1
|
Hollingsworth NM, Gaglione R. The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 2019; 65:631-641. [PMID: 30671596 DOI: 10.1007/s00294-019-00937-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Recombination, along with sister chromatid cohesion, is used during meiosis to physically connect homologous chromosomes so that they can be segregated properly at the first meiotic division. Recombination is initiated by the introduction of programmed double strand breaks (DSBs) into the genome, a subset of which is processed into crossovers. In budding yeast, the regulation of meiotic DSB repair is controlled by a meiosis-specific kinase called Mek1. Mek1 kinase activity promotes recombination between homologs, rather than sister chromatids, as well as the processing of recombination intermediates along a pathway that results in synapsis of homologous chromosomes and the distribution of crossovers throughout the genome. In addition, Mek1 kinase activity provides a readout for the number of DSBs in the cell as part of the meiotic recombination checkpoint. This checkpoint delays entry into the first meiotic division until DSBs have been repaired by inhibiting the activity of the meiosis-specific transcription factor Ndt80, a site-specific DNA binding protein that activates transcription of over 300 target genes. Recent work has shown that Mek1 binds to Ndt80 and phosphorylates it on multiple sites, including the DNA binding domain, thereby preventing Ndt80 from activating transcription. As DSBs are repaired, Mek1 is removed from chromosomes and its activity decreases. Loss of the inhibitory Mek1 phosphates and phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, promote Ndt80 activity such that Ndt80 transcribes its own gene in a positive feedback loop, as well as genes required for the completion of recombination and entry into the meiotic divisions. Mek1 is therefore the key regulator of meiotic recombination in yeast.
Collapse
Affiliation(s)
- Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
2
|
Mela A, Momany M. Septin mutations and phenotypes in S. cerevisiae. Cytoskeleton (Hoboken) 2018; 76:33-44. [PMID: 30171672 DOI: 10.1002/cm.21492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/07/2022]
Abstract
Septins are highly conserved guanosine triphosphate (GTP)-binding proteins that are a component of the cytoskeletal systems of virtually all eukaryotes (except higher plants). Septins play important roles in a multitude of cellular processes, including cytokinesis, establishment of cell polarity, and cellular partitioning. The ease of genetic screens and a fully sequenced genome have made Saccharomyces cerevisiae one of the most extensively studied and well-annotated model organisms in eukaryotic biology. Here, we present a synopsis of the known point mutations in the seven S. cerevisiae septin genes: CDC3, CDC10, CDC11, CDC12, SHS1, SPR3, and SPR28. We map these mutations onto septin protein structures, highlighting important conserved motifs, and relating the functional consequences of mutations in each domain.
Collapse
Affiliation(s)
- Alexander Mela
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
3
|
Chen X, Gaglione R, Leong T, Bednor L, de los Santos T, Luk E, Airola M, Hollingsworth NM. Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLoS Genet 2018; 14:e1007832. [PMID: 30496175 PMCID: PMC6289461 DOI: 10.1371/journal.pgen.1007832] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/11/2018] [Accepted: 11/13/2018] [Indexed: 02/02/2023] Open
Abstract
Meiotic recombination plays a critical role in sexual reproduction by creating crossovers between homologous chromosomes. These crossovers, along with sister chromatid cohesion, connect homologs to enable proper segregation at Meiosis I. Recombination is initiated by programmed double strand breaks (DSBs) at particular regions of the genome. The meiotic recombination checkpoint uses meiosis-specific modifications to the DSB-induced DNA damage response to provide time to convert these breaks into interhomolog crossovers by delaying entry into Meiosis I until the DSBs have been repaired. The meiosis-specific kinase, Mek1, is a key regulator of meiotic recombination pathway choice, as well as being required for the meiotic recombination checkpoint. The major target of this checkpoint is the meiosis-specific transcription factor, Ndt80, which is essential to express genes necessary for completion of recombination and meiotic progression. The molecular mechanism by which cells monitor meiotic DSB repair to allow entry into Meiosis I with unbroken chromosomes was unknown. Using genetic and biochemical approaches, this work demonstrates that in the presence of DSBs, activated Mek1 binds to Ndt80 and phosphorylates the transcription factor, thus inhibiting DNA binding and preventing Ndt80's function as a transcriptional activator. Repair of DSBs by recombination reduces Mek1 activity, resulting in removal of the inhibitory Mek1 phosphates. Phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, then results in fully activated Ndt80. Ndt80 upregulates transcription of its own gene, as well as target genes, resulting in prophase exit and progression through meiosis.
Collapse
Affiliation(s)
- Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Leong
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lauren Bednor
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Teresa de los Santos
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
4
|
Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation. G3-GENES GENOMES GENETICS 2017; 7:3971-3982. [PMID: 29066473 PMCID: PMC5714494 DOI: 10.1534/g3.117.300150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1 Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation.
Collapse
|
5
|
Comparative transcriptome analysis of fruiting body and sporulating mycelia of Villosiclava virens reveals genes with putative functions in sexual reproduction. Curr Genet 2016; 62:575-84. [DOI: 10.1007/s00294-015-0563-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
6
|
Hurtado S, Kim Guisbert KS, Sontheimer EJ. SPO24 is a transcriptionally dynamic, small ORF-encoding locus required for efficient sporulation in Saccharomyces cerevisiae. PLoS One 2014; 9:e105058. [PMID: 25127041 PMCID: PMC4134269 DOI: 10.1371/journal.pone.0105058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 07/20/2014] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae, meiosis and sporulation are highly regulated responses that are driven in part by changes in RNA expression. Alternative mRNA forms with extended 5′ UTRs are atypical in S. cerevisiae, and 5′ extensions with upstream open reading frames (uORFs) are even more unusual. Here we characterize the gene YPR036W-A, now renamed SPO24, which encodes a very small (67-amino-acid) protein. This gene gives rise to two mRNA forms: a shorter form throughout meiosis and a longer, 5′-extended form in mid-late meiosis. The latter form includes a uORF for a 14-amino-acid peptide (Spo24u14). Deletion of the downstream ORF (dORF) leads to sporulation defects and the appearance of pseudohyphae-like projections. Experiments with luciferase reporters indicate that the uORF does not downregulate dORF translation. The protein encoded by the dORF (Spo24d67) localizes to the prospore membrane and is differentially phosphorylated during meiosis. Transcription of the 5′-extended mRNA in mid-meiosis depends upon the presence of two middle sporulation elements (MSEs). Removal of the MSEs severely inhibits the mid-meiotic appearance of the 5′-extended mRNA and limits the ability of plasmid-borne SPO24 to rescue the sporulation defect of a spo24Δ mutant, suggesting that the 5′-extended mRNA is functionally important. These results reveal Spo24d67 as a sporulation-related factor that is encoded by a transcriptionally dynamic, uORF-containing locus.
