1
|
Kandemir B, Kurnaz IA. The Role of Pea3 Transcription Factor Subfamily in the Nervous System. Mol Neurobiol 2025; 62:3293-3304. [PMID: 39269548 DOI: 10.1007/s12035-024-04432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
ETS domain transcription factor superfamily is highly conserved throughout metazoa and is involved in many aspects of development and tissue morphogenesis, and as such, the deregulation of ETS proteins is quite common in many diseases, including cancer. The PEA3 subfamily in particular has been extensively studied with respect to tumorigenesis and metastasis; however, they are also involved in the development of many tissues with branching morphogenesis, such as lung or kidney development. In this review, we aim to summarize findings from various studies on the role of Pea3 subfamily members in nervous system development in the embryo, as well as their functions in the adult neurons. We further discuss the different signals that were shown to regulate the function of the Pea3 family and indicate how this signal-dependent regulation of Pea3 proteins can generate neuronal circuit specificity through unique gene regulation. Finally, we discuss how these developmental roles of Pea3 proteins relate to their role in tumorigenesis.
Collapse
Affiliation(s)
- Basak Kandemir
- Department of Molecular Biology and Genetics, Baskent University, 06790, Etimesgut, Ankara, Turkey
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Isil Aksan Kurnaz
- Department of Molecular Biology and Genetics, Molecular Neurobiology Laboratory (AxanLab), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Yu M, Thorner K, Parameswaran S, Wei W, Yu C, Lin X, Kopan R, Hass MR. The unique functions of Runx1 in skeletal muscle maintenance and regeneration are facilitated by an ETS interaction domain. Development 2024; 151:dev202556. [PMID: 39508441 DOI: 10.1242/dev.202556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The conserved Runt-related (RUNX) transcription factor family are master regulators of developmental and regenerative processes. Runx1 and Runx2 are expressed in satellite cells (SCs) and in skeletal myotubes. Here, we examined the role of Runx1 in mouse satellite cells to determine the role of Runx1 during muscle differentiation. Conditional deletion of Runx1 in adult SCs negatively impacted self-renewal and impaired skeletal muscle maintenance even though Runx2 expression persisted. Runx1 deletion in C2C12 cells (which retain Runx2 expression) identified unique molecular functions of Runx1 that could not be compensated for by Runx2. The reduced myoblast fusion in vitro caused by Runx1 loss was due in part to ectopic expression of Mef2c, a target repressed by Runx1. Structure-function analysis demonstrated that the ETS-interacting MID/EID region of Runx1, absent from Runx2, is essential for Runx1 myoblast function and for Etv4 binding. Analysis of ChIP-seq datasets from Runx1 (T cells, muscle)- versus Runx2 (preosteoblasts)-dependent tissues identified a composite ETS:RUNX motif enriched in Runx1-dependent tissues. The ETS:RUNX composite motif was enriched in peaks open exclusively in ATAC-seq datasets from wild-type cells compared to ATAC peaks unique to Runx1 knockout cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 in mouse muscle precursor cells.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chuyue Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew R Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Yu M, Thorner K, Parameswaran S, Wei W, Yu C, Lin X, Kopan R, Hass MR. The unique function of Runx1 in skeletal muscle differentiation and regeneration is mediated by an ETS interaction domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568117. [PMID: 38045385 PMCID: PMC10690193 DOI: 10.1101/2023.11.21.568117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The conserved Runt-related (RUNX) transcription factor family are well-known master regulators of developmental and regenerative processes. Runx1 and Runx2 are both expressed in satellite cells (SC) and skeletal myotubes. Conditional deletion of Runx1 in adult SC negatively impacted self-renewal and impaired skeletal muscle maintenance. Runx1- deficient SC retain Runx2 expression but cannot support muscle regeneration in response to injury. To determine the unique molecular functions of Runx1 that cannot be compensated by Runx2 we deleted Runx1 in C2C12 that retain Runx2 expression and established that myoblasts differentiation was blocked in vitro due in part to ectopic expression of Mef2c, a target repressed by Runx1 . Structure-function analysis demonstrated that the Ets-interacting MID/EID region of Runx1, absent from Runx2, is critical to regulating myoblasts proliferation, differentiation, and fusion. Analysis of in-house and published ChIP-seq datasets from Runx1 (T-cells, muscle) versus Runx2 (preosteoblasts) dependent tissue identified enrichment for a Ets:Runx composite site in Runx1 -dependent tissues. Comparing ATACseq datasets from WT and Runx1KO C2C12 cells showed that the Ets:Runx composite motif was enriched in peaks open exclusively in WT cells compared to peaks unique to Runx1KO cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 .
