMID: 11744654 DOI: 10.1152/japplphysiol.000247.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of spinal cord injury (SCI) on the profile of sarco(endo) plasmic reticulum calcium-ATPase (SERCA) and myosin heavy chain (MHC) isoforms in individual vastus lateralis (VL) muscle fibers were determined. Biopsies from the VL were obtained from SCI subjects 6 and 24 wk postinjury (n = 6). Biopsies from nondisabled (ND) subjects were obtained at two time points 18 wk apart (n = 4). In ND subjects, the proportions of VL fibers containing MHC I, MHC IIa, and MHC IIx were 46 +/- 3, 53 +/- 3, and 1 +/- 1%, respectively. Most MHC I fibers contained SERCA2. Most MHC IIa fibers contained SERCA1. All MHC IIx fibers contained SERCA1 exclusively. SCI resulted in significant increases in fibers with MHC IIx (14 +/- 4% at 6 wk and 16 +/- 2% at 24 wk). In addition, SCI resulted in high proportions of MHC I and MHC IIa fibers with both SERCA isoforms (29% at 6 wk and 54% at 24 wk for MHC I fibers and 16% at 6 wk and 38% at 24 wk for MHC IIa fibers). Thus high proportions of VL fibers were mismatched for SERCA and MHC isoforms after SCI (19 +/- 3% at 6 wk and 36 +/- 9% at 24 wk) compared with only ~5% in ND subjects. These data suggest that, in the early time period following SCI, fast fiber isoforms of both SERCA and MHC are elevated disproportionately, resulting in fibers that are mismatched for SERCA and MHC isoforms. Thus the adaptations in SERCA and MHC isoforms appear to occur independently.
Collapse
Affiliation(s)
- R J Talmadge
- Muscle Function Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
40
|
Hallauer PL, Hastings KEM. Coregulation of fast contractile protein transgene and glycolytic enzyme expression in mouse skeletal muscle. Am J Physiol Cell Physiol 2002; 282:C113-24. [PMID: 11742804 DOI: 10.1152/ajpcell.00294.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known of the gene regulatory mechanisms that coordinate the contractile and metabolic specializations of skeletal muscle fibers. Here we report a novel connection between fast isoform contractile protein transgene and glycolytic enzyme expression. In quantitative histochemical studies of transgenic mouse muscle fibers, we found extensive coregulation of the glycolytic enzyme glycerol-3-phosphate dehydrogenase (GPDH) and transgene constructs based on the fast skeletal muscle troponin I (TnIfast) gene. In addition to a common IIB > IIX > IIA fiber type pattern, TnIfast transgenes and GPDH showed correlated fiber-to-fiber variation within each fast fiber type, concerted emergence of high-level expression during early postnatal muscle maturation, and parallel responses to muscle under- or overloading. Regulatory information for GPDH-coregulated expression is carried by the TnIfast first-intron enhancer (IRE). These results identify an unexpected contractile/metabolic gene regulatory link that is amenable to further molecular characterization. They also raise the possibility that the equal expression in all fast fiber types observed for the endogenous TnIfast gene may be driven by different metabolically coordinated mechanisms in glycolytic (IIB) vs. oxidative (IIA) fast fibers.