Collapse
Affiliation(s)
- Sara Hurtado
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Karen S. Kim Guisbert
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik J. Sontheimer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Tsuchiya D, Yang Y, Lacefield S. Positive feedback of NDT80 expression ensures irreversible meiotic commitment in budding yeast. PLoS Genet 2014; 10:e1004398. [PMID: 24901499 PMCID: PMC4046916 DOI: 10.1371/journal.pgen.1004398] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/03/2014] [Indexed: 01/03/2023] Open
Abstract
In budding yeast, meiotic commitment is the irreversible continuation of the developmental path of meiosis. After reaching meiotic commitment, cells finish meiosis and gametogenesis, even in the absence of the meiosis-inducing signal. In contrast, if the meiosis-inducing signal is removed and the mitosis-inducing signal is provided prior to reaching meiotic commitment, cells exit meiosis and return to mitosis. Previous work has shown that cells commit to meiosis after prophase I but before entering the meiotic divisions. Since the Ndt80 transcription factor induces expression of middle meiosis genes necessary for the meiotic divisions, we examined the role of the NDT80 transcriptional network in meiotic commitment. Using a microfluidic approach to analyze single cells, we found that cells commit to meiosis in prometaphase I, after the induction of the Ndt80-dependent genes. Our results showed that high-level expression of NDT80 is important for the timing and irreversibility of meiotic commitment. A modest reduction in NDT80 levels delayed meiotic commitment based on meiotic stages, although the timing of each meiotic stage was similar to that of wildtype cells. A further reduction of NDT80 resulted in the surprising finding of inappropriately uncommitted cells: withdrawal of the meiosis-inducing signal and addition of the mitosis-inducing signal to cells at stages beyond metaphase I caused return to mitosis, leading to multi-nucleate cells. Since Ndt80 enhances its own transcription through positive feedback, we tested whether positive feedback ensured the irreversibility of meiotic commitment. Ablating positive feedback in NDT80 expression resulted in a complete loss of meiotic commitment. These findings suggest that irreversibility of meiotic commitment is a consequence of the NDT80 transcriptional positive feedback loop, which provides the high-level of Ndt80 required for the developmental switch of meiotic commitment. These results also illustrate the importance of irreversible meiotic commitment for maintaining genome integrity by preventing formation of multi-nucleate cells.
Collapse
Affiliation(s)
- Dai Tsuchiya
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Yang Yang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Flórez-Zapata NMV, Reyes-Valdés MH, Hernandez-Godínez F, Martínez O. Transcriptomic landscape of prophase I sunflower male meiocytes. FRONTIERS IN PLANT SCIENCE 2014; 5:277. [PMID: 24982667 PMCID: PMC4059168 DOI: 10.3389/fpls.2014.00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/27/2014] [Indexed: 05/06/2023]
Abstract
Meiosis is a form of specialized cell division that generates gametes, allowing recombination of alleles and halving the chromosome number. Arabidopsis and maize are the plant models that have been most extensively studied to determine the genes involved in meiosis. Here we present an RNA-seq study in which gene expression in male meiocytes isolated during prophase I was compared to that in somatic tissues of the sunflower HA89 line. We sampled more than 490 million gene tags from these libraries, assembled them de novo into a sunflower transcriptome. We obtained expression data for 36,304 sunflower genes, of which 19,574 (54%) were differentially expressed (DE) between meiocytes and somatic tissue. We also determined the functional categories and metabolic pathways that are DE in these libraries. As expected, we found large differences between the meiotic and somatic transcriptomes, which is in accordance with previous studies in Arabidopsis and maize. Furthermore, most of the previously implicated meiotic genes were abundantly and DE in meiocytes and a large repertoire of transcription factors (TF) and genes related to silencing are expressed in the sunflower meiocytes. We detected TFs which appear to be exclusively expressed in meiocytes. Our results allow for a better understanding of the conservation and differences in the meiotic transcriptome of plants.
Collapse
Affiliation(s)
- Nathalia M. V. Flórez-Zapata
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional(Cinvestav) Irapuato, México
| | - M. H. Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio NarroSaltillo, México
| | - Fernando Hernandez-Godínez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional(Cinvestav) Irapuato, México
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional(Cinvestav) Irapuato, México
- *Correspondence: Octavio Martínez, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, K. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, México e-mail:
| |
Collapse
|
9
|
Abstract
Regulation of development and entry into sporulation is critical for fungi to ensure survival of unfavorable environmental conditions. Here we present an analysis of gene sets regulating sporulation in the homothallic ascomycete Ashbya gossypii. Deletion of components of the conserved pheromone/starvation MAP kinase cascades, e.g., STE11 and STE7, results in increased sporulation. In kar3 mutants sporulation is severely reduced, while deletion of KAR4 as well as of homologs of central Saccharomyces cerevisiae regulators of sporulation, IME1, IME2, IME4, and NDT80, abolishes sporulation in A. gossypii. Comparison of RNAseq transcript profiles of sporulation-deficient mutants identified a set of 67 down-regulated genes, most of which were up-regulated in the oversporulating ste12 mutant. One of these differentially expressed genes is an endoglucanase encoded by ENG2. We found that Eng2p promotes hyphal fragmentation as part of the developmental program of sporulation, which generates single-celled sporangia. Sporulation-deficient strains are arrested in their development but form sporangia. Supply of new nutrients enabled sporangia to return to hyphal growth, indicating that these cells are not locked in meiosis. Double-strand break (DSB) formation by Spo11 is apparently not required for sporulation; however, the absence of DMC1, which repairs DSBs in S. cerevisiae, results in very poor sporulation in A. gossypii. We present a comprehensive analysis of the gene repertoire governing sporulation in A. gossypii and suggest an altered regulation of IME1 expression compared to S. cerevisiae.
Collapse
|
10
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
12
|
Gurvitz A, Suomi F, Rottensteiner H, Hiltunen JK, Dawes IW. Avoiding unscheduled transcription in shared promoters: Saccharomyces cerevisiae Sum1p represses the divergent gene pair SPS18-SPS19 through a midsporulation element (MSE). FEMS Yeast Res 2009; 9:821-31. [PMID: 19583587 PMCID: PMC2784042 DOI: 10.1111/j.1567-1364.2009.00527.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The sporulation-specific gene SPS18 shares a common promoter region with the oleic acid-inducible gene SPS19. Both genes are transcribed in sporulating diploid cells, albeit unevenly in favour of SPS18, whereas in haploid cells grown on fatty acids only SPS19 is highly activated. Here, SPS19 oleate-response element (ORE) conferred activation on a basal CYC1-lacZ reporter gene equally in both orientations, but promoter analysis using SPS18-lacZ reporter constructs with deletions identified a repressing fragment containing a midsporulation element (MSE) that could be involved in imposing directionality towards SPS19 in oleic acid-induced cells. In sporulating diploids, MSEs recruit the Ndt80p transcription factor for activation, whereas under vegetative conditions, certain MSEs are targeted by the Sum1p repressor in association with Hst1p and Rfm1p. Quantitative real-time PCR demonstrated that in haploid sum1Δ, hst1Δ, or rfm1Δ cells, oleic acid-dependent expression of SPS18 was higher compared with the situation in wild-type cells, but in the sum1Δ mutant, this effect was diminished in the absence of Oaf1p or Pip2p. We conclude that SPS18 MSE is a functional element repressing the expression of both SPS18 and SPS19, and is a component of a stricture mechanism shielding SPS18 from the dramatic increase in ORE-dependent transcription of SPS19 in oleic acid-grown cells.
