1
|
Chen B, Niu J, Kreuzer J, Zheng B, Jarugumilli GK, Haas W, Wu X. Auto-fatty acylation of transcription factor RFX3 regulates ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E8403-E8412. [PMID: 30127002 PMCID: PMC6130365 DOI: 10.1073/pnas.1800949115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Defects in cilia have been associated with an expanding human disease spectrum known as ciliopathies. Regulatory Factor X 3 (RFX3) is one of the major transcription factors required for ciliogenesis and cilia functions. In addition, RFX3 regulates pancreatic islet cell differentiation and mature β-cell functions. However, how RFX3 protein is regulated at the posttranslational level remains poorly understood. Using chemical reporters of protein fatty acylation and mass spectrometry analysis, here we show that RFX3 transcriptional activity is regulated by S-fatty acylation at a highly conserved cysteine residue in the dimerization domain. Surprisingly, RFX3 undergoes enzyme-independent, "self-catalyzed" auto-fatty acylation and displays preferences for 18-carbon stearic acid and oleic acid. The fatty acylation-deficient mutant of RFX3 shows decreased homodimerization; fails to promote ciliary gene expression, ciliogenesis, and elongation; and impairs Hedgehog signaling. Our findings reveal a regulation of RFX3 transcription factor and link fatty acid metabolism and protein lipidation to the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Jixiao Niu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
- Department of Medicine, Harvard Medical School, Charlestown, MA 02129
| | - Baohui Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
- Department of Medicine, Harvard Medical School, Charlestown, MA 02129
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129;
| |
Collapse
|
2
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 2013; 14:230-49. [PMID: 24294104 PMCID: PMC3731814 DOI: 10.2174/1389202911314040002] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/22/2022] Open
Abstract
Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Simona Giacobbe
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
- School of Biotechnological Sciences, University of Naples “Federico II” Italy
| |
Collapse
|
4
|
Shumay E, Fowler JS. Identification and characterization of putative methylation targets in the MAOA locus using bioinformatic approaches. Epigenetics 2010; 5:325-42. [PMID: 20421737 DOI: 10.4161/epi.5.4.11719] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Monoamine oxidase A (MAO A) is an enzyme that catalyzes the oxidation of neurotransmitter amines. A functional polymorphism in the human MAOA gene (high- and low-MAOA) has been associated with distinct behavioral phenotypes. To investigate directly the biological mechanism whereby this polymorphism influences brain function, we recently measured the activity of the MAO A enzyme in healthy volunteers. When found no relationship between the individual's brain MAO A level and the MAOA genotype, we postulated that there are additional regulatory mechanisms that control the MAOA expression. Given that DNA methylation is linked to the regulation of gene expression, we hypothesized that epigenetic mechanisms factor into the MAOA expression. Our underplaying assumption was that the differences in an individual's genotype play a key role in the epigenetic potential of the MAOA locus and, consequently, determine the individual's level of MAO A activity in the brain. As a first step towards experimental validation of the hypothesis, we performed a comprehensive bioinformatic analysis aiming to interrogate genomic features and attributes of the MAOA locus that might modulate its epigenetic sensitivity. Major findings of our analysis are the following: (1) the extended MAOA regulatory region contains two CpG islands (CGIs), one of which overlaps with the canonical MAOA promoter and the other is located further upstream; both CGIs exhibit sensitivity to differential methylation. (2) The uVNTR's effect on the MAOA's transcriptional activity might have epigenetic nature: this polymorphic region resides within the MAOA's CGI and itself contains CpGs, thus, the number of repeating increments effectively changes the number of methylatable cytosines in the MAOA promoter. An array of in silico analyses (the nucleosome positioning, the physical properties of the local DNA, the clustering of transcription-factor binding sites) together with experimental data on histone modifications and Pol 2 sites and data from the RefSeq mRNA library suggest that the MAOA gene might have an alternative promoter. Based on our findings, we propose a regulatory mechanism for the human MAOA according to which the MAOA expression in vivo is executed by the generation of tissue-specific transcripts initiated from the alternative promoters (both CGI-associated) where transcriptional activation of a particular promoter is under epigenetic control.
Collapse
Affiliation(s)
- Elena Shumay
- Brookhaven National Laboratory, Medical Department, Upton, NY, USA.
| | | |
Collapse
|
5
|
Nathanson JL, Jappelli R, Scheeff ED, Manning G, Obata K, Brenner S, Callaway EM. Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types. Front Neural Circuits 2009; 3:19. [PMID: 19949461 PMCID: PMC2783723 DOI: 10.3389/neuro.04.019.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/13/2009] [Indexed: 12/05/2022] Open
Abstract
Short cell-type specific promoter sequences are important for targeted gene therapy and studies of brain circuitry. We report on the ability of short promoter sequences to drive fluorescent protein expression in specific types of mammalian cortical inhibitory neurons using adeno-associated virus (AAV) and lentivirus (LV) vectors. We tested many gene regulatory sequences derived from fugu (Takifugu rubripes), mouse, human, and synthetic composite regulatory elements. All fugu compact promoters expressed in mouse cortex, with only the somatostatin (SST) and the neuropeptide Y (NPY) promoters largely restricting expression to GABAergic neurons. However these promoters did not control expression in inhibitory cells in a subtype specific manner. We also tested mammalian promoter sequences derived from genes putatively coexpressed or coregulated within three major inhibitory interneuron classes (PV, SST, VIP). In contrast to the fugu promoters, many of the mammalian sequences failed to express, and only the promoter from gene A930038C07Rik conferred restricted expression, although as in the case of the fugu sequences, this too was not inhibitory neuron subtype specific. Lastly and more promisingly, a synthetic sequence consisting of a composite regulatory element assembled with PAX6 E1.1 binding sites, NRSE and a minimal CMV promoter showed markedly restricted expression to a small subset of mostly inhibitory neurons, but whose commonalities are unknown.
Collapse
Affiliation(s)
- Jason L Nathanson
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:19. [PMID: 19723296 PMCID: PMC2749017 DOI: 10.1186/1754-6834-2-19] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 09/01/2009] [Indexed: 05/05/2023]
Abstract
Hypocrea jecorina (= Trichoderma reesei) is the main industrial source of cellulases and hemicellulases used to depolymerise plant biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. Cellulases are formed adaptively, and several positive (XYR1, ACE2, HAP2/3/5) and negative (ACE1, CRE1) components involved in this regulation are now known. In addition, its complete genome sequence has been recently published, thus making the organism susceptible to targeted improvement by metabolic engineering. In this review, we summarise current knowledge about how cellulase biosynthesis is regulated, and outline recent approaches and suitable strategies for facilitating the targeted improvement of cellulase production by genetic engineering.
Collapse
Affiliation(s)
- Christian P Kubicek
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Getreidemarkt, A-1060 Vienna, Austria
| | - Marianna Mikus
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Getreidemarkt, A-1060 Vienna, Austria
| | - André Schuster
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Getreidemarkt, A-1060 Vienna, Austria
| | - Monika Schmoll
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Getreidemarkt, A-1060 Vienna, Austria
| | - Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Getreidemarkt, A-1060 Vienna, Austria
| |
Collapse
|
7
|
Abstract
The nuclear factor-Y (NF-Y), a trimeric, CCAAT-binding transcriptional activator with histone-like subunits, was until recently considered a prototypical promoter transcription factor. However, recent in vivo chromatin immunoprecipitation assays associated with microarray methodologies (chromatin immunoprecipitation on chip experiments) have indicated that a large portion of target sites (40%-50%) are located outside of core promoters. We applied the tethered particle motion technique to the major histocompatibility complex class II enhancer-promoter region to characterize i), the progressive compaction of DNA due to increasing concentrations of NF-Y, ii), the role of specific subunits and domains of NF-Y in the process, and iii), the interplay between NF-Y and the regulatory factor-X, which cooperatively binds to the X-box adjacent to the CCAAT box. Our study shows that NF-Y has histone-like activity, since it binds DNA nonspecifically with high affinity to compact it. This activity, which depends on the presence of all trimer subunits and of their glutamine-rich domains, seems to be attenuated by the transcriptional cofactor regulatory factor-X. Most importantly NF-Y-induced DNA compaction may facilitate promoter-enhancer interactions, which are known to be critical for expression regulation.
Collapse
|
8
|
Thornburg BG, Gotea V, Makałowski W. Transposable elements as a significant source of transcription regulating signals. Gene 2006; 365:104-10. [PMID: 16376497 DOI: 10.1016/j.gene.2005.09.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/06/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes, contributing about 50% to the size of mammalian genomes. TEs serve as recombination hot spots and may acquire specific cellular functions, such as controlling protein translation and gene transcription. The latter is the subject of the analysis presented. We scanned TE sequences located in promoter regions of all annotated genes in the human genome for their content in potential transcription regulating signals. All investigated signals are likely to be over-represented in at least one TE class, which shows that TEs have an important potential to contribute to pre-transcriptional gene regulation, especially by moving transcriptional signals within the genome and thus potentially leading to new gene expression patterns. We also found that some TE classes are more likely than others to carry transcription regulating signals, which can explain why they have different retention rates in regions neighboring genes.
