1
|
Killarney ST, Mesa G, Washart R, Mayro B, Dillon K, Wardell SE, Newlin M, Lu M, Rmaileh AA, Liu N, McDonnell DP, Pendergast AM, Wood KC. PKN2 Is a Dependency of the Mesenchymal-like Cancer Cell State. Cancer Discov 2025; 15:595-615. [PMID: 39560431 PMCID: PMC11875962 DOI: 10.1158/2159-8290.cd-24-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. In this study, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ∼800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Coessentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts. Significance: This work identifies PKN2 as a core member of the Hippo signaling pathway, and its inhibition blocks YAP/TAZ-driven tumorigenesis. Furthermore, this study discovers PKN2-TAZ as arguably the most selective dependency of mesenchymal-like cancers and supports specific inhibition of PKN2 as a provocative strategy to overcome drug resistance in diverse cancer contexts. See related commentary by Shen and Tan, p. 458.
Collapse
Affiliation(s)
- Shane T. Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Gabriel Mesa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Benjamin Mayro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kerry Dillon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Madeline Newlin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Areej Abu Rmaileh
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Nicky Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
2
|
Peifer-Weiß L, Al-Hasani H, Chadt A. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Int J Mol Sci 2024; 25:1910. [PMID: 38339185 PMCID: PMC10855711 DOI: 10.3390/ijms25031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Leon Peifer-Weiß
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Arang N, Lubrano S, Ceribelli M, Rigiracciolo DC, Saddawi-Konefka R, Faraji F, Ramirez SI, Kim D, Tosto FA, Stevenson E, Zhou Y, Wang Z, Bogomolovas J, Molinolo AA, Swaney DL, Krogan NJ, Yang J, Coma S, Pachter JA, Aplin AE, Alessi DR, Thomas CJ, Gutkind JS. High-throughput chemogenetic drug screening reveals PKC-RhoA/PKN as a targetable signaling vulnerability in GNAQ-driven uveal melanoma. Cell Rep Med 2023; 4:101244. [PMID: 37858338 PMCID: PMC10694608 DOI: 10.1016/j.xcrm.2023.101244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Uveal melanoma (UM) is the most prevalent cancer of the eye in adults, driven by activating mutation of GNAQ/GNA11; however, there are limited therapies against UM and metastatic UM (mUM). Here, we perform a high-throughput chemogenetic drug screen in GNAQ-mutant UM contrasted with BRAF-mutant cutaneous melanoma, defining the druggable landscape of these distinct melanoma subtypes. Across all compounds, darovasertib demonstrates the highest preferential activity against UM. Our investigation reveals that darovasertib potently inhibits PKC as well as PKN/PRK, an AGC kinase family that is part of the "dark kinome." We find that downstream of the Gαq-RhoA signaling axis, PKN converges with ROCK to control FAK, a mediator of non-canonical Gαq-driven signaling. Strikingly, darovasertib synergizes with FAK inhibitors to halt UM growth and promote cytotoxic cell death in vitro and in preclinical metastatic mouse models, thus exposing a signaling vulnerability that can be exploited as a multimodal precision therapy against mUM.
Collapse
Affiliation(s)
- Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney I Ramirez
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Daehwan Kim
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Frances A Tosto
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Julius Bogomolovas
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jing Yang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dario R Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Nickelsen A, Götz C, Lenz F, Niefind K, König S, Jose J. Analyzing the interactome of human CK2β in prostate carcinoma cells reveals HSP70-1 and Rho guanin nucleotide exchange factor 12 as novel interaction partners. FASEB Bioadv 2023; 5:114-130. [PMID: 36876296 PMCID: PMC9983076 DOI: 10.1096/fba.2022-00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
CK2β is the non-catalytic modulating part of the S/T-protein kinase CK2. However, the overall function of CK2β is poorly understood. Here, we report on the identification of 38 new interaction partners of the human CK2β from lysates of DU145 prostate cancer cells using photo-crosslinking and mass spectrometry, whereby HSP70-1 was identified with high abundance. The KD value of its interaction with CK2β was determined as 0.57 μM by microscale thermophoresis, this being the first time, to our knowledge, that a KD value of CK2β with another protein than CK2α or CK2α' was quantified. Phosphorylation studies excluded HSP70-1 as a substrate or activity modulator of CK2, suggesting a CK2 activity independent interaction of HSP70-1 with CK2β. Co-immunoprecipitation experiments in three different cancer cell lines confirmed the interaction of HSP70-1 with CK2β in vivo. A second identified CK2β interaction partner was Rho guanin nucleotide exchange factor 12, indicating an involvement of CK2β in the Rho-GTPase signal pathway, described here for the first time to our knowledge. This points to a role of CK2β in the interaction network affecting the organization of the cytoskeleton.
Collapse
Affiliation(s)
- Anna Nickelsen
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Claudia Götz
- Department of Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Florian Lenz
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Karsten Niefind
- Department of Chemistry, Institute of BiochemistryUniversity of CologneKölnGermany
| | - Simone König
- Interdisciplinary Center for Clinical Research, Core Unit Proteomics, Medical FacultyUniversity of MünsterMünsterGermany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
5
|
Al-Sha'er MA, Basheer HA, Taha MO. Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores. Mol Divers 2023; 27:443-462. [PMID: 35507210 DOI: 10.1007/s11030-022-10434-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
Serine/threonine-protein kinase N2 (PKN2) plays an important role in cell cycle progression, cell migration, cell adhesion and transcription activation signaling processes. In cancer, however, it plays important roles in tumor cell migration, invasion and apoptosis. PKN2 inhibitors have been shown to be promising in treating cancer. This prompted us to model this interesting target using our QSAR-guided selection of docking-based pharmacophores approach where numerous pharmacophores are extracted from docked ligand poses and allowed to compete within the context of QSAR. The optimal pharmacophore was sterically-refined, validated by receiver operating characteristic (ROC) curve analysis and used as virtual search query to screen the National Cancer Institute (NCI) database for new promising anti-PKN2 leads of novel chemotypes. Three low micromolar hits were identified with IC50 values ranging between 9.9 and 18.6 µM. Pharmacological assays showed promising cytotoxic properties for active hits in MTT and wound healing assays against MCF-7 and PANC-1 cancer cells.
Collapse
Affiliation(s)
- Mahmoud A Al-Sha'er
- Faculty of Pharmacy, Zarqa University, P.O. Box 132222, Zarqa, 13132, Jordan.
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, P.O. Box 132222, Zarqa, 13132, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
6
|
Allen RJ, Oldham JM, Jenkins DA, Leavy OC, Guillen-Guio B, Melbourne CA, Ma SF, Jou J, Kim JS, Fahy WA, Oballa E, Hubbard RB, Navaratnam V, Braybrooke R, Saini G, Roach KM, Tobin MD, Hirani N, Whyte MKB, Kaminski N, Zhang Y, Martinez FJ, Linderholm AL, Adegunsoye A, Strek ME, Maher TM, Molyneaux PL, Flores C, Noth I, Gisli Jenkins R, Wain LV. Longitudinal lung function and gas transfer in individuals with idiopathic pulmonary fibrosis: a genome-wide association study. THE LANCET. RESPIRATORY MEDICINE 2023; 11:65-73. [PMID: 35985358 PMCID: PMC10077113 DOI: 10.1016/s2213-2600(22)00251-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an incurable lung disease characterised by progressive scarring leading to alveolar stiffness, reduced lung capacity, and impeded gas transfer. We aimed to identify genetic variants associated with declining lung capacity or declining gas transfer after diagnosis of IPF. METHODS We did a genome-wide meta-analysis of longitudinal measures of forced vital capacity (FVC) and diffusing capacity of the lung for carbon monoxide (DLCO) in individuals diagnosed with IPF. Individuals were recruited to three studies between June, 1996, and August, 2017, from across centres in the US, UK, and Spain. Suggestively significant variants were investigated further in an additional independent study (CleanUP-IPF). All four studies diagnosed cases following American Thoracic Society/European Respiratory Society guidelines. Variants were defined as significantly associated if they had a meta-analysis p<5 × 10-8 when meta-analysing across all discovery and follow-up studies, had consistent direction of effects across all four studies, and were nominally significant (p<0·05) in each study. FINDINGS 1329 individuals with a total of 5216 measures were included in the FVC analysis. 975 individuals with a total of 3361 measures were included in the DLCO analysis. For the discovery genome-wide analyses, 7 611 174 genetic variants were included in the FVC analysis and 7 536 843 in the DLCO analysis. One variant (rs115982800) located in an antisense RNA gene for protein kinase N2 (PKN2) showed a genome-wide significant association with FVC decline (-140 mL/year per risk allele [95% CI -180 to -100]; p=9·14 × 10-12). INTERPRETATION Our analysis identifies a genetic variant associated with disease progression, which might highlight a new biological mechanism for IPF. We found that PKN2, a Rho and Rac effector protein, is the most likely gene of interest from this analysis. PKN2 inhibitors are currently in development and signify a potential novel therapeutic approach for IPF. FUNDING Action for Pulmonary Fibrosis, Medical Research Council, Wellcome Trust, and National Institutes of Health National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK.
