1
|
Haddad A, Golan-Lev T, Benvenisty N, Goldberg M. Genome-wide screening in human embryonic stem cells identifies genes and pathways involved in the p53 pathway. Mol Med 2025; 31:97. [PMID: 40082762 PMCID: PMC11907909 DOI: 10.1186/s10020-025-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The tumor suppressor protein, p53, which is mutated in half of human tumors, plays a critical role in cellular responses to DNA damage and maintenance of genome stability. Therefore, increasing our understanding of the p53 pathway is essential for improving cancer treatment and diagnosis. METHODS This study, which aimed to identify genes and pathways that mediate resistance to p53 upregulation, used genome-wide CRISPR-Cas9 loss-of-function screening done with Nutlin-3a, which inhibits p53-MDM2 interaction, resulting in p53 accumulation and apoptotic cell death. We used bioinformatics analysis for the identification of genes and pathways that are involved in the p53 pathway and cell survival assays to validate specific genes. In addition, we used RNA-seq to identify differentially expressed p53 target genes in gene knockout (KO) cell lines. RESULTS Our screen revealed three significantly enriched pathways: The heparan sulfate glycosaminoglycan biosynthesis, diphthamide biosynthesis and Hippo pathway. Notably, TRIP12 was significantly enriched in our screen. We found that TRIP12 is required for the p53-dependent transcription of several pro-apoptotic genes. CONCLUSION Our study has identified two novel pathways that play a role in p53-mediated growth restriction. Moreover, we have highlighted the interaction between the Hippo and the p53 pathways. Interestingly, we have shown that TRIP12 plays an important function in the p53 pathway by selectively affecting its role as a transcription factor.
Collapse
Affiliation(s)
- Amir Haddad
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tamar Golan-Lev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Michal Goldberg
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
2
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Advances in Computational Methodologies for Classification and Sub-Cellular Locality Prediction of Non-Coding RNAs. Int J Mol Sci 2021; 22:8719. [PMID: 34445436 PMCID: PMC8395733 DOI: 10.3390/ijms22168719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Apart from protein-coding Ribonucleic acids (RNAs), there exists a variety of non-coding RNAs (ncRNAs) which regulate complex cellular and molecular processes. High-throughput sequencing technologies and bioinformatics approaches have largely promoted the exploration of ncRNAs which revealed their crucial roles in gene regulation, miRNA binding, protein interactions, and splicing. Furthermore, ncRNAs are involved in the development of complicated diseases like cancer. Categorization of ncRNAs is essential to understand the mechanisms of diseases and to develop effective treatments. Sub-cellular localization information of ncRNAs demystifies diverse functionalities of ncRNAs. To date, several computational methodologies have been proposed to precisely identify the class as well as sub-cellular localization patterns of RNAs). This paper discusses different types of ncRNAs, reviews computational approaches proposed in the last 10 years to distinguish coding-RNA from ncRNA, to identify sub-types of ncRNAs such as piwi-associated RNA, micro RNA, long ncRNA, and circular RNA, and to determine sub-cellular localization of distinct ncRNAs and RNAs. Furthermore, it summarizes diverse ncRNA classification and sub-cellular localization determination datasets along with benchmark performance to aid the development and evaluation of novel computational methodologies. It identifies research gaps, heterogeneity, and challenges in the development of computational approaches for RNA sequence analysis. We consider that our expert analysis will assist Artificial Intelligence researchers with knowing state-of-the-art performance, model selection for various tasks on one platform, dominantly used sequence descriptors, neural architectures, and interpreting inter-species and intra-species performance deviation.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- National Center for Artificial Intelligence (NCAI), National University of Sciences and Technology, Islamabad 44000, Pakistan;
- School of Electrical Engineering & Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Derech-Haim S, Friedman Y, Hizi A, Bakhanashvili M. p53 regulates its own expression by an intrinsic exoribonuclease activity through AU-rich elements. J Mol Med (Berl) 2020; 98:437-449. [PMID: 32016559 DOI: 10.1007/s00109-020-01884-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
The onco-suppressor p53 protein plays also an important role in the control of various aspects of health and disease. p53 levels are low in normal cells and elevated under stress conditions. While low levels of p53 promote tumor formation, overactive p53 leads to premature aging and cell death. RNA degradation is a critical level of regulation contributing to the control of gene expression. p53, as an RNA-binding protein, exerts 3' → 5' exoribonuclease activity, mediating degradation of adenylate/uridylate-rich elements (ARE)-containing ssRNAs. The 3'-UTR of p53-mRNA, which is a target of p53 itself, harbors cis-acting AREs. Our results suggest that p53 controls its own expression through murine double-minute 2 (mdm2)-independent "RNA decay" function in cytoplasm. We demonstrate that p53 expresses an exoribonuclease activity through the binding to ARE sequences of p53-mRNA via translation-independent and translation-dependent polysome-associated pathways. Antagonistic interplay was detected between p53 levels and execution of its exoribonuclease function mirrored in low p53 levels in normal cells, due to the efficient exoribonuclease activity, and in the accumulation of p53 in cells exposed to p53-activating drugs in accordance with the reduced exoribonuclease activity. Apparently, p53, via control of its own mRNA stability and/or translation in cytoplasm, might act as a negative regulator of p53-mRNA levels. The observed connection between exoribonuclease activity and p53 abundance highlights the importance of this function affecting p53 expression, imperative for multiple functions, with implications for the steady-state levels of protein and for the p53 stress response. The modulation in expression of exoribonuclease activity would be translated into the alterations in p53 level. KEY MESSAGES: p53 controls its own expression through mdm2-independent "RNA decay" function in cytoplasm. p53 expresses an exoribonuclease activity through the binding to ARE sequences of p53-mRNA. Antagonistic interplay exists between stress-induced p53 and execution of its exoribonuclease function.
Collapse
Affiliation(s)
- Sanaz Derech-Haim
- Infectious Diseases Unit, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Yael Friedman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Amnon Hizi
- Department of Cellular and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, 5265601, Tel-Hashomer, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Modulation of p53 and prion protein aggregation by RNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:933-940. [DOI: 10.1016/j.bbapap.2019.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
5
|
Kovachev PS, Banerjee D, Rangel LP, Eriksson J, Pedrote MM, Martins-Dinis MMDC, Edwards K, Cordeiro Y, Silva JL, Sanyal S. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. J Biol Chem 2017; 292:9345-9357. [PMID: 28420731 DOI: 10.1074/jbc.m116.762096] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
Inactivation of the tumor suppressor protein p53 by mutagenesis, chemical modification, protein-protein interaction, or aggregation has been associated with different human cancers. Although DNA is the typical substrate of p53, numerous studies have reported p53 interactions with RNA. Here, we have examined the effects of RNA of varied sequence, length, and origin on the mechanism of aggregation of the core domain of p53 (p53C) using light scattering, intrinsic fluorescence, transmission electron microscopy, thioflavin-T binding, seeding, and immunoblot assays. Our results are the first to demonstrate that RNA can modulate the aggregation of p53C and full-length p53. We found bimodal behavior of RNA in p53C aggregation. A low RNA:protein ratio (∼1:50) facilitates the accumulation of large amorphous aggregates of p53C. By contrast, at a high RNA:protein ratio (≥1:8), the amorphous aggregation of p53C is clearly suppressed. Instead, amyloid p53C oligomers are formed that can act as seeds nucleating de novo aggregation of p53C. We propose that structured RNAs prevent p53C aggregation through surface interaction and play a significant role in the regulation of the tumor suppressor protein.
