1
|
Miyata W, Sakaibara N, Yoshinaga K, Honjo A, Takahashi M, Ooki T, Yako H, Sango K, Miyamoto Y, Yamauchi J. Bcl2l12, a novel protein interacting with Arf6, triggers Schwann cell differentiation programme. J Biochem 2025; 177:5-14. [PMID: 39510036 DOI: 10.1093/jb/mvae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024] Open
Abstract
Schwann cells are glial cells in the peripheral nervous system (PNS); they wrap neuronal axons with their differentiated plasma membranes called myelin sheaths. Although the physiological functions, such as generating saltatory conduction, have been well studied in the PNS, the molecular mechanisms by which Schwann cells undergo their differentiation programme without apparent morphological changes before dynamic myelin sheath formation remain unclear. Here, for the first time, we report that Arf6, a small GTP/GDP-binding protein controlling morphological differentiation, and the guanine-nucleotide exchange factors cytohesin proteins are involved in the regulation of Schwann cell differentiation marker expression in primary Schwann cells. Specific inhibition of Arf6 and cytohesins by NAV-2729 and SecinH3, respectively, decreased expression of marker proteins 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and glial fibrillary acidic protein (GFAP). Similar results using promoter assays were observed using the IMS32 Schwann cell line. Furthermore, using an affinity-precipitation technique, we identified Bcl2-like 12 (Bcl2l12) as a novel GTP-bound Arf6-interacting protein. Knockdown of Bcl2l12 using a specific artificial miRNA decreased expression of marker proteins. The knockdown also led to decreased filamentous actin extents. These results suggest that Arf6 and Bcl2l12 can trigger Schwann cell differentiation, providing evidence for a molecular relay that underlies how Schwann cells differentiate.
Collapse
Affiliation(s)
- Wakana Miyata
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Naoko Sakaibara
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Kentaro Yoshinaga
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Asahi Honjo
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Tatsuya Ooki
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hideji Yako
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Department of Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
2
|
Popiel EM, Ahluwalia R, Schuetz S, Yu B, Derry WB. MRCK-1 activates non-muscle myosin for outgrowth of a unicellular tube in Caenorhabditis elegans. Development 2024; 151:dev202772. [PMID: 39494605 PMCID: PMC11634028 DOI: 10.1242/dev.202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The formation and patterning of unicellular biological tubes is essential for metazoan development. It is well established that vascular tubes and neurons use similar guidance cues to direct their development, but the downstream mechanisms that promote the outgrowth of biological tubes are not well characterized. We show that the conserved kinase MRCK-1 and its substrate the regulatory light chain of non-muscle myosin, MLC-4, are required for outgrowth of the unicellular excretory canal in C. elegans. Ablation of MRCK-1 or MLC-4 in the canal causes severe truncations with unlumenized projections of the basal membrane. Structure-function analysis of MRCK-1 indicates that the kinase domain, but not the small GTPase-binding CRIB domain, is required for canal outgrowth. Expression of a phosphomimetic form of MLC-4 rescues canal truncations in mrck-1 mutants and shows enrichment at the growing canal tip. Moreover, our work reveals a previously unreported function for non-muscle myosin downstream of MRCK-1 in excretory canal outgrowth that may be conserved in the development of seamless tubes in other organisms.
Collapse
Affiliation(s)
- Evelyn M. Popiel
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Rhea Ahluwalia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, ON M5G 0A3, Canada
| | - Stefan Schuetz
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - W. Brent Derry
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1X5, Canada
| |
Collapse
|
3
|
Patwardhan R, Nanda S, Wagner J, Stockter T, Dehmelt L, Nalbant P. Cdc42 activity in the trailing edge is required for persistent directional migration of keratinocytes. Mol Biol Cell 2024; 35:br1. [PMID: 37910204 PMCID: PMC10881163 DOI: 10.1091/mbc.e23-08-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.
Collapse
Affiliation(s)
- Rutuja Patwardhan
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Suchet Nanda
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Tom Stockter
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Leif Dehmelt
- TU Dortmund University, Fakultät für Chemie und Chemische Biologie, 44227 Dortmund, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
4
|
Powell CJ, Jenkins ML, Hill TB, Blank ML, Cabo LF, Thompson LR, Burke JE, Boyle JP, Boulanger MJ. Toxoplasma gondii mitochondrial association factor 1b interactome reveals novel binding partners including Ral GTPase accelerating protein α1. J Biol Chem 2024; 300:105582. [PMID: 38141762 PMCID: PMC10821591 DOI: 10.1016/j.jbc.2023.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.
Collapse
Affiliation(s)
- Cameron J Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Tara B Hill
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew L Blank
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F Cabo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lexie R Thompson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jon P Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
5
|
Yamamoto K, Watanabe-Takano H, Oguri-Nakamura E, Matsuno H, Horikami D, Ishii T, Ohashi R, Kubota Y, Nishiyama K, Murata T, Mochizuki N, Fukuhara S. Rap1 small GTPase is essential for maintaining pulmonary endothelial barrier function in mice. FASEB J 2023; 37:e23310. [PMID: 38010922 DOI: 10.1096/fj.202300830rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Hitomi Matsuno
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Nishiyama
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
6
|
Bourdais A, Dehapiot B, Halet G. MRCK activates mouse oocyte myosin II for spindle rotation and male pronucleus centration. J Cell Biol 2023; 222:e202211029. [PMID: 37651121 PMCID: PMC10470461 DOI: 10.1083/jcb.202211029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Asymmetric meiotic divisions in oocytes rely on spindle positioning in close vicinity to the cortex. In metaphase II mouse oocytes, eccentric spindle positioning triggers cortical polarization, including the build-up of an actin cap surrounded by a ring of activated myosin II. While the role of the actin cap in promoting polar body formation is established, ring myosin II activation mechanisms and functions have remained elusive. Here, we show that ring myosin II activation requires myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), downstream of polarized Cdc42. MRCK inhibition resulted in spindle rotation defects during anaphase II, precluding polar body extrusion. Remarkably, disengagement of segregated chromatids from the anaphase spindle could rescue rotation. We further show that the MRCK/myosin II pathway is activated in the fertilization cone and is required for male pronucleus migration toward the center of the zygote. These findings provide novel insights into the mechanism of myosin II activation in oocytes and its role in orchestrating asymmetric division and pronucleus centration.