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David A Jenkins
- Division of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, UK
| | - Olivia C Leavy
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Shwu-Fan Ma
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Jou
- Department of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - John S Kim
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | - Richard B Hubbard
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Vidya Navaratnam
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Rebecca Braybrooke
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Gauri Saini
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Katy M Roach
- Department of Respiratory Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nik Hirani
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Moira K B Whyte
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Angela L Linderholm
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Mary E Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, London, UK; Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, London, UK
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
7
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
8
|
Wei L, Wang W, Yao J, Cui Z, Xu Z, Ding H, Wu X, Wang D, Luo J, Ke ZJ. PACT promotes the metastasis of basal-like breast cancer through Rac1 SUMOylation and activation. Oncogene 2022; 41:4282-4294. [PMID: 35974143 DOI: 10.1038/s41388-022-02431-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Most basal-like breast cancers (BLBCs) are triple-negative breast cancers (TNBCs), which is associated with high malignancy, high rate of recurrence and distant metastasis, and poor prognosis among all types of breast cancer. However, there are currently no effective therapies for BLBC. Furthermore, chemoresistance limits the therapeutic options for BLBC treatment. In this study, we screen out protein activator of the interferon-induced protein kinase (PACT) as an essential gene in BLBC metastasis. We find that high PACT expression level was associated with poor prognosis among BLBC patients. In vivo and in vitro investigations indicated that PACT could regulate BLBC metastasis by interacting with SUMO-conjugating enzyme Ubc9 to stimulate the SUMOylation and thus consequently the activation of Rac1. BLBC patients receiving chemotherapy presents poorer prognosis with PACT high expression, and PACT disruption sensitizes experimental mammary tumor metastases to chemotherapy, thus providing insights to consider PACT as a potential therapeutic target to overcome acquired chemoresistance in BLBC.
Collapse
Affiliation(s)
- Luyao Wei
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Wantao Wang
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Junxia Yao
- Department of Pathology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gongyuan Road, Shanghai, 201700, PR China
| | - Zhengyu Cui
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Zihang Xu
- Department of Internal Classic of Medicine, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Hanqing Ding
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Deheng Wang
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Zun-Ji Ke
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China.
| |
Collapse
|
9
|
Soundararajan A, Wang T, Ghag SA, Kang MH, Pattabiraman PP. Novel insight into the role of clusterin on intraocular pressure regulation by modifying actin polymerization and extracellular matrix remodeling in the trabecular meshwork. J Cell Physiol 2022; 237:3012-3029. [PMID: 35567755 PMCID: PMC9283260 DOI: 10.1002/jcp.30769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
This study provides comprehensive mechanistic evidence for the role of clusterin, a stress-response secretory chaperone protein, in the modulation of intraocular pressure (IOP) by regulating the trabecular meshwork (TM) actin cytoskeleton and the extracellular matrix (ECM). The pathological stressors on TM known to elevate IOP significantly lowered clusterin protein levels indicating stress-related clusterin function loss. Small interfering RNA-mediated clusterin loss in human TM cells in vitro induced actin polymerization and stabilization via protein kinase D1, serine/threonine-protein kinase N2 (PRK2), and LIM kinase 1 (LIMK1), and the recruitment and activation of adhesome proteins including paxillin, vinculin, and integrin αV and β5. A complete loss of clusterin as seen in clusterin knockout mice (Clu-/- ) led to significant IOP elevation at postnatal Day 70. Contrarily, constitutive clusterin expression using adenovirus (AdCLU) in HTM cells resulted in the loss of actin polymerization via decreased PRK2, and LIMK1 and negative regulation of integrin αV and β5. Furthermore, we found that AdCLU treatment in HTM cells significantly decreased the ECM protein expression and distribution by significantly increasing matrix metalloprotease 2 (MMP2) activity and lowering the levels of pro-fibrotic proteins such as transforming growth factor-β2 (TGFβ2), thrombospondin-1 (TSP-1), and plasminogen activator inhibitor-1 (PAI-1). Finally, we found that HTM cells supplemented with recombinant human clusterin attenuated the pro-fibrotic effects of TGFβ2. For the first time this study demonstrates the importance of clusterin in the regulation of TM actin cytoskeleton - ECM interactions and the maintenance of IOP, thus making clusterin an interesting target to reverse elevated IOP.
Collapse
Affiliation(s)
- Avinash Soundararajan
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ting Wang
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
| | - Sachin A. Ghag
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Min H. Kang
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye InstituteCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Padmanabhan P. Pattabiraman
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
10
|
Fu Q, Li Y, Zhang H, Cao M, Zhang L, Gao C, Cai X, Chen D, Yang Z, Li J, Yang N, Li C. Comparative Transcriptome Analysis of Spleen Reveals Potential Regulation of Genes and Immune Pathways Following Administration of Aeromonas salmonicida subsp. masoucida Vaccine in Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:97-115. [PMID: 35084599 PMCID: PMC8792528 DOI: 10.1007/s10126-021-10089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas salmonicida is a global fish pathogen. Aeromonas salmonicida subsp. masoucida (ASM) is classified as atypical A. salmonicida and caused huge losses to salmonid industry in China. Hence, it is of great significance to develop ASM vaccine and explore its protection mechanism in salmonids. In this regard, we conducted RNA-seq analysis with spleen tissue of Atlantic salmon after ASM vaccination to reveal genes, their expression patterns, and pathways involved in immune protections. In our results, a total of 441.63 million clean reads were obtained, and 389.37 million reads were mapped onto the Atlantic salmon reference genome. In addition, 1125, 2126, 1098, 820, and 1351 genes were significantly up-regulated, and 747, 2626, 818, 254, and 908 genes were significantly down-regulated post-ASM vaccination at 12 h, 24 h, 1 month, 2 months, and 3 months, respectively. Subsequent pathway analysis revealed that many differentially expressed genes (DEGs) following ASM vaccination were involved in cytokine-cytokine receptor interaction (TNFRSF11b, IL-17RA, CCR9, and CXCL11), HTLV-I infection (MR1 and HTLV-1), MAPK signaling pathway (MAPK, IL8, and TNF-α-1), PI3K-Akt signaling pathway (PIK3R3, THBS4, and COL2A1), and TNF signaling pathway (PTGS2, TNFRSF21-l, and CXCL10). Finally, the results of qRT-PCR showed a significant correlation with RNA-seq results, suggesting the reliability of RNA-seq for gene expression analysis. This study provided insights into regulation of gene expression and their involved pathways in Atlantic salmon spleen in responses to vaccine, and set the foundation for further study on the vaccine protective mechanism in Atlantic salmon as well as other teleost species.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lu Zhang
- Shandong Sinder Technology Co., Ltd, Zhucheng, 262200, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Defeng Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziying Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Li B, Li P, Xia W, You B, Yu Q, Zhang B, Huang R, Wang R, Liu Y, Chen Z, Gan Y, He Y, Hennenberg M, Stief CG, Chen X. Phosphoproteomics identifies potential downstream targets of the integrin α2β1 inhibitor BTT-3033 in prostate stromal cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1380. [PMID: 34733932 PMCID: PMC8506561 DOI: 10.21037/atm-21-3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Background Integrin α2β1 inhibitor BTT-3033 (1-(4-fluorophenyl)-N-methyl-N-[4[[(phenylamino)carbonyl]amino]phenyl]-1H-pyrazole-4-sulfonamide) was recently reported to inhibit neurogenic and thromboxane A2-induced human prostate smooth muscle contraction, and thus represents a target with a different inhibition spectrum than that of α1-blockers in benign prostate hyperplasia (BPH) treatments. Clarifying the underlying mechanisms of the inhibition effects will provide insights into the role of integrin α2β1 in prostate contraction and enable new intracellular targets for smooth muscle contraction to be explored. Methods ProteomeHD was used to predict and enrich the top co-regulated proteins of integrin α2 (ITGA2). A phosphoproteomic analysis was conducted on human prostate stromal cells (WPMY-1) treated with 1 or 10 µM of BTT-3033 or solvent for controls. A clustering analysis was conducted to identify the intracellular targets that were inhibited in a dose-dependent manner. Gene ontology (GO) and annotation enrichments were conducted to examine any functional alterations and identify possible downstream targets. A Kinase-substrate enrichment analysis (KSEA) was conducted to identify kinases-substrate relationships. Results Enrichments of the actin cytoskeleton and guanosine triphosphatases (GTPases) signaling were predicted from the co-regulated proteins with ITGA2. LIM domain kinases, including LIM domain and actin-binding 1 (LIMA1), zyxin (ZYX), and thyroid receptor-interacting protein 6 (TRIP6), which are functionally associated with focal adhesions and the cytoskeleton, were present in the clusters with dose-dependent phosphorylation inhibition pattern. 15 substrates were dose-dependently inhibited according to the KSEA, including polo-like kinase 1 (PLK1), and GTPases signaling proteins, such as disheveled segment polarity protein 2 (DVL2). Conclusions In this study, we proposed that the mechanisms underlying the contractile and proliferative effects of integrin α2β1 are the LIM domain kinases, including the ZYX family, and substrates, including PLK1 and DVL2.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Pan Li