Collapse
Affiliation(s)
- Petar Stefanov Kovachev
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden
| | - Debapriya Banerjee
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jonny Eriksson
- Department of Chemistry, Uppsala University, Uppsala, 75124, Sweden, and
| | - Murilo M Pedrote
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mafalda Maria D C Martins-Dinis
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Katarina Edwards
- Department of Chemistry, Uppsala University, Uppsala, 75124, Sweden, and
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Suparna Sanyal
- From the Department of Cell and Molecular Biology, Uppsala University, Uppsala, Box-596, 75124, Sweden,
| |
Collapse
|
6
|
Peters D, Radine C, Reese A, Budach W, Sohn D, Jänicke RU. The DEAD-box RNA helicase DDX41 is a novel repressor of p21 WAF1/CIP1 mRNA translation. J Biol Chem 2017; 292:8331-8341. [PMID: 28348086 DOI: 10.1074/jbc.m116.772327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21 is an important player in stress pathways exhibiting both tumor-suppressive and oncogenic functions. Thus, expression of p21 has to be tightly controlled, which is achieved by numerous mechanisms at the transcriptional, translational, and posttranslational level. Performing immunoprecipitation of bromouridine-labeled p21 mRNAs that had been incubated before with cytoplasmic extracts of untreated HCT116 colon carcinoma cells, we identified the DEAD-box RNA helicase DDX41 as a novel regulator of p21 expression. DDX41 specifically precipitates with the 3'UTR, but not with the 5'UTR, of p21 mRNA. Knockdown of DDX41 increases basal and γ irradiation-induced p21 protein levels without affecting p21 mRNA expression. Conversely, overexpression of DDX41 strongly inhibits expression of a FLAG-p21 and a luciferase construct, but only in the presence of the p21 3'UTR. Together, these data suggest that this helicase regulates p21 expression at the translational level independent of the transcriptional activity of p53. However, knockdown of DDX41 completely fails to increase p21 protein levels in p53-deficient HCT116 cells. Moreover, posttranslational up-regulation of p21 achieved in both p53+/+ and p53-/- HCT116 cells in response to pharmaceutical inhibition of the proteasome (by MG-132) or p90 ribosomal S6 kinases (by BI-D1870) is further increased by knockdown of DDX41 only in p53-proficient but not in p53-deficient cells. Although our data demonstrate that DDX41 suppresses p21 translation without disturbing the function of p53 to directly induce p21 mRNA expression, this process indirectly requires p53, perhaps in the form of another p53 target gene or as a still undefined posttranscriptional function of p53.
Collapse
Affiliation(s)
- Dominik Peters
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich Heine University, 40255 Düsseldorf, Germany.
| |
Collapse
|
7
|
Abstract
p53 is a transcriptional regulator that responds to cellular stresses to suppress oncogenesis, but some of these responses can have unintended consequences that influence non-cancer-related aging processes. The impact of these consequences is not well understood-partly due to the many complex processes that influence p53 function and partly due to the vast array of processes that p53 affects. p53 has the potential to both accelerate and hinder cellular aging processes, which would likely have antithetical biological outcomes with regard to organismal aging. To accelerate aging, p53 induces apoptosis or cell cycle arrest as a prerequisite to cellular senescence; both can impair the mobilization of stem and progenitor cell populations. To suppress aging, p53 inhibits unregulated proliferation pathways that could lead to cellular senescence and a senescence-associated secretory phenotype (SASP), which creates a pro-inflammatory and degenerative tissue milieu. A review of mouse models supports both possibilities, highlighting the complexity of the p53 influence over organismal aging. A deeper knowledge of how p53 integrates and is integrated with various biological processes will improve our understanding of its influence over the aging process.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, Texas 78245, USA.,Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, Texas 78245, USA.,Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas 78245, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Z Dave Sharp
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, Texas 78245, USA.,Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, Texas 78245, USA.,Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas 78245, USA
| |
Collapse
|
8
|
Vlatković N, Boyd MT, Rubbi CP. Nucleolar control of p53: a cellular Achilles' heel and a target for cancer therapy. Cell Mol Life Sci 2014; 71:771-91. [PMID: 23685903 PMCID: PMC11113510 DOI: 10.1007/s00018-013-1361-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/07/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023]
Abstract
Nucleoli perform a crucial cell function, ribosome biogenesis, and of critical relevance to the subject of this review, they are also extremely sensitive to cellular stresses, which can cause loss of function and/or associated structural disruption. In recent years, we have learned that cells take advantage of this stress sensitivity of nucleoli, using them as stress sensors. One major protein regulated by this role of nucleoli is the tumor suppressor p53, which is activated in response to diverse cellular injuries in order to exert its onco-protective effects. Here we discuss a model of nucleolar regulation of p53, which proposes that key steps in the promotion of p53 degradation by the ubiquitin ligase MDM2 occur in nucleoli, thus providing an explanation for the observed link between nucleolar disruption and p53 stability. We review current evidence for this compartmentalization in p53 homeostasis and highlight current limitations of the model. Interestingly, a number of current chemotherapeutic agents capable of inducing a p53 response are likely to do so by targeting nucleolar functions and these compounds may serve to inform further improved therapeutic targeting of nucleoli.
Collapse
Affiliation(s)
- Nikolina Vlatković
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Mark T. Boyd
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Carlos P. Rubbi
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| |
Collapse
|
9
|
Hasty P, Christy BA. p53 as an intervention target for cancer and aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2013; 3:22702. [PMID: 24124625 PMCID: PMC3794078 DOI: 10.3402/pba.v3i0.22702] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/30/2022]
Abstract
p53 is well known for suppressing tumors but could also affect other aging processes not associated with tumor suppression. As a transcription factor, p53 responds to a variety of stresses to either induce apoptosis (cell death) or cell cycle arrest (cell preservation) to suppress tumor development. Yet, the effect p53 has on the non-cancer aspects of aging is complicated and not well understood. On one side, p53 could induce cellular senescence or apoptosis to suppress cancer but as an unintended consequence enhance the aging process especially if these responses diminish stem and progenitor cell populations. But on the flip side, p53 could reduce growth and growth-related stress to enable cell survival and ultimately delay the aging process. A better understanding of diverse functions of p53 is essential to elucidate its influences on the aging process and the possibility of targeting p53 or p53 transcriptional targets to treat cancer and ameliorate general aging.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
10
|
Shalimar DM, Das P, Sreenivas V, Gupta SD, Panda SK, Makharia GK. Mechanism of villous atrophy in celiac disease: role of apoptosis and epithelial regeneration. Arch Pathol Lab Med 2013; 137:1262-1269. [PMID: 23991739 DOI: 10.5858/arpa.2012-0354-oa] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT The data on status of apoptosis in patients with celiac disease are conflicting. Furthermore, complex interaction between intrinsic and common apoptotic pathways, apoptotic inhibitors, and epithelial cell proliferation is largely unclear for patients with celiac disease. OBJECTIVES To determine the role of apoptosis and epithelial cell regeneration in celiac disease. DESIGN Twenty-five treatment-naïve patients with celiac disease and 6 patients with functional dyspepsia, as controls, were included and duodenal biopsy specimens from all were subjected to immunohistochemistry with markers of intrinsic apoptotic pathway (AIF, H2AX, p53), common pathway (CC3, M30), apoptotic inhibitors (XIAP, Bcl2), and epithelial proliferation (Ki-67). Apoptotic and proliferation indices were calculated. RESULTS Expression of end-apoptotic products, that is, H2AX in the cell nuclei (P = .01) and M30 in the cell cytoplasm (P < .01), was significantly upregulated in celiac disease in comparison to controls. Cleaved caspase-3 was also upregulated in villous cytoplasm in celiac disease. Apoptotic inhibitor Bcl2 was significantly down-regulated in celiac disease in comparison to controls. In addition, Ki-67 proliferation index was upregulated both in the crypts and villous mucosal epithelium in comparison to the crypts of the controls. CONCLUSIONS Treatment-naïve patients with celiac disease have significantly higher level of apoptosis that involves both the common and intrinsic apoptotic pathways. Increased apoptosis and unequaled cell regeneration in crypts probably results in villous atrophy. Down-regulation of apoptotic inhibitors in treatment-naïve celiac disease imparts an additional pro-apoptotic effect.