Collapse
Affiliation(s)
- Anne Bourdais
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Benoit Dehapiot
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Guillaume Halet
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
7
|
Wu Q, Ma X, Jin Z, Ni R, Pan Y, Yang G. Zhuidu Formula suppresses the migratory and invasive properties of triple-negative breast cancer cells via dual signaling pathways of RhoA/ROCK and CDC42/MRCK. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116644. [PMID: 37196814 DOI: 10.1016/j.jep.2023.116644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhuidu Formula (ZDF) is composed of triptolide, cinobufagin and paclitaxel, which are the active ingredients of Tripterygium wilfordii Hook. F, dried toad skin and Taxus wallichiana var. chinensis (Pilg) Florin, respectively. Modern pharmacological studies show that triptolide, cinobufagin, and paclitaxel are well-known natural compounds that exert anti-tumor effects by interfering with DNA synthesis, inducing tumor cell apoptosis, and inhibiting the dynamic balance of the tubulin. However, the mechanism by which the three compounds inhibit triple-negative breast cancer (TNBC) metastasis is unknown. OBJECTIVE The objective of this investigation was to examine the inhibitory essences of ZDF on the metastasis of TNBC and elucidate its potential mechanism. MATERIALS AND METHODS Cell viability of triptolide (TPL), cinobufagin (CBF), and paclitaxel (PTX) on MDA-MB-231 cells was assessed employing a CCK-8 assay. The drug interactions of the three drugs on MDA-MB-231 cells were determined in vitro utilizing the Chou-Talalay method. MDA-MB-231 cells were identified for migration, invasion and adhesion in vitro through the implementation of the scratch assay, transwell assay and adhesion assay, respectively. The formation of cytoskeleton protein F-actin was detected by immunofluorescence assay. The expressions of MMP-2 and MMP-9 in the supernatant of the cells were determined by ELISA analysis. The Western blot and RT-qPCR were employed to explore the protein expressions associated with the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. The anti-tumor efficacy of ZDF in vivo and its preliminary mechanism were investigated in the mouse 4T1 TNBC model. RESULTS The results demonstrated that ZDF could significantly reduce the viability of the MDA-MB-231 cell, and the combination index (CI) values of actual compatibility experimental points were all less than 1, demonstrating a favorable synergistic compatibility relationship. It was found that ZDF reduces RhoA/ROCK and CDC42/MRCK dual signaling pathways, which are responsible for MDA-MB-231cell migration, invasion, and adhesion. Additionally, there has been a significant reduction in the manifestation of cytoskeleton-related proteins. Furthermore, the expression levels of RhoA, CDC42, ROCK2, and MRCKβ mRNA and protein were down-regulated. ZDF significantly decreased the protein expressions of vimentin, cytokeratin-8, Arp2 and N-WASP, and inhibited actin polymerization and actomyosin contraction. Furthermore, MMP-2 and MMP-9 levels in the high-dose ZDF group were decreased by 30% and 26%, respectively. ZDF significantly reduced the tumor volume and protein expressions of ROCK2 and MRCKβ in tumor tissues without eliciting any perceptible alterations in the physical mass of the mice, and the reduction was more pronounced than that of the BDP5290 treated group. CONCLUSION The current investigation demonstrates that ZDF exhibits a proficient inhibitory impact on TNBC metastasis by regulating cytoskeletal proteins through the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. Furthermore, the findings indicate that ZDF has significant anti-tumorigenic and anti-metastatic characteristics in breast cancer animal models.
Collapse
Affiliation(s)
- Qinhang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xuelin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Zhuolin Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Ruijun Ni
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
8
|
Kale VP, Hengst JA, Sharma AK, Golla U, Dovat S, Amin SG, Yun JK, Desai DH. Characterization of Anticancer Effects of the Analogs of DJ4, a Novel Selective Inhibitor of ROCK and MRCK Kinases. Pharmaceuticals (Basel) 2023; 16:1060. [PMID: 37630974 PMCID: PMC10458458 DOI: 10.3390/ph16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKβ) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/β. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells. To further optimize the ROCK/MRCK inhibitory potency of DJ4, we generated a library of 27 analogs. Among the various structural modifications, we identified four additional active analogs with enhanced ROCK/MRCK inhibitory potency. The anti-proliferative and cell cycle inhibitory effects of the active analogs were examined in non-small cell lung cancer, breast cancer, and melanoma cell lines. The anti-proliferative effectiveness of DJ4 and the active analogs was further demonstrated against a wide array of cancer cell types using the NCI-60 human cancer cell line panel. Lastly, these new analogs were tested for anti-migratory effects in highly invasive MDA-MB-231 breast cancer cells. Together, our results demonstrate that selective inhibitors of ROCK1/2 (DJE4, DJ-Allyl) inhibited cell proliferation and induced cell cycle arrest at G2/M but were less effective in cell death induction compared with dual ROCK1/2 and MRCKα/β (DJ4 and DJ110).
Collapse
Affiliation(s)
- Vijay Pralhad Kale
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jeremy A. Hengst
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Arati K. Sharma
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Upendarrao Golla
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Shantu G. Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jong K. Yun
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Dhimant H. Desai
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| |
Collapse
|
9
|
Truebestein L, Antonioli S, Waltenberger E, Gehin C, Gavin AC, Leonard TA. Structure and regulation of the myotonic dystrophy kinase-related Cdc42-binding kinase. Structure 2023; 31:435-446.e4. [PMID: 36854301 DOI: 10.1016/j.str.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
Protein kinases of the dystonia myotonica protein kinase (DMPK) family are critical regulators of actomyosin contractility in cells. The DMPK kinase MRCK1 is required for the activation of myosin, leading to the development of cortical tension, apical constriction, and early gastrulation. Here, we present the structure, conformation, and membrane-binding properties of Caenorhabditis elegans MRCK1. MRCK1 forms a homodimer with N-terminal kinase domains, a parallel coiled coil of 55 nm, and a C-terminal tripartite module of C1, pleckstrin homology (PH), and citron homology (CNH) domains. We report the high-resolution structure of the membrane-binding C1-PH-CNH module of MRCK1 and, using high-throughput and conventional liposome-binding assays, determine its binding to specific phospholipids. We further characterize the interaction of the C-terminal CRIB motif with Cdc42. The length of the coiled-coil domain of DMPK kinases is remarkably conserved over millions of years of evolution, suggesting that they may function as molecular rulers to position kinase activity at a fixed distance from the membrane.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Sumire Antonioli
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Elisabeth Waltenberger
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Charlotte Gehin
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany; École Polytechnique Fédérale de Lausanne (EPFL), AI 1108, Station 19, 1015 Lausanne, Switzerland
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany; University of Geneva, Department of Cell Physiology and Metabolism, CMU Rue Michel-Servet 1, 1211 Genève 4, Switzerland
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Zhang L, Cao Y, Dai X, Zhang X. Deciphering the role of DOCK8 in tumorigenesis by regulating immunity and the application of nanotechnology in DOCK8 deficiency therapy. Front Pharmacol 2022; 13:1065029. [PMID: 36386145 PMCID: PMC9664064 DOI: 10.3389/fphar.2022.1065029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is a severe immune disorder and characterized by serum IgE levels elevation, fungal and viral infections, dermatitis and food allergies. It was well known that DOCK8 is crucial for the survival and function of multiple immune related cells. However, the critical role of DOCK8 on tumorigenesis through regulating immunity is poorly investigated. Accumulating evidences indicated that DOCK8 could affect tumorigenesis by regulating the immunity through immune cells, including NK cells, T cells, B cells and dendritic cells. Here, we summarized and discussed the critical role of DOCK8 in cytoskeleton reconstruction, CD4+ T cell differentiation, immune synaptic formation, tumor immune infiltration, tumor immune surveillance and tumorigenesis. Furthermore, the potential roles of nanotechnology in improving the hematopoietic stem cell transplantation-based therapy for DOCK8 deficiency diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Longhui Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yang Cao
- Clinical Laboratory, The Eastern Division of the First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Peciuliene I, Jakubauskiene E, Vilys L, Zinkeviciute R, Kvedaraviciute K, Kanopka A. Short-Term Hypoxia in Cells Induces Expression of Genes Which Are Enhanced in Stressed Cells. Genes (Basel) 2022; 13:genes13091596. [PMID: 36140764 PMCID: PMC9498350 DOI: 10.3390/genes13091596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
All living organisms must respond to, and defend against, environmental stresses. Depending on the extent and severity of stress, cells try to alter their metabolism and adapt to a new state. Changes in alternative splicing of pre-mRNA are a crucial regulation mechanism through which cells are able to respond to a decrease in oxygen tension in the cellular environment. Currently, only limited data are available in the literature on how short-term hypoxia influences mRNA isoform formation. In this work, we discovered that expressions of the same genes that are activated during cellular stress are also activated in cells under short-term hypoxic conditions. Our results demonstrate that short-term hypoxia influences the splicing of genes associated with cell stress and apoptosis; however, the mRNA isoform formation patterns from the same pre-mRNAs in cells under short-term hypoxic conditions and prolonged hypoxia are different. Obtained data also show that short-term cellular hypoxia increases protein phosphatase but not protein kinase expression. Enhanced levels of protein phosphatase expression in cells are clearly important for changing mRNA isoform formation.