- Department of Pathology, LMU Munich, Munich, Germany
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyang You
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital, Central South University, Changsha, China
| | - Qingfeng Yu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest 2021; 131:e145734. [PMID: 34499618 DOI: 10.1172/jci145734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/01/2021] [Indexed: 01/31/2023] Open
Abstract
Formation of NO by endothelial NOS (eNOS) is a central process in the homeostatic regulation of vascular functions including blood pressure regulation, and fluid shear stress exerted by the flowing blood is a main stimulus of eNOS activity. Previous work has identified several mechanosensing and -transducing processes in endothelial cells, which mediate this process and induce the stimulation of eNOS activity through phosphorylation of the enzyme via various kinases including AKT. How the initial mechanosensing and signaling processes are linked to eNOS phosphorylation is unclear. In human endothelial cells, we demonstrated that protein kinase N2 (PKN2), which is activated by flow through the mechanosensitive cation channel Piezo1 and Gq/G11-mediated signaling, as well as by Ca2+ and phosphoinositide-dependent protein kinase 1 (PDK1), plays a pivotal role in this process. Active PKN2 promoted the phosphorylation of human eNOS at serine 1177 and at a newly identified site, serine 1179. These phosphorylation events additively led to increased eNOS activity. PKN2-mediated eNOS phosphorylation at serine 1177 involved the phosphorylation of AKT synergistically with mTORC2-mediated AKT phosphorylation, whereas active PKN2 directly phosphorylated human eNOS at serine 1179. Mice with induced endothelium-specific deficiency of PKN2 showed strongly reduced flow-induced vasodilation and developed arterial hypertension accompanied by reduced eNOS activation. These results uncover a central mechanism that couples upstream mechanosignaling processes in endothelial cells to the regulation of eNOS-mediated NO formation, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ramesh Chennupati
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Molecular Medicine, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| |
Collapse
|
13
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
14
|
The structure and function of protein kinase C-related kinases (PRKs). Biochem Soc Trans 2021; 49:217-235. [PMID: 33522581 PMCID: PMC7925014 DOI: 10.1042/bst20200466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The protein kinase C-related kinase (PRK) family of serine/threonine kinases, PRK1, PRK2 and PRK3, are effectors for the Rho family small G proteins. An array of studies have linked these kinases to multiple signalling pathways and physiological roles, but while PRK1 is relatively well-characterized, the entire PRK family remains understudied. Here, we provide a holistic overview of the structure and function of PRKs and describe the molecular events that govern activation and autoregulation of catalytic activity, including phosphorylation, protein interactions and lipid binding. We begin with a structural description of the regulatory and catalytic domains, which facilitates the understanding of their regulation in molecular detail. We then examine their diverse physiological roles in cytoskeletal reorganization, cell adhesion, chromatin remodelling, androgen receptor signalling, cell cycle regulation, the immune response, glucose metabolism and development, highlighting isoform redundancy but also isoform specificity. Finally, we consider the involvement of PRKs in pathologies, including cancer, heart disease and bacterial infections. The abundance of PRK-driven pathologies suggests that these enzymes will be good therapeutic targets and we briefly report some of the progress to date.
Collapse
|
15
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
16
|
Amable G, Martínez-León E, Picco ME, Nemirovsky SI, Rozengurt E, Rey O. Metformin inhibition of colorectal cancer cell migration is associated with rebuilt adherens junctions and FAK downregulation. J Cell Physiol 2020; 235:8334-8344. [PMID: 32239671 PMCID: PMC7529638 DOI: 10.1002/jcp.29677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell-cell adhesion. The loss of E-cadherin surface expression, and therefore cell-cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell-cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840 , a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118 . These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.
Collapse
Affiliation(s)
- Gastón Amable
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Eduardo Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - María Elisa Picco
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1428EGA, Argentina
| | - Enrique Rozengurt
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, CA, 90095-1768, USA
| | - Osvaldo Rey
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas “José de San Martín”, Ciudad Autónoma de Buenos Aires, 1120, Argentina
| |
Collapse
|
17
|
Ai Y, Tang Z, Zou C, Wei H, Wu S, Huang D. circ_SEPT9, a newly identified circular RNA, promotes oral squamous cell carcinoma progression through miR-1225/PKN2 axis. J Cell Mol Med 2020; 24:13266-13277. [PMID: 33090705 PMCID: PMC7701517 DOI: 10.1111/jcmm.15943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) represent a newly discovered class of endogenous non-coding RNAs which are widely expressed and play important roles in disease progression. However, the function of circRNAs in oral squamous cell carcinoma (OSCC) still remains largely unknown. In this research, we found that circ_SEPT9 was highly expressed in OSCC cell lines and tumour tissues. Results showed that circ_SEPT9 promoted OSCC proliferation and tumour growth. And, circ_SEPT9 also enhanced the migration and invasion of OSCC cells. Mechanically, we found that circ_SEPT9 acted as a sponge for miR-1225 to rescue PKN2 expression in OSCC cells. Inhibition of circ_SEPT9/miR-1225/PKN2 pathway could effectively block the proliferation and metastasis of OSCC cells. Our study provides strong evidence that circ_SEPT9/miR-1225/PKN2 axis is a promising target for OSCC treatment.
Collapse
Affiliation(s)
- Yilong Ai
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Zhe Tang
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Chen Zou
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Haigang Wei
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Dahong Huang
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
18
|
Tian Z, Tang J, Liao X, Yang Q, Wu Y, Wu G. Identification of a 9-gene prognostic signature for breast cancer. Cancer Med 2020; 9:9471-9484. [PMID: 33090721 PMCID: PMC7774725 DOI: 10.1002/cam4.3523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) is the most common cancer among women and is the second leading cause of cancer death in women. In this study, we developed a 9‐gene prognostic signature to predict the prognosis of patients with BRCA. GSE20685, GSE42568, GSE20711, and GSE88770 were used as training sets. The Kaplan–Meier plot was constructed to assess survival differences and log‐rank test was performed to evaluate the statistical significance. The overall survival (OS) of patients in the low‐risk group was significantly higher than that in the high‐risk group. ROC analysis indicated that this 9‐gene signature shows good diagnostic efficiency both in OS and disease‐free survival (DFS). The 9‐gene signature was further validated through GSE16446, GSE7390, and TCGA‐BRCA datasets. We also established a nomogram that integrates clinicopathological features and 9‐gene signature. The analysis of the calibration plot showed that the nomogram has good prognostic performance. More convincingly, real‐time reverse transcription‐polymerase chain reaction (RT‐PCR) results indicated that the protective prognostic factors in BRCA patients were downregulated, whereas the dangerous prognostic factors were upregulated. The innovation of this article is not only constructing a prognostic gene signature, but also combining with clinical information to further establish a nomogram to better predict the survival probability of patients. It is worth mentioning that this signature also does not depend on other clinical factors or variables.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yumin Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Int J Mol Sci 2020; 21:ijms21113818. [PMID: 32471307 PMCID: PMC7312799 DOI: 10.3390/ijms21113818] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.
Collapse
Affiliation(s)
- Maria Carmela Annunziata
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Melania Parisi
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
- Correspondence: ; Fax: +39-081-7464-359
| |
Collapse
|
20
|
Patel H, Li J, Herrero A, Kroboth J, Byron A, Kriegsheim AV, Brunton V, Carragher N, Hurd T, Frame M. Novel roles of PRK1 and PRK2 in cilia and cancer biology. Sci Rep 2020; 10:3902. [PMID: 32127582 PMCID: PMC7054267 DOI: 10.1038/s41598-020-60604-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
PRK1 and PRK2 are two closely related AGC-family serine/threonine protein kinases. Here we demonstrate novel roles for them at cilia and in cancer biology. In both instances serum withdrawal leads to increased activating PRK1 and PRK2 phosphorylation (pPRK1/pPRK2) and their depletion results in reduced spheroid growth. pPRK1/pPRK2 localise to the transition zone of cilia and their co-depletion results in reduced cilia size, impaired planer polarity and impaired cilia associated signalling. High PRK2 (but not PRK1) expression correlates with poor outcome in patients with basal-like/Triple Negative (TN) Breast Cancer (BC) where there is also higher expression relative to other BC tumour subtypes. In agreement, depletion of PRK1 and PRK2 in mouse TNBC cells, or CRISPR/Cas9 mediated deletion of PRK2 alone, significantly reduces cell proliferation and spheroid growth. Finally proteomic analysis to identify PRK2 binding partners in mouse TNBC cells revealed proteins that are important for both cilia and BC biology. Taken together these data demonstrate novel roles for PRK1 and PRK2 at cilia and in BC biology and in the case of PRK2 in particular, identifies it as a novel TNBC therapeutic target.
Collapse
Affiliation(s)
- Hitesh Patel
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom.