Collapse
|
4
|
Ismaeel A, Van Pelt DW, Hettinger ZR, Fu X, Richards CI, Butterfield TA, Petrocelli JJ, Vechetti IJ, Confides AL, Drummond MJ, Dupont-Versteegden EE. Extracellular vesicle distribution and localization in skeletal muscle at rest and following disuse atrophy. Skelet Muscle 2023; 13:6. [PMID: 36895061 PMCID: PMC9999658 DOI: 10.1186/s13395-023-00315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Skeletal muscle (SkM) is a large, secretory organ that produces and releases myokines that can have autocrine, paracrine, and endocrine effects. Whether extracellular vesicles (EVs) also play a role in the SkM adaptive response and ability to communicate with other tissues is not well understood. The purpose of this study was to investigate EV biogenesis factors, marker expression, and localization across cell types in the skeletal muscle. We also aimed to investigate whether EV concentrations are altered by disuse atrophy. METHODS To identify the potential markers of SkM-derived EVs, EVs were isolated from rat serum using density gradient ultracentrifugation, followed by fluorescence correlation spectroscopy measurements or qPCR. Single-cell RNA sequencing (scRNA-seq) data from rat SkM were analyzed to assess the EV biogenesis factor expression, and cellular localization of tetraspanins was investigated by immunohistochemistry. Finally, to assess the effects of mechanical unloading on EV expression in vivo, EV concentrations were measured in the serum by nanoparticle tracking analysis in both a rat and human model of disuse. RESULTS In this study, we show that the widely used markers of SkM-derived EVs, α-sarcoglycan and miR-1, are undetectable in serum EVs. We also found that EV biogenesis factors, including the tetraspanins CD63, CD9, and CD81, are expressed by a variety of cell types in SkM. SkM sections showed very low detection of CD63, CD9, and CD81 in myofibers and instead accumulation within the interstitial space. Furthermore, although there were no differences in serum EV concentrations following hindlimb suspension in rats, serum EV concentrations were elevated in human subjects after bed rest. CONCLUSIONS Our findings provide insight into the distribution and localization of EVs in SkM and demonstrate the importance of methodological guidelines in SkM EV research.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Douglas W Van Pelt
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, USA
| | - Zachary R Hettinger
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, USA
| | - Xu Fu
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Ivan J Vechetti
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Amy L Confides
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, USA
| | - Micah J Drummond
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 210E, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
5
|
Quercetin induces pannexin 1 expression via an alternative transcript with a translationally active 5' leader in rhabdomyosarcoma. Oncogenesis 2022; 11:9. [PMID: 35194046 PMCID: PMC8864035 DOI: 10.1038/s41389-022-00384-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a deadly cancer of skeletal muscle origin. Pannexin 1 (PANX1) is down-regulated in RMS and increasing its levels drastically inhibits RMS progression. PANX1 upregulation thus represents a prospective new treatment strategy for this malignancy. However, the mechanisms regulating PANX1 expression, in RMS and other contexts, remain largely unknown. Here we show that both RMS and normal skeletal muscle express a comparable amount of PANX1 mRNAs, but surprisingly the canonical 5′ untranslated region (5′ UTR) or 5′ leader of the transcript is completely lost in RMS. We uncover that quercetin, a natural plant flavonoid, increases PANX1 protein levels in RMS by inducing re-expression of a 5′ leader-containing PANX1 transcript variant that is efficiently translated. This particular PANX1 mRNA variant is also present in differentiated human skeletal muscle myoblasts (HSMM) that highly express PANX1. Mechanistically, abolishing ETV4 transcription factor binding sites in the PANX1 promoter significantly reduced the luciferase reporter activities and PANX1 5′ UTR levels, and both quercetin treatment in RMS cells and induction of differentiation in HSMM enriched the binding of ETV4 to its consensus element in the PANX1 promoter. Notably, quercetin treatment promoted RMS differentiation in a PANX1-dependent manner. Further showing its therapeutic potential, quercetin treatment prevented RMS in vitro tumor formation while inducing complete regression of established spheroids. Collectively, our results demonstrate the tumor-suppressive effects of quercetin in RMS and present a hitherto undescribed mechanism of PANX1 regulation via ETV4-mediated transcription of a translationally functional 5′ leader-containing PANX1 mRNA.
Collapse
|
6
|
Comprehensive Analysis Identified ETV7 as a Potential Prognostic Biomarker in Bladder Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8530186. [PMID: 34926692 PMCID: PMC8678556 DOI: 10.1155/2021/8530186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Background The tumor microenvironment (TME) plays a crucial role in the initiation and progression of cancer. Bladder cancer (BLCA) is a malignant tumor of the genitourinary system. Its heterogeneity results in significant differences in the prognosis of patients. To date, this is still a huge challenge for clinical treatment. In recent years, more and more evidence showed that dysregulation of transcription factors (TFs) plays an important role in tumor progression, invasion, and metastasis. Unfortunately, the role of TFs on the tumor microenvironment in bladder cancer is unclear. Methods The original data of BLCA and corresponding adjacent tissues were obtained from The Cancer Genome Atlas (TCGA) database. TFs were downloaded from the Animal Transcription Factor DataBase (Animal TFDB). Intersection analysis was used to obtain TFs that were differentially expressed between tumor and adjacent tissues. Gene Set Cancer Analysis (GSCALite) and CIBERSORT software were used to reveal the key differentially expressed TFs (DE-TFs). Subsequently, UALCAN and Human Protein Atlas (HPA) databases were used to disclose the expression of key DE-TFs in BLCA. The K-M curve divulged the relationship between the key DE-TFs and the patient's overall survival (OS), and the univariate and multivariate Cox regression analyses were conducted to explore independent prognostic factors. The cluster profiler package and Gene Set Enrichment Analysis (GSEA) were used for functional enrichment of genes related to the key DE-TFs. Finally, CIBERSORT software analyzed the immune landscape of BLCA. Results We obtained a total of 117 BLCA-related DE-TFs. Among them, ETV7 was identified as the key DE-TFs due to its association with the autophagy activation pathway and various immune cells in cancer. Online databases of UALCAN and HPA indicated that ETV7 was overexpressed in tumors and negatively correlated with tumor severity. The K-M curve showed that the OS of patients with high expression of ETV7 was poor, which indicated that it was an independent prognostic factor. Functional enrichment of 87 DEGs between ETV7-high and -low expression groups indicated that it was closely related to the immune response and the functions of a variety of immune cells. Finally, CIBERSORT results proved that the high and low expression of ETV7 also caused significant differences in the tumor immune microenvironment of patients. Conclusion Overall, we proved that the transcription factor ETV7 was a novel prognostic factor, which may improve the individualized outcome prediction in BLCA by regulating the tumor immune microenvironment.