Collapse
Affiliation(s)
- D M Shalimar
- Department of Gastroenterology and Human Nutrition, the All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1).The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
12
|
Boyd MT, Vlatkovic N, Rubbi CP. The nucleolus directly regulates p53 export and degradation. ACTA ACUST UNITED AC 2012; 194:689-703. [PMID: 21893597 PMCID: PMC3171122 DOI: 10.1083/jcb.201105143] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleoli directly regulate p53 export and degradation rather than simply sequestering p53 regulatory factors. The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.
Collapse
Affiliation(s)
- Mark T Boyd
- p53/MDM2 Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, England, UK
| | | | | |
Collapse
|
13
|
Akkiprik M, Hu L, Sahin A, Hao X, Zhang W. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer. BMC Cancer 2009; 9:103. [PMID: 19341485 PMCID: PMC2670316 DOI: 10.1186/1471-2407-9-103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 04/03/2009] [Indexed: 01/19/2023] Open
Abstract
Background Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly located in the nucleus. We hypothesized that subcellular localization of IGFBP5 affects its functions in host cells. Methods To test this hypothesis, we generated wild-type and mutant IGFBP5 expression constructs. The mutation occurs within the nuclear localization sequence (NLS) of the protein and is generated by site-directed mutagenesis using the wild-type IGFBP5 expression construct as a template. Next, we transfected each expression construct into MDA-MB-435 breast cancer cells to establish stable clones overexpressing either wild-type or mutant IGFBP5. Results Functional analysis revealed that cells overexpressing wild-type IGFBP5 had significantly lower cell growth rate and motility than the vector-transfected cells, whereas cells overexpressing mutant IGFBP5 demonstrated a significantly higher ability to proliferate and migrate. To illustrate the subcellular localization of the proteins, we generated wild-type and mutant IGFBP5-pDsRed fluorescence fusion constructs. Fluorescence microscopy imaging revealed that mutation of the NLS in IGFBP5 switched the accumulation of IGFBP5 from the nucleus to the cytoplasm of the protein. Conclusion Together, these findings imply that the mutant form of IGFBP5 increases proliferation and motility of breast cancer cells and that mutation of the NLS in IGFBP5 results in localization of IGFBP5 in the cytoplasm, suggesting that subcellular localization of IGFBP5 affects its cell growth and migration functions in the breast cancer cells.
Collapse
Affiliation(s)
- Mustafa Akkiprik
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
14
|
Pratt MAC, White D, Kushwaha N, Tibbo E, Niu MY. Cytoplasmic mutant p53 increases Bcl-2 expression in estrogen receptor-positive breast cancer cells. Apoptosis 2008; 12:657-69. [PMID: 17252199 DOI: 10.1007/s10495-006-0023-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Bcl-2 gene is positively regulated by estrogen (E2) primarily through E2-response elements in the coding region and a putative p53 negative regulatory element (NRE) containing a short upstream open reading frame (uORF). The ability of mutant p53 to repress or induce Bcl-2 expression is controversial. In this study E2-receptor positive (ER(+))/wild-type p53 MCF-7cells were transfected with p53Delta291, which lacks a nuclear localization signal or a DNA binding domain mutant, p53(173L). Both p53 mutants but especially p53Delta291 increased Bcl-2 protein expression from a CMV-NRE-Bcl-2 cDNA construct in an NRE-position/orientation independent manner as well as from a 1.7 kb Bcl-2 promoter reporter gene. Bcl-2 protein expression prevented the p53Delta291-mediated increase in Bcl-2 promoter activity although immunoprecipitation demonstrated that only a small proportion of the wild-type p53 but not p53Delta91 protein interacts with Bcl-2. Unless levels of ectopically expressed mutant p53 were extremely high, stable expression of mutant p53 in MCF-7 cells moderately increased Bcl-2 protein levels. Expression of mutant p53 did not alter E2 regulation of Bcl-2, however, mutation of the uORF prevented regulation by both mutant p53 and E2. Adenovirus-mediated overexpression of WT p53 strongly reduced Bcl-2 expression in ER(-)/mut p53 MDA-MB-231 cells. Taken together these data support the position that mutant p53 behaves in a dominant "positive" manner relieving repression by WT p53 or another Bcl-2 transcriptional inhibitor in a manner independent of nuclear translocation.
Collapse
Affiliation(s)
- M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The p53 tumor suppressor protein is typically considered to be a sequence-specific DNA-binding transcription factor. However, reports over the last 15 years have described RNA binding by p53 in a variety of contexts, suggesting the possibility of new p53 functions. It is clear that p53-RNA interactions are mediated by a nucleic acid-binding domain of p53 independent of the sequence-specific core domain responsible for DNA recognition. Reports disagree on several aspects of the putative RNA interaction, including sequence specificity and biological relevance. Here we review the history and recent advances in the study of p53-RNA interactions. We argue that p53-RNA interactions are sequence nonspecific and depend on incomplete post-translational modification of the p53 C-terminal domain when the protein is expressed in heterologous systems. It is unknown what fraction of p53 protein exists in a state competent for RNA binding in vivo. Thus, potential physiological roles of p53-RNA interactions remain mysterious.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
16
|
Ju J, Schmitz JC, Song B, Kudo K, Chu E. Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells. Clin Cancer Res 2007; 13:4245-51. [PMID: 17634554 DOI: 10.1158/1078-0432.ccr-06-2890] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE The purpose of the study is to investigate the regulation of p53 expression in response to 5-fluorouracil (5-FU) in human colon cancer cells. EXPERIMENTAL DESIGN Human colon cancer RKO cells were used as our model system. The levels of p53 expression and p53 protein stability in response to 5-FU and doxorubicin were investigated. In addition, the acetylation and phosphorylation status of p53 after 5-FU and doxorubicin treatment was analyzed by Western immunoblot analysis. RESULTS Treatment of human colon cancer RKO cells with 10 micromol/L 5-FU resulted in significantly increased levels of p53 protein with maximal induction observed at 24 h. The level of acetylated p53 after 5-FU exposure remained unchanged, whereas the phosphorylated form of p53 was expressed only after 24 h drug treatment. Northern blot analysis revealed no change in p53 mRNA levels after 5-FU treatment. No differences were observed in the half-life of p53 protein in control and 5-FU-treated cells, suggesting that the increase in p53 was the direct result of newly synthesized protein. In contrast, the maximal induction of p53, in response to doxorubicin, occurred at an earlier time point (4 h) when compared with cells treated with 5-FU (24 h). No corresponding change in p53 mRNA was observed. Levels of both the acetylated and phosphorylated forms of p53 were markedly increased upon doxorubicin exposure when compared with treatment with 5-FU, resulting in a significantly prolonged half-life of p53 (120 versus 20 min). CONCLUSION These results, taken together, suggest that the regulatory mechanisms controlling p53 expression, in response to a cellular stress, are complex and are dependent upon the specific genotoxic agent. With regard to 5-FU, we show that translational regulation is an important process for controlling p53 expression. Studies are under way to define the specific mechanism(s) that control 5-FU-mediated translational regulation of p53.