Collapse
Affiliation(s)
- Patricia L Hallauer
- Montreal Neurological Institute and Biology Department, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
41
|
Calvo S, Vullhorst D, Venepally P, Cheng J, Karavanova I, Buonanno A. Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Mol Cell Biol 2001; 21:8490-503. [PMID: 11713284 PMCID: PMC100012 DOI: 10.1128/mcb.21.24.8490-8503.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription is a major regulatory mechanism for the generation of slow- and fast-twitch myofibers. We previously identified an upstream region of the slow TnI gene (slow upstream regulatory element [SURE]) and an intronic region of the fast TnI gene (fast intronic regulatory element [FIRE]) that are sufficient to direct fiber type-specific transcription in transgenic mice. Here we demonstrate that the downstream half of TnI SURE, containing E box, NFAT, MEF-2, and CACC motifs, is sufficient to confer pan-skeletal muscle-specific expression in transgenic mice. However, upstream regions of SURE and FIRE are required for slow and fast fiber type specificity, respectively. By adding back upstream SURE sequences to the pan-muscle-specific enhancer, we delineated a 15-bp region necessary for slow muscle specificity. Using this sequence in a yeast one-hybrid screen, we isolated cDNAs for general transcription factor 3 (GTF3)/muscle TFII-I repeat domain-containing protein 1 (MusTRD1). GTF3 is a multidomain nuclear protein related to initiator element-binding transcription factor TF II-I; the genes for both proteins are deleted in persons with Williams-Beuren syndrome, who often manifest muscle weakness. Gel retardation assays revealed that full-length GTF3, as well as its carboxy-terminal half, specifically bind the bicoid-like motif of SURE (GTTAATCCG). GTF3 expression is neither muscle nor fiber type specific. Its levels are highest during a period of fetal development that coincides with the emergence of specific fiber types and transiently increases in regenerating muscles damaged by bupivacaine. We further show that transcription from TnI SURE is repressed by GTF3 when overexpressed in electroporated adult soleus muscles. These results suggest a role for GTF3 as a regulator of slow TnI expression during early stages of muscle development and suggest how it could contribute to Williams-Beuren syndrome.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cell Nucleus/metabolism
- DNA, Complementary/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization
- Introns
- Luciferases/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins
- Muscle, Skeletal/metabolism
- Muscles/pathology
- Nuclear Proteins
- PAX7 Transcription Factor
- Plasmids/metabolism
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Tissue Distribution
- Trans-Activators
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription, Genetic
- Two-Hybrid System Techniques
- Williams Syndrome
Collapse
Affiliation(s)
- S Calvo
- Section on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio J, Olson EN, Bassel-Duby R, Williams R. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 2001; 20:6414-23. [PMID: 11707412 PMCID: PMC125719 DOI: 10.1093/emboj/20.22.6414] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene expression in skeletal muscles of adult vertebrates is altered profoundly by changing patterns of contractile work. Here we observed that the functional activity of MEF2 transcription factors is stimulated by sustained periods of endurance exercise or motor nerve pacing, as assessed by expression in trans genic mice of a MEF2-dependent reporter gene (desMEF2-lacZ). This response is accompanied by transformation of specialized myofiber subtypes, and is blocked either by cyclosporin A, a specific chemical inhibitor of calcineurin, or by forced expression of the endogenous calcineurin inhibitory protein, myocyte-enriched calcineurin interacting protein 1. Calcineurin removes phosphate groups from MEF2, and augments the potency of the transcriptional activation domain of MEF2 fused to a heterologous DNA binding domain. Across a broad range, the enzymatic activity of calcineurin correlates directly with expression of endogenous genes that are transcriptionally activated by muscle contractions. These results delineate a molecular pathway in which calcineurin and MEF2 participate in the adaptive mechanisms by which skeletal myofibers acquire specialized contractile and metabolic properties as a function of changing patterns of muscle contraction.