Collapse
Affiliation(s)
- Inga Peciuliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Egle Jakubauskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Laurynas Vilys
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Ruta Zinkeviciute
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Kotryna Kvedaraviciute
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Arvydas Kanopka
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5-2602124
| |
Collapse
|
12
|
Wang F, van Baal J, Ma L, Gao X, Dijkstra J, Bu D. MRCKα is a novel regulator of prolactin-induced lactogenesis in bovine mammary epithelial cells. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:319-328. [PMID: 35891685 PMCID: PMC9304597 DOI: 10.1016/j.aninu.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Myotonic dystrophy-related Cdc42-binding kinase alpha (MRCKα) is an integral component of signaling pathways controlling vital cellular processes, including cytoskeletal reorganization, cell proliferation and cell survival. In this study, we investigated the physiological role of MRCKα in milk protein and fat production in dairy cows, which requires a dynamic and strict organization of the cytoskeletal network in bovine mammary epithelial cells (BMEC). Within a selection of 9 Holstein cows, we found that both mRNA and protein expression of MRCKα in the mammary gland were upregulated during lactation and correlated positively (r > 0.89) with the mRNA and protein levels of β-casein. Similar positive correlations (r > 0.79) were found in a primary culture of BMEC stimulated with prolactin for 24 h. In these cells, silencing of MRCKα decreased basal β-casein, sterol-regulatory element binding protein (SREBP)-1 and cyclin D1 protein level, phosphorylation of mTOR, triglyceride secretion, cell number and viability-while overexpression of MRCKα displayed the reversed effect. Notably, silencing of MRCKα completely prevented the stimulatory action of prolactin on the same parameters. These data demonstrate that MRCKα is a critical mediator of prolactin-induced lactogenesis via stimulation of the mTOR/SREBP1/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, China
| |
Collapse
|
13
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
MRCK-Alpha and Its Effector Myosin II Regulatory Light Chain Bind ABCB4 and Regulate Its Membrane Expression. Cells 2022; 11:cells11040617. [PMID: 35203270 PMCID: PMC8870398 DOI: 10.3390/cells11040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.
Collapse
|
16
|
East MP, Johnson GL. Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. J Biol Chem 2021; 298:101525. [PMID: 34958800 PMCID: PMC8888345 DOI: 10.1016/j.jbc.2021.101525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Pharmacological inhibition of protein kinases induces adaptive reprogramming of tumor cell regulatory networks by altering expression of genes that regulate signaling, including protein kinases. Adaptive responses are dependent on transcriptional changes resulting from remodeling of enhancer and promoter landscapes. Enhancer and promoter remodeling in response to targeted kinase inhibition is controlled by changes in open chromatin state and by activity of specific transcription factors, such as c-MYC. This review focuses on the dynamic plasticity of protein kinase expression of the tumor cell kinome and the resulting adaptive resistance to targeted kinase inhibition. Plasticity of the functional kinome has been shown in patient window trials where triple-negative and human epidermal growth factor receptor 2–positive breast cancer patient tumors were characterized by RNAseq after biopsies before and after 1 week of therapy. The expressed kinome changed dramatically during drug treatment, and these changes in kinase expression were shown in cell lines and xenografts in mice to be correlated with adaptive tumor cell drug resistance. The dynamic transcriptional nature of the kinome also differs for inhibitors targeting different kinase signaling pathways (e.g., BRAF-MEK-ERK versus PI3K-AKT) that are commonly activated in cancers. Heterogeneity arising from differences in gene regulation and mutations represents a challenge to therapeutic durability and prevention of clinical drug resistance with drug-tolerant tumor cell populations developing and persisting through treatment. We conclude that understanding the heterogeneity of kinase expression at baseline and in response to therapy is imperative for development of combinations and timing intervals of therapies making interventions durable.