Collapse
Affiliation(s)
- Jingfang Ju
- Cancer Genomics Laboratory, Mitchell Cancer Institute-USA, Mobile, Alabama 36688, USA.
| | | | | | | | | |
Collapse
|
17
|
Yang D, Qi Y, Chen Q, Wang Z, Jin X, Gao J, Fu J, Xiao X, Zhou Z. The over-expression of p53 H179Y residue mutation causes the increase of cyclin A1 and Cdk4 expression in HELF cells. Mol Cell Biochem 2007; 304:219-26. [PMID: 17530187 DOI: 10.1007/s11010-007-9503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 04/27/2007] [Indexed: 01/10/2023]
Abstract
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.
Collapse
Affiliation(s)
- Di Yang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rohrmoser M, Hölzel M, Grimm T, Malamoussi A, Harasim T, Orban M, Pfisterer I, Gruber-Eber A, Kremmer E, Eick D. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit. Mol Cell Biol 2007; 27:3682-94. [PMID: 17353269 PMCID: PMC1899993 DOI: 10.1128/mcb.00172-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.
Collapse
Affiliation(s)
- Michaela Rohrmoser
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF Research Center, Marchioninistrasse 25, D81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The TOR (target of rapamycin) pathway is an evolutionarily conserved signaling module regulating cell growth (accumulation of mass) in response to a variety of environmental cues such as nutrient availability, hypoxia, DNA damage and osmotic stress. Its pivotal role in cellular and organismal homeostasis is reflected in the fact that unrestrained signaling activity in mammals is associated with the occurrence of disease states including inflammation, cancer and diabetes. The existence of TOR homologs in unicellular organisms whose growth is affected by environmental factors, such as temperature, nutrients and osmolarity, suggests an ancient role for the TOR signaling network in the surveillance of stress conditions. Here, we will summarize recent advances in the TOR signaling field with special emphasis on how stress conditions impinge on insulin/insulin-like growth factor signaling/TOR signaling.
Collapse
Affiliation(s)
- J H Reiling
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142-1479, USA
| | | |
Collapse
|
20
|
Laine A, Topisirovic I, Zhai D, Reed JC, Borden KLB, Ronai Z. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 2006; 26:8901-13. [PMID: 17000756 PMCID: PMC1636826 DOI: 10.1128/mcb.01156-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abundance and activity of p53 are regulated largely by ubiquitin ligases. Here we demonstrate a previously undisclosed regulation of p53 localization and activity by Ubc13, an E2 ubiquitin-conjugating enzyme. While increasing p53 stability, Ubc13 decreases p53 transcriptional activity and increases its localization to the cytoplasm, changes that require its ubiquitin-conjugating activity. Ubc13 elicits K63-dependent ubiquitination of p53, which attenuates Hdm2-induced polyubiquitination of p53. Ubc13 association with p53 requires an intact C-terminal domain of p53 and is markedly stronger with a p53 mutant that cannot tetramerize. Expression of Ubc13 in vivo increases the pool of monomeric p53, indicating that Ubc13 affects tetramerization of p53. Significantly, wild-type but not mutant Ubc13 is associated with polysomes and enriches p53 within this fraction. In response to DNA damage, Ubc13 is no longer capable of facilitating p53 monomerization, in part due to a decrease in its own levels which is p53 dependent. Our findings point to a newly discerned mechanism important in the regulation of p53 organization, localization, and activity by Ubc13.
Collapse
Affiliation(s)
- Aaron Laine
- Signal Transduction Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
21
|
Grimm T, Hölzel M, Rohrmoser M, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Eick D. Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Res 2006; 34:3030-43. [PMID: 16738141 PMCID: PMC1474060 DOI: 10.1093/nar/gkl378] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolar PeBoW-complex, consisting of Pes1, Bop1 and WDR12, is essential for cell proliferation and processing of ribosomal RNA in mammalian cells. Here we have analysed the physical and functional interactions of Pes1 deletion mutants with the PeBoW-complex. Pes1 mutants M1 and M5, with N- and C-terminal truncations, respectively, displayed a dominant-negative phenotype. Both mutants showed nucleolar localization, blocked processing of the 36S/32S precursors to mature 28S rRNA, inhibited cell proliferation, and induced high p53 levels in proliferating, but not in resting cells. Mutant M1 and M5 proteins associated with large pre-ribosomal complexes and co-immunoprecipitated Bop1 and WDR12 proteins indicating their proper incorporation into the PeBoW-complex. We conclude that the dominant-negative effect of the M1 and M5 mutants is mediated by the impaired function of the PeBoW-complex.
Collapse
Affiliation(s)
- Thomas Grimm
- Institute of Clinical Molecular Biology and Tumour Genetics, GSF Research Centre for Environment and Health, Marchioninistrasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hölzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D. Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. ACTA ACUST UNITED AC 2005; 170:367-78. [PMID: 16043514 PMCID: PMC2171466 DOI: 10.1083/jcb.200501141] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Target genes of the protooncogene c-myc are implicated in cell cycle and growth control, yet the linkage of both is still unexplored. Here, we show that the products of the nucleolar target genes Pes1 and Bop1 form a stable complex with a novel member, WDR12 (PeBoW complex). Endogenous WDR12, a WD40 repeat protein, is crucial for processing of the 32S precursor ribosomal RNA (rRNA) and cell proliferation. Further, a conditionally expressed dominant-negative mutant of WDR12 also blocks rRNA processing and induces a reversible cell cycle arrest. Mutant WDR12 triggers accumulation of p53 in a p19ARF-independent manner in proliferating cells but not in quiescent cells. Interestingly, a potential homologous complex of Pes1–Bop1–WDR12 in yeast (Nop7p–Erb1p–Ytm1p) is involved in the control of ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW complex is required for ribosome biogenesis and cell proliferation in mammalian cells.
Collapse
Affiliation(s)
- Michael Hölzel
- Institute of Clinical Molecular Biology and Tumour Genetics, National Research Center for Environment and Health (GSF), 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The tumour suppressor protein p53 and the Epstein-Barr-virus-encoded Epstein-Barr virus nuclear antigen-1 (EBNA1) can regulate their own proteasomal degradation and mRNA translation - in effect, they mediate control of their own steady-state levels. A large fraction of mRNA-translation-initiation events does not give rise to functional proteins; so could this reflect a more widespread concept by which certain proteins that require tight control of expression use similar means of self-regulation?