Collapse
Affiliation(s)
- Aner Gurvitz
- Center for Physiology, Pathophysiology and Immunology, Institute of Physiology, Section of Physiology of Lipid Metabolism, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
13
|
The Ime2 protein kinase enhances the disassociation of the Sum1 repressor from middle meiotic promoters. Mol Cell Biol 2009; 29:4352-62. [PMID: 19528232 DOI: 10.1128/mcb.00305-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic development in Saccharomyces cerevisiae (sporulation) is controlled by the sequential transcription of temporally distinct sets of meiosis-specific genes. The induction of middle genes controls exit from meiotic prophase, the completion of the nuclear divisions, and spore formation. Middle promoters are controlled through DNA elements termed middle sporulation elements (MSEs) that are bound by the Sum1 repressor during vegetative growth and by the Ndt80 activator during meiosis. It has been proposed that the induction of middle promoters is controlled by competition between Ndt80 and Sum1 for MSE occupancy. Here, we show that the Sum1 repressor can be removed from middle promoters in meiotic cells independent of Ndt80 expression. This process requires the phosphorylation of Sum1 by the meiosis-specific cyclin-dependent kinase-like kinase Ime2. The deletion of HST1, which encodes a Sir2 paralog that interacts with Sum1, bypasses the requirement for this phosphorylation. These findings suggest that in the presence of Ndt80, Sum1 may be displaced from MSEs through a competition-based mechanism but that in the absence of Ndt80, Sum1 is removed from chromatin in a separate pathway requiring the phosphorylation of Sum1 by Ime2 and the inhibition of Hst1.
Collapse
|
14
|
Cimini D, Patil KR, Schiraldi C, Nielsen J. Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3. BMC SYSTEMS BIOLOGY 2009; 3:17. [PMID: 19200357 PMCID: PMC2661886 DOI: 10.1186/1752-0509-3-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 02/06/2009] [Indexed: 11/20/2022]
Abstract
Background Mitochondrial respiration is an important and widely conserved cellular function in eukaryotic cells. The succinate dehydrogenase complex (Sdhp) plays an important role in respiration as it connects the mitochondrial respiratory chain to the tricarboxylic acid (TCA) cycle where it catalyzes the oxidation of succinate to fumarate. Cellular response to the Sdhp dysfunction (i.e. impaired respiration) thus has important implications not only for biotechnological applications but also for understanding cellular physiology underlying metabolic diseases such as diabetes. We therefore explored the physiological and transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3, that codes for an essential subunit of the Sdhp. Results Although the Sdhp has no direct role in transcriptional regulation and the flux through the corresponding reaction under the studied conditions is very low, deletion of SDH3 resulted in significant changes in the expression of several genes involved in various cellular processes ranging from metabolism to the cell-cycle. By using various bioinformatics tools we explored the organization of these transcriptional changes in the metabolic and other cellular functional interaction networks. Conclusion Our results show that the transcriptional regulatory response resulting from the impaired respiratory function is linked to several different parts of the metabolism, including fatty acid and sterol metabolism.
Collapse
Affiliation(s)
- Donatella Cimini
- Second University of Naples, Department of Experimental Medicine, Naples, Italy.
| | | | | | | |
Collapse
|
15
|
Raithatha SA, Stuart DT. The Saccharomyces cerevisiae CLB5 promoter contains two middle sporulation elements (MSEs) that are differentially regulated during sporulation. Yeast 2008; 25:259-72. [PMID: 18327887 DOI: 10.1002/yea.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The B-type cyclins Clb5 and Clb6 are essential activators of DNA replication during sporulation in Saccharomyces cerevisiae. The expression of CLB5 is maximally induced during the middle phase of sporulation by the transcription factor Ndt80. We have performed an analysis of the CLB5 promoter and have identified two middle sporulation elements (MSEs) that act as binding sites for Ndt80. Although both MSE sequences bind Ndt80 in vitro, they display differential effectiveness in their ability to function as cis-acting regulatory sequences in vivo. Mutation of both MSE sequences in the CLB5 promoter profoundly reduces the induction of CLB5 transcription during the middle phase of sporulation but results in no obvious defect in progression through meiosis and sporulation, implying that the Ndt80-dependent induction of CLB5 is not required for effective DNA replication or chromosome division.
Collapse
Affiliation(s)
- Sheetal A Raithatha
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | |
Collapse
|
16
|
Schlecht U, Erb I, Demougin P, Robine N, Borde V, van Nimwegen E, Nicolas A, Primig M. Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast. Mol Biol Cell 2008; 19:2193-207. [PMID: 18305101 DOI: 10.1091/mbc.e07-12-1242] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development.
Collapse
Affiliation(s)
- Ulrich Schlecht
- Biozentrum and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Moore M, Shin M, Bruning A, Schindler K, Vershon A, Winter E. Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 2007; 46:271-8. [PMID: 17198398 PMCID: PMC2535912 DOI: 10.1021/bi061858p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ime2 is a meiosis-specific protein kinase in Saccharomyces cerevisiae that is functionally related to cyclin-dependent kinase. Although Ime2 regulates multiple steps in meiosis, only a few of its substrates have been identified. Here we show that Ime2 phosphorylates Sum1, a repressor of meiotic gene transcription, on Thr-306. Ime2 protein kinase assays with Sum1 mutants and synthetic peptides define a consensus Arg-Pro-X-Ser/Thr motif that is required for efficient phosphorylation by Ime2. The carboxyl residue adjacent to the phosphoacceptor (+1 position) also influences the efficiency of Ime2 phosphorylation with alanine being a preferred residue. This information has predictive value in identifying new potential Ime2 targets as shown by the ability of Ime2 to phosphorylate Sgs1 and Gip1 in vitro and could be important in differentiating mitotic and meiotic regulatory pathways.