Collapse
|
7
|
Qu H, Zhao H, Zhang X, Liu Y, Li F, Sun L, Song Z. Integrated Analysis of the ETS Family in Melanoma Reveals a Regulatory Role of ETV7 in the Immune Microenvironment. Front Immunol 2020; 11:612784. [PMID: 33424867 PMCID: PMC7786291 DOI: 10.3389/fimmu.2020.612784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The ETS family modulates immune response and drug efficiency to targeted therapies, but their role in melanoma is largely unclear. In this study, the ETS family was systematically analyzed in multiple public data sets. Bioinformatics tools were used to characterize the function of ETV7 in melanoma. A prognostic model was constructed using the LASSO Cox regression method. We found that ETV7 was the only differentially expressed gene with significant prognostic relevance in melanoma. Enrichment analysis of seven independent data sets indicated ETV7 participation in various immune-related pathways. ETV7 particularly showed a strong positive correlation with CD8+ T cell infiltration. The prognostic model based on ETV7 and its hub genes showed a relatively good predictive value in training and testing data sets. Thus, ETV7 can potentially regulate the immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Hui Qu
- Department of Plastic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Hui Zhao
- Department of Urology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Feng Li
- Department of Plastic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liyan Sun
- Department of Plastic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Ai X, Wang D, Zhang J, Shen J. Hippo signaling promotes Ets21c-dependent apical cell extrusion in the Drosophila wing disc. Development 2020; 147:dev.190124. [PMID: 33028612 DOI: 10.1242/dev.190124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023]
Abstract
Cell extrusion is a crucial regulator of epithelial tissue development and homeostasis. Epithelial cells undergoing apoptosis, bearing pathological mutations or possessing developmental defects are actively extruded toward elimination. However, the molecular mechanisms of Drosophila epithelial cell extrusion are not fully understood. Here, we report that activation of the conserved Hippo (Hpo) signaling pathway induces both apical and basal cell extrusion in the Drosophila wing disc epithelia. We show that canonical Yorkie targets Diap1, Myc and Cyclin E are not required for either apical or basal cell extrusion induced by activation of this pathway. Another target gene, bantam, is only involved in basal cell extrusion, suggesting novel Hpo-regulated apical cell extrusion mechanisms. Using RNA-seq analysis, we found that JNK signaling is activated in the extruding cells. We provide genetic evidence that JNK signaling activation is both sufficient and necessary for Hpo-regulated cell extrusion. Furthermore, we demonstrate that the ETS-domain transcription factor Ets21c, an ortholog of proto-oncogenes FLI1 and ERG, acts downstream of JNK signaling to mediate apical cell extrusion. Our findings reveal a novel molecular link between Hpo signaling and cell extrusion.
Collapse
Affiliation(s)
- Xianlong Ai
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Kandemir B, Caglayan B, Hausott B, Erdogan B, Dag U, Demir O, Sogut MS, Klimaschewski L, Kurnaz IA. Pea3 transcription factor promotes neurite outgrowth. Front Mol Neurosci 2014; 7:59. [PMID: 25018694 PMCID: PMC4072091 DOI: 10.3389/fnmol.2014.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/08/2014] [Indexed: 01/13/2023] Open
Abstract
Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3.
Collapse
Affiliation(s)
- Basak Kandemir
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Berrak Caglayan
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey ; Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Barbara Hausott
- Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Burcu Erdogan
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Ugur Dag
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Ozlem Demir
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Melis S Sogut
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Lars Klimaschewski
- Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Isil A Kurnaz
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| |
Collapse
|
10
|
Kheradpour P, Kellis M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res 2013; 42:2976-87. [PMID: 24335146 PMCID: PMC3950668 DOI: 10.1093/nar/gkt1249] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in technology have led to a dramatic increase in the number of available transcription factor ChIP-seq and ChIP-chip data sets. Understanding the motif content of these data sets is an important step in understanding the underlying mechanisms of regulation. Here we provide a systematic motif analysis for 427 human ChIP-seq data sets using motifs curated from the literature and also discovered de novo using five established motif discovery tools. We use a systematic pipeline for calculating motif enrichment in each data set, providing a principled way for choosing between motif variants found in the literature and for flagging potentially problematic data sets. Our analysis confirms the known specificity of 41 of the 56 analyzed factor groups and reveals motifs of potential cofactors. We also use cell type-specific binding to find factors active in specific conditions. The resource we provide is accessible both for browsing a small number of factors and for performing large-scale systematic analyses. We provide motif matrices, instances and enrichments in each of the ENCODE data sets. The motifs discovered here have been used in parallel studies to validate the specificity of antibodies, understand cooperativity between data sets and measure the variation of motif binding across individuals and species.