Collapse
Affiliation(s)
- Robin Fåhraeus
- Institut de Pharmacologie, INSERM 716, Hôpital St Louis, 27 rue Juliette Dodu, 75010 Paris, France.
| |
Collapse
|
24
|
Abstract
Many kinds of multifunctional regulatory proteins have been identified that perform distinct biochemical functions in the nucleus, the cytoplasm, or both. Here we describe the recent discovery by Hall et al. (2004) of a new type of multifunctional protein: a metabolic enzyme that doubles as a transcription factor. This enzyme, Arg5,6, functions as a catalytic enzyme in ornithine biosynthesis and also binds and regulates the promoters of nuclear and mitochondrial genes. It may also regulate precursor mRNA metabolism. We discuss how proteins that serve as both metabolic enzymes and transcription factors might have evolved.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
25
|
Kaur K, Rani G, Widodo N, Nagpal A, Taira K, Kaul SC, Wadhwa R. Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food Chem Toxicol 2004; 42:2015-20. [PMID: 15500938 DOI: 10.1016/j.fct.2004.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 07/08/2004] [Indexed: 01/01/2023]
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda and is believed to have a variety of health promoting effects. Molecular mechanisms and pathways underlying these effects have not been studied. We tried to characterize various activities of leaf extract of Ashwagandha (Lash) raised in the field and in the laboratory. We found that the Lash from field-raised plants has a significant anti-proliferative activity in human tumorigenic cells. However, it did not impart any protection against the oxidative damage caused by high glucose and hydrogen peroxide to human tumor cells suggesting that it can be used as an anti-tumor, but not as an anti-oxidant, substance.
Collapse
Affiliation(s)
- K Kaur
- Cell Proliferation Research Team, Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Yoshida T, Itoh H, Kohno K. Binding of RNA to p53 regulates its oligomerization and DNA-binding activity. Oncogene 2004; 23:4371-9. [PMID: 15064727 DOI: 10.1038/sj.onc.1207583] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The C-terminus of p53 is responsible for maintaining the latent, non-DNA-binding form of p53. However, the mechanism by which the C-terminus regulates DNA binding is not yet fully understood. We show here that p53 interacts with RNA via its C-terminal domain and that disruption of this interaction, by RNase A treatment, truncation or phosphorylation of the C-terminus, restores DNA-binding activity. Furthermore, the oligomerization of p53 is significantly enhanced by disrupting the interaction between p53 and RNA. These findings suggest that binding of RNA to p53 is involved in the mechanism of p53 latency.
Collapse
Affiliation(s)
- Yoichiro Yoshida
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Arthur DC, Ghetu AF, Gubbins MJ, Edwards RA, Frost LS, Glover JNM. FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J 2004; 22:6346-55. [PMID: 14633993 PMCID: PMC291848 DOI: 10.1093/emboj/cdg607] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein FinO represses F-plasmid conjugative transfer by facilitating interactions between the mRNA of the major F-plasmid transcriptional activator, TraJ, and an antisense RNA, FinP. FinO is known to bind stem-loop structures in both FinP and traJ RNAs; however, the mechanism by which FinO facilitates sense-antisense pairing is poorly understood. Here we show that FinO acts as an RNA chaperone to promote strand exchange and duplexing between minimal RNA targets derived from FinP. This strongly suggests that FinO may function to destabilize internal secondary structures within FinP and traJ RNAs that would otherwise act as a kinetic trap to sense-antisense pairing. The energy for FinO-catalyzed base-pair destabilization does not arise from ATP hydrolysis but appears to be supplied directly from FinO RNA binding free energy. An analysis of the activities of mutants that are specifically deficient in strand exchange but not RNA-binding activity demonstrates that strand exchange is essential to the ability of FinO to mediate sense-antisense RNA recognition, and that this function also plays a role in repression of conjugation in vivo.
Collapse
Affiliation(s)
- David C Arthur
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
28
|
Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2004; 22:6068-77. [PMID: 14609953 PMCID: PMC275437 DOI: 10.1093/emboj/cdg579] [Citation(s) in RCA: 635] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
p53 protects against cancer through its capacity to induce cell cycle arrest or apoptosis under a large variety of cellular stresses. It is not known how such diversity of signals can be integrated by a single molecule. However, the literature reveals that a common denominator in all p53-inducing stresses is nucleolar disruption. We thus postulated that the impairment of nucleolar function might stabilize p53 by preventing its degradation. Using micropore irradiation, we demonstrate that large amounts of nuclear DNA damage fail to stabilize p53 unless the nucleolus is also disrupted. Forcing nucleolar disruption by anti-upstream binding factor (UBF) microinjection (in the absence of DNA damage) also causes p53 stabilization. We propose that the nucleolus is a stress sensor responsible for maintenance of low levels of p53, which are automatically elevated as soon as nucleolar function is impaired in response to stress. Our model integrates all known p53-inducing agents and also explains cell cycle-related variations in p53 levels which correlate with established phases of nucleolar assembly/disassembly through the cell cycle.
Collapse
Affiliation(s)
- Carlos P Rubbi
- YCR P53 Research Group, Department of Biology, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
29
|
Abstract
We have shown previously that cytoplasmic p53 is covalently linked to 5.8S rRNA. The covalent complex is associated with a small subset of polyribosomes, which includes polyribosomes translating p53 mRNA. Because 5.8S rRNA resides in or near the ribosomal P site, our findings suggested involvement of p53 in translational regulation. Ninety-seven kiloDaltons eEF2 was found to coimmunoprecipitate in a salt-stable complex with p53. The 97 kDa species was identified as eEF2, because it was (1) recognized by a polyclonal antiserum specific for eEF2, (2) ADP-ribosylated by diphtheria toxin (DT), and (3) radiolabeled by gamma-32P-azido-GTP and UV-irradiation. p53 and eEF2 sedimented in sucrose gradients in both polyribosomal and subribosomal fractions. Subribosomal p53 can bind eEF2 without the mediation of ribosomes, because (1) it binds subribososomal eEF2, (2) it binds phosphorylated eEF2, and (3) subribosomal p53-bound eEF2 can be ADP-ribosylated by DT. No effect of p53 activation was found on eEF2 expression or phosphorylation. However, the binding of eEF2 to p53 decreased when cytoplasmic p53 migrated to the nucleus. Renaturation of temperature sensitive A135V mutant p53 (ts-p53) was found to alter the sensitivity of p53 mRNA translation, but not bulk mRNA translation, to the translocation-specific elongation inhibitor, cycloheximide (Cx). The association of p53 with two translational components involved in ribosomal translocation, eEF2 and 5.8S rRNA, and the effect of p53 on sensitivity to the translocation inhibitor, Cx, as well as the known molecular interactions of these components in the ribosome suggest involvement of p53 in elongation.