Collapse
Affiliation(s)
- Bartley G Thornburg
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
9
|
Huang CJ, Wu SC, Choo KB. Transcriptional modulation of the pre-implantation embryo-specific Rnf35 gene by the Y-box protein NF-Y/CBF. Biochem J 2005; 387:367-75. [PMID: 15516209 PMCID: PMC1134964 DOI: 10.1042/bj20041364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maternal-to-zygotic transition of a fertilized egg and the subsequent pre-implantation development of the embryo involve zygotic genome activation and reprogramming of gene expression. The goal of the present study is to establish a model suitable for the characterization of transcriptional modulation of mammalian pre-implantation development. Rnf35 is a mouse RING-finger protein gene that is temporally transcribed in the early embryo, but is permanently silenced before the blastocyst stage of development. We first show that the Chinese-hamster ovary-K1 cells are unique in supporting Rnf35 promoter activities in transient transfection assays. Using the permissive Chinese-hamster ovary-K1 cell line, we show that Rnf35 transcription is driven by an Inr (initiator) core promoter element in the absence of a TATA box; the Inr promoter function is confirmed by direct microinjection of mouse one-cell embryos. This is the first demonstration of the involvement of an Inr core promoter element in transcription in pre-implantation development. We show that the Rnf35 promoter is regulated by three obligatory Y-box (CCAAT-box) elements: two Y boxes (Y(I) and Y(II)) located at -81 are coupled in a palindrome and act synergistically in contributing to Rnf35 transcription; the third Y box (Y(III)) is situated at -13, just upstream of the Inr element, and may be an integral part of the Inr function. Electrophoretic mobility-shift assays and competition experiments further reveal that the Y(I) box is bound by the ubiquitous NF-Y (nuclear factor-Y)/CBF (CCAAT-binding factor) and that Y(II) is targeted by an unidentified protein(s) that acts synergistically with the NF-Y. We suggest that the NF-Y, targeting at a Y-box sequence, may function as an important activator in transcriptional regulation of the Rnf35 gene in the pre-implantation embryo.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- *Department of Animal Science, College of Agriculture, Chinese Culture University, Taipei 11192, Taiwan
| | - Shinn-Chih Wu
- †Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli 350, Taiwan
| | - Kong-Bung Choo
- ‡Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Osborne AR, Zhang H, Blanck G. Oct-1 DNA binding activity unresponsive to retinoblastoma protein expression prevents MHC class II induction in a non-small cell lung carcinoma cell line. Mol Immunol 2005; 43:710-6. [PMID: 16360016 DOI: 10.1016/j.molimm.2005.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Numerous human tumor lines fail to induce major histocompatibility (MHC) class II expression following interferon-gamma (IFN-gamma) treatment, a response that is considered to be a normal function for almost all human parenchymal and connective tissue cell-types. The effect of MHC class II non-inducibility on solid tumor growth is controversial, but an extensive body of literature indicates that tumor cell MHC class II expression can lead to an antitumor response or tumor tolerance, depending on a number of variables. Thus, understanding the molecular basis for MHC class II induction failures in solid tumor cells will likely lead to ideas for manipulating the antitumor immune response. To date, a handful of tumor associated molecular anomalies have accounted for all the known failures of MHC class II inducibility. In particular, lack of the retinoblastoma tumor suppressor protein (Rb) has been shown in both human and mouse cells to be strongly associated with failure to induce MHC class II. The basis for this relationship is traceable to, among other things, high level Oct-1 DNA binding activity in Rb-defective cells, which represses the prototypical human MHC class II gene, HLA-DRA. Ordinarily, re-establishment of Rb expression leads to elimination of, or substantially reduced Oct-1 DNA binding activity and to rescue of HLA-DRA inducibility. However, in the case of one non-small cell lung carcinoma line (NSCLC), Rb re-expression failed to rescue HLA-DRA inducibility despite successful re-establishment of Rb-function. We now report that this failure is traceable to the failure of Rb to rescue normal Oct-1 function. Furthermore, histone deacetylase inhibitor treatment allows a bypass of the Rb requirement and facilitates the MHC class II induction in this NSCLC line.
Collapse
Affiliation(s)
- Aaron R Osborne
- Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, MDC Box 7, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | |
Collapse
|
11
|
Takamura Y, Ikeda H, Kanaseki T, Toyota M, Tokino T, Imai K, Houkin K, Sato N. Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA). Glia 2004; 45:392-405. [PMID: 14966870 DOI: 10.1002/glia.10343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We first classified 12 malignant glioma cell lines into three different groups (types 1-3) with respect to major histocompatibility complex (MHC) class II expression and analyzed each group based on the different expression status of the class II transactivator (CIITA) gene. Glioma type 1 (2 of 12) showed constitutive expression of all class II molecules that might be mediated by activation of B cell-specific CIITA promoter III. Glioma type 2 represented the major phenotype (66.7 %) of malignant glioma cell lines, and MHC class II expression was induced by interferon-gamma (IFN-gamma) in this phenotype. Analysis of glioma tissue samples revealed that CIITA promoter IV was detected in 9 of 11 patients (81.8%); however, promoter III was only in two (18.2%). Moreover, cultured glioma cells obtained from a fresh tumor sample upregulated expression of CIITA and class II molecules in the presence of IFN-gamma, strongly suggesting that glioma type 2 might be predominant in glioma tissues. Glioma type 3 (2 of 12) showed CIITA transcripts but loss of MHC class II expression even in the presence of IFN-gamma. In addition, we determined that the constitutive MHC class II expression in the glioma cell lines (type 1) was the result of transcriptional activation of the CIITA gene. This phenomenon was mediated by global histone acetylation over 6 kb upstream from the transcriptional start site of CIITA promoter III. Moreover, stable transfection of CIITA promoter IV as well as promoter III into MHC class II inducible cell lines restored the constitutive expression of all class II molecules. These studies lay the foundation to understand the molecular basis for the expression of class II molecules in gliomas.
Collapse
Affiliation(s)
- Yukio Takamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Adams BS, Cha HC, Cleary J, Haiying T, Wang H, Sitwala K, Markovitz DM. DEK binding to class II MHC Y-box sequences is gene- and allele-specific. Arthritis Res Ther 2003; 5:R226-33. [PMID: 12823858 PMCID: PMC165066 DOI: 10.1186/ar774] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 04/08/2003] [Accepted: 04/29/2003] [Indexed: 02/07/2023] Open
Abstract
Using electrophoretic mobility shift assays, we examined sequence-specific binding of DEK, a potential autoantigen in juvenile rheumatoid arthritis, to conserved Y-box regulatory sequences in class II MHC gene promoters. Nuclear extracts from several cell lines of different phenotypes contained sequence-specific binding activity recognizing DRA, DQA1*0101, and DQA1*0501 Y-box sequences. Participation of both DEK and NF-Y in the DQA1 Y-box binding complex was confirmed by 'supershifting' with anti-DEK and anti-NF-Y antibodies. Recombinant DEK also bound specifically to the DQA1*0101 Y box and to the polymorphic DQA1*0501 Y box, but not to the consensus DRA Y box. Measurement of the apparent dissociation constants demonstrated a two- to fivefold difference in DEK binding to the DQA1 Y-box sequence in comparison with other class II MHC Y-box sequences. Residues that are crucial for DEK binding to the DQA1*0101 Y box were identified by DNase I footprinting. The specific characteristics of DEK binding to these related sequences suggests a potential role for DEK in differential regulation of class II MHC expression, and thus in the pathogenesis of juvenile rheumatoid arthritis and other autoimmune diseases.
Collapse
Affiliation(s)
- Barbara S Adams
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Hyuk C Cha
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Joanne Cleary
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Tan Haiying
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Hongling Wang
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kajal Sitwala
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Kanaseki T, Ikeda H, Takamura Y, Toyota M, Hirohashi Y, Tokino T, Himi T, Sato N. Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4980-5. [PMID: 12734341 DOI: 10.4049/jimmunol.170.10.4980] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we first categorized nine squamous cell carcinoma (SCC) cell lines into two groups in terms of the expression of HLA-DR, -DP, and -DQ molecules. Subsequently, the expression of class II transactivator (CIITA) was studied in these cell lines, because it is widely accepted that the expression of MHC class II molecules is regulated by different types of CIITA transcripts that are initiated by distinct promoters. The majority of the SCC cell lines (six of nine) expressed HLA-DR molecules and CIITA promoter IV (pIV) transcripts in the presence of IFN-gamma. In contrast, three of the nine SCC cell lines were completely negative for class II molecules and all types of CIITA, suggesting epigenetic changes in the promoter region in these cells. Previously, methylation of CIITA pIV was reported to silence CIITA gene expression. We extensively studied the methylation status of CIITA pIV using a panel of 22 SCC cell lines. Remarkably, none of the SCC cell lines demonstrated hypermethylation at the site. In contrast, treatment with a histone deacetylation inhibitor in combination with IFN-gamma clearly restored the expression of the CIITA type IV gene in the HLA-DR-negative SCC cell lines, and the acetylation status of histone H3 examined by chromatin immunoprecipitation analysis was closely associated with the gene expression. Moreover, stable transfection of the CIITA gene into an HLA-DR-negative cell line restored constitutive expression of MHC class II molecules. Therefore, histone deacetylation, but not hypermethylation, modifies CIITA DNA and class II gene expression in SCC.