Collapse
Affiliation(s)
- Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA and Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02139, USA
| | | |
Collapse
|
11
|
Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 2011; 16:221-34. [PMID: 21161388 DOI: 10.1007/s10495-010-0566-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C(2)C(12) myoblasts and myotubes were treated with H(2)O(2) or staurosporine (Stsp) to induce cell death. H(2)O(2) and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H(2)O(2) and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H(2)O(2) did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H(2)O(2) and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.
Collapse
|
12
|
Ferry AL, Vanderklish PW, Dupont-Versteegden EE. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3. Am J Physiol Cell Physiol 2011; 301:C392-402. [PMID: 21593448 DOI: 10.1152/ajpcell.00098.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cold-inducible RNA-binding protein (RBM3) is suggested to be involved in the regulation of skeletal muscle mass. Cell death pathways are implicated in the loss of muscle mass and therefore the role of RBM3 in muscle apoptosis in C(2)C(12) myoblasts was investigated in this study. RBM3 overexpression was induced by either cold shock (32°C exposure for 6 h) or transient transfection with a myc-tagged RBM3 expression vector. Cell death was induced by H(2)O(2) (1,000 μM) or staurosporine (StSp, 5 μM), and it was shown that cold shock and RBM3 transfection were associated with attenuation of morphological changes and an increase in cell viability compared with normal temperature or empty vector, respectively. No changes in proliferation were observed with either cold shock or RBM3 transfection. DNA fragmentation was not increased in response to H(2)O(2), and a cell permeability assay indicated that cell death in response to H(2)O(2) is more similar to necrosis than apoptosis. RBM3 overexpression reduced apoptosis and the collapse of the membrane potential in response to StSp. Moreover, the increase in caspase-3, -8, and -9 activities in response to StSp was returned to control levels with RBM3 overexpression. These results indicate that increased RBM3 expression decreases muscle cell necrosis as well as apoptosis and therefore RBM3 could potentially serve as an intervention for the loss of muscle cell viability during muscle atrophy and muscle diseases.
Collapse
Affiliation(s)
- Amy L Ferry
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | |
Collapse
|
13
|
Eloy-Trinquet S, Wang H, Edom-Vovard F, Duprez D. Fgf signaling components are associated with muscles and tendons during limb development. Dev Dyn 2009; 238:1195-206. [PMID: 19384958 DOI: 10.1002/dvdy.21946] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscle-tendon interactions are important for the establishment of a functional musculoskeletal system. Fgf4 and Fgf8 are expressed in muscle and tendon boundary regions during limb development, suggesting a potential role for Fgf signaling pathway in muscle and tendon interactions. We have examined the expression of Fgf syn-expression group components during muscle and tendon formation of vertebrate limb development. We observed that the transcriptional effector of Fgf signaling, Pea3, and the modulators of Fgf signal, Sprouty1 and 2, were expressed in muscles and tendons and that their expression was enhanced at the myotendinous junctions in chick and mouse limbs. Analysis of Pea3 and Sprouty gene expression in muscleless limbs of Pax3 mutant mice indicated a major expression in muscles but also revealed that the Pea3 and Sprouty expression in tendons depended on muscles. Finally, our data showed that Fgf4 positively regulated Pea3, Sprouty1, and 2 expression in chick limb mesenchyme.
Collapse
Affiliation(s)
- Sophie Eloy-Trinquet
- CNRS, UMR 7622 Biologie Moléculaire et Cellulaire du Développement, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
14
|
Sox9 is required for invagination of the otic placode in mice. Dev Biol 2008; 317:213-24. [DOI: 10.1016/j.ydbio.2008.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 12/31/2022]
|
15
|
Kim TG, Jung J, Mysliwiec MR, Kang S, Lee Y. Jumonji represses α-cardiac myosin heavy chain expression via inhibiting MEF2 activity. Biochem Biophys Res Commun 2005; 329:544-53. [PMID: 15737621 DOI: 10.1016/j.bbrc.2005.01.154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 11/24/2022]
Abstract
Expression of alpha-cardiac myosin heavy chain gene (alphaMHC) is developmentally regulated in normal embryonic hearts and down-regulated in cardiac myopathy and failing hearts. Jumonji (JMJ) has been shown to be critical for normal cardiovascular development and functions as a transcriptional repressor. Here, we demonstrate that JMJ represses alphaMHC expression through inhibition of myocyte enhancer factor 2 (MEF2) activity. In primary cardiomyocytes, overexpression of JMJ leads to marked reduction of endogenous alphaMHC expression. JMJ represses the synergistic activation of alphaMHC by MEF2 and thyroid hormone receptor (TR). Interestingly, JMJ inhibits transcriptional activities of all MEF2 isoforms, but not the TR-dependent activation. The transcriptional repression domain of JMJ interacts with the N-terminal part of MEF2A, resulting in the repression of MEF2A activities. These results suggest that JMJ represses alphaMHC expression via protein-protein interaction with MEF2A.