Collapse
Affiliation(s)
- Xia Yin
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
30
|
Constantinou C, Bushell M, Jeffrey IW, Tilleray V, West M, Frost V, Hensold J, Clemens MJ. p53-induced inhibition of protein synthesis is independent of apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3122-32. [PMID: 12869187 DOI: 10.1046/j.1432-1033.2003.03687.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity. Moreover, exposure of the cells to a combination of the caspase inhibitor z-VAD.FMK and the survival factor erythropoietin prevents p53-induced cell death but does not reverse the inhibition of protein synthesis. We conclude that the p53-regulated cleavages of eIF4GI and eIF4B, as well as the overall inhibition of protein synthesis, are caspase-independent events that can be dissociated from the induction of apoptosis per se.
Collapse
Affiliation(s)
- Constantina Constantinou
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Nuclear localization of p53 is essential for its tumor suppressor function. Here, we have identified Parc, a Parkin-like ubiquitin ligase, as a cytoplasmic anchor protein in p53-associated protein complexes. Parc directly interacts and forms a approximately 1 MDa complex with p53 in the cytoplasm of unstressed cells. In the absence of stress, inactivation of Parc induces nuclear localization of endogenous p53 and activates p53-dependent apoptosis. Overexpression of Parc promotes cytoplasmic sequestration of ectopic p53. Furthermore, abnormal cytoplasmic localization of p53 was observed in a number of neuroblastoma cell lines; RNAi-mediated reduction of endogenous Parc significantly sensitizes these neuroblastoma cells in the DNA damage response. These results reveal that Parc is a critical regulator in controlling p53 subcellular localization and subsequent function.
Collapse
Affiliation(s)
- Anatoly Y Nikolaev
- Institute for Cancer Genetics and Department of Pathology, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
32
|
Prats AC, Prats H. Translational control of gene expression: role of IRESs and consequences for cell transformation and angiogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:367-413. [PMID: 12206457 DOI: 10.1016/s0079-6603(02)72075-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translational control of gene expression has, over the last 10 years, become appreciated as an important process in its regulation in eukaryotes. Among a series of control mechanisms exerted at the translational level, the use of alternative codons provides a very subtle means of increasing gene diversity by expressing several proteins from a single mRNA. The internal ribosome entry sites (IRESs) act as specific translational enhancers that allow translation initiation to occur independently of the classic cap-dependent mechanism, in response to specific stimuli and under the control of different trans-acting factors. It is striking to observe that the two processes mostly concern genes coding for control proteins such as growth factors, protooncogenes, angiogenesis factors, and apoptosis regulators. Here, we focus on the translational regulation of four mRNAs, with both IRESs and alternative initiation codons, which are the messengers of retroviral murine leukemia virus, fibroblast growth factor 2, vascular endothelial growth factor, and protooncogene c-myc. Four of them are involved in cell transformation and/or angiogenesis, with important consequences for such translation regulations in these pathophysiological processes.
Collapse
Affiliation(s)
- Anne-Catherine Prats
- Institut National de la Santé et de la Recherche Médicale U397, Endocrinologie et Communication Cellulaire, CHU Rangueil Toulouse, France
| | | |
Collapse
|
33
|
Cassiday LA, Maher LJ. Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 2002; 30:4118-26. [PMID: 12364590 PMCID: PMC140532 DOI: 10.1093/nar/gkf512] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multifunctional proteins challenge the conventional 'one protein-one function' paradigm. Here we note apparent multifunctional proteins with nucleic acid partners, tabulating eight examples. We then focus on eight additional cases of transcription factors that bind double-stranded DNA with sequence specificity, but that also appear to lead alternative lives as RNA-binding proteins. Exemplified by the prototypic Xenopus TFIIIA protein, and more recently by mammalian p53, this list of transcription factors includes WT-1, TRA-1, bicoid, the bacterial sigma(70) subunit, STAT1 and TLS/FUS. The existence of transcription factors that bind both DNA and RNA provides an interesting puzzle. Little is known concerning the biological roles of these alternative protein-nucleic acid interactions, and even less is known concerning the structural basis for dual nucleic acid specificity. We discuss how these natural examples have motivated us to identify artificial RNA sequences that competitively inhibit a DNA-binding transcription factor not known to have a natural RNA partner. The identification of such RNAs raises the possibility that RNA binding by DNA-binding proteins is more common than currently appreciated.
Collapse
Affiliation(s)
- Laura A Cassiday
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Horton LE, Bushell M, Barth-Baus D, Tilleray VJ, Clemens MJ, Hensold JO. p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 2002; 21:5325-34. [PMID: 12149653 DOI: 10.1038/sj.onc.1205662] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2002] [Revised: 05/07/2002] [Accepted: 05/10/2002] [Indexed: 11/09/2022]
Abstract
p53 is an important regulator of cell cycle progression and apoptosis, and inactivation of p53 is associated with tumorigenesis. Although p53 exerts many of its effects through regulation of transcription, this protein is also found in association with ribosomes and several mRNAs have been identified that are translationally controlled in a p53-dependent manner. We have utilized murine erythroleukemic cells that express a temperature-sensitive p53 protein to determine whether p53 also functions at the level of translation. The data presented here demonstrate that p53 causes a rapid decrease in translation initiation. Analysis of several potential mechanisms for regulating protein synthesis shows that p53 has selective effects on the phosphorylation of the eIF4E-binding protein, 4E-BP1, and the activity of the p70 ribosomal protein S6 kinase. These data provide evidence that modulation of translational activity constitutes a further mechanism by which the growth inhibitory effects of p53 may be mediated.
Collapse
Affiliation(s)
- Lynn E Horton
- The Department of Medicine, University/Ireland Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave.-BRB 333, Cleveland, Ohio, OH 44106-4937, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In order to better understand how tumor cells develop resistance to chemotherapy drugs, we screened a human cDNA expression library in Jurkat cells for cDNA's that conferred resistance to doxorubicin-induced cell death. One of the cDNA's isolated in the screen codes for ribosomal protein L35a, a component of the large subunit of the ribosome. Jurkat cells engineered to overexpress L35a protein were more resistant not only to doxorubicin but also to UV-irradiation, anti-Fas antibody, and serum starvation compared to Jurkat cells expressing endogenous levels of L35a. Jurkat cells overexpressing L35a did not have increased levels of the anti-apoptotic proteins Bcl-2 or Bcl-xL, the drug efflux pump P-glycoprotein, nor altered cellular growth kinetics or total protein synthesis. Our results provide new insight into L35a function and suggest that it may have a role in the cellular response to cytotoxic damage. Since L35a RNA is overexpressed in a significant number of glioblastoma multiforme (GBM) brain tumors, our results may stimulate further investigation into the possible role of L35a in the resistance of GBM to cytotoxic therapy.
Collapse
Affiliation(s)
- Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, MC L586, Portland, OR 97201-3098, USA.
| | | | | |
Collapse
|
36
|
Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002; 4:462-7. [PMID: 12032546 DOI: 10.1038/ncb801] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Activation of the p53 tumour suppressor protein can lead to cell-cycle arrest or apoptosis. p53 function is controlled by the mdm2 oncogene product, which targets p53 for proteasomal degradation. In this report we demonstrate that Mdm2 induces translation of the p53 mRNA from two alternative initiation sites, giving full-length p53 and another protein with a relative molecular mass (M(r)) of approximately 47K; we designate this protein as p53/47. This translation induction requires Mdm2 to interact directly with the nascent p53 polypeptide. The alternatively translated p53/47 does not contain the Mdm2-binding site and it lacks the most amino-terminal transcriptional-activation domain of p53. Increased expression of p53/47 stabilizes p53 in the presence of Mdm2, and alters the expression levels of p53-induced gene products. These results show how the interaction of Mdm2 with p53 leads to a change in the ratio of full-length p53 to p53/47 by inducing translation of both p53 proteins and the subsequent selective degradation of full-length p53. Thus, Mdm2 controls the expression levels of p53 through a dual mechanism that involves induction of synthesis and targeting for degradation.