Collapse
Affiliation(s)
- Michael P East
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gary L Johnson
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
| |
Collapse
|
17
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
18
|
Liu J, Dean DA. Gene transfer of MRCKα rescues lipopolysaccharide-induced acute lung injury by restoring alveolar capillary barrier function. Sci Rep 2021; 11:20862. [PMID: 34675326 PMCID: PMC8531330 DOI: 10.1038/s41598-021-99897-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is characterized by alveolar edema accumulation with reduced alveolar fluid clearance (AFC), alveolar-capillary barrier disruption, and substantial inflammation, all leading to acute respiratory failure. Enhancing AFC has long been considered one of the primary therapeutic goals in gene therapy treatments for ARDS. We previously showed that electroporation-mediated gene delivery of the Na+, K+-ATPase β1 subunit not only increased AFC, but also restored alveolar barrier function through upregulation of tight junction proteins, leading to treatment of LPS-induced ALI in mice. We identified MRCKα as an interaction partner of β1 which mediates this upregulation in cultured alveolar epithelial cells. In this study, we investigate whether electroporation-mediated gene transfer of MRCKα to the lungs can attenuate LPS-induced acute lung injury in vivo. Compared to mice that received a non-expressing plasmid, those receiving the MRCKα plasmid showed attenuated LPS-increased pulmonary edema and lung leakage, restored tight junction protein expression, and improved overall outcomes. Interestingly, gene transfer of MRCKα did not alter AFC rates. Studies using both cultured microvascular endothelial cells and mice suggest that β1 and MRCKα upregulate junctional complexes in both alveolar epithelial and capillary endothelial cells, and that one or both barriers may be positively affected by our approach. Our data support a model of treatment for ALI/ARDS in which improvement of alveolar-capillary barrier function alone may be of more benefit than improvement of alveolar fluid clearance.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.,Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA. .,Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Li Y, Zhang Y, Hu Q, Egranov SD, Xing Z, Zhang Z, Liang K, Ye Y, Pan Y, Chatterjee SS, Mistretta B, Nguyen TK, Hawke DH, Gunaratne PH, Hung MC, Han L, Yang L, Lin C. Functional significance of gain-of-function H19 lncRNA in skeletal muscle differentiation and anti-obesity effects. Genome Med 2021; 13:137. [PMID: 34454586 PMCID: PMC8403366 DOI: 10.1186/s13073-021-00937-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Exercise training is well established as the most effective way to enhance muscle performance and muscle building. The composition of skeletal muscle fiber type affects systemic energy expenditures, and perturbations in metabolic homeostasis contribute to the onset of obesity and other metabolic dysfunctions. Long noncoding RNAs (lncRNAs) have been demonstrated to play critical roles in diverse cellular processes and diseases, including human cancers; however, the functional importance of lncRNAs in muscle performance, energy balance, and obesity remains elusive. We previously reported that the lncRNA H19 regulates the poly-ubiquitination and protein stability of dystrophin (DMD) in muscular dystrophy. METHODS Here, we identified mouse/human H19-interacting proteins using mouse/human skeletal muscle tissues and liquid chromatography-mass spectrometry (LC-MS). Human induced pluripotent stem-derived skeletal muscle cells (iPSC-SkMC) from a healthy donor and Becker Muscular Dystrophy (BMD) patients were utilized to study DMD post-translational modifications and associated proteins. We identified a gain-of-function (GOF) mutant of H19 and characterized the effects on myoblast differentiation and fusion to myotubes using iPSCs. We then conjugated H19 RNA gain-of-function oligonucleotides (Rgof) with the skeletal muscle enrichment peptide agrin (referred to as AGR-H19-Rgof) and evaluated AGR-H19-Rgof's effects on skeletal muscle performance using wild-type (WT) C57BL/6 J mice and its anti-obesity effects using high-fat diet (HFD)- and leptin deficiency-induced obese mouse models. RESULTS We demonstrated that both human and mouse H19 associated with DMD and that the H19 GOF exhibited enhanced interaction with DMD compared to WT H19. DMD was found to associate with serine/threonine-protein kinase MRCK alpha (MRCKα) and α-synuclein (SNCA) in iPSC-SkMC derived from BMD patients. Inhibition of MRCKα and SNCA-mediated phosphorylation of DMD antagonized the interaction between H19 and DMD. These signaling events led to improved skeletal muscle cell differentiation and myotube fusion. The administration of AGR-H19-Rgof improved the muscle mass, muscle performance, and base metabolic rate of WT mice. Furthermore, mice treated with AGR-H19-Rgof exhibited resistance to HFD- or leptin deficiency-induced obesity. CONCLUSIONS Our study suggested the functional importance of the H19 GOF mutant in enhancing muscle performance and anti-obesity effects.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Current address: Sanofi U.S., Boston, MA, 02139, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Yinghong Pan
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
- Current address: UPMC Genome Center, Pittsburgh, PA, 15232, USA
| | - Sujash S Chatterjee
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
| | - Brandon Mistretta
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preethi H Gunaratne
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
21
|
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021; 10:1831. [PMID: 34359999 PMCID: PMC8305018 DOI: 10.3390/cells10071831] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Much progress has been made toward deciphering RHO GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through RHO GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstrasse 1, Building 22.03.05, 40225 Düsseldorf, Germany;
| |
Collapse
|
22
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
23
|
Abstract
The epithelium forms a smart barrier to the external environment that can remodel whilst maintaining tissue integrity, a feature important for development, homeostasis, and function. Its dysregulation can lead to diseases ranging from cancer to vision loss. Epithelial remodeling requires reorganization of a thin sheet of actomyosin cortex under the plasma membrane of polarized cells that form basolateral contacts with neighboring cells and the extracellular matrix (ECM). Rho GTPases act as spatiotemporal molecular switches in this process, controlling localized actomyosin dynamics. However, the molecular mechanisms that control actomyosin dynamics at the apical cortex are poorly understood. This review focusses on a growing body of evidence that suggest myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) plays a conserved role in morphogenetic signaling at the apical cortex in diverse cell and tissue remodeling processes. The possible molecular and mechanistic basis for the diverse functions of MRCK at the apical pole will also be discussed.
Collapse
Affiliation(s)
- Ceniz Zihni
- UCL Institute of Ophthalmology, Department of Cell Biology, University College London, London, UK
| |
Collapse
|
24
|
Wang XX, Zhang S, Dong PP, Li YH, Zhang L, Shi SH, Yu ZQ, Chen S. MRCKβ links Dasm1 to actin rearrangements to promote dendrite development. J Biol Chem 2021; 296:100730. [PMID: 33933448 PMCID: PMC8191314 DOI: 10.1016/j.jbc.2021.100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Proper dendrite morphogenesis and synapse formation are essential for neuronal development and function. Dasm1, a member of the immunoglobulin superfamily, is known to promote dendrite outgrowth and excitatory synapse maturation in vitro. However, the in vivo function of Dasm1 in neuronal development and the underlying mechanisms are not well understood. To learn more, Dasm1 knockout mice were constructed and employed to confirm that Dasm1 regulates dendrite arborization and spine formation in vivo. We performed a yeast two-hybrid screen using Dasm1, revealing MRCKβ as a putative partner; additional lines of evidence confirmed this interaction and identified cytoplasmic proline-rich region (823–947 aa) of Dasm1 and MRCKβ self-activated kinase domain (CC1, 410–744 aa) as necessary and sufficient for binding. Using co-immunoprecipitation assay, autophosphorylation assay, and BS3 cross-linking assay, we show that Dasm1 binding triggers a change in MRCKβ’s conformation and subsequent dimerization, resulting in autophosphorylation and activation. Activated MRCKβ in turn phosphorylates a class 2 regulatory myosin light chain, which leads to enhanced actin rearrangement, causing the dendrite outgrowth and spine formation observed before. Removal of Dasm1 in mice leads to behavioral abnormalities. Together, these results reveal a crucial molecular pathway mediating cell surface and intracellular signaling communication to regulate actin dynamics and neuronal development in the mammalian brain.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping-Ping Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Surgery, Faculty of Medicine, Centre for Cancer Research, The University of Hong Kong, Hong Kong, China
| | - Yao-Hua Li
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhi-Qiang Yu
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Eye Department, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Kwa MQ, Brandao R, Phung TH, Ge J, Scieri G, Brakebusch C. MRCKα Is Dispensable for Breast Cancer Development in the MMTV-PyMT Model. Cells 2021; 10:cells10040942. [PMID: 33921698 PMCID: PMC8073694 DOI: 10.3390/cells10040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
MRCKα is a ubiquitously expressed serine/threonine kinase involved in cell contraction and F-actin turnover, which is highly amplified in human breast cancer and part of a gene expression signature for bad prognosis. Nothing is known about the in vivo function of MRCKα. To explore MRCKα function in development and in breast cancer, we generated mice lacking a functional MRCKα gene. Mice were born close to the Mendelian ratio and showed no obvious phenotype including a normal mammary gland formation. Assessing breast cancer development using the transgenic MMTV-PyMT mouse model, loss of MRCKα did not affect tumor onset, tumor growth and metastasis formation. Deleting MRCKα and its related family member MRCKβ in two triple-negative breast cancer cell lines resulted in reduced invasion of MDA-MB-231 cells, but did not affect migration of 4T1 cells. Further genomic analysis of human breast cancers revealed that MRCKα is frequently co-amplified with the oncogenes ARID4B and AKT3 which might contribute to the prognostic value of MRCKα expression. Collectively, these data suggest that MRCKα might be a prognostic marker for breast cancer, but probably of limited functional importance.