Collapse
Affiliation(s)
- Michael Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Marcus Shin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adrian Bruning
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway New Jersey, 08854
| | - Karen Schindler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Andrew Vershon
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway New Jersey, 08854
| | - Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
- >To whom correspondence should be addressed: 233 South 10th St., Philadelphia, PA 19107. Phone:(215)503-4139. Fax: (215)923-9162. E-mail:
| |
Collapse
|
18
|
Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1468-89. [PMID: 16963631 PMCID: PMC1563586 DOI: 10.1128/ec.00107-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We conducted a comprehensive genomic analysis of the temporal response of yeast to anaerobiosis (six generations) and subsequent aerobic recovery ( approximately 2 generations) to reveal metabolic-state (galactose versus glucose)-dependent differences in gene network activity and function. Analysis of variance showed that far fewer genes responded (raw P value of <or=10(-8)) to the O(2) shifts in glucose (1,603 genes) than in galactose (2,388 genes). Gene network analysis reveals that this difference is due largely to the failure of "stress"-activated networks controlled by Msn2/4, Fhl1, MCB, SCB, PAC, and RRPE to transiently respond to the shift to anaerobiosis in glucose as they did in galactose. After approximately 1 generation of anaerobiosis, the response was similar in both media, beginning with the deactivation of Hap1 and Hap2/3/4/5 networks involved in mitochondrial functions and the concomitant derepression of Rox1-regulated networks for carbohydrate catabolism and redox regulation and ending (>or=2 generations) with the activation of Upc2- and Mot3-regulated networks involved in sterol and cell wall homeostasis. The response to reoxygenation was rapid (<5 min) and similar in both media, dominated by Yap1 networks involved in oxidative stress/redox regulation and the concomitant activation of heme-regulated ones. Our analyses revealed extensive networks of genes subject to combinatorial regulation by both heme-dependent (e.g., Hap1, Hap2/3/4/5, Rox1, Mot3, and Upc2) and heme-independent (e.g., Yap1, Skn7, and Puf3) factors under these conditions. We also uncover novel functions for several cis-regulatory sites and trans-acting factors and define functional regulons involved in the physiological acclimatization to changes in oxygen availability.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 S. Goodwin Ave., Urbana, 61801, USA
| | | | | | | |
Collapse
|
19
|
Lamoureux JS, Glover JNM. Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Structure 2006; 14:555-65. [PMID: 16531239 DOI: 10.1016/j.str.2005.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/27/2005] [Accepted: 11/13/2005] [Indexed: 11/24/2022]
Abstract
The Saccharomyces cerevisiae transcription factor Ndt80 selectively binds a DNA consensus sequence (the middle sporulation element [MSE]) to activate gene expression after the successful completion of meiotic recombination. Here we report the X-ray crystal structures of Ndt80 bound to ten distinct MSE variants. Comparison of these structures with the structure of Ndt80 bound to a consensus MSE reveals structural principles that determine the DNA binding specificity of this transcription factor. The 5' GC-rich end of the MSE contains distinct 5'-YpG-3' steps that are recognized by arginine side chains through a combination of hydrogen bonding and cation-pi interactions. The 3' AT-rich region is recognized via minor groove contacts that sterically exclude the N2 atom of GC base pairs. The conformation of the AT-rich region is fixed by interactions with the protein that favor recognition of poly(A)-poly(T) versus mixed AT sequences through an avoidance of major groove steric clashes at 5'-ApT-3' steps.
Collapse
Affiliation(s)
- Jason S Lamoureux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
20
|
Jolly ER, Chin CS, Herskowitz I, Li H. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis. BMC Bioinformatics 2005; 6:275. [PMID: 16297241 PMCID: PMC1326232 DOI: 10.1186/1471-2105-6-275] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 11/18/2005] [Indexed: 12/28/2022] Open
Abstract
Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.
Collapse
Affiliation(s)
- Emmitt R Jolly
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1700 4Street, San Francisco, CA 94143, USA
| | - Chen-Shan Chin
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1700 4Street, San Francisco, CA 94143, USA
| | - Ira Herskowitz
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1700 4Street, San Francisco, CA 94143, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1700 4Street, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Doniger SW, Huh J, Fay JC. Identification of functional transcription factor binding sites using closely related Saccharomyces species. Genome Res 2005; 15:701-9. [PMID: 15837806 PMCID: PMC1088298 DOI: 10.1101/gr.3578205] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Comparative genomics provides a rapid means of identifying functional DNA elements by their sequence conservation between species. Transcription factor binding sites (TFBSs) may constitute a significant fraction of these conserved sequences, but the annotation of specific TFBSs is complicated by the fact that these short, degenerate sequences may frequently be conserved by chance rather than functional constraint. To identify intergenic sequences that function as TFBSs, we calculated the probability of binding site conservation between Saccharomyces cerevisiae and its two closest relatives under a neutral model of evolution. We found that this probability is <5% for 134 of 163 transcription factor binding motifs, implying that we can reliably annotate binding sites for the majority of these transcription factors by conservation alone. Although our annotation relies on a number of assumptions, mutations in five of five conserved Ume6 binding sites and three of four conserved Ndt80 binding sites show Ume6- and Ndt80-dependent effects on gene expression. We also found that three of five unconserved Ndt80 binding sites show Ndt80-dependent effects on gene expression. Together these data imply that although sequence conservation can be reliably used to predict functional TFBSs, unconserved sequences might also make a significant contribution to a species' biology.
Collapse
Affiliation(s)
- Scott W Doniger
- Computational Biology Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
22
|
Hanlon SE, Xu Z, Norris DN, Vershon AK. Analysis of the meiotic role of the mitochondrial ribosomal proteins Mrps17 and Mrpl37 in Saccharomyces cerevisiae. Yeast 2005; 21:1241-52. [PMID: 15543521 DOI: 10.1002/yea.1174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sporulation in the yeast Saccharomyces cerevisiae is a complex and tightly regulated pathway that involves the induction of a large number of genes. We have identified MRPS17 in a cDNA library enriched for sporulation-specific genes. Homology searches show that the first one-third of Mrps17 has strong sequence similarity to bacterial S17 proteins, suggesting that Mrps17 is a potential mitochondrial ribosomal protein. This is further supported by the fact that mrps17Delta cells are respiratory-deficient and that a Mrps17-GFP fusion localizes to the mitochondria. We have confirmed by Northern blot analysis that both MRPS17 and MRPL37 are strongly induced during the middle stages of sporulation and that this induction is dependent on the presence of a middle sporulation element (MSE) in the promoters of these genes. Interestingly, we found that Mrps17 and Mrpl37, but not other mitochondrial ribosomal proteins, accumulate during the middle stages of sporulation. These results suggest that Mrps17 and Mrpl37 may have additional meiosis-specific roles.
Collapse
Affiliation(s)
- Sean E Hanlon
- Waksman Institute of Microbiology, Department of Molecular Biology and Biochemistry, Rutgers State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | | | |
Collapse
|
23
|
Sopko R, Stuart DT. Purification and characterization of the DNA binding domain of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80. Protein Expr Purif 2004; 33:134-44. [PMID: 14680970 DOI: 10.1016/j.pep.2003.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 08/11/2003] [Indexed: 10/26/2022]
Abstract
Ndt80 is a Saccharomyces cerevisiae meiosis-specific transcription factor responsible for promoting the stage-specific expression of a family of genes referred to as middle sporulation genes. Many members of this gene family are essential for the completion of meiotic chromosome segregation. Thus, Ndt80 is essential for the completion of meiosis. Ndt80 is highly regulated both transcriptionally and post-translationally. To facilitate biochemical analysis of Ndt80, we have expressed the DNA binding domain in Escherichia coli and purified the recombinant protein with an affinity chromatography procedure. In addition we have dissected the amino-terminus of Ndt80 to delimit the functional DNA binding domain. This analysis shows that the amino-terminal 40 amino-acids of Ndt80, although not essential for its DNA binding activity, do have an effect on its ability to bind specifically to its target DNA sequence. In addition, we show that the Ndt80 DNA binding domain can be phosphorylated by the meiosis-specific protein kinase Ime2 in vitro, but contrary to our initial hypothesis this phosphorylation does not significantly affect the affinity of Ndt80 for its target DNA sequence.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Biochemistry, University of Alberta, 561 Medical Sciences Building, Edmonton, Alta., Canada T6G 2H7
| | | |
Collapse
|
24
|
Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G. Transcriptional regulation of meiosis in budding yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:111-71. [PMID: 12722950 DOI: 10.1016/s0074-7696(05)24004-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.