- University of Sussex, Sussex Drug Discovery Centre, School of Life Sciences, Brighton, BN1 9QJ, United Kingdom.
| | - Jun Li
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Ana Herrero
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Jakob Kroboth
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Adam Byron
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Alex Von Kriegsheim
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Valerie Brunton
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Neil Carragher
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| | - Toby Hurd
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom.
| | - Margaret Frame
- University of Edinburgh, Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Dicks M, Kock G, Kohl B, Zhong X, Pütz S, Heumann R, Erdmann KS, Stoll R. The binding affinity of PTPN13's tandem PDZ2/3 domain is allosterically modulated. BMC Mol Cell Biol 2019; 20:23. [PMID: 31286859 PMCID: PMC6615252 DOI: 10.1186/s12860-019-0203-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/02/2019] [Indexed: 11/24/2022] Open
Abstract
Background Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, is a large multi-domain non-transmembrane scaffolding protein with a molecular mass of 270 kDa. It is involved in the regulation of several cellular processes such as cytokinesis and actin-cytoskeletal rearrangement. The modular structure of PTPN13 consists of an N-terminal KIND domain, a FERM domain, and five PDZ domains, followed by a C-terminal protein tyrosine phosphatase domain. PDZ domains are among the most abundant protein modules and they play a crucial role in signal transduction of protein networks. Results Here, we have analysed the binding characteristics of the isolated PDZ domains 2 and 3 from PTPN13 and compared them to the tandem domain PDZ2/3, which interacts with 12 C-terminal residues of the tumour suppressor protein of APC, using heteronuclear multidimensional NMR spectroscopy. Furthermore, we could show for the first time that PRK2 is a weak binding partner of PDZ2 and we demonstrate that the presence of PDZ3 alters the binding affinity of PDZ2 for APC, suggesting an allosteric effect and thereby modulating the binding characteristics of PDZ2. A HADDOCK-based molecular model of the PDZ2/3 tandem domain from PTPN13 supports these results. Conclusions Our study of tandem PDZ2/3 in complex with APC suggests that the interaction of PDZ3 with PDZ2 induces an allosteric modulation within PDZ2 emanating from the back of the domain to the ligand binding site. Thus, the modified binding preference of PDZ2 for APC could be explained by an allosteric effect and provides further evidence for the pivotal function of PDZ2 in the PDZ123 domain triplet within PTPN13.
Collapse
Affiliation(s)
- Markus Dicks
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Gerd Kock
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Bastian Kohl
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Xueyin Zhong
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Stefanie Pütz
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Rolf Heumann
- Biochemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany
| | - Kai S Erdmann
- Department of Biomedical Science, University of Sheffield, S10 2TN, Sheffield, UK
| | - Raphael Stoll
- Biomolecular NMR, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, 44780, Bochum, Germany.
| |
Collapse
|
22
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
23
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
24
|
Kock G, Dicks M, Yip KT, Kohl B, Pütz S, Heumann R, Erdmann KS, Stoll R. Molecular Basis of Class III Ligand Recognition by PDZ3 in Murine Protein Tyrosine Phosphatase PTPN13. J Mol Biol 2018; 430:4275-4292. [PMID: 30189200 DOI: 10.1016/j.jmb.2018.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/31/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, represents a large multi-domain non-transmembrane scaffolding protein that contains five consecutive PDZ domains. Here, we report the solution structures of the extended murine PTPN13 PDZ3 domain in its apo form and in complex with its physiological ligand, the carboxy-terminus of protein kinase C-related kinase-2 (PRK2), determined by multidimensional NMR spectroscopy. Both in its ligand-free state and when complexed to PRK2, PDZ3 of PTPN13 adopts the classical compact, globular D/E fold. PDZ3 of PTPN13 binds five carboxy-terminal amino acids of PRK2 via a groove located between the EB-strand and the DB-helix. The PRK2 peptide resides in the canonical PDZ3 binding cleft in an elongated manner and the amino acid side chains in position P0 and P-2, cysteine and aspartate, of the ligand face the groove between EB-strand and DB-helix, whereas the PRK2 side chains of tryptophan and alanine located in position P-1 and P-3 point away from the binding cleft. These structures are rare examples of selective class III ligand recognition by a PDZ domain and now provide a basis for the detailed structural investigation of the promiscuous interaction between the PDZ domains of PTPN13 and their ligands. They will also lead to a better understanding of the proposed scaffolding function of these domains in multi-protein complexes assembled by PTPN13 and could ultimately contribute to low molecular weight antagonists that might even act on the PRK2 signaling pathway to modulate rearrangements of the actin cytoskeleton.
Collapse
Affiliation(s)
- Gerd Kock
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Markus Dicks
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - King Tuo Yip
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Bastian Kohl
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Stefanie Pütz
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany
| | - Kai S Erdmann
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Raphael Stoll
- Biomolecular NMR Spectroscopy, Faculty of Chemistry and Biochemistry, Ruhr-University of Bochum, D-44780, Germany.
| |
Collapse
|
25
|
Guen VJ, Gamble C, Lees JA, Colas P. The awakening of the CDK10/Cyclin M protein kinase. Oncotarget 2018; 8:50174-50186. [PMID: 28178678 PMCID: PMC5564841 DOI: 10.18632/oncotarget.15024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play important roles in the control of fundamental cellular processes. Some of the most characterized CDKs are considered to be pertinent therapeutic targets for cancers and other diseases, and first clinical successes have recently been obtained with CDK inhibitors. Although discovered in the pre-genomic era, CDK10 attracted little attention until it was identified as a major determinant of resistance to endocrine therapy for breast cancer. In some studies, CDK10 has been shown to promote cell proliferation whereas other studies have revealed a tumor suppressor function. The recent discovery of Cyclin M as a CDK10 activating partner has allowed the unveiling of a protein kinase activity against the ETS2 oncoprotein, whose degradation is activated by CDK10/Cyclin M-mediated phosphorylation. CDK10/Cyclin M has also been shown to repress ciliogenesis and to maintain actin network architecture, through the phoshorylation of the PKN2 protein kinase and the control of RhoA stability. These findings shed light on the molecular mechanisms underlying STAR syndrome, a severe human developmental genetic disorder caused by mutations in the Cyclin M coding gene. They also pave the way to a better understanding of the role of CDK10/Cyclin M in cancer.
Collapse
Affiliation(s)
- Vincent J Guen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Carly Gamble
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| |
Collapse
|
26
|
Pavan S, Meyer-Schaller N, Diepenbruck M, Kalathur RKR, Saxena M, Christofori G. A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene 2018; 37:4197-4213. [PMID: 29713055 DOI: 10.1038/s41388-018-0270-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
An epithelial to mesenchymal transition (EMT) has been correlated to malignant tumor progression and metastasis by promoting cancer cell migration and invasion and chemoresistance. Hence, finding druggable EMT effectors is critical to efficiently interfere with metastasis formation and to overcome therapy resistance. We have employed a high-content microscopy screen in combination with a kinome and phosphatome-wide siRNA library to identify signaling pathways underlying an EMT of murine mammary epithelial cells and breast cancer cells. This screen identified the MEK5-ERK5 axis as a critical player in TGFβ-mediated EMT. Suppression of MEK5-ERK5 signaling completely prevented the morphological and molecular changes occurring during a TGFβ-induced EMT and, conversely, forced highly metastatic breast cancer cells into a differentiated epithelial state. Inhibition of MEK5-ERK5 signaling also repressed breast cancer cell migration and invasion and substantially reduced lung metastasis without affecting primary tumor growth. The results suggest that the MEK5-ERK5 signaling axis via activation of MEF2B and other transcription factors plays an important role in the induction and maintenance of breast cancer cell migration and invasion and thus represents an exploitable target for the pharmacological inhibition of cancer cell metastasis.
Collapse
Affiliation(s)
- Simona Pavan
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland.
| | | | - Maren Diepenbruck
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | | - Meera Saxena
- Department of Biomedicine, University of Basel, Basel, 4058, Switzerland
| | | |
Collapse
|
27
|
Role of protein kinase N2 (PKN2) in cigarette smoke-mediated oncogenic transformation of oral cells. J Cell Commun Signal 2018; 12:709-721. [PMID: 29480433 DOI: 10.1007/s12079-017-0442-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023] Open
Abstract
Smoking is the leading cause of preventable death worldwide. Though cigarette smoke is an established cause of head and neck cancer (including oral cancer), molecular alterations associated with chronic cigarette smoke exposure are poorly studied. To understand the signaling alterations induced by chronic exposure to cigarette smoke, we developed a cell line model by exposing normal oral keratinocytes to cigarette smoke for a period of 12 months. Chronic exposure to cigarette smoke resulted in increased cellular proliferation and invasive ability of oral keratinocytes. Proteomic and phosphoproteomic analyses showed dysregulation of several proteins involved in cellular movement and cytoskeletal reorganization in smoke exposed cells. We observed overexpression and hyperphosphorylation of protein kinase N2 (PKN2) in smoke exposed cells as well as in a panel of head and neck cancer cell lines established from smokers. Silencing of PKN2 resulted in decreased colony formation, invasion and migration in both smoke exposed cells and head and neck cancer cell lines. Our results indicate that PKN2 plays an important role in oncogenic transformation of oral keratinocytes in response to cigarette smoke. The current study provides evidence that PKN2 can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients with a history of smoking.