Collapse
Affiliation(s)
- Yili Yin
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- E Sadowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
38
|
Galy B, Créancier L, Prado-Lourenço L, Prats AC, Prats H. p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 2001; 20:4613-20. [PMID: 11498784 DOI: 10.1038/sj.onc.1204630] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Revised: 04/04/2001] [Accepted: 05/10/2001] [Indexed: 12/30/2022]
Abstract
Tumour suppressor p53 has been shown to inhibit fibroblast growth factor 2 expression post-transcriptionally in cultured cells. Here we have investigated the mechanism responsible for this post-transcriptional blockade. Deletion mutagenesis of the FGF-2 mRNA leader revealed the requirement of at least four RNA cis-acting elements to mediate the inhibitory effect of p53 in SK-Hep-1 transfected cells, suggesting the involvement of RNA secondary or tertiary structures. Recombinant wild-type, but not Ala(143) mutant p53, was able to specifically repress FGF-2 mRNA translation in rabbit reticulocyte lysate, in a dose dependent manner. Sucrose gradient experiments showed that p53 blocks translation initiation by preventing 80S ribosome formation on an mRNA bearing the FGF-2 mRNA leader sequence. Interaction of wild-type and mutant p53 with different RNAs showed no significant correlation between p53 RNA binding activity and its translational inhibiting effect. However, by checking the accessibility of the FGF-2 mRNA leader to complementary oligonucleotide probes, we showed that the binding to RNA of wild-type, but not mutant p53, induced RNA conformational changes that might be responsible for the translational blockade. This strongly suggests that p53 represses FGF-2 mRNA translation by a direct mechanism involving its nucleic acid unwinding-annealing activity.
Collapse
Affiliation(s)
- B Galy
- Institut National de la Santé et de la Recherche Médicale U397, Endocrinologie et Communication Cellulaire, Institut Fédératif de Recherche Louis Bugnard, C.H.U. Rangueil, 31403 Toulouse Cedex 04, France
| | | | | | | | | |
Collapse
|
39
|
Mokdad-Gargouri R, Belhadj K, Gargouri A. Translational control of human p53 expression in yeast mediated by 5'-UTR-ORF structural interaction. Nucleic Acids Res 2001; 29:1222-7. [PMID: 11222773 PMCID: PMC29724 DOI: 10.1093/nar/29.5.1222] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have expressed human p53 cDNA in the yeast Saccharomyces cerevisiae and shown that the level of production and the length of the p53 protein depends on the presence of untranslated mRNA regions (UTRs). The expression of the ORF alone leads to a p53 protein of correct size (53 kDa) that accumulates to high levels, concomitantly with the presence of a small amount of a p40 protein (40 kDa). However, when either the entire 5'-UTR and a part of the 3'- or 5'-UTR alone is used, this leads to the production of small amounts of the 40 kDa truncated form only. The p40 protein corresponds to a truncated form of p53 at the C-terminal extremity since it reacts only with a monoclonal antibody recognising the N-terminal epitope. This effect on the amount and length of p53 protein had no correlation at the mRNA level, suggesting that translational control probably occurs through the 5'-UTR. We propose a model of structural interaction between this UTR and a part of the ORF mRNA for the regulation of p53 expression in this heterologous context.
Collapse
Affiliation(s)
- R Mokdad-Gargouri
- Laboratoire 'Génétique Moléculaire des Eucaryotes', Centre de Biotechnologie de Sfax, BP'K'3038, Sfax-Tunisia.
| | | | | |
Collapse
|
40
|
Abstract
Wild-type p53 is stabilized and accumulates in the nucleus of DNA damaged cells. The effect of stabilizing p53 is to inhibit cell growth, either through a G1 cell cycle arrest or apoptotic cell death. MDM2 can inhibit p53 activity, in part, by promoting its rapid degradation through the ubiquitin proteolysis pathway. In the current study, MDM2-mediated degradation of p53 was partially inhibited in cells treated with leptomycin B (LMB), a specific inhibitor of nuclear export. In contrast, levels of ubiquitinated p53 increased in LMB-treated cells, indicating that nuclear export is not required for p53 ubiquitination. To investigate this further, p53 mutants were generated which localize to either the nucleus or cytoplasm, and their susceptibility to MDM2-mediated ubiquitination was assessed. p53 mutants that localized to either the nucleus or the cytoplasm were efficiently ubiquitinated, and their steady-state levels decreased, when coexpressed with MDM2. In addition, an MDM2-mutant that localized to the cytoplasm was able to ubiquitinate and degrade a p53 mutant which was similarly localized in the cytoplasm. Our results indicate that nuclear export is not required for p53 ubiquitination, and that p53 proteins that localize to either the nucleus or cytoplasm can be ubiquitinated and degraded by MDM2.
Collapse
Affiliation(s)
- Z K Yu
- Harvard School of Public Health, Department of Cancer Cell Biology, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
41
|
Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME. p53 binds selectively to the 5' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol 2000; 20:8420-31. [PMID: 11046139 PMCID: PMC102149 DOI: 10.1128/mcb.20.22.8420-8431.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
One consequence of transforming growth factor beta (TGF-beta) treatment is inhibition of Cdk4 synthesis, and this is dependent on p53. Here, we show that the 5' untranslated region (UTR) of the cdk4 mRNA is both necessary and sufficient for wild-type p53-dependent TGF-beta-regulated translational inhibition of cdk4. Wild-type p53 bound selectively to the 5' UTR of the cdk4 mRNA and inhibited translation of RNAs that contain this region. RNA binding and translational control are two genetically separable functions of p53, as are specific and nonspecific RNA binding. Moreover, transactivation-defective mutants of p53 retain the ability to regulate cdk4 translation. Our findings suggest that p53 functions as a regulator of translation in response to TGF-beta in vivo.
Collapse
Affiliation(s)
- S J Miller
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
42
|
Tesana S, Takahashi Y, Sithithaworn P, Ando K, Sakakura T, Yutanawiboonchai W, Pairojkul C, Ruangjirachuporn W. Ultrastructural and immunohistochemical analysis of cholangiocarcinoma in immunized Syrian golden hamsters infected with Opisthorchis viverrini and administered with dimethylnitrosamine. Parasitol Int 2000; 49:239-51. [PMID: 11426579 DOI: 10.1016/s1383-5769(00)00052-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Utilizing the experimental model in Syrian golden hamsters, we explored the role of immunization in carcinogenesis. The animals, which were infected with liver flukes (Opisthorchis viverrini), and administered a subcarcinogenic dose of dimethylnitrosamine, developed cancer. Pre-immunizing with a crude somatic antigen did not reduce cancer development, but accelerated carcinogenesis. Histopathological analysis of the cancer tissues was done once at week 30 and again at week 39 using H and E staining, immunostaining for the p53 tumor suppressor phosphoprotein, and electron microscopy. Thirty weeks after immunization, the immunized hamsters developed tubular adenocarcinoma at a higher rate (71.43%) than the non-immunized group (20.00%). This rate (20.00%) increased to 63.64% by week 39. The small foci cancer in the non-immunized group decreased in frequency from 80.00% (at week 30) to 36.36% (by week 39), suggesting the small foci cancer progressed to tubular adenocarcinoma during the 9-week interval. Most of the observed tubular adenocarcinoma was well differentiated. Nearly all hamsters that tested positive for cancer also tested positive for p53 immunostaining in the epithelia of the small bile ducts. The positive reaction for p53-immunostaining was localized in the rough endoplasmic reticulum, Golgi apparatus and perinuclear membranes. The electron micrographs of these positive p53-immunostained cells showed characteristics of early cancer. The detection of p53 in early cancer development makes it a candidate as a tumor marker.