Collapse
MESH Headings
- Actin Depolymerizing Factors/metabolism
- Actins/metabolism
- Animals
- Antigens, Neoplasm/metabolism
- Antigens, Polyomavirus Transforming/metabolism
- Base Sequence
- Carcinogenesis/drug effects
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Collagen/pharmacology
- Disease Models, Animal
- Female
- Gels/pharmacology
- Humans
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Tumor Virus, Mouse/drug effects
- Mammary Tumor Virus, Mouse/physiology
- Mice
- Mice, Knockout
- Mutation/genetics
- Myosins/metabolism
- Myotonin-Protein Kinase/metabolism
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neoplasm Proteins/metabolism
- Phenotype
- Phosphorylation/drug effects
- Polymerization/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Mei Qi Kwa
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
| | - Rafael Brandao
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
| | - Trong H. Phung
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
- Centre College, 600 W Walnut St, Danville, KY 40422, USA
| | - Jianfeng Ge
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, P.O. Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Giuseppe Scieri
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
| | - Cord Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark; (M.Q.K.); (R.B.); (T.H.P.); (J.G.); (G.S.)
- Correspondence:
| |
Collapse
|
26
|
Richard C, Viret S, Cantero Aguilar L, Lefevre C, Leduc M, Faouzi EH, Azar N, Lavazec C, Mayeux P, Verdier F. Myotonic dystrophy kinase-related CDC42-binding kinase α, a new transferrin receptor type 2-binding partner, is a regulator of erythropoiesis. Am J Hematol 2021; 96:480-492. [PMID: 33476437 DOI: 10.1002/ajh.26104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 01/01/2023]
Abstract
Efficient erythropoiesis relies on the expression of the transferrin receptor type 2 (TFR2). In erythroid precursors, TFR2 facilitates the export of the erythropoietin receptor (EPOR) to cell surface, which ensures the survival and proliferation of erythroblasts. Although TFR2 has a crucial role in erythropoiesis regulation, its mechanism of action remains to be clarified. To understand its role better, we aimed at identifying its protein partners by mass-spectrometry after immunoprecipitation in erythroid cells. Here we report the kinase MRCKα (myotonic dystrophy kinase-related CDC42-binding kinase α) as a new partner of both TFR2 and EPOR in erythroblasts. We show that MRCKα is co-expressed with TFR2, and TFR1 during terminal differentiation and regulates the internalization of the two types of transferrin receptors. The knockdown of MRCKα by shRNA in human primary erythroblasts leads to a decreased cell surface expression of both TFR1 and TFR2, an increased cell-surface expression of EPOR, and a delayed differentiation. Additionally, knockout of Mrckα in the murine MEDEP cells also leads to a striking delay in erythropoiesis, showcasing the importance of this kinase in both species. Our data highlight the importance of MRCKα in the regulation of erythropoiesis.
Collapse
Affiliation(s)
- Cyrielle Richard
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| | - Sophie Viret
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| | - Lilia Cantero Aguilar
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| | - Carine Lefevre
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| | - Marjorie Leduc
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
- Plateforme Protéomique 3P5‐Proteom'IC, Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104 Paris France
| | - El Hassan Faouzi
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| | - Nabih Azar
- Unité d'Hémobiothérapie, Hôpital La Pitié Salpêtrière Paris France
| | - Catherine Lavazec
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
- Plateforme Protéomique 3P5‐Proteom'IC, Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104 Paris France
| | - Frédérique Verdier
- Université de Paris, Institut Cochin, INSERM U1016‐CNRS UMR8104 Paris France
- Laboratory of Excellence GR‐Ex Paris France
| |
Collapse
|
27
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
28
|
Marlaire S, Dehio C. Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLoS Pathog 2021; 17:e1008548. [PMID: 33508040 PMCID: PMC7842960 DOI: 10.1371/journal.ppat.1008548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called ‘invasome’. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal ‘Bep intracellular delivery’ (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal ‘filamentation induced by cAMP’ (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane. A wide variety of bacterial pathogens evolved numerous virulence factors to subvert cellular processes in support of a successful infection process. Likewise, bacteria of the genus Bartonella translocate a cocktail of effector proteins (Beps) via a type-IV-secretion system into infected cells in order to interfere with host signaling processes involved in cytoskeletal dynamics, apoptosis control, and innate immune responses. In this study, we demonstrate that BepC triggers actin stress fiber formation and a linked cell fragmentation phenotype resulting from distortion of rear-end retraction during cell migration. The ability of BepC to induce actin stress fiber formation is directly associated with its ability to bind GEF-H1, an activator of the RhoA pathway that is sequestered in an inactive state when bound to microtubules but becomes activated upon release to the cytoplasm. Our findings suggest that BepC is anchored via its BID domain to the plasma membrane where it recruits GEF-H1 via its FIC domain, eventually activating the RhoA/ROCK signaling pathway and leading to stress fiber formation.
Collapse
Affiliation(s)
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Chen DY, Jiang RF, Li YJ, Liu MX, Wu L, Hu W. Screening and functional identification of lncRNAs in antler mesenchymal and cartilage tissues using high-throughput sequencing. Sci Rep 2020; 10:9492. [PMID: 32528134 PMCID: PMC7289821 DOI: 10.1038/s41598-020-66383-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a transcription product of the mammalian genome that regulates the development and growth in the body. The present study aimed to analyze the expression dynamics of lncRNA in sika antler mesenchymal and cartilage tissues by high-throughput sequencing. Bioinformatics was applied to predict differentially expressed lncRNAs and target genes and screen lncRNAs and mRNAs related to osteogenic differentiation, cell proliferation, and migration. Finally, the expression of the lncRNAs and target genes were analyzed by qRT-PCR. The results showed that compared to the cartilage tissue, the transcription levels of lncRNA and mRNA, 1212 lncRNAs and 518 mRNAs, in mesenchymal tissue were altered significantly. Thus, a complex interaction network was constructed, and the lncRNA-mRNA interaction network correlation related to osteogenic differentiation, cell proliferation, and migration was analyzed. Among these, the 26 lncRNAs and potential target genes were verified by qRT-PCR, and the results of qRT-PCR were consistent with high-throughput sequencing results. These data indicated that lncRNA promotes the differentiation of deer antler mesenchymal tissue into cartilage tissue by regulating the related osteogenic factors, cell proliferation, and migration-related genes and accelerating the process of deer antler regeneration and development.