Collapse
MESH Headings
- Animals
- Calcineurin/metabolism
- Cyclosporine/pharmacology
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Genes, Reporter
- Immunoblotting
- Kinetics
- MEF2 Transcription Factors
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Biological
- Muscle Contraction
- Muscle, Skeletal/metabolism
- Myogenic Regulatory Factors
- Myoglobin/biosynthesis
- Physical Conditioning, Animal
- Physical Exertion
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Hai Wu
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Beverly Rothermel
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Shane Kanatous
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Paul Rosenberg
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Francisco J. Naya
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - John M. Shelton
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Kelley A. Hutcheson
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - J.Michael DiMaio
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Eric N. Olson
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Rhonda Bassel-Duby
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| | - R.Sanders Williams
- Departments of Internal Medicine, Molecular Biology and Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Corresponding author e-mail:
| |
Collapse
|
43
|
Hallauer PL, Karpati G, Hastings KE. Skeletal muscle gene transfer: regeneration-associated deregulation of fast troponin I fiber type specificity. Am J Physiol Cell Physiol 2000; 278:C1266-74. [PMID: 10837355 DOI: 10.1152/ajpcell.2000.278.6.c1266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct gene transfer into skeletal muscle in vivo presents a convenient experimental approach for studies of adult muscle gene regulatory mechanisms, including fast vs. slow fiber type specificity. Previous studies have reported preferential expression of fast myosin heavy chain and slow myosin light chain and troponin I (TnIslow) gene constructs in muscles enriched in the appropriate fiber type. We now report a troponin I fast (TnIfast) direct gene transfer study. We injected into the mouse soleus muscle plasmid DNA or recombinant adenovirus carrying a TnIfast/ beta-galactosidase (beta-gal) reporter construct that had previously been shown to be expressed specifically in fast fibers in transgenic mice. Surprisingly, microscopic histochemical analysis 1 and 4 wk postinjection showed similar TnIfast/beta-gal expression in fast and slow fibers. A low but significant level of muscle fiber segmental regeneration was evident in muscles 1 wk postinjection, and TnIfast/beta-gal expression was preferentially targeted to regenerating fiber segments. This finding can explain why TnIfast constructs are deregulated with regard to fiber type specificity, whereas the myosin constructs previously studied are not. The involvement of regenerating fiber segments in transduction by plasmid DNA and recombinant adenoviruses injected into intact normal adult muscle is an unanticipated factor that should be taken into account in the planning and interpretation of direct gene transfer experiments.
Collapse
Affiliation(s)
- P L Hallauer
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
44
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
45
|
Harris SE, Winchester CL, Johnson KJ. Functional analysis of the homeodomain protein SIX5. Nucleic Acids Res 2000; 28:1871-8. [PMID: 10756185 PMCID: PMC103302 DOI: 10.1093/nar/28.9.1871] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2000] [Revised: 03/15/2000] [Accepted: 03/15/2000] [Indexed: 11/12/2022] Open
Abstract
SIX5 (previously known as myotonic dystrophy associated homeodomain protein - DMAHP ) is a member of the SIX [ sine oculis homeobox (Drosophila ) homologue ] gene family which encodes proteins containing a SIX domain adjacent to a homeo-domain. To investigate the DNA binding specificities of these two domains in SIX5, they were expressed as GST fusion proteins, both separately and together. Affinity purified recombinant proteins and cell lysates from bacteria expressing the recombinant proteins were used in gel retardation assays with double stranded oligonucleotides representing putative DNA binding sites. The putative sites included two in the promoter region of DMPK (dystrophia myotonica protein kinase ) and the previously characterised murine Six4 DNA binding site in the Na(+)/K(+) ATPase alpha 1 subunit gene ( ATP1A1 ) regulatory element (ARE). None of the recombinant proteins showed any affinity for the two putative sites in DMPK. However, the two recombinant proteins containing the homeodomain both formed at least one specific complex with the ARE. The recombinant protein containing both domains formed a second specific complex with the ARE, assumed to be a dimer complex. Finally, a whole genome PCR-based screen was used to identify genomic DNA sequences to which SIX5 binds, as an initial stage in the identification of genes regulated by SIX5.