Collapse
Affiliation(s)
- Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zika E, Greer SF, Zhu XS, Ting JPY. Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and major histocompatibility complex class II enhanceosome formation. Mol Cell Biol 2003; 23:3091-102. [PMID: 12697811 PMCID: PMC153210 DOI: 10.1128/mcb.23.9.3091-3102.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class II transactivator (CIITA) is a master transcriptional regulator of major histocompatibility complex class II (MHC-II) promoters. CIITA does not bind DNA, but it interacts with the transcription factors RFX5, NF-Y, and CREB and associated chromatin-modifying enzymes to form an enhanceosome. This report examines the effects of histone deacetylases 1 and 2 (HDAC1/HDAC2) on MHC-II gene induction by gamma interferon (IFN-gamma) and CIITA. The results show that an inhibitor of HDACs, trichostatin A, enhances IFN-gamma-induced MHC-II expression, while HDAC1/HDAC2 inhibits IFN-gamma- and CIITA-induced MHC-II gene expression. mSin3A, a corepressor of HDAC1/HDAC2, is important for this inhibition, while NcoR, a corepressor of HDAC3, is not. The effect of this inhibition is directed at CIITA, since HDAC1/HDAC2 reduces transactivation by a GAL4-CIITA fusion protein. CIITA binds to overexpressed and endogenous HDAC1, suggesting that HDAC and CIITA may affect each other by direct or indirect association. Inhibition of HDAC activity dramatically increases the association of NF-YB and RFX5 with CIITA, the assembly of CIITA, NF-YB, and RFX5 enhanceosome, and the extent of H3 acetylation at the MHC-II promoter. These results suggest a model where HDAC1/HDAC2 affect the function of CIITA through a disruption of MHC-II enhanceosome and relevant coactivator-transcription factor association and provide evidence that CIITA may act as a molecular switch to modulate MHC-II transcription by coordinating the functions of both histone acetylases and HDACs.
Collapse
Affiliation(s)
- Eleni Zika
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
15
|
Peng Y, Jahroudi N. The NFY transcription factor inhibits von Willebrand factor promoter activation in non-endothelial cells through recruitment of histone deacetylases. J Biol Chem 2003; 278:8385-94. [PMID: 12511565 DOI: 10.1074/jbc.m213156200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human von Willebrand factor (VWF) gene sequences +155 to +247 contain cis-acting elements that contribute toward endothelial specific activation of the VWF promoter. Analyses of this region demonstrated the presence of a GATA-binding site that is necessary for the promoter activation in endothelial cells. We have reported recently the presence of a novel NFY-binding sequence in this region that does not conform to the consensus NFY-binding sequence CCAAT. NFY was shown to function as a repressor of the VWF promoter through interaction with this novel binding site. Here we report that the NFY interacts with histone deacetylases (HDACs) in a cell type-specific manner and recruits them to the VWF promoter to inhibit the promoter activity in non-endothelial cells. Analyses of the acetylation status of histones in the chromatin region containing the VWF promoter sequences demonstrated that these sequences are associated with acetylated histone H4 specifically in endothelial cells. It was also demonstrated that HDACs are specifically recruited to the same chromatin region in non-endothelial cells. We also demonstrated that GATA6 is the GATA family member that interacts with the VWF promoter and that GATA6 is associated with NFY specifically in non-endothelial cells. We propose that NFY recruits HDACs to the VWF promoter, which may result in deacetylation of GATA6 as well as of histones in non-endothelial cells, thus leading to promoter inactivation. In endothelial cells, however, association of HDACs, NFY, and GATA6 is interrupted potentially through endothelial cell-specific signaling/mechanism, thus favoring the balance toward acetylation and activation of the VWF promoter.
Collapse
Affiliation(s)
- Yiwen Peng
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
16
|
Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. THE PLANT CELL 2003; 15:5-18. [PMID: 12509518 PMCID: PMC143447 DOI: 10.1105/tpc.006973] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Accepted: 10/13/2002] [Indexed: 05/18/2023]
Abstract
Arabidopsis LEAFY COTYLEDON1 (LEC1) is a critical regulator required for normal development during the early and late phases of embryogenesis that is sufficient to induce embryonic development in vegetative cells. LEC1 encodes a HAP3 subunit of the CCAAT binding transcription factor. We show that the 10 Arabidopsis HAP3 (AHAP3) subunits can be divided into two classes based on sequence identity in their central, conserved B domain. LEC1 and its most closely related subunit, LEC1-LIKE (L1L), constitute LEC1-type AHAP3 subunits, whereas the remaining AHAP3 subunits are designated non-LEC1-type. Similar to LEC1, L1L is expressed primarily during seed development. However, suppression of L1L gene expression induced defects in embryo development that differed from those of lec1 mutants, suggesting that LEC1 and L1L play unique roles in embryogenesis. We show that L1L expressed under the control of DNA sequences flanking the LEC1 gene suppressed genetically the lec1 mutation, suggesting that the LEC1-type B domains of L1L and LEC1 are critical for their function in embryogenesis. Our results also suggest that LEC1-type HAP3 subunits arose from a common origin uniquely in plants. Thus, L1L, an essential regulator of embryo development, defines a unique class of plant HAP3 subunits.
Collapse
Affiliation(s)
- Raymond W Kwong
- Section of Plant Biology, Division of Biological Sciences, One Shields Avenue, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Munthe E, Aasheim HC. Characterization of the human ephrin-A4 promoter. Biochem J 2002; 366:447-58. [PMID: 12030849 PMCID: PMC1222801 DOI: 10.1042/bj20011693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Revised: 04/19/2002] [Accepted: 05/24/2002] [Indexed: 01/25/2023]
Abstract
Expression of the ephrin-A4 ligand, a family member of ligands binding the Eph receptor tyrosine kinases, is induced after an antigen-receptor stimulation of lymphocytes. To understand the transcription regulation of the ephrin-A4 gene, its promoter was identified and regulating elements were characterized. The ephrin-A4 promoter contains cis elements directing the cell-specific expression. By deletion studies, three specific regions, which were contributing to the transcription activity in lymphoid cells, were localized. In one of these regions, an inverted CCAAT box was identified and shown to bind the transcription activator nuclear factor-Y (NF-Y). The importance of NF-Y binding for the ephrin-A4 promoter activity is shown by a total abrogation of promoter activity after destruction of its binding site. NF-Y binding and activity are also crucially dependent on the integrity of the surrounding sequence. In addition, electrophoretic mobility-shift assay and serial-mutation analysis of the two remaining regulating regions revealed cis regulatory elements contributing to the transcription activity of the ephrin-A4 promoter.
Collapse
Affiliation(s)
- Else Munthe
- Department of Immunology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
18
|
Labialle S, Gayet L, Marthinet E, Rigal D, Baggetto LG. Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem Pharmacol 2002; 64:943-8. [PMID: 12213590 DOI: 10.1016/s0006-2952(02)01156-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The multidrug resistance (MDR) phenotype is the major cause of failure of cancer chemotherapy. This phenotype is mainly due to the overexpression of the human MDR1 (hMDR1) gene. Several studies have shown that transcriptional regulation of this gene is unexpectedly complex and is far from being completely understood. Current work is aimed mainly at defining unclear and new control regions in the hMDR1 gene promoter as well as clarifying corresponding signaling pathways. Such studies provide new insights into the mechanisms by which xenobiotic molecules might modify the physiological hMDR1 expression as well as the possible role of oncogenes in the pathological dysregulation of the gene. Here we report recent findings on the regulation of hMDR1 which may help define specific targets aimed at modulating its transcription.
Collapse
Affiliation(s)
- Stéphane Labialle
- IBCP UMR 5086 CNRS UCBL, 7 passage du Vercors, F-69367 Cedex 07, Lyon, France
| | | | | | | | | |
Collapse
|
19
|
Jabrane-Ferrat N, Nekrep N, Tosi G, Esserman LJ, Peterlin BM. Major histocompatibility complex class II transcriptional platform: assembly of nuclear factor Y and regulatory factor X (RFX) on DNA requires RFX5 dimers. Mol Cell Biol 2002; 22:5616-25. [PMID: 12101253 PMCID: PMC133954 DOI: 10.1128/mcb.22.15.5616-5625.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class II (MHC-II) genes are regulated in a B-cell-specific and gamma interferon-inducible manner. Conserved upstream sequences (CUS) in their compact promoters bind nuclear factor Y (NFY) and regulatory factor X (RFX) complexes. These DNA-bound proteins form a platform that attracts the class II transactivator, which initiates and elongates MHC-II transcription. In this report, we analyzed the complex assembly of these DNA-bound proteins. First, we found that NFY can interact with RFX in cells. In particular, NFYA and NFYC bound RFXANK/B in vitro. Next, RFX5 formed dimers in vivo and in vitro. Within a leucine-rich stretch N-terminal to the DNA-binding domain in RFX5, the leucine at position 66 was found to be critical for this self-association. Mutant RFX5 proteins that could not form dimers also did not support the formation of higher-order DNA-protein complexes on CUS in vitro or MHC-II transcription in vivo. We conclude that the MHC-II transcriptional platform begins to assemble off CUS and then binds DNA via multiple, spatially constrained interactions. These findings offer one explanation of why in the Bare Lymphocyte Syndrome, which is a congenital severe combined immunodeficiency, MHC-II promoters are bare when any subunit of RFX is mutated or missing.