Collapse
Affiliation(s)
- S Tesana
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Affiliation(s)
- M Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
45
|
Jimenez GS, Khan SH, Stommel JM, Wahl GM. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 1999; 18:7656-65. [PMID: 10618705 DOI: 10.1038/sj.onc.1203013] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
p53 activation by diverse stresses involves post-translational modifications that alter its structure and result in its nuclear accumulation. We will discuss several unresolved topics regarding p53 regulation which are currently under investigation. DNA damage is perhaps the best-studied stress which activates p53, and recent data implicate phosphorylation at N-terminal serine residues as critical in this process. We discuss recent data regarding the potential kinases which modify p53 and the possible role of the resulting phosphorylation events. By contrast, much less is understood about agents which disrupt the mitotic spindle. The cell cycle phase, induction signal, and biochemical mechanism of the reversible arrest induced by microtubule disruption are currently under investigation. Finally, a key event in response to any genotoxic stress is the accumulation of p53 in the nucleus. The factors which determine the steady state level of p53 are starting to be elucidated, but the mechanisms responsible for nuclear accumulation and nuclear export remain controversial. We discuss new studies revealing a mechanism for nuclear retention of p53, and the potential contributions of MDM2 to this process.
Collapse
Affiliation(s)
- G S Jimenez
- Gene Expression Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | | | |
Collapse
|
46
|
Laín S, Midgley C, Sparks A, Lane EB, Lane DP. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. Exp Cell Res 1999; 248:457-72. [PMID: 10222137 DOI: 10.1006/excr.1999.4433] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptomycin B is a cytotoxin which directly interacts with and inhibits the action of CRM1, an essential mediator of the nuclear exit of proteins containing nuclear export signals (NES) of the HIV1 REV type. We show that addition of leptomycin B to human primary fibroblasts increased the levels of the p53 tumor suppressor protein. This was accompanied by the induction of p53-dependent transcriptional activity in cultured cells and an increase in the levels of the products of two p53-responsive genes, the p21(CIP1/WAF1) and HDM2 proteins. Leptomycin B induced the accumulation of p53 and HDM2 in the nucleus and the appearance of discrete nuclear aggregates containing both proteins. It has been reported that the transcriptional activity of p53 is modulated by its interaction with the HDM2 protein which also targets p53 for rapid degradation. Using a model cell line conditionally expressing MDM2, the murine analogue of HDM2, we present evidence indicating that leptomycin B abrogates MDM2's role in p53 degradation and that the accumulation of p53 in distinct nuclear bodies is mediated by MDM2. Since HDM2 has recently been shown to contain a functional NES of the REV type, the most likely explanation for our results is that the effect of leptomycin B on HDM2 and p53 is due to the inhibition of nuclear export. The ability to visualize sites where p53 and HDM2 colocalize provides a new approach to study the association between the two proteins in vivo. These p53/HDM2-positive nuclear foci were found to also contain the U1A snRNP A and to be juxtaposed to the PML oncogenic domains.
Collapse
Affiliation(s)
- S Laín
- Department of Biochemistry, University of Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 1999; 18:2690-702. [PMID: 10348343 DOI: 10.1038/sj.onc.1202620] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor suppressor p53 is a multifunctional protein that plays a critical role in modulating cellular responses upon DNA damage or other stresses. These functions of p53 are regulated both by protein-protein interactions and phosphorylation. The double-stranded RNA activated protein kinase PKR is a serine/threonine kinase that modulates protein synthesis through the phosphorylation of translation initiation factor eIF-2alpha. PKR is an interferon (IFN)-inducible protein that is thought to mediate the anti-viral and anti-proliferative effects of IFN via its capacity to inhibit protein synthesis. Here we report that PKR physically associates with p53. The interaction of PKR with p53 is enhanced by IFNs and upon conditions that p53 acquires a wild type conformation. PKR/p53 complex formation in vitro requires the N-terminal regulatory domain of PKR and the last 30 amino acids of the C-terminus of human p53. In addition, p53 may function as a substrate of PKR since phosphorylation of human p53 on serine392 is induced by activated PKR in vitro. These novel findings raise the possibility of a functional interaction between PKR and p53 in vivo, which may account, at least in part, for the ability of each protein to regulate gene expression at both the transcriptional and the translational levels.
Collapse
Affiliation(s)
- A R Cuddihy
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
48
|
Abstract
There is now a growing body of evidence which suggests links between the regulation of protein synthesis and the disruption of cell behaviour that typifies cancer. This directed issue of the International Journal of Biochemistry and Cell Biology presents several review articles of relevance to this field. The topics covered include the significance of the regulation and overexpression of polypeptide chain initiation factors for cell transformation and malignancy, the role of mRNA structure in the control of synthesis of key growth regulatory proteins, the actions of the eIF2 alpha-specific protein kinase PKR in the control cell growth and apoptosis, and the involvement of the elongation factor eEF1 in oncogenesis. The purpose of this article is to give an overview of the field and to indicate where we may expect developments to occur in the next few years.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
49
|
Abstract
To maintain a constant size during cellular proliferation, a cell's growth rate must match its rate of division. Factors that govern proliferation must therefore coordinately regulate two distinct processes: the cellular biosynthesis that drives accumulation of mass, and progression through the cell division cycle. Recent work has identified several mechanisms which couple cell division to growth. Different mechanisms are used at different times during development to coordinate growth, cell division, and patterning.
Collapse
Affiliation(s)
- T P Neufeld
- Fred Hutchinson Cancer Research Center Basic Sciences Division 1100 Fairview Avenue North Seattle WA 98109 USA.
| | | |
Collapse
|
50
|
Abstract
p53 is a major tumour suppressor that is inactivated in a large proportion of human cancers. We show that p53 serves as a general repressor of transcription by RNA polymerase (pol) III. It can inhibit the synthesis of a range of essential small cellular RNAs including tRNA, 5S rRNA and U6 snRNA, as well as viral products such as the adenovirus VAI RNA. Fibroblasts derived from p53 knock-out mice display a substantial increase in pol III transcriptional activity. Endogenous cellular p53 is shown to interact with the TATA-binding protein (TBP)-containing general factor TFIIIB, thereby compromising its function severely. However, assembly of TFIIIB into a pre-initiation complex confers substantial protection against the inhibitory effects of p53. Since TFIIIB is an essential determinant of the biosynthetic capacity of cells, its release from repression by p53 may contribute to a loss of growth control during the development of many tumours.
Collapse
Affiliation(s)
- C A Cairns
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|