Collapse
Affiliation(s)
- S E Harris
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | | | |
Collapse
|
46
|
Tsunoda N, Maruyama K, Cooke DW, Lane DM, Ezaki O. Localization of exercise- and denervation-responsive elements in the mouse GLUT4 gene. Biochem Biophys Res Commun 2000; 267:744-51. [PMID: 10673362 DOI: 10.1006/bbrc.1999.2031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training increases the expression of GLUT4 in skeletal muscle. Previous studies demonstrated that the exercise-responsive element(s) of the murine GLUT4 gene are located between bases -1001 and -442 relative to the transcription start site. To further characterize the regulatory elements in the GLUT4 gene, the regulation of GLUT4 minigenes containing -701, -551, -442, or -423 bp of the 5'-flanking region was studied in transgenic mice. All minigenes studied showed significant expression in skeletal muscle and heart, including the -423 GLUT4 minigene that lacked the myocyte enhancer factor 2 (MEF2)-binding domain (-CTAAAAATAG-) located between bases -437 and -428. The -701- and -551-bp constructs were expressed in brown adipose tissues while the -442 and -423 constructs were not. In skeletal muscle, either swimming or treadmill running up-regulated GLUT4 minigene mRNA levels in -701 and -551 transgenic mice, but not in the -442 and -423 transgenic mice. Denervation of the gastrocnemius muscle by sectioning of the sciatic nerve down-regulated minigene and endogenous GLUT4 mRNAs in all -701, -551, -442, and -423 transgenic mice. These data indicate that exercise-responsive element(s) and brown adipocyte specific element(s) are located within 109 bp between bases -551 and -442 of the GLUT4 gene, but that the cis-element for denervation-induced down-regulation of the GLUT4 gene is located downstream of base -423. Finally, the MEF2 binding site between bases -437 and -428 is not necessary for expression of GLUT4 in skeletal muscles and heart; the cis-element mediating this effect is also located downstream of base -423.
Collapse
Affiliation(s)
- N Tsunoda
- Division of Clinical Nutrition, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | | | | | | | | |
Collapse
|
47
|
Osada S, Matsubara T, Daimon S, Terazu Y, Xu M, Nishihara T, Imagawa M. Expression, DNA-binding specificity and transcriptional regulation of nuclear factor 1 family proteins from rat. Biochem J 1999; 342 ( Pt 1):189-98. [PMID: 10432316 PMCID: PMC1220452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Nuclear factor 1 (NF1) family proteins, which are encoded by four different genes (NF1-A, NF1-B, NF1-C and NF1-X), bind to the palindromic sequence and regulate the expression of many viral and cellular genes. We have previously purified NF1-A and NF1-B from rat liver as factors that bind to the silencer in the glutathione transferase P gene, and have also reported the repression domain of NF1-A. In the present study we cloned five cDNA species (NF1-B1, NF1-B2, NF1-B3, NF1-C2 and NF1-X1) and compared their expression profiles and the affinity and specificity of the DNA binding of these NF1 family members. By Northern blot analysis, we found that the expression profiles of the NF1s are indistinguishable in the various tissues of the rat. The DNA-binding affinities of NF1-A and NF1-X are higher than those of NF1-B and NF1-C, whereas all four NF1 proteins showed the same DNA-binding specificity. Transfection analyses revealed that the function of NF1-B on the transcriptional regulation differed between NF1-B isoforms and was affected by the factor(s) that bind to the promoter regions. In addition, we identified the transcriptional regulatory domain of NF1-B, which is enriched with proline and serine residues.
Collapse
Affiliation(s)
- S Osada
- Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Spitz F, Demignon J, Kahn A, Daegelen D, Maire P. Developmental regulation of the aldolase A muscle-specific promoter during in vivo muscle maturation is controlled by a nuclear receptor binding element. J Mol Biol 1999; 289:893-903. [PMID: 10369770 DOI: 10.1006/jmbi.1999.2821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the post-natal period, skeletal muscles undergo important modifications leading to the appearance of different types of myofibers which exhibit distinct contractile and metabolic properties. This maturation process results from the activation of the expression of different sets of contractile proteins and metabolic enzymes, which are specific to the different types of myofibers. The muscle-specific promoter of the aldolase A gene (pM) is expressed mainly in fast-twitch glycolytic fibers in adult body muscles. We investigate here how pM is regulated during the post-natal development of different types of skeletal muscles (slow or fast-twitch muscles, head or body muscles). We show that pM is expressed preferentially in prospective fast-twitch muscles soon after birth; pM is up-regulated specifically in body muscles only later in development. This activation pattern is mimicked by a transgene which comprises only the 355 most proximal sequences of pM. Within this region, we identify a DNA element which is required for the up-regulation of the transgene during post-natal development in body muscles. Comparison of nuclear M1-binding proteins from young or adult body muscles show no qualitative differences. Distinct M1-binding proteins are present in both young and adult tongue nuclear extracts, compared to that present in gastrocnemius extracts.