Collapse
Affiliation(s)
- Nabila Jabrane-Ferrat
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115-0703, USA
| | | | | | | | | |
Collapse
|
20
|
Sengupta PK, Fargo J, Smith BD. The RFX family interacts at the collagen (COL1A2) start site and represses transcription. J Biol Chem 2002; 277:24926-37. [PMID: 11986307 DOI: 10.1074/jbc.m111712200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription start site of the collagen alpha2(1) gene (COL1A2) has a sequence-specific binding site for a DNA methylation-responsive binding protein called regulatory factor for X-box 1 (RFX1) (Sengupta, P. K., Erhlich, M., and Smith, B. D. (1999) J. Biol. Chem. 274, 36649-36655). In this report, we demonstrate that RFX1 forms homodimers as well as heterodimers with RFX2 spanning the collagen transcription start site. Methylation at +7 on the coding strand increases RFX1 complex formation in gel shift assays. Methylation on the template strand, however, does not increase RFX1 complex formation. DNA from human fibroblasts contains minimal methylation on the coding strand (<4%) with variable methylation on the template strand. RFX1 acts as a repressor of collagen transcription as judged by in vitro transcription and co-transfection assays with an unmethylated collagen promoter-reporter construct. In addition, an RFX5 complex present in human fibroblasts interacts with the collagen RFX site, which is not sensitive to methylation. This is the first demonstration of RFX5 complex formation on a gene other than major histocompatibility complex (MHC) promoters. Also, RFX5 represses transcription of a collagen promoter-reporter construct in rat fibroblasts that have no detectable RFX5 complex formation or protein. RFX5 complex activates MHC II transcription by interacting with an interferon-gamma (IFN-gamma)-inducible protein, major histocompatibility class II trans-activator (CIITA). Collagen transcription is repressed by IFN-gamma in a dose-dependent manner in human but not in rat fibroblasts. IFN-gamma enhances RFX5 binding activity, and CIITA is present in the RFX5 complex of IFN-gamma-treated human fibroblasts. CIITA repressed collagen gene transcription more effectively in human fibroblasts than in rat fibroblasts, suggesting that the RFX5 complex may, in part, recruit CIITA protein to the collagen transcription start site. Thus the RFX family may be important repressors of collagen gene transcription through a RFX binding site spanning the transcription start site.
Collapse
Affiliation(s)
- Pritam K Sengupta
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
21
|
Gobin SJ, van Zutphen M, Westerheide SD, Boss JM, van den Elsen PJ. The MHC-specific enhanceosome and its role in MHC class I and beta(2)-microglobulin gene transactivation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5175-84. [PMID: 11673530 DOI: 10.4049/jimmunol.167.9.5175] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The promoter regions of MHC class I and beta(2)-microglobulin (beta(2)m) genes possess a regulatory module consisting of S, X, and Y boxes, which is shared by MHC class II and its accessory genes. In this study we show that, similar to MHC class II, the SXY module in MHC class I and beta(2)m promoters is cooperatively bound by a multiprotein complex containing regulatory factor X, CREB/activating transcription factor, and nuclear factor Y. Together with the coactivator class II transactivator this multiprotein complex drives transactivation of these genes. In contrast to MHC class II, the multiprotein complex has an additional function in the constitutive transactivation of MHC class I and beta(2)m genes. The requirement for all transcription factors in the complex and correct spacing of the binding sites within the SXY regulatory module for complex formation and functioning of this multiprotein complex strongly suggests that this complex can be regarded as a bona fide enhanceosome. The general coactivators CREB binding protein, p300, general control nonderepressible-5, and p300/CREB binding protein-associated factor exert an ancillary function in MHC class I and beta(2)m transactivation, but exclusively through the class II transactivator component of this enhanceosome. Thus, the SXY module is the basis for a specific enhanceosome important for the constitutive and inducible transactivation of MHC class I and beta(2)m genes.
Collapse
Affiliation(s)
- S J Gobin
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Harton JA, Zika E, Ting JP. The histone acetyltransferase domains of CREB-binding protein (CBP) and p300/CBP-associated factor are not necessary for cooperativity with the class II transactivator. J Biol Chem 2001; 276:38715-20. [PMID: 11514574 DOI: 10.1074/jbc.m106652200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class II transactivator (CIITA) is a transcriptional co-activator regulating the constitutive and interferon-gamma-inducible expression of class II major histocompatibility complex (MHC) and related genes. Promoter remodeling occurs following CIITA induction, suggesting the involvement of chromatin remodeling factors. Transcription of numerous genes requires the histone acetyltransferase (HAT) activities of CREB-binding protein (CBP), p300, and/or p300/CBP-associated factor (pCAF). These co-activators cooperate with CIITA and are hypothesized to promote class II major histocompatibility complex transcription through their HAT activity. To directly test this, we used HAT-defective CBP and pCAF. We demonstrate that cooperation between CIITA and CBP is independent of CBP HAT activity. Further, although pCAF enhances CIITA-mediated transcription, pCAF HAT domain dependence appears contingent upon the concentration of available CIITA. When HAT-defective CBP and pCAF are both present, cooperativity with CIITA is maintained. Consistent with a recent report, we show that nuclear localization of CIITA is enhanced by lysine 144, an in vitro target of pCAF-mediated HAT. Yet we find that neither mutation of lysine 144 nor deletion of residues 132-209 affects transcriptional cooperation with CBP or pCAF. Thus, acetylation of this residue may not be the primary mechanism for pCAF/CBP cooperation with CIITA. In conclusion, the HAT activities of the co-activators are not necessary for cooperation with CIITA.
Collapse
Affiliation(s)
- J A Harton
- Department of Microbiology and Immunology, the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
23
|
Shi Q, Gross KW, Sigmund CD. NF-Y antagonizes renin enhancer function by blocking stimulatory transcription factors. Hypertension 2001; 38:332-6. [PMID: 11566900 DOI: 10.1161/01.hyp.38.3.332] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that the promoter proximal portion of the mouse renin enhancer contains a binding site for NF-Y (Ea) that overlaps with a positive regulatory element (Eb). In the context of the renin enhancer, NF-Y acts to oppose enhancer activity. We tested the hypothesis that NF-Y acts as a negative regulator by physically blocking the binding of transcription factors to element-b (Eb). Increasing the spacing between the NF-Y binding site (Ea) and Eb by 2, 5, or 10 nucleotides increased activity of the enhancer to the same extent as mutations abolishing NF-Y binding. The increase in transcription caused by increasing the spacing between Ea and Eb was not due to a shift of NF-Y from a negative regulator to a positive regulator because there was no loss of activity when Ea was also mutated. Oligonucleotides containing the normal or increased spacing mutants still allowed the binding of both NF-Y to Ea and transcription factors to Eb. In fact, we present evidence that both NF-Y and the Eb-binding factor(s) can each bind together on the same oligonucleotide containing either a 5- or 10-bp spacing between Ea and Eb. Our data strongly suggest that the mechanism by which NF-Y opposes renin enhancer activity is to sterically block the binding of factors to Eb.
Collapse
Affiliation(s)
- Q Shi
- Departments of Internal Medicine and Physiology and Biophysics, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
24
|
Abstract
The major histocompatibility complex (MHC) class II transactivator (CIITA) regulates the expression of genes involved in the immune response, including MHC class II genes and the interleukin-4 gene. Interactions between CIITA and sequence-specific, DNA-binding proteins are required for CIITA to function as an activator of MHC class II genes. CIITA also interacts with the coactivators CBP (also called p300), and this interaction leads to synergistic activation of MHC class II promoters. Here, we report that CIITA forms complexes with itself and that a central region, including the GTP-binding domain is sufficient for self-association. Additionally, this central region interacts with the C-terminal leucine-rich repeat as well as the N-terminal acidic domain. LXXLL motifs residing in the GTP-binding domain are essential for self-association. Finally, distinct differences exist among various CIITA mutant proteins with regard to activation function, subcellular localization, and association with wild-type protein and dominant-negative potential.
Collapse
Affiliation(s)
- T J Sisk
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
25
|
Körner K, Jerôme V, Schmidt T, Müller R. Cell cycle regulation of the murine cdc25B promoter: essential role for nuclear factor-Y and a proximal repressor element. J Biol Chem 2001; 276:9662-9. [PMID: 11104768 DOI: 10.1074/jbc.m008696200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the cdc25B gene is up-regulated late during cell cycle progression (S/G(2)). We have cloned the murine cdc25B promoter to identify elements involved in transcriptional regulation. A detailed structure-function analysis led to the identification of several elements that are located upstream of a canonical Inr motif at the site of transcription initiation and are involved in transcriptional activation and regulation. Activation of the promoter is largely mediated by NF-Y and Sp1/3 interacting with one and four proximal binding sites, respectively. In addition, NF-Y plays an essential role in cell cycle regulation in conjunction with a repressor element (cell cycle-regulated repressor) located approximately 30 nucleotides upstream of the putative Inr element and overlapping a consensus TATA motif. The cell cycle-regulated repressor is unrelated to the previously described cell cycle-regulated repressor elements. Taken together, our observations suggest that expression of the cdc25B gene is controlled through a novel mechanism of cell cycle-regulated transcription.