Collapse
Affiliation(s)
- Tae-gyun Kim
- Department of Anatomy and Cardiovascular Research Center, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
16
|
Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985) 2004; 98:482-8. [PMID: 15465884 DOI: 10.1152/japplphysiol.00895.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.
Collapse
Affiliation(s)
- C Scott Bickel
- Department of Physical Therapy, Louisiana State University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
18
|
Furukawa Y, Hashimoto N, Yamakuni T, Ishida Y, Kato C, Ogashiwa M, Kobayashi M, Kobayashi T, Nonaka I, Mizusawa H, Song SY. Down-regulation of an ankyrin repeat-containing protein, V-1, during skeletal muscle differentiation and its re-expression in the regenerative process of muscular dystrophy. Neuromuscul Disord 2003; 13:32-41. [PMID: 12467730 DOI: 10.1016/s0960-8966(02)00185-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using Western blot analysis and immunohistochemical methods, we examined the expression of V-1, a member of the ankyrin repeat-containing protein family, during differentiation and regeneration of skeletal muscle. The expression of V-1 was high in cultured myoblasts and decreased during their differentiation into myotubes, while high expression was maintained when muscle differentiation was inhibited by treatment with basic fibroblast growth factor. Down-regulation of V-1 also occurred during in vivo muscle differentiation from embryonic to postnatal stages, reaching an undetectable level in mature skeletal muscle. In contrast, strong V-1 immunoreactivity was detected again in myoblasts and regenerating muscle fibers with a small diameter, which were observed in Duchenne muscular dystrophy and its animal model, mdx mouse. Thus, it seems that V-1 is a good marker for early stage of muscle regeneration and changes of its expression suggest that V-1 plays a role in prenatal muscle differentiation and postnatal muscle regeneration.
Collapse
Affiliation(s)
- Yuko Furukawa
- Mitsubishi Kagaku Institute of Life Sciences, Minamiooya 11, Machida, 194-8511, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Paratore C, Brugnoli G, Lee HY, Suter U, Sommer L. The role of the Ets domain transcription factor Erm in modulating differentiation of neural crest stem cells. Dev Biol 2002; 250:168-80. [PMID: 12297104 DOI: 10.1006/dbio.2002.0795] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcription factor Erm is a member of the Pea3 subfamily of Ets domain proteins that is expressed in multipotent neural crest cells, peripheral neurons, and satellite glia. A specific role of Erm during development has not yet been established. We addressed the function of Erm in neural crest development by forced expression of a dominant-negative form of Erm. Functional inhibition of Erm in neural crest cells interfered with neuronal fate decision, while progenitor survival and proliferation were not affected. In contrast, blocking Erm function in neural crest stem cells did not influence their ability to adopt a glial fate, independent of the glia-inducing signal. Furthermore, glial survival and differentiation were normal. However, the proliferation rate was drastically diminished in glial cells, suggesting a glia-specific role of Erm in controlling cell cycle progression. Thus, in contrast to other members of the Pea3 subfamily that are involved in late steps of neurogenesis, Erm appears to be required in early neural crest development. Moreover, our data point to multiple, lineage-specific roles of Erm in neural crest stem cells and their derivatives, suggesting that Erm function is dependent on the cell intrinsic and extrinsic context.
Collapse
Affiliation(s)
- Christian Paratore
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Sachidanandan C, Sambasivan R, Dhawan J. Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury. J Cell Sci 2002; 115:2701-12. [PMID: 12077361 DOI: 10.1242/jcs.115.13.2701] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myogenic precursor cells known as satellite cells persist in adult skeletal muscle and are responsible for its ability to regenerate after injury. Quiescent satellite cells are activated by signals emanating from damaged muscle. Here we describe the rapid activation of two genes in response to muscle injury; these transcripts encode LPS-inducible CXC chemokine (LIX), a neutrophil chemoattractant, and Tristetraprolin (TTP), an RNA-binding protein implicated in the regulation of cytokine expression. Using a synchronized cell culture model we show that C2C12 myoblasts arrested in G0 exhibit some molecular attributes of satellite cells in vivo: suppression of MyoD and Myf5 expression during G0 and their reactivation in G1. Synchronization also revealed cell cycle dependent expression of CD34, M-cadherin, HGF and PEA3, genes implicated in satellite cell biology. To identify other genes induced in synchronized C2C12 myoblasts we used differential display PCR and isolated LIX and TTP cDNAs. Both LIX and TTP mRNAs are short-lived, encode molecules implicated in inflammation and are transiently induced during growth activation in vitro. Further, LIX and TTP are rapidly induced in response to muscle damage in vivo. TTP expression precedes that of MyoD and is detected 30 minutes after injury. The spatial distribution of LIX and TTP transcripts in injured muscle suggests expression by satellite cells. Our studies suggest that in addition to generating new cells for repair, activated satellite cells may be a source of signaling molecules involved in tissue remodeling during regeneration.