Collapse
Affiliation(s)
- Yona Kassir
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol 2003; 23:4814-25. [PMID: 12832469 PMCID: PMC162219 DOI: 10.1128/mcb.23.14.4814-4825.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Revised: 08/26/2002] [Accepted: 04/25/2003] [Indexed: 12/20/2022] Open
Abstract
A key transition in meiosis is the exit from prophase and entry into the nuclear divisions, which in the yeast Saccharomyces cerevisiae depends upon induction of the middle sporulation genes. Ndt80 is the primary transcriptional activator of the middle sporulation genes and binds to a DNA sequence element termed the middle sporulation element (MSE). Sum1 is a transcriptional repressor that binds to MSEs and represses middle sporulation genes during mitosis and early sporulation. We demonstrate that Sum1 and Ndt80 have overlapping yet distinct sequence requirements for binding to and acting at variant MSEs. Whole-genome expression analysis identified a subset of middle sporulation genes that was derepressed in a sum1 mutant. A comparison of the MSEs in the Sum1-repressible promoters and MSEs from other middle sporulation genes revealed that there are distinct classes of MSEs. We show that Sum1 and Ndt80 compete for binding to MSEs and that small changes in the sequence of an MSE can yield large differences in which protein is bound. Our results provide a mechanism for differentially regulating the expression of middle sporulation genes through the competition between the Sum1 repressor and the Ndt80 activator.
Collapse
Affiliation(s)
- Michael Pierce
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
26
|
Boer VM, de Winde JH, Pronk JT, Piper MDW. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 2003; 278:3265-74. [PMID: 12414795 DOI: 10.1074/jbc.m209759200] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Profiles of genome-wide transcriptional events for a given environmental condition can be of importance in the diagnosis of poorly defined environments. To identify clusters of genes constituting such diagnostic profiles, we characterized the specific transcriptional responses of Saccharomyces cerevisiae to growth limitation by carbon, nitrogen, phosphorus, or sulfur. Microarray experiments were performed using cells growing in steady-state conditions in chemostat cultures at the same dilution rate. This enabled us to study the effects of one particular limitation while other growth parameters (pH, temperature, dissolved oxygen tension) remained constant. Furthermore, the composition of the media fed to the cultures was altered so that the concentrations of excess nutrients were comparable between experimental conditions. In total, 1881 transcripts (31% of the annotated genome) were significantly changed between at least two growth conditions. Of those, 484 were significantly higher or lower in one limitation only. The functional annotations of these genes indicated cellular metabolism was altered to meet the growth requirements for nutrient-limited growth. Furthermore, we identified responses for several active transcription factors with a role in nutrient assimilation. Finally, 51 genes were identified that showed 10-fold higher or lower expression in a single condition only. The transcription of these genes can be used as indicators for the characterization of nutrient-limited growth conditions and provide information for metabolic engineering strategies.
Collapse
Affiliation(s)
- Viktor M Boer
- Kluyver Laboratory of Biotechnology, Technical University of Delft, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | | | | |
Collapse
|
27
|
Lamoureux JS, Stuart D, Tsang R, Wu C, Glover JNM. Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO J 2002; 21:5721-32. [PMID: 12411490 PMCID: PMC131069 DOI: 10.1093/emboj/cdf572] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 09/06/2002] [Accepted: 09/06/2002] [Indexed: 11/12/2022] Open
Abstract
Progression through the middle phase of sporulation in Saccharomyces cerevisiae is promoted by the successful completion of recombination at the end of prophase I. Completion of meiotic recombination allows the activation of the sporulation-specific transcription factor Ndt80, which binds to a specific DNA sequence, the middle sporulation element (MSE), and activates approximately 150 genes to enable progression through meiosis. Here, we isolate the DNA-binding domain of Ndt80 and determine its crystal structure both free and in complex with an MSE-containing DNA. The structure reveals that Ndt80 is a member of the Ig-fold family of transcription factors. The structure of the DNA-bound form, refined at 1.4 A, reveals an unexpected mode of recognition of 5'-pyrimidine- guanine-3' dinucleotide steps by arginine residues that simultaneously recognize the 3'-guanine base through hydrogen bond interactions and the 5'-pyrimidine through stacking/van der Waals interactions. Analysis of the DNA-binding affinities of MSE mutants demonstrates the central importance of these interactions, and of the AT-rich portion of the MSE. Functional similarities between Ndt80 and the Caenorhabditis elegans p53 homolog suggest an evolutionary link between Ndt80 and the p53 family.
Collapse
Affiliation(s)
- Jason S Lamoureux
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
28
|
Montano SP, Coté ML, Fingerman I, Pierce M, Vershon AK, Georgiadis MM. Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast. Proc Natl Acad Sci U S A 2002; 99:14041-6. [PMID: 12384578 PMCID: PMC137833 DOI: 10.1073/pnas.222312199] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 A resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues. The structure reveals a single approximately 32-kDa domain with a distinct fold comprising a beta-sandwich core elaborated with seven additional beta-sheets and three short alpha-helices. Inspired by the structure, we have performed a mutational analysis and defined a DNA-binding motif in this domain. The DNA-binding domain of Ndt80 is homologous to a number of proteins from higher eukaryotes, and the residues that we have shown are required for DNA binding by Ndt80 are highly conserved among this group of proteins. These results suggest that Ndt80 is the defining member of a previously uncharacterized family of transcription factors, including the human protein (C11orf9), which has been shown to be highly expressed in invasive or metastatic tumor cells.