Collapse
Affiliation(s)
- F Spitz
- INSERM U129, ICGM, 24 rue du Faubourg Saint Jacques, Université René Descartes Paris V, 75014, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
The -195- to -500-bp region of the human elastin promoter has been shown to convey high activity in neonatal rat aortic smooth muscle cell and pulmonary fibroblast cell cultures. In addition, this region has been implicated in controlling the differential basal level of elastin transcription in these two cell types. The overall goal of this study was to define the positive element(s) within the -195- to - 500-bp region and to identify the trans-acting factors binding to this sequence. A combination of deletion and linker scan mutational analyses localizes the positive element between -401 and -415 bp. Gel shift analyses demonstrate that the positive element binds NF-1 family members. Co-transfection of a CTF1 expression vector in Drosophila Schneider cells shows the ability of an NF-1 family member to activate elastin promoter activity through this site. Comparative Western and Southwestern blot analyses of nuclear extracts isolated from SMC and lung fibroblasts lay the foundation for possible differential regulation of elastin transcriptional levels via cell specific expression of different NF-1 family members.
Collapse
Affiliation(s)
- A Degterev
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
50
|
Calvo S, Venepally P, Cheng J, Buonanno A. Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol Cell Biol 1999; 19:515-25. [PMID: 9858575 PMCID: PMC83909 DOI: 10.1128/mcb.19.1.515] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory elements that restrict transcription of genes encoding contractile proteins specifically to either slow- or fast-twitch skeletal muscles are unknown. As an initial step towards understanding the mechanisms that generate muscle diversity during development, we have identified a 128-bp troponin I slow upstream element (SURE) and a 144-bp troponin I fast intronic element (FIRE) that confer fiber type specificity in transgenic mice (M. Nakayama et al., Mol. Cell. Biol. 16:2408-2417, 1996). SURE and FIRE have maintained the spatial organization of four conserved motifs (3' to 5'): an E box, an AT-rich site (A/T2) that binds MEF-2, a CACC site, and a novel CAGG motif. Troponin I slow (TnIs) constructs harboring mutations in these motifs were analyzed in transiently and stably transfected Sol8 myocytes and in transgenic mice to assess their function. Mutations of the E-box, A/T2, and CAGG motifs completely abolish transcription from the TnI SURE. In contrast, mutation of the CACC motif had no significant effect in transfected myocytes or on the slow-specific transcription of the TnI SURE in transgenic mice. To assess the role of E boxes in fiber type specificity, a chimeric enhancer was constructed in which the E box of SURE was replaced with the E box from FIRE. This TnI E box chimera, which lacks the SURE NFAT site, confers essentially the same levels of transcription in transgenic mice as those conferred by wild-type SURE and is specifically expressed in slow-twitch muscles, indicating that the E box on its own cannot determine the fiber-type-specific expression of the TnI promoter. The importance of the 5' half of SURE, which bears little homology to the TnI FIRE, in muscle-specific expression was analyzed by deletion and linker scanning analyses. Removal of the 5' half of SURE (-846 to -811) results in the loss of expression in stably transfected but not in transiently expressing myocytes. Linker scanning mutations identified sequences in this region that are necessary for the function of SURE when integrated into chromatin. One of these sites (GTTAATCCG), which is highly homologous to a bicoid consensus site, binds to nuclear proteins from several mesodermal cells. These results show that multiple elements are involved in the muscle-specific activity of the TnIs promoter and that interactions between upstream and downstream regions of SURE are important for transcription in the context of native chromatin.
Collapse
Affiliation(s)
- S Calvo
- Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|