Collapse
|
28
|
Cheng Y, Zhu Y, Xu J, Yang M, Chen P, Xu W, Zhao J, Geng L, Gong S. PKN2 in colon cancer cells inhibits M2 phenotype polarization of tumor-associated macrophages via regulating DUSP6-Erk1/2 pathway. Mol Cancer 2018; 17:13. [PMID: 29368606 PMCID: PMC5784528 DOI: 10.1186/s12943-017-0747-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Protein kinase N2 (PKN2) is a PKC-related serine/threonine-protein kinase. PKN2 is required for tumor cell migration, invasion and apoptosis. However, the functional role of PKN2 in regulating tumor associated macrophages (TAMs) polarization in colon cancer has never been reported. METHODS PKN2 expression in human colon cancer tissues was examined with immunohistochemistry (IHC). M1/M2 macrophage signatures were evaluated by RT-PCR, IHC and flow cytometry. The effects of PKN2 on tumor growth and TAM polarization were investigated both in vitro and in vivo. PKN2 targeted cytokines/pathway were analyzed by gene expression analysis and further confirmed by PCR, luciferase assay or western blot. Correlations between PKN2 and transcriptional factors for IL4 and IL10 were confirmed by ChIP-qPCR. The catalytic activities of PKN2 and DUSP6 were determined by kinase activity assay. Interactions between PKN2 and DUSP6 were confirmed by Co-IP. RESULTS The expression of PKN2 in colon cancer cells predicted a favorable prognosis and was associated with low M2 macrophage content in human colon cancer tissues. PKN2 inhibited tumor growth in mice xenograft model and inhibited M2 phenotype polarization both in vitro and in vivo. Mechanistically, PKN2 suppresses the expression of IL4 and IL10 from colon cancer cells by inhibiting Erk1/2 phosphorylation, which is required for phosphorylation and binding of CREB and Elk-1 to the promoters of IL4 and IL10. DUSP6, which is phosphorylated and activated through direct association with PKN2, suppresses Erk1/2 activation. CONCLUSIONS The expression of PKN2 in colon cancer cells suppresses tumor associated M2 macrophage polarization and tumor growth. Targeting PKN2 signaling pathway may provide a potential therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Yun Zhu
- Liver Tumor Center, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510623, China
| | - Jiajia Xu
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Min Yang
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Peiyu Chen
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Wanfu Xu
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Junhong Zhao
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Lanlan Geng
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Sitang Gong
- Digestive Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
29
|
Francois AA, Obasanjo-Blackshire K, Clark JE, Boguslavskyi A, Holt MR, Parker PJ, Marber MS, Heads RJ. Loss of Protein Kinase Novel 1 (PKN1) is associated with mild systolic and diastolic contractile dysfunction, increased phospholamban Thr17 phosphorylation, and exacerbated ischaemia-reperfusion injury. Cardiovasc Res 2018; 114:138-157. [PMID: 29045568 PMCID: PMC5815577 DOI: 10.1093/cvr/cvx206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023] Open
Abstract
Aims PKN1 is a stress-responsive protein kinase acting downstream of small GTP-binding proteins of the Rho/Rac family. The aim was to determine its role in endogenous cardioprotection. Methods and results Hearts from PKN1 knockout (KO) or wild type (WT) littermate control mice were perfused in Langendorff mode and subjected to global ischaemia and reperfusion (I/R). Myocardial infarct size was doubled in PKN1 KO hearts compared to WT hearts. PKN1 was basally phosphorylated on the activation loop Thr778 PDK1 target site which was unchanged during I/R. However, phosphorylation of p42/p44-MAPK was decreased in KO hearts at baseline and during I/R. In cultured neonatal rat ventricular cardiomyocytes (NRVM) and NRVM transduced with kinase dead (KD) PKN1 K644R mutant subjected to simulated ischaemia/reperfusion (sI/R), PhosTag® gel analysis showed net dephosphorylation of PKN1 during sI and early R despite Thr778 phosphorylation. siRNA knockdown of PKN1 in NRVM significantly decreased cell survival and increased cell injury by sI/R which was reversed by WT- or KD-PKN1 expression. Confocal immunofluorescence analysis of PKN1 in NRVM showed increased localization to the sarcoplasmic reticulum (SR) during sI. GC-MS/MS and immunoblot analysis of PKN1 immunoprecipitates following sI/R confirmed interaction with CamKIIδ. Co-translocation of PKN1 and CamKIIδ to the SR/membrane fraction during sI correlated with phospholamban (PLB) Thr17 phosphorylation. siRNA knockdown of PKN1 in NRVM resulted in increased basal CamKIIδ activation and increased PLB Thr17 phosphorylation only during sI. In vivo PLB Thr17 phosphorylation, Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA2) expression and Junctophilin-2 (Jph2) expression were also basally increased in PKN1 KO hearts. Furthermore, in vivo P-V loop analysis of the beat-to-beat relationship between rate of LV pressure development or relaxation and end diastolic P (EDP) showed mild but significant systolic and diastolic dysfunction with preserved ejection fraction in PKN1 KO hearts. Conclusion Loss of PKN1 in vivo significantly reduces endogenous cardioprotection and increases myocardial infarct size following I/R injury. Cardioprotection by PKN1 is associated with reduced CamKIIδ-dependent PLB Thr17 phosphorylation at the SR and therefore may stabilize the coupling of SR Ca2+ handling and contractile function, independent of its kinase activity.
Collapse
Affiliation(s)
- Asvi A Francois
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
| | - Kofo Obasanjo-Blackshire
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
| | - James E Clark
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
| | - Andrii Boguslavskyi
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
| | - Mark R Holt
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Hospital Campus, London, UK
| | - Peter J Parker
- Division of Cancer Studies, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, New Hunt’s House, Guy’s Hospital Campus, London, UK
- Protein Phosphorylation Laboratory, Francis Crick Institute, Lincoln’s Inn Fields, London, UK
| | - Michael S Marber
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
| | - Richard J Heads
- Department of Cardiology, School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre for Research Excellence, Faculty of Life Sciences and Medicine, The Rayne Institute, King’s College London, St Thomas’s Hospital, Lambeth Palace Road, London, UK
| |
Collapse
|
30
|
Yang CS, Melhuish TA, Spencer A, Ni L, Hao Y, Jividen K, Harris T, Snow C, Frierson H, Wotton D, Paschal BM. The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression. Prostate 2017; 77:1452-1467. [PMID: 28875501 PMCID: PMC5669364 DOI: 10.1002/pros.23400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/31/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phosphoinositide-3 (PI-3) kinase signaling has a pervasive role in cancer. One of the key effectors of PI-3 kinase signaling is AKT, a kinase that promotes growth and survival in a variety of cancers. Genetically engineered mouse models of prostate cancer have shown that AKT signaling is sufficient to induce prostatic epithelial neoplasia (PIN), but insufficient for progression to adenocarcinoma. This contrasts with the phenotype of mice with prostate-specific deletion of Pten, where excessive PI-3 kinase signaling induces both PIN and locally invasive carcinoma. We reasoned that additional PI-3 kinase effector kinases promote prostate cancer progression via activities that provide biological complementarity to AKT. We focused on the PKN kinase family members, which undergo activation in response to PI-3 kinase signaling, show expression changes in prostate cancer, and contribute to cell motility pathways in cancer cells. METHODS PKN kinase activity was measured by incorporation of 32 P into protein substrates. Phosphorylation of the turn-motif (TM) in PKN proteins by mTOR was analyzed using the TORC2-specific inhibitor torin and a PKN1 phospho-TM-specific antibody. Amino acid substitutions in the TM of PKN were engineered and assayed for effects on kinase activity. Cell motility-related functions and PKN localization was analyzed by depletion approaches and immunofluorescence microscopy, respectively. The contribution of PKN proteins to prostate tumorigenesis was characterized in several mouse models that express PKN transgenes. The requirement for PKN activity in prostate cancer initiated by loss of phosphatase and tensin homolog deleted on chromosome 10 (Pten), and the potential redundancy between PKN isoforms, was analyzed by prostate-specific deletion of Pkn1, Pkn2, and Pten. RESULTS AND CONCLUSIONS PKN1 and PKN2 contribute to motility pathways in human prostate cancer cells. PKN1 and PKN2 kinase activity is regulated by TORC2-dependent phosphorylation of the TM, which together with published data indicates that PKN proteins receive multiple PI-3 kinase-dependent inputs. Transgenic expression of active AKT and PKN1 is not sufficient for progression beyond PIN. Moreover, Pkn1 is not required for tumorigenesis initiated by loss of Pten. Triple knockout of Pten, Pkn1, and Pkn2 in mouse prostate results in squamous cell carcinoma, an uncommon but therapy-resistant form of prostate cancer.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Tiffany A. Melhuish
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Adam Spencer
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Ni
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yi Hao
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thurl Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chelsi Snow
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
| | - Henry Frierson
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA
| | - David Wotton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, VA, 22908, USA
| | - Bryce M. Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, VA, 22908, USA
- corresponding author: Bryce M. Paschal, Center for Cell Signaling, Department of Biochemistry & Molecular Genetics, University of Virginia, Room 7021 West Complex, Box 800577, Health Sciences Center, 1400 Jefferson Park Avenue, Charlottesville, VA 22908-0577, , Office 434.243.6521, Lab 434.924.1532, Fax 434.924.1236
| |
Collapse
|
31
|
Ruby MA, Riedl I, Massart J, Åhlin M, Zierath JR. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle. Am J Physiol Endocrinol Metab 2017; 313:E483-E491. [PMID: 28720584 PMCID: PMC5668594 DOI: 10.1152/ajpendo.00147.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism.