Collapse
Affiliation(s)
- K Körner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 2001; 21:1239-48. [PMID: 11158310 PMCID: PMC99577 DOI: 10.1128/mcb.21.4.1239-1248.2001] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) are controlled by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element (ERSE), the consensus sequence of which is CCAAT-N(9)-CCACG. We recently proposed that ER stress response factor (ERSF) binding to ERSE is a heterologous protein complex consisting of the constitutive component NF-Y (CBF) binding to CCAAT and an inducible component binding to CCACG and identified the basic leucine zipper-type transcription factors ATF6alpha and ATF6beta as inducible components of ERSF. ATF6alpha and ATF6beta produced by ER stress-induced proteolysis bind to CCACG only when CCAAT is bound to NF-Y, a heterotrimer consisting of NF-YA, NF-YB, and NF-YC. Interestingly, the NF-Y and ATF6 binding sites must be separated by a spacer of 9 bp. We describe here the basis for this strict requirement by demonstrating that both ATF6alpha and ATF6beta physically interact with NF-Y trimer via direct binding to the NF-YC subunit. ATF6alpha and ATF6beta bind to the ERSE as a homo- or heterodimer. Furthermore, we showed that ERSF including NF-Y and ATF6alpha and/or beta and capable of binding to ERSE is indeed formed when the cellular UPR is activated. We concluded that ATF6 homo- or heterodimers recognize and bind directly to both the DNA and adjacent protein NF-Y and that this complex formation process is essential for transcriptional induction of ER chaperones.
Collapse
Affiliation(s)
- H Yoshida
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8304, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhu XS, Linhoff MW, Li G, Chin KC, Maity SN, Ting JP. Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause stereospecific regulation of the class II major histocompatibility complex promoter. Mol Cell Biol 2000; 20:6051-61. [PMID: 10913187 PMCID: PMC86081 DOI: 10.1128/mcb.20.16.6051-6061.2000] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scaffold molecules interact with multiple effectors to elicit specific signal transduction pathways. CIITA, a non-DNA-binding regulator of class II major histocompatibility complex (MHC) gene transcription, may serve as a transcriptional scaffold. Regulation of the class II MHC promoter by CIITA requires strict spatial-helical arrangements of the X and Y promoter elements. The X element binds RFX (RFX5/RFXANK-RFXB/RFXAP) and CREB, while Y binds NF-Y/CBF (NF-YA, NF-YB, and NF-YC). CIITA interacts with all three. In vivo analysis using both N-terminal and C-terminal deletion constructs identified critical domains of CIITA that are required for interaction with NF-YB, NF-YC, RFX5, RFXANK/RFXB, and CREB. We propose that binding of NF-Y/CBF, RFX, and CREB by CIITA results in a macromolecular complex which allows transcription factors to interact with the class II MHC promoter in a spatially and helically constrained fashion.
Collapse
Affiliation(s)
- X S Zhu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
28
|
Körner K, Müller R. In vivo structure of the cell cycle-regulated human cdc25C promoter. J Biol Chem 2000; 275:18676-81. [PMID: 10747986 DOI: 10.1074/jbc.m001110200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cdc25C promoter is regulated during the cell cycle by the transcriptional repressor CDF-1 that inhibits the activation function of upstream transcriptional activators, most notably the nuclear factor Y/CAAT box binding factor (NF-Y/CBF). In this report a detailed analysis of the in vivo structure of the cdc25C promoter was made. Micrococcus nuclease and methidiumpropyl-EDTA footprinting strongly suggest that the proximal promoter encompassing the cell cycle-dependent element/cell cycle genes homology region and the upstream NF-Y sites is organized in a positioned nucleosome throughout the cell cycle. Furthermore, structural perturbations were detected by DNase I, phenanthroline copper, and KMnO(4) footprinting at the NF-Y binding sites in vivo, which is in agreement with the reported property of NF-Y to bend DNA in vitro. Similar results were obtained with the structurally and functionally related cyclin A promoter. The structural perturbations seen in DNase I and phenanthroline copper footprints were less pronounced in G(0) cells when compared with cycling cells. This presumably reflects a weakened in vivo interaction of NF-Y with its cognate DNA element in G(0). It is likely that these structural perturbations, together with the reported ability of NF-Y to recruit histone acetyl transferase activity, contribute to an opened chromatin structure as a prerequisite for optimal regulation through activation and repression.
Collapse
Affiliation(s)
- K Körner
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Emil-Mannkopff-Strasse 2, D-35033 Marburg, Germany
| | | |
Collapse
|
29
|
Nagarajan UM, Peijnenburg A, Gobin SJ, Boss JM, van den elsen PJ. Novel mutations within the RFX-B gene and partial rescue of MHC and related genes through exogenous class II transactivator in RFX-B-deficient cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3666-74. [PMID: 10725724 DOI: 10.4049/jimmunol.164.7.3666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific regulatory factors. Fibroblasts derived from two recently identified bare lymphocyte syndrome patients, EBA and FZA, were found to contain novel mutations in the RFX-B gene. RFX-B encodes a component of the RFX transcription factor that functions in the assembly of multiple transcription factors on MHC class II promoters. Unlike RFX5- and RFXAP-deficient cells, transfection of exogenous class II transactivator (CIITA) into these RFX-B-deficient fibroblasts resulted in the induction of HLA-DR and HLA-DP and, to a lesser extent, HLA-DQ. Similarly, CIITA-mediated induction of MHC class I, beta2-microglobulin, and invariant chain genes was also found in these RFX-B-deficient fibroblasts. Expression of wild-type RFX-B completely reverted the noted deficiencies in these cells. Transfection of CIITA into Ramia cells, a B cell line that does not produce a stable RFX-B mRNA, resulted in induction of an MHC class II reporter, suggesting that CIITA overexpression may partially override the RFX-B defect.
Collapse
Affiliation(s)
- U M Nagarajan
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
30
|
Brickey WJ, Wright KL, Zhu XS, P.-Y. Ting J. Analysis of the Defect in IFN-γ Induction of MHC Class II Genes in G1B Cells: Identification of a Novel and Functionally Critical Leucine-Rich Motif (62-LYLYLQL-68) in the Regulatory Factor X 5 Transcription Factor. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
MHC class II deficiency found in bare lymphocyte syndrome patients results from the absence or dysfunction of MHC class II transcriptional regulators, such as regulatory factor X (RFX) and class II transactivator (CIITA). Understanding the roles of these factors has been greatly facilitated by the study of genetic defects in cell lines of bare lymphocyte syndrome patients, as well as in cell lines that have been generated by chemical mutagenesis in vitro. The latter group includes MHC class II-deficient lines that are no longer responsive to induction by IFN-γ. Here, we show that the defect in G1B, one such cell line, is attributed to the lack of functional RFX5, the largest subunit of RFX. The RFX5 gene isolated from G1B cells contains two separate single-base pair mutations. One alteration does not exhibit a phenotype, whereas a leucine-to-histidine mutation eliminates DNA-binding and transactivating functions. This mutation lies outside of previously defined functional domains of RFX5 but within an unusual, leucine-rich region (62-LYLYLQL-68). To further investigate the significance of the leucine-rich region, we targeted all neighboring leucine residues for mutagenesis. These mutants were also unable to transactivate a MHC class II reporter gene, confirming that these leucine residues play an essential role in RFX activity and characterize a novel leucine-rich motif.
Collapse
Affiliation(s)
- W. June Brickey
- *UNC Lineberger Comprehensive Cancer Center and Department of Immunology and Microbiology and
| | - Kenneth L. Wright
- *UNC Lineberger Comprehensive Cancer Center and Department of Immunology and Microbiology and
| | - Xin-Sheng Zhu
- †Curriculum in Oral Biology, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599
| | - Jenny P.-Y. Ting
- *UNC Lineberger Comprehensive Cancer Center and Department of Immunology and Microbiology and
| |
Collapse
|
31
|
Yoon JH, Kim JK, Rha GB, Oh M, Park SH, Seong RH, Hong SH, Park SD. Sp1 mediates cell proliferation-dependent regulation of rat DNA topoisomerase IIalpha gene promoter. Biochem J 1999; 344 Pt 2:367-74. [PMID: 10567217 PMCID: PMC1220652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
DNA topoisomerase IIalpha (topo IIalpha) is an essential nuclear enzyme required for chromosome segregation during mitosis. Consistent with its critical role in cell division is the fact that the expression of the gene for topo IIalpha is strongly regulated by the proliferation state of cells. Using a transient expression system, we determined the contribution of putative cis-acting elements in its promoter region to its basal level and cell proliferation-dependent transcription. Experiments with 5' and/or 3' serial deletion and site-directed mutation revealed that (1) maximal promoter activity resides in the fragment extending to position -663 bp from the ATG initiation codon, (2) minimal promoter activity is harboured at -195 bp, (3) the defined minimal promoter contains only two putative elements, inverted CCAAT box 4 (ICB4) (-166 to -162 bp) and the most proximal GC-rich box in the promoter (GC2) (-149 to -143 bp), and (4) ICB4 is most important in the basal-level transcription of the gene for rat topo IIalpha. The luciferase activities of the mutated reporter plasmids in G(0)-arrested and exponentially growing cells showed that proliferation-specific regulation is controlled mainly by GC2. Electrophoretic mobility-shift assays indicated that Sp1 binds specifically to the GC2 site. The extent of DNA-protein complex formation increases after the stimulation of cells to proliferate. These results indicate that the increased binding activity of Sp1 to GC2 is important in the up-regulation of the gene for topo IIalpha in growing cells.