Collapse
MESH Headings
- Animals
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation/genetics
- Cells, Cultured
- Chemokine CXCL5
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- DNA-Binding Proteins
- Down-Regulation/genetics
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Mice
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/injuries
- Muscle, Skeletal/metabolism
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts, Skeletal/metabolism
- Myogenic Regulatory Factor 5
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/metabolism
- Reaction Time/genetics
- Regeneration/genetics
- Resting Phase, Cell Cycle/genetics
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Trans-Activators
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tristetraprolin
Collapse
|
21
|
Baert JL, Beaudoin C, Coutte L, de Launoit Y. ERM transactivation is up-regulated by the repression of DNA binding after the PKA phosphorylation of a consensus site at the edge of the ETS domain. J Biol Chem 2002; 277:1002-12. [PMID: 11682477 DOI: 10.1074/jbc.m107139200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final step of the transduction pathway is the activation of gene transcription, which is driven by kinase cascades leading to changes in the activity of many transcription factors. Among these latter, PEA3/E1AF, ER81/ETV1, and ERM, members of the well conserved PEA3 group from the Ets family are involved in these processes. We show here that protein kinase A (PKA) increases the transcriptional activity of human ERM and human ETV1, through a Ser residue situated at the edge of the ETS DNA-binding domain. PKA phosphorylation does not directly affect the ERM transactivation domains but does affect DNA binding activity. Unphosphorylated wild-type ERM bound DNA avidly, whereas after PKA phosphorylation it did so very weakly. Interestingly, S367A mutation significantly reduced the ERM-mediated transcription in the presence of the kinase, and the DNA binding of this mutant, although similar to that of unphosphorylated wild-type protein, was insensitive to PKA treatment. Mutations, which may mimic a phosphorylated serine, converted ERM from an efficient DNA-binding protein to a poor DNA binding one, with inefficiency of PKA phosphorylation. The present data clearly demonstrate a close correlation between the capacity of PKA to increase the transactivation of ERM and the drastic down-regulation of the binding of the ETS domain to the targeted DNA. What we thus demonstrate here is a relatively rare transcription activation mechanism through a decrease in DNA binding, probably by the shift of a non-active form of an Ets protein to a PKA-phosphorylated active one, which should be in a conformation permitting a transactivation domain to be active.
Collapse
Affiliation(s)
- Jean-Luc Baert
- UMR 8526 CNRS/Institut Pasteur de Lille, Institut de Biologie de Lille, BP 447, 1 rue Calmette, 59021 Lille Cedex, France
| | | | | | | |
Collapse
|
22
|
Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem 2001; 276:47496-507. [PMID: 11585834 DOI: 10.1074/jbc.m107631200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we show that HDAC7, a member of the class II histone deacetylases, specifically targets several members of myocyte enhancer factors, MEF2A, -2C, and -2D, and inhibits their transcriptional activity. Furthermore, we demonstrate that DNA-bound MEF2C is capable of recruiting HDAC7, demonstrating that the HDAC7-dependent repression of transcription is not due to the inhibition of the MEF2 DNA binding activity. The data also suggest that the promoter bound MEF2 is potentially capable of remodeling adjacent nucleosomes via the recruitment of HDAC7. We have also observed a nucleocytoplasmic shuttling of HDAC7 and dissected the mechanism involved. In NIH3T3 cells, HDAC7 was primarily localized in the cytoplasm, essentially due to an active CRM1-dependent export of the protein from the nucleus. Interestingly, in HeLa cells, HDAC7 was predominantly nuclear. In these cells we could restore the cytoplasmic localization of HDAC7 by expressing CaMK I. This CaMK I-induced nuclear export of HDAC7 was abolished when three critical serines, Ser-178, Ser-344, and Ser-479, of HDAC7 were mutated. We show that these serines are involved in the direct interaction of HDAC7 with 14-3-3. Mutations of these serine residues weakened the association with 14-3-3 and dramatically enhanced the repression activity of HDAC7 in NIH3T3 cells, but not in HeLa cells. Data presented in this work clearly show that the signal dependent subcellular localization of HDAC7 is essential in controlling its activities. The data also show that the cellular concentration of factors such as 14-3-3, CaMK I, and other yet unknown molecules may determine the subcellular localization of an individual HDAC member in a cell type and HDAC-specific manner.
Collapse
Affiliation(s)
- H Y Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, University Hospitals of Cleveland, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
ETS-domain transcription-factor networks represent a model for how combinatorial gene expression is achieved. These transcription factors interact with a multitude of co-regulatory partners to elicit gene-specific responses and drive distinct biological processes. These proteins are controlled by a complex series of inter and intramolecular interactions, and signalling pathways impinge on these proteins to further regulate their action.