Collapse
Affiliation(s)
- Maxwell A Ruby
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Riedl
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Åhlin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
33
|
Mashud R, Nomachi A, Hayakawa A, Kubouchi K, Danno S, Hirata T, Matsuo K, Nakayama T, Satoh R, Sugiura R, Abe M, Sakimura K, Wakana S, Ohsaki H, Kamoshida S, Mukai H. Impaired lymphocyte trafficking in mice deficient in the kinase activity of PKN1. Sci Rep 2017; 7:7663. [PMID: 28794483 PMCID: PMC5550459 DOI: 10.1038/s41598-017-07936-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Knock-in mice lacking PKN1 kinase activity were generated by introducing a T778A point mutation in the catalytic domain. PKN1[T778A] mutant mice developed to adulthood without apparent external abnormalities, but exhibited lower T and B lymphocyte counts in the peripheral blood than those of wild-type (WT) mice. T and B cell development proceeded in an apparently normal fashion in bone marrow and thymus of PKN1[T778A] mice, however, the number of T and B cell counts were significantly higher in the lymph nodes and spleen of mutant mice in those of WT mice. After transfusion into WT recipients, EGFP-labelled PKN1[T778A] donor lymphocytes were significantly less abundant in the peripheral circulation and more abundant in the spleen and lymph nodes of recipient mice compared with EGFP-labelled WT donor lymphocytes, likely reflecting lymphocyte sequestration in the spleen and lymph nodes in a cell-autonomous fashion. PKN1[T778A] lymphocytes showed significantly lower chemotaxis towards chemokines and sphingosine 1-phosphate (S1P) than WT cells in vitro. The biggest migration defect was observed in response to S1P, which is essential for lymphocyte egress from secondary lymphoid organs. These results reveal a novel role of PKN1 in lymphocyte migration and localization.
Collapse
Affiliation(s)
- Rana Mashud
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Akira Nomachi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihide Hayakawa
- Graduate School of Science and Technology, Kobe University, Kobe, 657-8501, Japan
| | - Koji Kubouchi
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Sally Danno
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Seta-Tsukinowa-cho Otsu, Shiga, 520-2192, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Hiroyuki Ohsaki
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan
| | - Hideyuki Mukai
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan.
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
34
|
Danno S, Kubouchi K, Mehruba M, Abe M, Natsume R, Sakimura K, Eguchi S, Oka M, Hirashima M, Yasuda H, Mukai H. PKN2 is essential for mouse embryonic development and proliferation of mouse fibroblasts. Genes Cells 2017; 22:220-236. [PMID: 28102564 DOI: 10.1111/gtc.12470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Abstract
PKN2, a member of the protein kinase N (PKN) family, has been suggested by in vitro culture cell experiments to bind to Rho/Rac GTPases and contributes to cell-cell contact and cell migration. To unravel the in vivo physiological function of PKN2, we targeted the PKN2 gene. Constitutive disruption of the mouse PKN2 gene resulted in growth retardation and lethality before embryonic day (E) 10.5. PKN2-/- embryo did not undergo axial turning and showed insufficient closure of the neural tube. Mouse embryonic fibroblasts (MEFs) derived from PKN2-/- embryos at E9.5 failed to grow. Cre-mediated ablation of PKN2 in PKN2flox/flox MEFs obtained from E14.5 embryos showed impaired cell proliferation, and cell cycle analysis of these MEFs showed a decrease in S-phase population. Our results show that PKN2 is essential for mouse embryonic development and cell-autonomous proliferation of primary MEFs in culture. Comparison of the PKN2-/- phenotype with the phenotypes of PKN1 and PKN3 knockout strains suggests that PKN2 has distinct nonredundant functions in vivo, despite the structural similarity and evolutionary relationship among the three isoforms.
Collapse
Affiliation(s)
- Sally Danno
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Koji Kubouchi
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Mona Mehruba
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Satoshi Eguchi
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masahiro Oka
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | | | - Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Hideyuki Mukai
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
35
|
Guen VJ, Gamble C, Perez DE, Bourassa S, Zappel H, Gärtner J, Lees JA, Colas P. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle 2016; 15:678-88. [PMID: 27104747 DOI: 10.1080/15384101.2016.1147632] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.
Collapse
Affiliation(s)
- Vincent J Guen
- a P2I2 group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC) , Roscoff , France.,b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Carly Gamble
- a P2I2 group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC) , Roscoff , France
| | - Dahlia E Perez
- b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Sylvie Bourassa
- c Proteomics Platform, Centre Hospitalier Universitaire de Québec (CHUQ) , Québec , Canada
| | - Hildegard Zappel
- d Universitätsmedizin Göttingen, Department of Child and Adolescent Health, Division of Neuropediatrics , Göttingen , Germany
| | - Jutta Gärtner
- d Universitätsmedizin Göttingen, Department of Child and Adolescent Health, Division of Neuropediatrics , Göttingen , Germany
| | - Jacqueline A Lees
- b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT) , Cambridge , MA , USA
| | - Pierre Colas
- a P2I2 group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC) , Roscoff , France
| |
Collapse
|
36
|
PKN2 and Cdo interact to activate AKT and promote myoblast differentiation. Cell Death Dis 2016; 7:e2431. [PMID: 27763641 PMCID: PMC5133968 DOI: 10.1038/cddis.2016.296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
Skeletal myogenesis is coordinated by multiple signaling pathways that control cell adhesion/migration, survival and differentiation accompanied by muscle-specific gene expression. A cell surface protein Cdo is involved in cell contact-mediated promyogenic signals through activation of p38MAPK and AKT. Protein kinase C-related kinase 2 (PKN2/PRK2) is implicated in regulation of various biological processes, including cell migration, adhesion and death. It has been shown to interact with and inhibit AKT thereby inducing cell death. This led us to investigate the role of PKN2 in skeletal myogenesis and the crosstalk between PKN2 and Cdo. Like Cdo, PKN2 was upregulated in C2C12 myoblasts during differentiation and decreased in cells with Cdo depletion caused by shRNA or cultured on integrin-independent substratum. This decline of PKN2 levels resulted in diminished AKT activation during myoblast differentiation. Consistently, PKN2 overexpression-enhanced C2C12 myoblast differentiation, whereas PKN2-depletion impaired it, without affecting cell survival. PKN2 formed complexes with Cdo, APPL1 and AKT via its C-terminal region and this interaction appeared to be important for induction of AKT activity as well as myoblast differentiation. Furthermore, PKN2-enhanced MyoD-responsive reporter activities by mediating the recruitment of BAF60c and MyoD to the myogenin promoter. Taken together, PKN2 has a critical role in cell adhesion-mediated AKT activation during myoblast differentiation.
Collapse
|
37
|
Ura B, Scrimin F, Arrigoni G, Athanasakis E, Aloisio M, Monasta L, Ricci G. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration. Oncol Rep 2016; 35:3094-100. [PMID: 26986808 DOI: 10.3892/or.2016.4688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/05/2015] [Indexed: 11/05/2022] Open
Abstract
Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Michelangelo Aloisio
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|
38
|
Quétier I, Marshall JJT, Spencer-Dene B, Lachmann S, Casamassima A, Franco C, Escuin S, Worrall JT, Baskaran P, Rajeeve V, Howell M, Copp AJ, Stamp G, Rosewell I, Cutillas P, Gerhardt H, Parker PJ, Cameron AJM. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion. Cell Rep 2016; 14:440-448. [PMID: 26774483 PMCID: PMC4733087 DOI: 10.1016/j.celrep.2015.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/06/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022] Open
Abstract
In animals, the protein kinase C (PKC) family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10), with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality.
Collapse
Affiliation(s)
- Ivan Quétier
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacqueline J T Marshall
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | - Sylvie Lachmann
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Adele Casamassima
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Claudio Franco
- Instituto Medicina Molecular (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College, London WC1N 1EH, UK
| | - Joseph T Worrall
- John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Priththivika Baskaran
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Vinothini Rajeeve
- John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael Howell
- Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College, London WC1N 1EH, UK
| | - Gordon Stamp
- Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ian Rosewell
- Genetic Manipulation Services, Francis Crick Institute, Clare Hall, Herts EN6 3LD, UK
| | - Pedro Cutillas
- John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Holger Gerhardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Saint Thomas Street, London SE1 1UL, UK.
| | - Angus J M Cameron
- Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
39
|
Mukai H, Muramatsu A, Mashud R, Kubouchi K, Tsujimoto S, Hongu T, Kanaho Y, Tsubaki M, Nishida S, Shioi G, Danno S, Mehruba M, Satoh R, Sugiura R. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice. Sci Rep 2016; 6:18979. [PMID: 26742562 PMCID: PMC4705536 DOI: 10.1038/srep18979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023] Open
Abstract
PKN, a conserved family member related to PKC, was the first protein kinase identified as a target of the small GTPase Rho. PKN is involved in various functions including cytoskeletal arrangement and cell adhesion. Furthermore, the enrichment of PKN3 mRNA in some cancer cell lines as well as its requirement in malignant prostate cell growth suggested its involvement in oncogenesis. Despite intensive research efforts, physiological as well as pathological roles of PKN3 in vivo remain elusive. Here, we generated mice with a targeted deletion of PKN3. The PKN3 knockout (KO) mice are viable and develop normally. However, the absence of PKN3 had an impact on angiogenesis as evidenced by marked suppressions of micro-vessel sprouting in ex vivo aortic ring assay and in vivo corneal pocket assay. Furthermore, the PKN3 KO mice exhibited an impaired lung metastasis of melanoma cells when administered from the tail vein. Importantly, PKN3 knock-down by small interfering RNA (siRNA) induced a glycosylation defect of cell-surface glycoproteins, including ICAM-1, integrin β1 and integrin α5 in HUVECs. Our data provide the first in vivo genetic demonstration that PKN3 plays critical roles in angiogenesis and tumor metastasis, and that defective maturation of cell surface glycoproteins might underlie these phenotypes.