Collapse
Affiliation(s)
- J H Yoon
- Department of Molecular Biology, Research Center for Cell Differentiation, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
AbstractProper regulation of the human CD34 gene requires a combinatorial action of multiple proximal and long-range, ciselements. This report shows that, like the murine CD34 5′ untranslated region (UTR), the corresponding region of the human CD34 gene is necessary for optimal promoter activity. We localized the most critical element of this region to base pairs +48/+75. Through oligonucleotide competition and antibody supershift experiments in electrophoretic mobility shift assays, we found that this sequence contains a binding site (CCAAT box) for the transcription factor NFY (nuclear factor Y), a factor mediating cell type-specific and cell-cycle regulated expression of genes. Mutating this site led to a 5-fold decrease in CD34 promoter activity in transient transfection experiments. Interestingly, NFY binds adjacently to the earlier identified c-myb binding site. Here we show that both binding sites are important for CD34 promoter function: mutating either site alone decreased CD34 promoter-driven reporter gene activity 4-fold. We also show that the integrity of the c-myb binding site is necessary for stabilization of NFY binding to its site. Such cooperation between c-myb, which is expressed in early hematopoietic cells, and NFY, which is expressed in many cell types, might contribute to specific activation of CD34 in stem cells. The CCAAT box motif was also noted in the 5′ UTR of the murine CD34 gene, however, NFY did not bind to this region. Thus, our results indicate that the functional similarities between the human and murine CD34 5′ UTRs are achieved through different molecular mechanism(s).
Collapse
|
33
|
Abstract
Proper regulation of the human CD34 gene requires a combinatorial action of multiple proximal and long-range, ciselements. This report shows that, like the murine CD34 5′ untranslated region (UTR), the corresponding region of the human CD34 gene is necessary for optimal promoter activity. We localized the most critical element of this region to base pairs +48/+75. Through oligonucleotide competition and antibody supershift experiments in electrophoretic mobility shift assays, we found that this sequence contains a binding site (CCAAT box) for the transcription factor NFY (nuclear factor Y), a factor mediating cell type-specific and cell-cycle regulated expression of genes. Mutating this site led to a 5-fold decrease in CD34 promoter activity in transient transfection experiments. Interestingly, NFY binds adjacently to the earlier identified c-myb binding site. Here we show that both binding sites are important for CD34 promoter function: mutating either site alone decreased CD34 promoter-driven reporter gene activity 4-fold. We also show that the integrity of the c-myb binding site is necessary for stabilization of NFY binding to its site. Such cooperation between c-myb, which is expressed in early hematopoietic cells, and NFY, which is expressed in many cell types, might contribute to specific activation of CD34 in stem cells. The CCAAT box motif was also noted in the 5′ UTR of the murine CD34 gene, however, NFY did not bind to this region. Thus, our results indicate that the functional similarities between the human and murine CD34 5′ UTRs are achieved through different molecular mechanism(s).
Collapse
|
34
|
Sorensen P, Wintersberger E. Sp1 and NF-Y are necessary and sufficient for growth-dependent regulation of the hamster thymidine kinase promoter. J Biol Chem 1999; 274:30943-9. [PMID: 10521489 DOI: 10.1074/jbc.274.43.30943] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymidine kinase (TK) genes from different species are growth- and cell cycle-regulated in a very similar manner; still, the promoter regions of these genes show little homology to each other. It was previously shown that the murine TK gene is growth-regulated by Sp1 and E2F. Here we have characterized cis-regulatory elements in the hamster promoter that are essential and sufficient to confer efficient and serum-responsive expression. The TK promoter was isolated from baby hamster kidney cells. DNase I protection experiments revealed a protected region from positions -24 to -99 relative to the transcription start site. Within this region, binding sites for the transcription factor Sp1 and a CCAAT box, which interacts with the transcription factor NF-Y, were identified. An E2F-like sequence was found not to bind protein, and its removal did not affect promoter activity. This was supported by the observation that cotransfection of a hamster TK reporter gene construct with E2F-1 does not lead to transactivation of the promoter. A 122-base pair region that contains a single Sp1 site, a CCAAT box, and a TATA element was found to be sufficient for serum-responsive expression of a reporter gene. Mutations that inactivate any one of these three elements caused a strong reduction or a loss of promoter activity.
Collapse
Affiliation(s)
- P Sorensen
- Institute of Molecular Biology, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
35
|
Narendja FM, Davis MA, Hynes MJ. AnCF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNase I-hypersensitive site in the 5' region of the amdS gene. Mol Cell Biol 1999; 19:6523-31. [PMID: 10490592 PMCID: PMC84622 DOI: 10.1128/mcb.19.10.6523] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCAAT sequence in the amdS promoter of Aspergillus nidulans is recognized by AnCF, a complex consisting of the three evolutionary conserved subunits HapB, HapC, and HapE. In this study we have investigated the effect of AnCF on the chromatin structure of the amdS gene. The AnCF complex and the CCAAT sequence were found to be necessary for the formation of a nucleosome-free, DNase I-hypersensitive region in the 5' region of the amdS gene. Deletion of the hapE gene results in loss of the DNase I-hypersensitive site, and the positioning of nucleosomes over the transcriptional start point is lost. Likewise, a point mutation in the CCAAT motif, as well as a 530-bp deletion which removes the CCAAT box, results in the loss of the DNase I-hypersensitive region. The DNase I-hypersensitive region and the nucleosome positioning can be restored by insertion of a 35-bp oligonucleotide carrying the CCAAT motif. A DNase I-hypersensitive region has been found in the CCAAT-containing fmdS gene and was also hapE dependent. These data indicate a critical role for the AnCF complex in establishing an open chromatin structure in A. nidulans.
Collapse
Affiliation(s)
- F M Narendja
- Department of Genetics, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
36
|
Itoh-Lindstrom Y, Piskurich JF, Felix NJ, Wang Y, Brickey WJ, Platt JL, Koller BH, Ting JPY. Reduced IL-4-, Lipopolysaccharide-, and IFN-γ-Induced MHC Class II Expression in Mice Lacking Class II Transactivator Due to Targeted Deletion of the GTP-Binding Domain. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Class II transactivator (CIITA) is an unusual transcriptional coactivator in that it contains a functionally important, GTP-binding consensus domain. To assess the functional role of the GTP-binding domain of CIITA in vivo, we have generated knockout mice that bear a mutation in the CIITA gene spanning the GTP-binding domain. Upon analysis, these mice show no detectable CIITA mRNA; hence, they represent mice with deleted CIITA rather than mice with defects in the GTP-binding domain only. In these knockout mice, MHC class II expression is nearly eliminated, although a faint RT-PCR signal is visible in spleen, lymph node, and thymus, suggestive of the presence of CIITA-independent regulation of MHC class II expression. Invariant chain expression is also greatly reduced, but to a lesser extent than MHC class II. Serum IgM is not decreased, but the serum IgG level is greatly reduced, further confirming the absence of MHC class II Ag-dependent Ig class switching. Induction of MHC class II expression by IL-4 or LPS was absent on B cells, and Mac-1+ cells showed no detectable induction of MHC class II by either IL-4, LPS, or IFN-γ. These findings demonstrate a requirement for CIITA in IFN-γ-, IL-4-, and endotoxin-induced MHC class II expression as well as the possibility of rare CIITA-independent MHC class II expression.
Collapse
Affiliation(s)
- Yoshie Itoh-Lindstrom
- *Lineberger Comprehensive Cancer Center, and Departments of
- § Department of Surgery, Duke University, Durham, NC 27710
| | | | | | - Ying Wang
- *Lineberger Comprehensive Cancer Center, and Departments of
| | | | | | | | - Jenny P.-Y. Ting
- *Lineberger Comprehensive Cancer Center, and Departments of
- †Microbiology-Immunology and
| |
Collapse
|
37
|
Pan-Yun Ting J, Zhu XS. Class II MHC genes: a model gene regulatory system with great biologic consequences. Microbes Infect 1999. [DOI: 10.1016/s1286-4579(99)00233-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Peijnenburg A, Van Eggermond MJCA, Gobin SJP, Van den Berg R, Godthelp BC, Vossen JMJJ, Van den Elsen PJ. Discoordinate Expression of Invariant Chain and MHC Class II Genes in Class II Transactivator-Transfected Fibroblasts Defective for RFX5. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific transcription factors. In the present study, we show that fibroblasts derived from a recently identified bare lymphocyte syndrome patient, SSI, were mutated for RFX5, one of the DNA-binding components of the RFX complex. Despite the lack of functional RFX5 and resulting MHC class II-deficient phenotype, transfection of exogenous class II transactivator (CIITA) in these fibroblasts can overcome this defect, resulting in the expression of HLA-DR, but not of DP, DQ, and invariant chain. The lack of invariant chain expression correlated with lack of CIITA-mediated transactivation of the invariant chain promoter in transient transfection assays in SSI fibroblast cells. Consequently, these CIITA transfectants lacked Ag-presenting functions.