Collapse
Affiliation(s)
- Sherwin P Montano
- Waksman Institute and Department of Chemistry and Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
29
|
Pak J, Segall J. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6417-29. [PMID: 12192041 PMCID: PMC135636 DOI: 10.1128/mcb.22.18.6417-6429.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 06/07/2002] [Accepted: 06/21/2002] [Indexed: 01/11/2023] Open
Abstract
The NDT80 gene of Saccharomyces cerevisiae, which encodes a global activator of transcription of middle sporulation-specific genes, is first expressed after the activation of early meiotic genes but prior to activation of middle sporulation-specific genes. Both upstream repression sequence 1 (URS1) and mid-sporulation element (MSE) sites are present in the promoter region of the NDT80 gene; these elements have been shown previously to contribute to the regulation of expression of early and middle sporulation-specific genes, respectively, by mediating repression in growing cells and activation at specific times during sporulation. In this study, we have shown that the overlapping windows of URS1- and MSE-mediated repression and activation are responsible for the distinctive premiddle expression pattern of the NDT80 gene. Our data suggest that a Sum1-associated repression complex bound at the NDT80 MSE sites prevents Ime1 tethered at the NDT80 URS1 sites from activating transcription of the NDT80 gene at the time that Ime1-dependent activation of early URS1-regulated meiotic genes is occurring. We propose that a decrease in the efficiency of Sum1-mediated repression as cells progress through the early events of the sporulation program allows the previously inactive Ime1 tethered at the URS1(NDT80) sites to promote a low level of expression of the NDT80 gene. This initial phase of URS1-dependent NDT80 expression is followed by Ndt80-dependent upregulation of its own expression, which requires the MSE(NDT80) sites and occurs concomitantly with Ndt80-dependent activation of a set of middle MSE-regulated sporulation-specific genes. Mutation of IME2 prevents expression of NDT80 in sporulating cells. We show in this study that NDT80 is expressed and that middle genes are activated in cells of an Deltaime2/Deltaime2 Deltasum1/Deltasum1 strain in sporulation medium. This suggests that Ime2 activates expression of NDT80 by eliminating Sum1-mediated repression.
Collapse
Affiliation(s)
- Julia Pak
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
30
|
Oshiro G, Wodicka LM, Washburn MP, Yates JR, Lockhart DJ, Winzeler EA. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res 2002; 12:1210-20. [PMID: 12176929 PMCID: PMC186640 DOI: 10.1101/gr.226802] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 05/17/2002] [Indexed: 01/13/2023]
Abstract
Short open reading frames (ORFs) occur frequently in primary genome sequence. Distinguishing bona fide small genes from the tens of thousands of short ORFs is one of the most challenging aspects of genome annotation. Direct experimental evidence is often required. Here we use a combination of expression profiling and mass spectrometry to verify the independent transcription of 138 and the translation of 50 previously nonannotated genes in the Saccharomyces cerevisiae genome. Through combined evidence, we propose the addition of 62 new genes to the genome and provide experimental support for the inclusion of 10 previously identified genes.
Collapse
Affiliation(s)
- Guy Oshiro
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
31
|
Briza P, Bogengruber E, Thür A, Rützler M, Münsterkötter M, Dawes IW, Breitenbach M. Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast 2002; 19:403-22. [PMID: 11921089 DOI: 10.1002/yea.843] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new high throughput mutant screening procedure for the detection of sporulation mutants was developed and used to analyse a set of 624 non-lethal homozygous deletion mutants created in the European joint research program EUROFAN. The screening procedure involved determination of LL- and DL-dityrosine, sporulation-specific compounds, which were shown to be robust markers of the extent and arrest stage of sporulation mutants. Secondary screens consisted of light microscopy to detect mature and immature spores and DAPI staining to monitor the progress of meiotic nuclear divisions. We discovered new phenotypic classes of mutants defective in spore wall synthesis that were not discovered by previous screens for sporulation mutants. The genes corresponding to the sporulation mutants fell in several functional classes, some of which were previously unknown to be involved in spore formation. Peroxisomes seem to play a role in spore wall synthesis. Mitochondria play a role in sporulation that is not simply restricted to supply of ATP from respiratory metabolism. The deletion mutants included in the set were functionally unknown at the start of EUROFAN; however, within the last few years the importance to sporulation of some of them was also reported by other authors. Taken together, about 8% of all single gene deletion mutants of non-essential genes of Saccharomyces cerevisiae seem to display a clear and reproducible sporulation phenotype.
Collapse
Affiliation(s)
- Peter Briza
- Institut für Genetik und Allgemeine Biologie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
32
|
Miyake T, Loch CM, Li R. Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing. Mol Cell Biol 2002; 22:505-16. [PMID: 11756546 PMCID: PMC139751 DOI: 10.1128/mcb.22.2.505-516.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autonomously replicating sequence-binding factor 1 (ABF1) is a multifunctional, site-specific DNA binding protein that is essential for cell viability in Saccharomyces cerevisiae. ABF1 plays a direct role in transcriptional activation, stimulation of DNA replication, and gene silencing at the mating-type loci. Here we demonstrate that all three activities of ABF1 are conferred by the C terminus of the protein (amino acids [aa] 604 to 731). Furthermore, a detailed mutational analysis has revealed two important clusters of amino acid residues in the C terminus (C-terminal sequence 1 [CS1], aa 624 to 628; and CS2, aa 639 to 662). While both regions play a pivotal role in supporting cell viability, they make distinct contributions to ABF1 functions in various nuclear processes. CS1 specifically participates in transcriptional silencing and/or repression in a context-dependent manner, whereas CS2 is universally required for all three functions of ABF1. When tethered to specific regions of the genome, a 30-aa fragment that contains CS2 alone is sufficient for activation of transcription and chromosomal replication. In addition, CS2 is responsible for ABF1-mediated chromatin remodeling. Based on these results, we suggest that ABF1 may function as a chromatin-reorganizing factor to increase accessibility of the local chromatin structure, which in turn facilitates the action of additional factors to establish either an active or repressed chromatin state.
Collapse
Affiliation(s)
- Tsuyoshi Miyake
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908-0733, USA
| | | | | |
Collapse
|
33
|
Deng C, Saunders WS. ADY1, a novel gene required for prospore membrane formation at selected spindle poles in Saccharomyces cerevisiae. Mol Biol Cell 2001; 12:2646-59. [PMID: 11553705 PMCID: PMC59701 DOI: 10.1091/mbc.12.9.2646] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Revised: 04/09/2001] [Accepted: 07/08/2001] [Indexed: 11/11/2022] Open
Abstract
ADY1 is identified in a genetic screen for genes on chromosome VIII of Saccharomyces cerevisiae that are required for sporulation. ADY1 is not required for meiotic recombination or meiotic chromosome segregation, but it is required for the formation of four spores inside an ascus. In the absence of ADY1, prospore formation is restricted to mainly one or two spindle poles per cell. Moreover, the two spores in the dyads of the ady1 mutant are predominantly nonsisters, suggesting that the proficiency to form prospores is not randomly distributed to the four spindle poles in the ady1 mutant. Interestingly, the meiosis-specific spindle pole body component Mpc54p, which is known to be required for prospore membrane formation, is localized predominantly to only one or two spindle poles per cell in the ady1 mutant. A partially functional Myc-Pfs1p is localized to the nucleus of mononucleate meiotic cells but not to the spindle pole body or prospore membrane. These results suggest that Pfs1p is specifically required for prospore formation at selected spindle poles, most likely by ensuring the functionality of all four spindle pole bodies of a cell during meiosis II.