Collapse
Affiliation(s)
- Hideyuki Mukai
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Aiko Muramatsu
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Rana Mashud
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Koji Kubouchi
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Sho Tsujimoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Tsunaki Hongu
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Go Shioi
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami,Chuou-ku, Kobe 650-0047
| | - Sally Danno
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Mona Mehruba
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| |
Collapse
|
40
|
Lee HJ, Seo SR, Yoon MS, Song JY, Lee EY, Lee SE. Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction. Lasers Surg Med 2015; 48:140-9. [DOI: 10.1002/lsm.22420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Hee Jung Lee
- Department of Dermatology; CHA Bundang Medical Center; CHA University; Seongnam Korea
| | - Seong Rak Seo
- Department of Dermatology; CHA Bundang Medical Center; CHA University; Seongnam Korea
| | - Moon Soo Yoon
- Department of Dermatology; CHA Bundang Medical Center; CHA University; Seongnam Korea
| | - Ji-Ye Song
- Institute for Clinical Research; CHA University; Seongnam Korea
| | - Eun Young Lee
- Department of Applied Bioscience; CHA University; Seongnam Korea
| | - Sang Eun Lee
- Department of Dermatology; Yonsei University College of Medicine; Seoul Korea
| |
Collapse
|
41
|
Mishra JP, Cohen D, Zamperone A, Nesic D, Muesch A, Stein M. CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol 2015; 17:1670-82. [PMID: 26041307 DOI: 10.1111/cmi.12464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 12/22/2022]
Abstract
CagA is a multifunctional toxin of Helicobacter pylori that is secreted into host epithelial cells by a type IV secretion system. Following host cell translocation, CagA interferes with various host-cell signalling pathways. Most notably this toxin is involved in the disruption of apical-basolateral cell polarity and cell adhesion, as well as in the induction of cell proliferation, migration and cell morphological changes. These are processes that also play an important role in epithelial-to-mesenchymal transition and cancer cell invasion. In fact, CagA is considered as the only known bacterial oncoprotein. The cellular effects are triggered by a variety of CagA activities including the inhibition of serine-threonine kinase Par1b/MARK2 and the activation of tyrosine phosphatase SHP-2. Additionally, CagA was described to affect the activity of Src family kinases and C-terminal Src kinase (Csk) suggesting that interference with multiple cellular kinase- and phosphatase-associated signalling pathways is a major function of CagA. Here, we describe the effect of CagA on protein kinase C-related kinase 2 (PRK2), which acts downstream of Rho GTPases and is known to affect cytoskeletal rearrangements and cell polarity. CagA interacts with PRK2 and inhibits its kinase activity. Because PRK2 has been linked to cytoskeletal rearrangements and establishment of cell polarity, we suggest that CagA may hijack PRK2 to further manipulate cancer-related signalling pathways.
Collapse
Affiliation(s)
- Jyoti Prasad Mishra
- Department of Health Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - David Cohen
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Dragana Nesic
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY, USA
| | - Anne Muesch
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Markus Stein
- Department of Health Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
42
|
Bourguignon LYW, Bikle D. Selective Hyaluronan-CD44 Signaling Promotes miRNA-21 Expression and Interacts with Vitamin D Function during Cutaneous Squamous Cell Carcinomas Progression Following UV Irradiation. Front Immunol 2015; 6:224. [PMID: 26029210 PMCID: PMC4429634 DOI: 10.3389/fimmu.2015.00224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/26/2015] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan (HA), the major extracellular matrix component, is often anchored to CD44, a family of structurally/functionally important cell surface receptors. Recent results indicate that UV irradiation (UVR)-induced cutaneous squamous cell carcinomas (SCC) overexpress a variety of CD44 variant isoforms (CD44v), with different CD44v isoforms appear to confer malignant SCC properties. UVR also stimulates HA degradation in epidermal keratinocytes. Both large HA polymers and their UVR-induced catabolic products (small HA) selectively activate CD44-mediated cellular signaling in normal keratinocytes and SCC cells, with all of the downstream processes being mediated by RhoGTPases (e.g., Rac1 and Rho). Importantly, we found that the hormonally active form of vitamin D 1,25(OH)2D3 not only prevents the UVR-induced small HA activation of abnormal keratinocyte behavior and SCC progression, but also enhances large HA stimulation of normal keratinocyte activities and epidermal function(s). The aim of this hypothesis and theory article is to question whether matrix HA and its UVR-induced catabolic products (e.g., large and small HA) can selectively activate CD44-mediated cellular signaling such as GTPase (Rac and RhA) activation. We suggested that large HA-CD44 interaction promotes Rac-signaling and normal keratinocyte differentiation (lipid synthesis), DNA repair, and keratinocyte survival function. Conversely, small HA-CD44 interaction stimulates RhoA activation, NFκB/Stat-3 signaling, and miR-21 production, resulting in inflammation and proliferation as well as SCC progression. We also question whether vitamin D treatment displays any effect on small HA-CD44v-mediated RhoA signaling, inflammation, and SCC progression, as well as large HA-CD44-mediated differentiation, DNA repair, keratinocyte survival, and normal keratinocyte function. In addition, we discussed that the topical application of signaling perturbation agents (e.g., Y27623, a ROK inhibitor) may be used to treat certain skin diseases displaying upregulation of keratinocyte proliferation such as psoriasis and actinic keratoses in order to correct the imbalance between Rac and RhoA signaling during various UV irradiation-induced skin diseases in patients. Finally, we proposed that matrix HA/CD44-signaling strategies and matrix HA (HAS vs. HAL or HAS → HAL)-based therapeutic approaches (together with vitamin D) may be used for the treatment of patients suffering a number of UV irradiation-induced skin diseases (e.g., inflammation, skin cancer, and chronic non-healing wounds).
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California at San Francisco , San Francisco, CA , USA
| | - Daniel Bikle
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California at San Francisco , San Francisco, CA , USA
| |
Collapse
|
43
|
Höfling S, Grabowski B, Norkowski S, Schmidt MA, Rüter C. Current activities of the Yersinia effector protein YopM. Int J Med Microbiol 2015; 305:424-32. [PMID: 25865799 DOI: 10.1016/j.ijmm.2015.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
Yersinia outer protein M (YopM) belongs to the group of Yop effector proteins, which are highly conserved among pathogenic Yersinia species. During infection, the effectors are delivered into the host cell cytoplasm via the type 3 secretion system to subvert the host immune response and support the survival of Yersinia. In contrast to the other Yop effectors, YopM does not possess a known enzymatic activity and its molecular mechanism(s) of action remain(s) poorly understood. However, YopM was shown to promote colonization and dissemination of Yersinia, thus being crucial for the pathogen's virulence in vivo. Moreover, YopM interacts with several host cell proteins and might utilize them to execute its anti-inflammatory activities. The results obtained so far indicate that YopM is a multifunctional protein that counteracts the host immune defense by multiple activities, which are at least partially independent of each other. Finally, its functions seem to be also influenced by differences between the specific YopM isoforms expressed by Yersinia subspecies. In this review, we focus on the global as well as more specific contribution of YopM to virulence of Yersinia during infection and point out the various extra- and intracellular molecular functions of YopM. In addition, the novel cell-penetrating ability of recombinant YopM and its potential applications as a self-delivering immunomodulatory therapeutic will be discussed.
Collapse
Affiliation(s)
- Sabrina Höfling
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Benjamin Grabowski
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Stefanie Norkowski
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany.
| | - Christian Rüter
- Institute of Infectiology - Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany.
| |
Collapse
|
44
|
Martin-Liberal J, Cameron AJ, Claus J, Judson IR, Parker PJ, Linch M. Targeting protein kinase C in sarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:547-59. [PMID: 25453364 DOI: 10.1016/j.bbcan.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine tyrosine kinases that regulate many cellular processes including division, proliferation, survival, anoikis and polarity. PKC is abundant in many human cancers and aberrant PKC signalling has been demonstrated in cancer models. On this basis, PKC has become an attractive target for small molecule inhibition within oncology drug development programmes. Sarcoma is a heterogeneous group of mesenchymal malignancies. Due to their relative insensitivity to conventional chemotherapies and the increasing recognition of the driving molecular events of sarcomagenesis, sarcoma provides an excellent platform to test novel therapeutics. In this review we provide a structure-function overview of the PKC family, the rationale for targeting these kinases in sarcoma and the state of play with regard to PKC inhibition in the clinic.