Collapse
|
39
|
The Mouse GATA-2 Gene is Expressed in the Para-Aortic Splanchnopleura and Aorta-Gonads and Mesonephros Region. Blood 1999. [DOI: 10.1182/blood.v93.12.4196] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe previously reported that the mouse GATA-2 gene is regulated by two alternative promoters (Minegishi et al, J Biol Chem, 273:3625, 1998). Although the more proximal IG (general) promoter is active in almost all GATA-2–expressing cells, the distal IS (specific) promoter activity was selectively detected in hematopoietic tissues but not in other mesodermal tissues. We report here in vivo analysis of the GATA-2 locus and its regulatory characteristics in hematopoietic tissues of transgenic mice. Transgenes containing 6 or 7 kbp of sequence flanking the 5′ end of the IS first exon direct expression of β-galactosidase or green fluorescent protein (GFP) reporter genes specifically to the para-aortic splanchnopleura, aorta-gonads, and mesonephros (AGM) region, and in the neural tissues. In situ hybridization analysis showed that reporter gene expression specifically recapitulates the endogenous expression profile of GATA-2 in these tissues. The flk-1, CD34, c-kit, and CD45 antigens were identified in the GFP-positive cells from the AGM region and fetal liver, indicating that GATA-2 is expressed in immature hematopoietic cells. Deletion of 3.5 kbp from the 5′ end of the 6.0 kbp IS promoter construct, including one of the DNase I hypersensitive sites, completely abolished hematopoietic expression. These experiments describe an early developmental GATA-2 hematopoietic enhancer located between 6.0 and 2.5 kbp 5′ to the IS exon.
Collapse
|
40
|
Abstract
We previously reported that the mouse GATA-2 gene is regulated by two alternative promoters (Minegishi et al, J Biol Chem, 273:3625, 1998). Although the more proximal IG (general) promoter is active in almost all GATA-2–expressing cells, the distal IS (specific) promoter activity was selectively detected in hematopoietic tissues but not in other mesodermal tissues. We report here in vivo analysis of the GATA-2 locus and its regulatory characteristics in hematopoietic tissues of transgenic mice. Transgenes containing 6 or 7 kbp of sequence flanking the 5′ end of the IS first exon direct expression of β-galactosidase or green fluorescent protein (GFP) reporter genes specifically to the para-aortic splanchnopleura, aorta-gonads, and mesonephros (AGM) region, and in the neural tissues. In situ hybridization analysis showed that reporter gene expression specifically recapitulates the endogenous expression profile of GATA-2 in these tissues. The flk-1, CD34, c-kit, and CD45 antigens were identified in the GFP-positive cells from the AGM region and fetal liver, indicating that GATA-2 is expressed in immature hematopoietic cells. Deletion of 3.5 kbp from the 5′ end of the 6.0 kbp IS promoter construct, including one of the DNase I hypersensitive sites, completely abolished hematopoietic expression. These experiments describe an early developmental GATA-2 hematopoietic enhancer located between 6.0 and 2.5 kbp 5′ to the IS exon.
Collapse
|
41
|
Li S, Moy L, Pittman N, Shue G, Aufiero B, Neufeld EJ, LeLeiko NS, Walsh MJ. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J Biol Chem 1999; 274:7803-7815. [PMID: 10075672 DOI: 10.1074/jbc.274.12.7803] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human cystic fibrosis transmembrane conductance regulator gene (CFTR) transcription is tightly regulated by nucleotide sequences upstream of the initiator sequences. Our studies of human CFTR transcription focus on identifying transcription factors bound to an inverted CCAAT consensus or "Y-box element." The human homeodomain CCAAT displacement protein/cut homolog (CDP/cut) can bind to the Y-box element through a cut repeat and homeobox. Analysis of stably transfected cell lines with wild-type and mutant human CFTR-directed reporter genes demonstrates that human histone acetyltransferase GCN5 and transcription factor ATF-1 can potentiate CFTR transcription through the Y-box element. We have found 1) that human CDP/cut acts as a repressor of CFTR transcription through the Y-box element by competing for the sites of transactivators hGCN5 and ATF-1; 2) that the ability of CDP/cut to repress activities of hGCN5 and ATF-1 activity is contingent on the amount of CDP/cut expression; 3) that histone acetylation may have a role in the regulation of gene transcription by altering the accessibility of the CFTR Y-box for sequence-specific transcription factors; 4) that trichostatin A, an inhibitor of histone deacetylase activity, activates transcription of CFTR through the Y-box element; 5) that the inhibition of histone deacetylase activity leads to an alteration of local chromatin structure requiring an intact Y-box sequence in CFTR; 6) that immunocomplexes of CDP/cut possess an associated histone deacetylase activity; 7) that the carboxyl region of CDP/cut, responsible for the transcriptional repressor function, interacts with the histone deacetylase, HDAC1. We propose that CFTR transcription may be regulated through interactions with factors directing the modification of chromatin and requires the conservation of the inverted CCAAT (Y-box) element of the CFTR promoter.
Collapse
Affiliation(s)
- S Li
- Department of Pediatrics, Division of Pediatric Gastroenterology and Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The Activity of the CCAAT-box Binding Factor NF-Y Is Modulated Through the Regulated Expression of Its A Subunit During Monocyte to Macrophage Differentiation: Regulation of Tissue-Specific Genes Through a Ubiquitous Transcription Factor. Blood 1999. [DOI: 10.1182/blood.v93.2.519] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractIn this study, we analyzed the regulation of NF-Y expression during human monocyte to macrophage maturation. NF-Y is a ubiquitous and evolutionarily conserved transcription factor that binds specifically to the CCAAT motif present in the 5′ promoter region of a wide variety of genes. We show here that in circulating monocytes, NF-Y binding activity is not detected on the CCAAT motif present in the promoters of genes such as major histocompatibility complex (MHC) class II, gp91-phox, mig, and fibronectin, whereas during macrophage differentiation, a progressive increase in NF-Y binding activity is observed on these promoters. Analysis of NF-Y subunit expression indicates that the absence of NF-Y activity in circulating monocytes is caused by a lack of the A subunit. Furthermore, addition of the recombinant NF-YA subunit restores NF-Y binding. We show that the lack of NF-YA protein is due to posttranscriptional regulation and not to a specific proteolytic activity. In fact, NF-YA mRNA is present at the same level at all days of monocyte cultivation, whereas the protein is absent in freshly isolated monocytes but is progressively synthesized during the maturation process. We thus conclude that the NF-YA subunit plays a relevant role in activating transcription of genes highly expressed in mature monocytes. In line with this conclusion, we show that the cut/CDP protein, a transcriptional repressor that inhibits gpc91-phox gene expression by preventing NF-Y binding to the CAAT box, is absent in monocytes.
Collapse
|
43
|
The Activity of the CCAAT-box Binding Factor NF-Y Is Modulated Through the Regulated Expression of Its A Subunit During Monocyte to Macrophage Differentiation: Regulation of Tissue-Specific Genes Through a Ubiquitous Transcription Factor. Blood 1999. [DOI: 10.1182/blood.v93.2.519.402a01_519_526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, we analyzed the regulation of NF-Y expression during human monocyte to macrophage maturation. NF-Y is a ubiquitous and evolutionarily conserved transcription factor that binds specifically to the CCAAT motif present in the 5′ promoter region of a wide variety of genes. We show here that in circulating monocytes, NF-Y binding activity is not detected on the CCAAT motif present in the promoters of genes such as major histocompatibility complex (MHC) class II, gp91-phox, mig, and fibronectin, whereas during macrophage differentiation, a progressive increase in NF-Y binding activity is observed on these promoters. Analysis of NF-Y subunit expression indicates that the absence of NF-Y activity in circulating monocytes is caused by a lack of the A subunit. Furthermore, addition of the recombinant NF-YA subunit restores NF-Y binding. We show that the lack of NF-YA protein is due to posttranscriptional regulation and not to a specific proteolytic activity. In fact, NF-YA mRNA is present at the same level at all days of monocyte cultivation, whereas the protein is absent in freshly isolated monocytes but is progressively synthesized during the maturation process. We thus conclude that the NF-YA subunit plays a relevant role in activating transcription of genes highly expressed in mature monocytes. In line with this conclusion, we show that the cut/CDP protein, a transcriptional repressor that inhibits gpc91-phox gene expression by preventing NF-Y binding to the CAAT box, is absent in monocytes.