Collapse
Affiliation(s)
- Dan-Yang Chen
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Ren-Feng Jiang
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Yan-Jun Li
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Ming-Xiao Liu
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China.
| | - Wei Hu
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
30
|
Clayton NS, Ridley AJ. Targeting Rho GTPase Signaling Networks in Cancer. Front Cell Dev Biol 2020; 8:222. [PMID: 32309283 PMCID: PMC7145979 DOI: 10.3389/fcell.2020.00222] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
As key regulators of cytoskeletal dynamics, Rho GTPases coordinate a wide range of cellular processes, including cell polarity, cell migration, and cell cycle progression. The adoption of a pro-migratory phenotype enables cancer cells to invade the stroma surrounding the primary tumor and move toward and enter blood or lymphatic vessels. Targeting these early events could reduce the progression to metastatic disease, the leading cause of cancer-related deaths. Rho GTPases play a key role in the formation of dynamic actin-rich membrane protrusions and the turnover of cell-cell and cell-extracellular matrix adhesions required for efficient cancer cell invasion. Here, we discuss the roles of Rho GTPases in cancer, their validation as therapeutic targets and the challenges of developing clinically viable Rho GTPase inhibitors. We review other therapeutic targets in the wider Rho GTPase signaling network and focus on the four best characterized effector families: p21-activated kinases (PAKs), Rho-associated protein kinases (ROCKs), atypical protein kinase Cs (aPKCs), and myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs).
Collapse
Affiliation(s)
- Natasha S Clayton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
Luo LJ, Feng F, Li SH, Lu D, Li L, Zhou Q. Sequence variant in the CDC42BPB gene is potentially associated with Mullerian duct anomalies. J Obstet Gynaecol Res 2020; 46:684-693. [PMID: 32043305 DOI: 10.1111/jog.14211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
AIM Mullerian duct anomalies (MDA) are common female genital tract malformations. Genetic and environmental factors are important causes of MDA in women. Although many genes and mutations have been found to be associated with the pathogenesis of MDA, in most cases, the genetic pathogenic factors of MDA are still unknown. METHODS We first analyzed the three sisters using low coverage whole-genome sequencing. Then whole-exome sequencing was carried out in each patient. The identified sequence variant was confirmed by Sanger sequencing. In silico pathogenicity analysis and conservative analysis of the mutation site were also performed. Protein structural modeling was used to analyze the effect of the mutated amino acid. RESULTS We first analyzed the three sisters with septate uterus using low coverage whole-genome sequencing, but no possible pathogenic copy number variation was found. Then whole-exome sequencing was performed on the three sisters, and a rare homozygous variant, CDC42BPB:c.2012G>A:p.R671Q, was identified. All three patients were found with this variant. Sanger sequencing validated that this variant was segregated within the family. In silico pathogenicity analysis and conservative analysis of the mutation site suggested that the variant might be damaging. Protein structural analysis suggested that R671Q might weaken the electrostatic potential of this region, which may be a significant regulation target or protein interaction surface of CDC42BPB. CONCLUSION We demonstrated that CDC42BPB genetic variant might be potentially associated with the pathogenesis of MDA.
Collapse
Affiliation(s)
- Li-Jing Luo
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Fan Feng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Sheng-Hui Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qi Zhou
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Fossati M, Assendorp N, Gemin O, Colasse S, Dingli F, Arras G, Loew D, Charrier C. Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons. Neuron 2019; 104:1081-1094.e7. [PMID: 31704028 PMCID: PMC6926483 DOI: 10.1016/j.neuron.2019.09.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Fine orchestration of excitatory and inhibitory synaptic development is required for normal brain function, and alterations may cause neurodevelopmental disorders. Using sparse molecular manipulations in intact brain circuits, we show that the glutamate receptor delta-1 (GluD1), a member of ionotropic glutamate receptors (iGluRs), is a postsynaptic organizer of inhibitory synapses in cortical pyramidal neurons. GluD1 is selectively required for the formation of inhibitory synapses and regulates GABAergic synaptic transmission accordingly. At inhibitory synapses, GluD1 interacts with cerebellin-4, an extracellular scaffolding protein secreted by somatostatin-expressing interneurons, which bridges postsynaptic GluD1 and presynaptic neurexins. When binding to its agonist glycine or D-serine, GluD1 elicits non-ionotropic postsynaptic signaling involving the guanine nucleotide exchange factor ARHGEF12 and the regulatory subunit of protein phosphatase 1 PPP1R12A. Thus, GluD1 defines a trans-synaptic interaction regulating postsynaptic signaling pathways for the proper establishment of cortical inhibitory connectivity and challenges the dichotomy between iGluRs and inhibitory synaptic molecules.
Collapse
Affiliation(s)
- Matteo Fossati
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Nora Assendorp
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Olivier Gemin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 75248 Paris Cedex 05, France
| | - Cécile Charrier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
33
|
Li L, Chen Q, Yu Y, Chen H, Lu M, Huang Y, Li P, Chang H. RKI‐1447 suppresses colorectal carcinoma cell growth via disrupting cellular bioenergetics and mitochondrial dynamics. J Cell Physiol 2019; 235:254-266. [PMID: 31237697 DOI: 10.1002/jcp.28965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Liyi Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Qin Chen
- Department of Intensive Care First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yaojun Yu
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui Chen
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Mingdong Lu
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Yingpeng Huang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Pihong Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Hong Chang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| |
Collapse
|
34
|
Gagliardi PA, Primo L. Irreversible Activation of Rho-activated Kinases Resulted from Evolution of Proteolytic Sites within Disordered Regions in Coiled-coil Domain. Mol Biol Evol 2018; 36:376-392. [DOI: 10.1093/molbev/msy229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Paolo Armando Gagliardi
- Department of Biology, Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, Switzerland
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
| | - Luca Primo
- Candiolo Cancer Institute-FPO IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Turin, Italy
| |
Collapse
|
35
|
Garre S, Gamage AK, Faner TR, Dedigama-Arachchige P, Pflum MKH. Identification of Kinases and Interactors of p53 Using Kinase-Catalyzed Cross-Linking and Immunoprecipitation. J Am Chem Soc 2018; 140:16299-16310. [PMID: 30339384 DOI: 10.1021/jacs.8b10160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kinase enzymes phosphorylate protein substrates in a highly ordered manner to control cell signaling. Unregulated kinase activity is associated with a variety of disease states, most notably cancer, making the characterization of kinase activity in cells critical to understand disease formation. However, the paucity of available tools has prevented a full mapping of the substrates and interacting proteins of kinases involved in cellular function. Recently we developed kinase-catalyzed cross-linking to covalently connect substrate and kinase in a phosphorylation-dependent manner. Here, we report a new method combining kinase-catalyzed cross-linking and immunoprecipitation (K-CLIP) to identify kinase-substrate pairs and kinase-associated proteins. K-CLIP was applied to the substrate p53, which is robustly phosphorylated. Both known and unknown kinases of p53 were isolated from cell lysates using K-CLIP. In follow-up validation studies, MRCKbeta was identified as a new p53 kinase. Beyond kinases, a variety of p53 and kinase-associated proteins were also identified using K-CLIP, which provided a snapshot of cellular interactions. The K-CLIP method represents an immediately useful chemical tool to identify kinase-substrate pairs and multiprotein complexes in cells, which will embolden cell signaling research and enhance our understanding of kinase activity in normal and disease states.