Collapse
Affiliation(s)
- J Martin-Liberal
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - A J Cameron
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Claus
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - I R Judson
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - P J Parker
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - M Linch
- Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
45
|
Ferreira T, Prudêncio P, Martinho RG. Drosophila protein kinase N (Pkn) is a negative regulator of actin-myosin activity during oogenesis. Dev Biol 2014; 394:277-91. [PMID: 25131196 DOI: 10.1016/j.ydbio.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 02/05/2023]
Abstract
Nurse cell dumping is an actin-myosin based process, where 15 nurse cells of a given egg chamber contract and transfer their cytoplasmic content through the ring canals into the growing oocyte. We isolated two mutant alleles of protein kinase N (pkn) and showed that Pkn negatively-regulates activation of the actin-myosin cytoskeleton during the onset of dumping. Using live-cell imaging analysis we observed that nurse cell dumping rates sharply increase during the onset of fast dumping. Such rate increase was severely impaired in pkn mutant nurse cells due to excessive nurse cell actin-myosin activity and/or loss of tissue integrity. Our work demonstrates that the transition between slow and fast dumping is a discrete event, with at least a five to six-fold dumping rate increase. We show that Pkn negatively regulates nurse cell actin-myosin activity. This is likely to be important for directional cytoplasmic flow. We propose Pkn provides a negative feedback loop to help avoid excessive contractility after local activation of Rho GTPase.
Collapse
Affiliation(s)
- Tânia Ferreira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal
| | - Pedro Prudêncio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rui Gonçalo Martinho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2781-901, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
46
|
Thauerer B, Zur Nedden S, Baier-Bitterlich G. Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons. Curr Neuropharmacol 2014; 12:213-8. [PMID: 24851086 PMCID: PMC4023452 DOI: 10.2174/1570159x11666131225000518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/20/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2,
PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The Nterminal
region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The
serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to
other members of the PKC superfamily.
In neurons, PKN1 is the most abundant isoform and has been implicated in a variety of functions including cytoskeletal
organization and neuronal differentiation and its deregulation may contribute to neuropathological processes such as
amyotrophic lateral sclerosis and Alzheimer’s disease. We have recently identified a candidate role of PKN1 in the
regulation of neuroprotective processes during hypoxic stress. Our key findings were that: 1) the activity of PKN1 was
significantly increased by hypoxia (1% O2) and neurotrophins (nerve growth factor and purine nucleosides); 2) Neuronal
cells, deficient of PKN1 showed a decrease of cell viability and neurite formation along with a disturbance of the F-actinassociated
cytoskeleton; 3) Purine nucleoside-mediated neuroprotection during hypoxia was severely hampered in PKN1
deficient neuronal cells, altogether suggesting a potentially critical role of PKN1 in neuroprotective processes.
This review gives an up-to-date overview of the PKN family with a special focus on the neuroprotective role of PKN1 in
hypoxia.
Collapse
Affiliation(s)
- Bettina Thauerer
- Medical University of Innsbruck, Biocenter/ Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Zur Nedden
- Medical University of Innsbruck, Biocenter/ Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Medical University of Innsbruck, Biocenter/ Neurobiochemistry, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
47
|
Matrix hyaluronan-activated CD44 signaling promotes keratinocyte activities and improves abnormal epidermal functions. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1912-9. [PMID: 24819962 DOI: 10.1016/j.ajpath.2014.03.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, is enriched in skin tissues, particularly the epidermis. HA binds to a ubiquitous, abundant, and functionally important family of cell surface receptors, CD44. This article reviews the current evidence for HA/CD44-mediated activation of RhoGTPase signaling and calcium mobilization, leading to the regulation of keratinocyte activities and various epidermal functions. It further discusses the role of HA-mediated CD44 interactions with unique downstream effectors, such as RhoGTPases (RhoA and Rac1), Rho-kinase, protein kinase-Nγ, and phosphoinositide-specific phospholipases (phospholipases Cε and Cγ1) in coordinating certain intracellular signaling pathways, such as calcium mobilization, phosphatidylinositol 3-kinase-AKT activation, cortactin-actin binding, and actin-associated cytoskeleton reorganization; generating the onset of important keratinocyte activities, such as cell adhesion, proliferation, migration, and differentiation; and performing epidermal functions. Topical application of selective HA fragments (large versus small HA) to the skin of wild-type mice (but not CD44 knockout mice) improves keratinocyte-associated epidermal functions and accelerates permeability barrier recovery and skin wound healing. Consequently, specific HA fragment (large versus small HA)-mediated signaling events (through the CD44 receptor) are required for keratinocyte activities, which offer new HA-based therapeutic options for patients experiencing epidermal dysfunction and skin damage as well as aging-related skin diseases, such as epidermal thinning (atrophy), permeability barrier dysfunction, and chronic nonhealing wounds.
Collapse
|
48
|
Sass GL, Ostrow BD. Disruption of the protein kinase N gene of drosophila melanogaster results in the recessive delorean allele (pkndln) with a negative impact on wing morphogenesis. G3 (BETHESDA, MD.) 2014; 4:643-56. [PMID: 24531729 PMCID: PMC4059237 DOI: 10.1534/g3.114.010579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/07/2014] [Indexed: 12/15/2022]
Abstract
We describe the delorean mutation of the Drosophila melanogaster protein kinase N gene (pkn(dln)) with defects in wing morphology. Flies homozygous for the recessive pkn(dln) allele have a composite wing phenotype that exhibits changes in relative position and shape of the wing blade as well as loss of specific vein and bristle structures. The pkn(dln) allele is the result of a P-element insertion in the first intron of the pkn locus, and the delorean wing phenotype is contingent upon the interaction of insertion-bearing alleles in trans. The presence of the insertion results in production of a novel transcript that initiates from within the 3' end of the P-element. The delorean-specific transcript is predicted to produce a wild-type PKN protein. The delorean phenotype is not the result of a reduction in pkn expression, as it could not be recreated using a variety of wing-specific drivers of pkn-RNAi expression. Rather, it is the presence of the delorean-specific transcript that correlates with the mutant phenotype. We consider the delorean wing phenotype to be due to a pairing-dependent, recessive mutation that behaves as a dosage-sensitive, gain of function. Our analysis of genetic interactions with basket and nemo reflects an involvement of pkn and Jun-terminal kinase signaling in common processes during wing differentiation and places PKN as a potential effector of Rho1's involvement in the Jun-terminal kinase pathway. The delorean phenotype, with its associated defects in wing morphology, provides evidence of a role for PKN in adult morphogenetic processes.
Collapse
Affiliation(s)
- Georgette L. Sass
- Department of Biology, Grand Valley State University, Allendale, Michigan 49401
| | - Bruce D. Ostrow
- Department of Biology, Grand Valley State University, Allendale, Michigan 49401
| |
Collapse
|
49
|
Hutchinson CL, Lowe PN, McLaughlin SH, Mott HR, Owen D. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB. Biochemistry 2013; 52:7999-8011. [PMID: 24128008 DOI: 10.1021/bi401216w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein kinase C-related kinases (PRKs) are members of the protein kinase C superfamily of serine-threonine kinases and can be activated by binding to members of the Rho family of GTPases via a Rho-binding motif known as an HR1 domain. Three tandem HR1 domains reside at the N-terminus of the PRKs. We have assessed the ability of the HR1a and HR1b domains from the three PRK isoforms (PRK1, PRK2, and PRK3) to interact with the three Rho isoforms (RhoA, RhoB, and RhoC). The affinities of RhoA and RhoC for a construct encompassing both PRK1 HR1 domains were similar to those for the HR1a domain alone, suggesting that these interactions are mediated solely by the HR1a domain. The affinities of RhoB for both the PRK1 HR1a domain and the HR1ab didomain were higher than those of RhoA or RhoC. RhoB also bound more tightly to the didomain than to the HR1a domain alone, implicating the HR1b domain in the interaction. As compared with PRK1 HR1 domains, PRK2 and PRK3 domains bind less well to all Rho isoforms. Uniquely, however, the PRK3 domains display a specificity for RhoB that requires both the C-terminus of RhoB and the PRK3 HR1b domain. The thermal stability of the HR1a and HR1b domains was also investigated. The PRK2 HR1a domain was found to be the most thermally stable, while PRK2 HR1b, PRK3 HR1a, and PRK3 HR1b domains all exhibited lower melting temperatures, similar to that of the PRK1 HR1a domain. The lower thermal stability of the PRK2 and PRK3 HR1b domains may impart greater flexibility, driving their ability to interact with Rho isoforms.
Collapse
Affiliation(s)
- Catherine L Hutchinson
- Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | | | | | | | | |
Collapse
|
50
|
Bourguignon LYW, Wong G, Xia W, Man MQ, Holleran WM, Elias PM. Selective matrix (hyaluronan) interaction with CD44 and RhoGTPase signaling promotes keratinocyte functions and overcomes age-related epidermal dysfunction. J Dermatol Sci 2013; 72:32-44. [PMID: 23790635 PMCID: PMC3775883 DOI: 10.1016/j.jdermsci.2013.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA)-size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. OBJECTIVE The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs→HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. METHODS A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. RESULTS In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. CONCLUSION The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin. Second, manipulation of matrix (HA) interaction with CD44 and RhoGTPase signaling could provide further novel therapeutic approaches that could be targeted for the treatment of various aging-related skin disorders.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California San Francisco and VA Medical Center, United States.
| | | | | | | | | | | |
Collapse
|