Collapse
Affiliation(s)
- A D Sharrocks
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
24
|
Greenall A, Willingham N, Cheung E, Boam DS, Sharrocks AD. DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein.protein interactions. J Biol Chem 2001; 276:16207-15. [PMID: 11278941 DOI: 10.1074/jbc.m011582200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of DNA binding by eukaryotic transcription factors represents an important regulatory mechanism. Many transcription factors are controlled by cis-acting autoinhibitory modules that are thought to act by blocking promiscuous DNA binding in the absence of appropriate regulatory cues. Here, we have investigated the determinants and regulation of the autoinhibitory mechanism employed by the ETS-domain transcription factor, PEA3. DNA binding is inhibited by a module composed of a combination of two short motifs located on either side of the ETS DNA-binding domain. A second type of protein, Ids, can act in trans to mimic the effect of these cis-acting inhibitory motifs and reduce DNA binding by PEA3. By using a one-hybrid screen, we identified the basic helix-loop-helix-leucine zipper transcription factor USF-1 as an interaction partner for PEA3. PEA3 and USF-1 form DNA complexes in a cooperative manner. Moreover, the formation of ternary PEA3.USF-1.DNA complexes requires parts of the same motifs in PEA3 that form the autoinhibitory module. Thus the binding of USF-1 to PEA3 acts as a switch that modifies the autoinhibitory motifs in PEA3 to first relieve their inhibitory action, and second, promote ternary nucleoprotein complex assembly.
Collapse
Affiliation(s)
- A Greenall
- School of Biochemistry and Genetics, The Medical School, University of Newcastle Upon Tyne, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Szymczyna BR, Arrowsmith CH. DNA binding specificity studies of four ETS proteins support an indirect read-out mechanism of protein-DNA recognition. J Biol Chem 2000; 275:28363-70. [PMID: 10867009 DOI: 10.1074/jbc.m004294200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the ETS family of transcription factors are involved in several developmental and physiological processes, and, when overexpressed or misexpressed, can contribute to a variety of cancers. Each family member has a conserved DNA-binding domain that recognizes DNA sequences containing a G-G-A trinucleotide. Discrimination between potential ETS-binding sites appears to be governed by both the nucleotides flanking the G-G-A sequence and protein-protein interactions. We have used an adaptation of the "length-encoded multiplex" approach (Desjarlais, J. R., and Berg, J. M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 11099-11103) to define DNA binding specificities for four ETS proteins: Fli-1, SAP-1, PU.1, and TEL. Our results support a model in which cooperative effects among neighboring bases flanking the central G-G-A site contribute to the formation of stable ETS/DNA complexes. These results are consistent with a mechanism for specific DNA binding that is partially governed by an indirect read-out of the DNA sequence, in which a sequence-specific DNA conformation is sensed or induced.
Collapse
Affiliation(s)
- B R Szymczyna
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | |
Collapse
|
26
|
Aurrekoetxea-Hernández K, Buetti E. Synergistic action of GA-binding protein and glucocorticoid receptor in transcription from the mouse mammary tumor virus promoter. J Virol 2000; 74:4988-98. [PMID: 10799572 PMCID: PMC110850 DOI: 10.1128/jvi.74.11.4988-4998.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.
Collapse
|
27
|
Abstract
Embryonic stem (ES) cells are derived from the inner cell mass of blastocysts, and in response to retinoic acid (RA) are induced to differentiate to form some of the first distinguishable cell types of early mammalian development. This makes ES cells an attractive model system for studying the initial developmental decisions that occur during embryogenesis and the molecular genetics and associated mechanisms underlying these decisions. Additionally, ES cells are of significant interest to those characterizing various gene functions utilizing transgenic and gene-targeting techniques. With the advent of DNA microarray technology, which allows for the study of expression patterns of a large number of genes simultaneously within a cell type, there is an efficient means of gaining critical insights to the expression, regulation, and function of genes involved in mammalian development for which information is not currently available. To this end, we have utilized Clontech's Atlas Mouse cDNA Expression Arrays to examine the expression of 588 known regulatory genes in D3 ES cells and their RA-induced differentiated progeny. We report that nearly 50% of the regulatory genes are expressed in D3 and/or D3-differentiated cells. Of these genes, the steady-state levels of 18 are down-regulated and 61 are up-regulated by a factor of 2.5-fold or greater. These changes in gene expression are highly reproducible and represent changes in the expression of a variety of molecular markers, including: transcription factors, growth factors and their receptors, cytoskeletal and extracellular matrix proteins, cell surface antigens, and intracellular signal transduction modulators and effectors.
Collapse
Affiliation(s)
- D L Kelly
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | |
Collapse
|
28
|
Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 1999; 144:631-43. [PMID: 10037786 PMCID: PMC2132931 DOI: 10.1083/jcb.144.4.631] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To gain insight into the regeneration deficit of MyoD-/- muscle, we investigated the growth and differentiation of cultured MyoD-/- myogenic cells. Primary MyoD-/- myogenic cells exhibited a stellate morphology distinct from the compact morphology of wild-type myoblasts, and expressed c-met, a receptor tyrosine kinase expressed in satellite cells. However, MyoD-/- myogenic cells did not express desmin, an intermediate filament protein typically expressed in cultured myoblasts in vitro and myogenic precursor cells in vivo. Northern analysis indicated that proliferating MyoD-/- myogenic cells expressed fourfold higher levels of Myf-5 and sixfold higher levels of PEA3, an ETS-domain transcription factor expressed in newly activated satellite cells. Under conditions that normally induce differentiation, MyoD-/- cells continued to proliferate and with delayed kinetics yielded reduced numbers of predominantly mononuclear myocytes. Northern analysis revealed delayed induction of myogenin, MRF4, and other differentiation-specific markers although p21 was upregulated normally. Expression of M-cadherin mRNA was severely decreased whereas expression of IGF-1 was markedly increased in MyoD-/- myogenic cells. Mixing of lacZ-labeled MyoD-/- cells and wild-type myoblasts revealed a strict autonomy in differentiation potential. Transfection of a MyoD-expression cassette restored cytomorphology and rescued the differentiation deficit. We interpret these data to suggest that MyoD-/- myogenic cells represent an intermediate stage between a quiescent satellite cell and a myogenic precursor cell.