Collapse
Affiliation(s)
- Satish Garre
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Aparni K Gamage
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Todd R Faner
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | | | - Mary Kay H Pflum
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
36
|
Dysbindin-1 contributes to prefrontal cortical dendritic arbor pathology in schizophrenia. Schizophr Res 2018; 201:270-277. [PMID: 29759351 PMCID: PMC6230503 DOI: 10.1016/j.schres.2018.04.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 01/22/2023]
Abstract
Deep layer III pyramidal cells in the dorsolateral prefrontal cortex (DLPFC) from subjects with schizophrenia and bipolar disorder previously were shown to exhibit dendritic arbor pathology. This study sought to determine whether MARCKS, its regulatory protein dysbindin-1, and two proteins, identified using microarray data, CDC42BPA and ARHGEF6, were associated with dendritic arbor pathology in the DLPFC from schizophrenia and bipolar disorder subjects. Using western blotting, relative protein expression was assessed in the DLPFC (BA 46) grey matter from subjects with schizophrenia (n = 19), bipolar disorder (n = 17) and unaffected control subjects (n = 19). Protein expression data were then correlated with dendritic parameter data obtained previously. MARCKS and dysbindin-1a expression levels did not differ among the three groups. Dysbindin-1b expression was 26% higher in schizophrenia subjects (p = 0.01) and correlated inversely with basilar dendrite length (r = -0.31, p = 0.048) and the number of spines per basilar dendrite (r = -0.31, p = 0.048), but not with dendritic spine density (r = -0.16, p = 0.32). The protein expression of CDC42BPA was 33% higher in schizophrenia subjects (p = 0.03) but, did not correlate with any dendritic parameter (p > 0.05). ARHGEF6 87 kDa isoform expression did not differ among the groups. CDC42BPA expression was not altered in frontal cortex from rats chronically administered haloperidol or clozapine. Dysbindin-1b appears to play a role in dendritic arbor pathology observed previously in the DLPFC in schizophrenia.
Collapse
|
37
|
Spontaneous reactivation of latent HIV-1 promoters is linked to the cell cycle as revealed by a genetic-insulators-containing dual-fluorescence HIV-1-based vector. Sci Rep 2018; 8:10204. [PMID: 29977044 PMCID: PMC6033903 DOI: 10.1038/s41598-018-28161-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Long-lived latently HIV-1-infected cells represent a barrier to cure. We developed a dual-fluorescence HIV-1-based vector containing a pair of genetic insulators flanking a constitutive fluorescent reporter gene to study HIV-1 latency. The protective effects of these genetic insulators are demonstrated through long-term (up to 394 days) stable fluorescence profiles in transduced SUP-T1 cells. Analysis of 1,941 vector integration sites confirmed reproduction of HIV-1 integration patterns. We sorted monoclonal cells representing latent HIV-1 infections and found that both vector integration sites and integrity of the vector genomes influence the reactivation potentials of latent HIV-1 promoters. Interestingly, some latent monoclonal cells exhibited a small cell subpopulation with a spontaneously reactivated HIV-1 promoter. Higher expression levels of genes involved in cell cycle progression are observed in these cell subpopulations compared to their counterparts with HIV-1 promoters that remained latent. Consistently, larger fractions of spontaneously reactivated cells are in the S and G2 phases of the cell cycle. Furthermore, genistein and nocodazole treatments of these cell clones, which halted cells in the G2 phase, resulted in a 1.4–2.9-fold increase in spontaneous reactivation. Taken together, our HIV-1 latency model reveals that the spontaneous reactivation of latent HIV-1 promoters is linked to the cell cycle.
Collapse
|
38
|
Unbekandt M, Belshaw S, Bower J, Clarke M, Cordes J, Crighton D, Croft DR, Drysdale MJ, Garnett MJ, Gill K, Gray C, Greenhalgh DA, Hall JAM, Konczal J, Lilla S, McArthur D, McConnell P, McDonald L, McGarry L, McKinnon H, McMenemy C, Mezna M, Morrice NA, Munro J, Naylor G, Rath N, Schüttelkopf AW, Sime M, Olson MF. Discovery of Potent and Selective MRCK Inhibitors with Therapeutic Effect on Skin Cancer. Cancer Res 2018; 78:2096-2114. [PMID: 29382705 PMCID: PMC5901721 DOI: 10.1158/0008-5472.can-17-2870] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/20/2017] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
The myotonic dystrophy-related Cdc42-binding kinases MRCKα and MRCKβ contribute to the regulation of actin-myosin cytoskeleton organization and dynamics, acting in concert with the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The absence of highly potent and selective MRCK inhibitors has resulted in relatively little knowledge of the potential roles of these kinases in cancer. Here, we report the discovery of the azaindole compounds BDP8900 and BDP9066 as potent and selective MRCK inhibitors that reduce substrate phosphorylation, leading to morphologic changes in cancer cells along with inhibition of their motility and invasive character. In over 750 human cancer cell lines tested, BDP8900 and BDP9066 displayed consistent antiproliferative effects with greatest activity in hematologic cancer cells. Mass spectrometry identified MRCKα S1003 as an autophosphorylation site, enabling development of a phosphorylation-sensitive antibody tool to report on MRCKα status in tumor specimens. In a two-stage chemical carcinogenesis model of murine squamous cell carcinoma, topical treatments reduced MRCKα S1003 autophosphorylation and skin papilloma outgrowth. In parallel work, we validated a phospho-selective antibody with the capability to monitor drug pharmacodynamics. Taken together, our findings establish an important oncogenic role for MRCK in cancer, and they offer an initial preclinical proof of concept for MRCK inhibition as a valid therapeutic strategy.Significance: The development of selective small-molecule inhibitors of the Cdc42-binding MRCK kinases reveals their essential roles in cancer cell viability, migration, and invasive character. Cancer Res; 78(8); 2096-114. ©2018 AACR.
Collapse
Affiliation(s)
- Mathieu Unbekandt
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Simone Belshaw
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Justin Bower
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Maeve Clarke
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Jacqueline Cordes
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Diane Crighton
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Daniel R Croft
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Martin J Drysdale
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Kathryn Gill
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Christopher Gray
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James A M Hall
- Translational Cancer Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jennifer Konczal
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Sergio Lilla
- Mass Spectrometry Facility, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Duncan McArthur
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Patricia McConnell
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Laura McDonald
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Lynn McGarry
- Screening Facility, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Heather McKinnon
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Carol McMenemy
- Section of Dermatology and Molecular Carcinogenesis, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mokdad Mezna
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Nicolas A Morrice
- Mass Spectrometry Facility, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - June Munro
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Gregory Naylor
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Nicola Rath
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | - Mairi Sime
- Drug Discovery Unit, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Michael F Olson
- Molecular Cell Biology Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom.
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
Kelley CA, Wirshing ACE, Zaidel-Bar R, Cram EJ. The myosin light-chain kinase MLCK-1 relocalizes during Caenorhabditis elegans ovulation to promote actomyosin bundle assembly and drive contraction. Mol Biol Cell 2018; 29:1975-1991. [PMID: 30088798 PMCID: PMC6232974 DOI: 10.1091/mbc.e18-01-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We identify the Caenorhabditis elegans myosin light-chain kinase, MLCK-1, required for contraction of spermathecae. During contraction, MLCK-1 moves from the apical cell boundaries to the basal actomyosin bundles, where it stabilizes myosin downstream of calcium signaling. MLCK and ROCK act in distinct subsets of cells to coordinate the timing of contraction.