Collapse
Affiliation(s)
- C Deng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
34
|
Lindgren A, Bungard D, Pierce M, Xie J, Vershon A, Winter E. The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J 2000; 19:6489-97. [PMID: 11101521 PMCID: PMC305847 DOI: 10.1093/emboj/19.23.6489] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae mutants that fail to complete meiotic recombination are blocked by the RAD17/RAD24/MEC1 checkpoint signaling pathway in pachytene when early sporulation genes are expressed. Middle genes are not activated in checkpoint-arrested cells because the Ndt80 transcription factor is inhibited. We find that the pachytene checkpoint requires Sum1, a transcriptional repressor that recognizes a subset of Ndt80-binding sites. Mutants lacking Sum1 or Rad17 partially bypass the block to the nuclear divisions but do not form spores, while mutants lacking both Sum1 and Rad17 completely bypass the block and form morphologically normal spores. The level of Sum1 protein decreases as middle genes are expressed, and this decrease is blocked in checkpoint-arrested cells. These data suggest that Sum1 levels are regulated by the checkpoint and that progression of the meiotic divisions and spore differentiation can be differentially controlled by competition of the Sum1 repressor and Ndt80 activator for occupancy at key middle promoters.
Collapse
Affiliation(s)
- A Lindgren
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
35
|
Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, Davis RW, Esposito RE. The core meiotic transcriptome in budding yeasts. Nat Genet 2000; 26:415-23. [PMID: 11101837 DOI: 10.1038/82539] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used high-density oligonucleotide microarrays to analyse the genomes and meiotic expression patterns of two yeast strains, SK1 and W303, that display distinct kinetics and efficiencies of sporulation. Hybridization of genomic DNA to arrays revealed numerous gene deletions and polymorphisms in both backgrounds. The expression analysis yielded approximately 1,600 meiotically regulated genes in each strain, with a core set of approximately 60% displaying similar patterns in both strains. Most of these (95%) are MATa/MATalpha-dependent and are not similarly expressed in near-isogenic meiosis-deficient controls. The transcript profiles correlate with the distribution of defined meiotic promoter elements and with the time of known gene function.
Collapse
Affiliation(s)
- M Primig
- The University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bussemaker HJ, Li H, Siggia ED. Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc Natl Acad Sci U S A 2000; 97:10096-100. [PMID: 10944202 PMCID: PMC27717 DOI: 10.1073/pnas.180265397] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The availability of complete genome sequences and mRNA expression data for all genes creates new opportunities and challenges for identifying DNA sequence motifs that control gene expression. An algorithm, "MobyDick," is presented that decomposes a set of DNA sequences into the most probable dictionary of motifs or words. This method is applicable to any set of DNA sequences: for example, all upstream regions in a genome or all genes expressed under certain conditions. Identification of words is based on a probabilistic segmentation model in which the significance of longer words is deduced from the frequency of shorter ones of various lengths, eliminating the need for a separate set of reference data to define probabilities. We have built a dictionary with 1,200 words for the 6, 000 upstream regulatory regions in the yeast genome; the 500 most significant words (some with as few as 10 copies in all of the upstream regions) match 114 of 443 experimentally determined sites (a significance level of 18 standard deviations). When analyzing all of the genes up-regulated during sporulation as a group, we find many motifs in addition to the few previously identified by analyzing the subclusters individually to the expression subclusters. Applying MobyDick to the genes derepressed when the general repressor Tup1 is deleted, we find known as well as putative binding sites for its regulatory partners.
Collapse
Affiliation(s)
- H J Bussemaker
- Center for Studies in Physics and Biology, The Rockefeller University, Box 25, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
37
|
Abstract
The genes required for meiosis and sporulation in yeast are expressed at specific points in a highly regulated temporal pathway. Recent experiments using DNA microarrays to examine gene expression during meiosis and the identification of many regulatory factors have provided important advances in our understanding of how genes are regulated at the different stages of meiosis.
Collapse
Affiliation(s)
- A K Vershon
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA. vershon@waksman. rutgers.edu
| | | |
Collapse
|
38
|
Mai B, Breeden L. CLN1 and its repression by Xbp1 are important for efficient sporulation in budding yeast. Mol Cell Biol 2000; 20:478-87. [PMID: 10611226 PMCID: PMC85107 DOI: 10.1128/mcb.20.2.478-487.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xbp1, a transcriptional repressor of Saccharomyces cerevisiae with homology to Swi4 and Mbp1, is induced by stress and starvation during the mitotic cycle. It is also induced late in the meiotic cycle. Using RNA differential display, we find that genes encoding three cyclins (CLN1, CLN3, and CLB2), CYS3, and SMF2 are downregulated when Xbp1 is overexpressed and that Xbp1 can bind to sequences in their promoters. During meiosis, XBP1 is highly induced and its mRNA appears at the same time as DIT1 mRNA, but its expression remains high for up to 24 h. As such, it represents a new class of meiosis-specific genes. Xbp1-deficient cells are capable of forming viable gametes, although ascus formation is delayed by several hours. Furthermore, Xbp1 target genes are normally repressed late in meiosis, and loss of XBP1 results in their derepression. Interestingly, we find that a deletion of CLN1 also reduces the efficiency of sporulation and delays the meiotic program but that sporulation in a Deltacln1 Deltaxbp1 strain is not further delayed. Thus, CLN1 may be Xbp1's primary target in meiotic cells. We hypothesize that CLN1 plays a role early in the meiotic program but must be repressed, by Xbp1, at later stages to promote efficient sporulation.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosome Breakage/genetics
- Consensus Sequence/genetics
- Cyclins/antagonists & inhibitors
- Cyclins/genetics
- Cyclins/metabolism
- DNA, Fungal/biosynthesis
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- Gene Expression
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Meiosis/genetics
- Promoter Regions, Genetic/genetics
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Response Elements/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Saccharomyces cerevisiae Proteins
- Spores, Fungal/genetics
- Spores, Fungal/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- B Mai
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
39
|
Ufano S, San-Segundo P, del Rey F, Vázquez de Aldana CR. SWM1, a developmentally regulated gene, is required for spore wall assembly in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:2118-29. [PMID: 10022899 PMCID: PMC84005 DOI: 10.1128/mcb.19.3.2118] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Meiosis in Saccharomyces cerevisiae is followed by encapsulation of haploid nuclei within multilayered spore walls. Formation of this spore-specific wall requires the coordinated activity of enzymes involved in the biosynthesis of its components. Completion of late events in the sporulation program, leading to spore wall formation, requires the SWM1 gene. SWM1 is expressed at low levels during vegetative growth but its transcription is strongly induced under sporulating conditions, with kinetics similar to those of middle sporulation-specific genes. Homozygous swm1Delta diploids proceed normally through both meiotic divisions but fail to produce mature asci. Consistent with this finding, swm1Delta mutant asci display enhanced sensitivity to enzymatic digestion and heat shock. Deletion of SWM1 specifically affects the expression of mid-late and late sporulation-specific genes. All of the phenotypes observed are similar to those found for the deletion of SPS1 or SMK1, two putative components of a sporulation-specific MAP kinase cascade. However, epistasis analyses indicate that Swm1p does not form part of the Sps1p-Smk1p-MAP kinase pathway. We propose that Swm1p, a nuclear protein, would participate in a different signal transduction pathway that is also required for the coordination of the biochemical and morphological events occurring during the last phase of the sporulation program.