Collapse
Affiliation(s)
- L A Sabourin
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | |
Collapse
|
29
|
Yamaguchi H, Tanaka K, Kitagawa Y, Miki K. A PEA3 site flanked by SP1, SP4, and GATA sites positively regulates the differentiation-dependent expression of Brachyury in embryonal carcinoma P19 cells. Biochem Biophys Res Commun 1999; 254:542-7. [PMID: 9920775 DOI: 10.1006/bbrc.1998.0102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The promoter sequence of Brachyury was analyzed in mouse embryonal carcinoma P19 cells. The sequence up to -267 bp relative to the transcription start site was sufficient to enhance reporter gene expression depending on the mesodermal differentiation of P19 cells. Footprint analysis by nuclear extract showed binding of a GATA protein and SP4 and mutation of their sites reduced reporter gene expression. Gel-retardation assay in the presence of a series of double-stranded DNA fragments as the competitors showed SP1 and Est sites additionally. Deletion of either sites reduced the reporter gene expression, showing that they are cooperative. Depletion of PEA3 (a transcription factor of the Est family) with a specific antibody diminished the retarded bands only for the nuclear extract from differentiated P19 cells. Thus, the PEA3 site supported by SP1, SP4, and GATA sites positively regulates the differentiation-dependent expression of Brachyury in P19 cells.
Collapse
Affiliation(s)
- H Yamaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
30
|
Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1999; 14:167-96. [PMID: 9891782 DOI: 10.1146/annurev.cellbio.14.1.167] [Citation(s) in RCA: 804] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans contain multiple types of muscle cells that share several common properties, including contractility, excitability, and expression of overlapping sets of muscle structural genes that mediate these functions. Recent biochemical and genetic studies have demonstrated that members of the myocyte enhancer factor-2 (MEF2) family of MADS (MCM1, agamous, deficiens, serum response factor)-box transcription factors play multiple roles in muscle cells to control myogenesis and morphogenesis. Like other MADS-box proteins, MEF2 proteins act combinatorially through protein-protein interactions with other transcription factors to control specific sets of target genes. Genetic studies in Drosophila have also begun to reveal the upstream elements of myogenic regulatory hierarchies that control MEF2 expression during development of skeletal, cardiac, and visceral muscle lineages. Paradoxically, MEF2 factors also regulate cell proliferation by functioning as endpoints for a variety of growth factor-regulated intracellular signaling pathways that are antagonistic to muscle differentiation. We discuss the diverse functions of this family of transcription factors, the ways in which they are regulated, and their mechanisms of action.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA.
| | | |
Collapse
|
31
|
Gupta M, Zak R, Libermann TA, Gupta MP. Tissue-restricted expression of the cardiac alpha-myosin heavy chain gene is controlled by a downstream repressor element containing a palindrome of two ets-binding sites. Mol Cell Biol 1998; 18:7243-58. [PMID: 9819411 PMCID: PMC109306 DOI: 10.1128/mcb.18.12.7243] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.
Collapse
Affiliation(s)
- M Gupta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, Illinois 60453, USA.
| | | | | | | |
Collapse
|
32
|
Swanson BJ, Jäck HM, Lyons GE. Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol Immunol 1998; 35:445-58. [PMID: 9798649 DOI: 10.1016/s0161-5890(98)00058-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Our studies examined the expression and DNA binding activity of myocyte enhancer factor 2 (MEF2A-D) transcription factors in lymphopoietic tissues, cell lines, and primary lymphocytes. Our analyses demonstrate that mef2C expression is restricted to B cells within the lymphocyte lineage. Using in situ hybridization, mef2C is detected in foci in fetal liver and postnatal thymic medulla, and both mef2B and mef2C are expressed in areas of the postnatal spleen and lymph node that also express kappa light chain (Ckappa), a B cell-specific marker. Reverse transcriptase-PCR (RT-PCR) analyses demonstrate that all mef2 family members are expressed in B cell lines, and all except mef2C are expressed in T cell lines. Immunoblot analyses of cell lines and primary thymic and splenic lymphocytes show that MEF2C and MEF2D proteins are expressed in B cells and that MEF2D is expressed in T cells; however, MEF2A protein is not detected in lymphocytes. Electrophoretic mobility shift assays (EMSA) demonstrate that B cell lines have MEF2C-containing, MEF2-specific DNA binding complexes whereas T cells do not. Our data is the first to describe mef2C expression in the lymphocyte lineage, and this finding suggests possible roles for MEF2C activity in B cell development and function.
Collapse
Affiliation(s)
- B J Swanson
- Department of Anatomy, University of Wisconsin, Madison 53706, USA.
| | | | | |
Collapse
|