Collapse
|
44
|
Steidl S, Papagiannopoulos P, Litzka O, Andrianopoulos A, Davis MA, Brakhage AA, Hynes MJ. AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC, and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol Cell Biol 1999; 19:99-106. [PMID: 9858535 PMCID: PMC83869 DOI: 10.1128/mcb.19.1.99] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCAAT binding factors (CBFs) positively regulating the expression of the amdS gene (encoding acetamidase) and two penicillin biosynthesis genes (ipnA and aatA) have been previously found in Aspergillus nidulans. The factors were called AnCF and PENR1, respectively. Deletion of the hapC gene, encoding a protein with significant similarity to Hap3p of Saccharomyces cerevisiae, eliminated both AnCF and PENR1 binding activities. We now report the isolation of the genes hapB and hapE, which encode proteins with central regions of high similarity to Hap2p and Hap5p of S. cerevisiae and to the CBF-B and CBF-C proteins of mammals. An additional fungus-specific domain present in HapE was revealed by comparisons with the homologs from S. cerevisiae, Neurospora crassa, and Schizosaccharomyces pombe. The HapB, HapC, and HapE proteins have been shown to be necessary and sufficient for the formation of a CCAAT binding complex in vitro. Strains with deletions of each of the hapB, hapC, and hapE genes have identical phenotypes of slow growth, poor conidiation, and reduced expression of amdS. Furthermore, induction of amdS by omega amino acids, which is mediated by the AmdR pathway-specific activator, is abolished in the hap deletion mutants, as is growth on gamma-aminobutyric acid as a sole nitrogen or carbon source. AmdR and AnCF bind to overlapping sites in the promoters of the amdS and gatA genes. It is known that AnCF can bind independently of AmdR. We suggest that AnCF binding is required for AmdR binding in vivo.
Collapse
Affiliation(s)
- S Steidl
- Department of Genetics, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Fontes JD, Kanazawa S, Jean D, Peterlin BM. Interactions between the class II transactivator and CREB binding protein increase transcription of major histocompatibility complex class II genes. Mol Cell Biol 1999; 19:941-7. [PMID: 9858618 PMCID: PMC83952 DOI: 10.1128/mcb.19.1.941] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1998] [Accepted: 10/14/1998] [Indexed: 11/20/2022] Open
Abstract
Class II major histocompatibility (class II) genes are regulated in a B-cell-specific and gamma interferon-inducible fashion. The master switch for the expression of these genes is the class II transactivator (CIITA). In this report, we demonstrate that one of the functions of CIITA is to recruit the CREB binding protein (CBP) to class II promoters. Not only functional but also specific binding interactions between CIITA and CBP were demonstrated. Moreover, a dominant negative form of CBP decreased the activity of class II promoters and levels of class II determinants on the surface of cells. Finally, the inhibition of class II gene expression by the glucocorticoid hormone could be attributed to the squelching of CBP by the glucocorticoid receptor. We conclude that CBP, a histone acetyltransferase, plays an important role in the transcription of class II genes.
Collapse
Affiliation(s)
- J D Fontes
- Howard Hughes Medical Institute, Departments of Medicine, Immunology, and Microbiology, University of California San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | |
Collapse
|
46
|
Jin S, Scotto KW. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 1998; 18:4377-84. [PMID: 9632821 PMCID: PMC109021 DOI: 10.1128/mcb.18.7.4377] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that the histone-modifying enzymes histone acetyltransferase (HAT) and histone deacetylase (HDAC) are involved in transcriptional activation and repression, respectively. However, little is known about the endogenous genes that are regulated by these enzymes or how specificity is achieved. In the present report, we demonstrate that HAT and HDAC activities modulate transcription of the P-glycoprotein-encoding gene, MDR1. Incubation of human colon carcinoma SW620 cells in 100-ng/ml trichostatin A (TSA), a specific HDAC inhibitor, increased the steady-state level of MDR1 mRNA 20-fold. Furthermore, TSA treatment of cells transfected with a wild-type MDR1 promoter/luciferase construct resulted in a 10- to 15-fold induction of promoter activity. Deletion and point mutation analysis determined that an inverted CCAAT box was essential for this activation. Consistent with this observation, overexpression of p300/CREB binding protein-associated factor (P/CAF), a transcriptional coactivator with intrinsic HAT activity, activated the wild-type MDR1 promoter but not a promoter containing a mutation in the CCAAT box; deletion of the P/CAF HAT domain abolished activation. Gel shift and supershift analyses identified NF-Y as the CCAAT-box binding protein in these cells, and cotransfection of a dominant negative NF-Y expression vector decreased the activation of the MDR1 promoter by TSA. Moreover, NF-YA and P/CAF were shown to interact in vitro. This is the first report of a natural promoter that is modulated by HAT and HDAC activities in which the transcription factor mediating this regulation has been identified.
Collapse
Affiliation(s)
- S Jin
- Molecular Pharmacology and Experimental Therapeutics Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
47
|
Wright KL, Chin KC, Linhoff M, Skinner C, Brown JA, Boss JM, Stark GR, Ting JP. CIITA stimulation of transcription factor binding to major histocompatibility complex class II and associated promoters in vivo. Proc Natl Acad Sci U S A 1998; 95:6267-72. [PMID: 9600954 PMCID: PMC27653 DOI: 10.1073/pnas.95.11.6267] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-gamma, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-gamma-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.
Collapse
Affiliation(s)
- K L Wright
- Lineberger Comprehensive Cancer Center and the Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Raynal JF, Dugast C, Le Van Thaï A, Weber MJ. Winged helix hepatocyte nuclear factor 3 and POU-domain protein brn-2/N-oct-3 bind overlapping sites on the neuronal promoter of human aromatic L-amino acid decarboxylase gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:227-37. [PMID: 9602135 DOI: 10.1016/s0169-328x(98)00048-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuronal promoter of human aromatic l-amino acid decarboxylase gene has been analysed to elucidate the mechanisms of neuron type-specific expression. The (-560/+92) promoter segment was sufficient to direct luciferase expression at a higher level in SK-N-BE neuroblastoma cells, than in CHP126 neuroepithelia, HepG2 hepatoma or SK-Hep1 epithelioma cells. Deletions experiments showed that this segment contained a neuronal-specific (element T1) and a SK-N-BE-specific (element N1) cis-activating sequences. Element T1 (-72/-36) bound Sp1 and NF-Y proteins, and unidentified neuronal-specific factors. Element N1 (-102/-72) bound cell-specific factors, identified as HNF-3, N-Oct-3/Brn-2 and N-Oct-2. HNF-3 proteins recognized the sequence TCAGTAAATA that matches the consensus motif. Oct-1, N-Oct-2 and N-Oct-3 bound the AAATAATGC sequence that overlaps the HNF-3 binding site. In addition, we show that the HNF-3 binding sites from aldolase C and HNF-3beta gene promoters also bind N-Oct-2 and N-Oct-3 proteins. These data suggest a functional interplay of winged helix/forkhead and POU-domain transcription factors on a variety of neuronal gene promoters.
Collapse
Affiliation(s)
- J F Raynal
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UPR 9006, 118 route de Narbonne, F31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
49
|
Abstract
The CCAAT motif is one of the common promoter elements present in the proximal promoter of numerous mammalian genes transcribed by RNA polymerase II. CBF (also called NF-Y and CP1) consists of three different subunits and interacts specifically with the CCAAT motif. In each CBF subunit, the segment needed for formation of the CBF-DNA complex is conserved from yeast to human and, interestingly, the conserved segment of two CBF subunits, CBF-A and CBF-C, are homologous to the histone-fold motif of eukaryotic histones and archaebacterial histone-like protein HMf-2. The histone fold motifs of CBF-A and CBF-C interact with each other to form a heterodimer that associates with CBF-B to form a heterotrimeric CBF molecule, which then binds to DNA.
Collapse
Affiliation(s)
- S N Maity
- Dept of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA.
| | | |
Collapse
|
50
|
Park EA, Steffen ML, Song S, Park VM, Cook GA. Cloning and characterization of the promoter for the liver isoform of the rat carnitine palmitoyltransferase I (L-CPT I) gene. Biochem J 1998; 330 ( Pt 1):217-24. [PMID: 9461513 PMCID: PMC1219130 DOI: 10.1042/bj3300217] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carnitine palmitoyltransferase I (CPTI) catalyses the transfer of long chain fatty acids to carnitine for translocation across the mitochondrial inner membrane. The cDNAs of two isoforms of CPT I, termed the hepatic and muscle isoforms, have been cloned. Expression of the hepatic CPT I gene (L-CPT I) is subject to developmental, hormonal and tissue specific regulation. We have cloned the promoter of the L-CPTI gene from a rat genomic library. In the L-CPTI gene, there are two exons 5' to the exon containing the ATG that initiates translation. Exon 1 and the 5' end of exon 2 contain sequences that were not previously described in the rat L-CPTI cDNA. There is an alternatively spliced form of the L-CPTI mRNA in which exon 2 is skipped. The proximal promoter of the L-CPTI gene is extremely GC rich and does not contain a TATA box. There are several putative Sp1 binding sites near the transcriptional start site. A 190 base pair fragment of the promoter can efficiently drive transcription of luciferase and CAT (chloramphenicol acetyltransferase) reporter genes transiently transfected into HepG2 cells. Sequences in both the first intron and the promoter contribute to basal expression. Our results provide the foundation for further studies into the regulation of L-CPTI gene expression.
Collapse
Affiliation(s)
- E A Park
- Department of Pharmacology, University of Tennessee, College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|