Collapse
Affiliation(s)
- S Ufano
- Departamento de Microbiología y Genética, Instituto de Microbiología-Bioquímica, Universidad de Salamanca/CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
40
|
Pierce M, Wagner M, Xie J, Gailus-Durner V, Six J, Vershon AK, Winter E. Transcriptional regulation of the SMK1 mitogen-activated protein kinase gene during meiotic development in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:5970-80. [PMID: 9742114 PMCID: PMC109183 DOI: 10.1128/mcb.18.10.5970] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic development (sporulation) in Saccharomyces cerevisiae is characterized by an ordered pattern of gene expression, with sporulation-specific genes classified as early, middle, mid-late, or late depending on when they are expressed. SMK1 encodes a mitogen-activated protein kinase required for spore morphogenesis that is expressed as a middle sporulation-specific gene. Here, we identify the cis-acting DNA elements that regulate SMK1 transcription and characterize the phenotypes of mutants with altered expression patterns. The SMK1 promoter contains an upstream activating sequence (UASS) that specifically interacts with the transcriptional activator Abf1p. The Abf1p-binding sites from the early HOP1 and the middle SMK1 promoters are functionally interchangeable, demonstrating that these elements do not play a direct role in their differential transcriptional timing. Timing of SMK1 expression is determined by another cis-acting DNA sequence termed MSE (for middle sporulation element). The MSE is required not only for activation of SMK1 transcription during middle sporulation but also for its repression during vegetative growth and early meiosis. In addition, the SMK1 MSE can repress vegetative expression in the context of the HOP1 promoter and convert HOP1 from an early to a middle gene. SMK1 function is not contingent on its tight transcriptional regulation as a middle sporulation-specific gene. However, promoter mutants with different quantitative defects in SMK1 transcript levels during middle sporulation show distinct sporulation phenotypes.
Collapse
Affiliation(s)
- M Pierce
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hepworth SR, Friesen H, Segall J. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:5750-61. [PMID: 9742092 PMCID: PMC109161 DOI: 10.1128/mcb.18.10.5750] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinct classes of sporulation-specific genes are sequentially expressed during the process of spore formation in Saccharomyces cerevisiae. The transition from expression of early meiotic genes to expression of middle sporulation-specific genes occurs at about the time that cells exit from pachytene and form the meiosis I spindle. To identify genes encoding potential regulators of middle sporulation-specific gene expression, we screened for mutants that expressed early meiotic genes but failed to express middle sporulation-specific genes. We identified mutant alleles of RPD3, SIN3, and NDT80 in this screen. Rpd3p, a histone deacetylase, and Sin3p are global modulators of gene expression. Ndt80p promotes entry into the meiotic divisions. We found that entry into the meiotic divisions was not required for activation of middle sporulation genes; these genes were efficiently expressed in a clb1 clb3 clb4 strain, which fails to enter the meiotic divisions due to reduced Clb-dependent activation of Cdc28p kinase. In contrast, middle sporulation genes were not expressed in a dmc1 strain, which fails to enter the meiotic divisions because a defect in meiotic recombination leads to a RAD17-dependent checkpoint arrest. Expression of middle sporulation genes, as well as entry into the meiotic divisions, was restored to a dmc1 strain by mutation of RAD17. Our studies also revealed that NDT80 was a temporally distinct, pre-middle sporulation gene and that its expression was reduced, but not abolished, on mutation of DMC1, RPD3, SIN3, or NDT80 itself. In summary, our data indicate that Ndt80p is required for expression of middle sporulation genes and that the activity of Ndt80p is controlled by the meiotic recombination checkpoint. Thus, middle genes are expressed only on completion of meiotic recombination and subsequent generation of an active form of Ndt80p.
Collapse
Affiliation(s)
- S R Hepworth
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
42
|
Friesen H, Tanny JC, Segall J. Spe3, which encodes spermidine synthase, is required for full repression through NRE(DIT) in Saccharomyces cerevisiae. Genetics 1998; 150:59-73. [PMID: 9725830 PMCID: PMC1460323 DOI: 10.1093/genetics/150.1.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously identified a transcriptional regulatory element, which we call NRE(DIT), that is required for repression of the sporulation-specific genes, DIT1 and DIT2, during vegetative growth of Saccharomyces cerevisiae. Repression through this element is dependent on the Ssn6-Tup1 corepressor. In this study, we show that SIN4 contributes to NRE(DIT)-mediated repression, suggesting that changes in chromatin structure are, at least in part, responsible for regulation of DIT gene expression. In a screen for additional genes that function in repression of DIT (FRD genes), we recovered alleles of TUP1, SSN6, SIN4, and ROX3 and identified mutations comprising eight complementation groups of FRD genes. Four of these FRD genes appeared to act specifically in NRE(DIT)mediated repression, and four appeared to be general regulators of gene expression. We cloned the gene complementing the frd3-1 phenotype and found that it was identical to SPE3, which encodes spermidine synthase. Mutant spe3 cells not only failed to support complete repression through NRE(DIT) but also had modest defects in repression of some other genes. Addition of spermidine to the medium partially restored repression to spe3 cells, indicating that spermidine may play a role in vivo as a modulator of gene expression. We suggest various mechanisms by which spermidine could act to repress gene expression.
Collapse
Affiliation(s)
- H Friesen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
43
|
Abstract
A transcription factor, Ndt80p, has been identified that has a critical role in the pathway that controls meiosis--sporulation--in budding yeast. Ndt80p coordinately controls genes that mediate spore formation and progression through the two meiotic divisions; it may also be a target of a checkpoint control.
Collapse
Affiliation(s)
- M J Clancy
- Department of Biological Sciences, University of New Orleans, Louisiana 70148, USA
| |
Collapse
|
44
|
Abstract
Gametogenesis requires the successful coordination of two key processes, meiotic nuclear division and gamete morphogenesis. A central regulatory step in progression through gametogenesis occurs at the pachytene stage of meiotic prophase. We find that Ndt80 functions at pachytene of yeast gametogenesis (sporulation) to activate transcription of a set of genes required for both meiotic division (e.g., B-type cyclins) and gamete formation (e.g., SPS1). Ectopic synthesis of Ndt80 in vegetative cells induces transcription of these genes, and recombinant Ndt80 protein binds to a conserved sequence in their upstream region. Transcription of NDT80 itself is dependent on Ime1, which activates expression of early sporulation genes. Transcription of the Ndt80-regulated gene CLB1 is mediated by the checkpoint gene RAD17. Thus Ndt80 is a pivotal component of a transcriptional cascade programming yeast gametogenesis and may also be a target of meiotic checkpoint control.
Collapse
Affiliation(s)
- S Chu
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|