Collapse
Affiliation(s)
| | | | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
40
|
Ozdemir ES, Jang H, Gursoy A, Keskin O, Li Z, Sacks DB, Nussinov R. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2. J Biol Chem 2018; 293:3685-3699. [PMID: 29358323 PMCID: PMC5846150 DOI: 10.1074/jbc.ra117.001596] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/12/2018] [Indexed: 12/22/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are scaffolding proteins playing central roles in cell-cell adhesion, polarity, and motility. The Rho GTPases Cdc42 and Rac1, in their GTP-bound active forms, interact with all three human IQGAPs. The IQGAP-Cdc42 interaction promotes metastasis by enhancing actin polymerization. However, despite their high sequence identity, Cdc42 and Rac1 differ in their interactions with IQGAP. Two Cdc42 molecules can bind to the Ex-domain and the RasGAP site of the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP and promote IQGAP dimerization. Only one Rac1 molecule might bind to the RasGAP site of GRD and may not facilitate the dimerization, and the exact mechanism of Cdc42 and Rac1 binding to IQGAP is unclear. Using all-atom molecular dynamics simulations, site-directed mutagenesis, and Western blotting, we unraveled the detailed mechanisms of Cdc42 and Rac1 interactions with IQGAP2. We observed that Cdc42 binding to the Ex-domain of GRD of IQGAP2 (GRD2) releases the Ex-domain at the C-terminal region of GRD2, facilitating IQGAP2 dimerization. Cdc42 binding to the Ex-domain promoted allosteric changes in the RasGAP site, providing a binding site for the second Cdc42 in the RasGAP site. Of note, the Cdc42 "insert loop" was important for the interaction of the first Cdc42 with the Ex-domain. By contrast, differences in Rac1 insert-loop sequence and structure precluded its interaction with the Ex-domain. Rac1 could bind only to the RasGAP site of apo-GRD2 and could not facilitate IQGAP2 dimerization. Our detailed mechanistic insights help decipher how Cdc42 can stimulate actin polymerization in metastasis.
Collapse
Affiliation(s)
- E Sila Ozdemir
- From the Departments of Chemical and Biological Engineering and
| | - Hyunbum Jang
- the Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI-Frederick, Frederick, Maryland 21702
| | - Attila Gursoy
- Computer Engineering, Koc University, Istanbul 34450, Turkey,
| | - Ozlem Keskin
- From the Departments of Chemical and Biological Engineering and
| | - Zhigang Li
- the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, and
| | - David B Sacks
- the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Ruth Nussinov
- the Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI-Frederick, Frederick, Maryland 21702,
- the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Zhu R, Liu C, Gundersen GG. Nuclear positioning in migrating fibroblasts. Semin Cell Dev Biol 2017; 82:41-50. [PMID: 29241691 DOI: 10.1016/j.semcdb.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
Abstract
The positioning and movement of the nucleus has recently emerged as an important aspect of cell migration. Understanding of nuclear positioning and movement has reached an apogee in studies of fibroblast migration. Specific nuclear positioning and movements have been described in the polarization of fibroblast for cell migration and in active migration in 2D and 3D environments. Here, we review recent studies that have uncovered novel molecular mechanisms that contribute to these events in fibroblasts. Many of these involve a connection between the nucleus and the cytoskeleton through the LINC complex composed of outer nuclear membrane nesprins and inner nuclear membrane SUN proteins. We consider evidence that appropriate nuclear positioning contributes to efficient fibroblast polarization and migration and the possible mechanism through which the nucleus affects cell migration.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
42
|
Gagliardi PA, Somale D, Puliafito A, Chiaverina G, di Blasio L, Oneto M, Bianchini P, Bussolino F, Primo L. MRCKα is activated by caspase cleavage to assemble an apical actin ring for epithelial cell extrusion. J Cell Biol 2017; 217:231-249. [PMID: 29162624 PMCID: PMC5748977 DOI: 10.1083/jcb.201703044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022] Open
Abstract
Apoptotic cell extrusion is critical for the maintenance of epithelial functionality and relies on complex morphological events mediated by the actomyosin cytoskeleton. Gagliardi et al. show that caspase-mediated cleavage of MRCKα triggers the assembly of an apical actin ring and apoptotic epithelial extrusion. Extrusion of apoptotic cells from epithelial tissues requires orchestrated morphological rearrangements of the apoptotic cell and its neighbors. However, the connections between the apoptotic cascade and events leading to extrusion are not fully understood. Here, we characterize an apoptotic extrusion apical actin ring (EAAR) that is assembled within the apoptotic cell and drives epithelial extrusion. Caspase-mediated cleavage of myotonic dystrophy kinase–related CDC42-binding kinase-α (MRCKα) triggers a signaling pathway that leads to the assembly of EAAR that pulls actin bundles, resulting in the compaction and removal of the cell body. We provide a detailed portrait of the EAAR including F-actin flow, the contribution of myosin contraction, and actin polymerization at bundles' terminals when the product of MRCKα cleavage is expressed. These results add to our understanding of the mechanisms controlling the process of epithelial extrusion by establishing a causal relationship between the triggering events of apoptosis, the activation of MRCKα, and its subsequent effects on the dynamics of actomyosin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Paolo Armando Gagliardi
- Department of Oncology, University of Torino, Turin, Italy .,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Desiana Somale
- Department of Oncology, University of Torino, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Alberto Puliafito
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Giulia Chiaverina
- Department of Oncology, University of Torino, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Laura di Blasio
- Department of Oncology, University of Torino, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Michele Oneto
- Nanoscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Luca Primo
- Department of Oncology, University of Torino, Turin, Italy .,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| |
Collapse
|
43
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC, Rajewsky N. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 2017; 95:1179-1189. [PMID: 28842720 PMCID: PMC5660143 DOI: 10.1007/s00109-017-1582-9] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Abstract Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. Key messages circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.
Electronic supplementary material The online version of this article (10.1007/s00109-017-1582-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp G Maass
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| | - Petar Glažar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Sebastian Memczak
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Irene Hollfinger
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Luisa Schreyer
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Aisha V Sauer
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy
| | - Okan Toka
- Department of Pediatric Cardiology, Children's Hospital, Friedrich-Alexander University Erlangen, Loschge Strasse 15, 91054, Erlangen, Germany.,The German Registry for Congenital Heart Defects, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alessandro Aiuti
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
44
|
CCM2 and PAK4 act downstream of atrial natriuretic peptide signaling to promote cell spreading. Biochem J 2017; 474:1897-1918. [PMID: 28432261 DOI: 10.1042/bcj20160841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone released by the atrium in response to stretching forces. Via its receptor, guanylyl cyclase-A (GC-A), ANP maintains cardiovascular homeostasis by exerting diuretic, natriuretic, and hypotensive effects mediated, in part, by endothelial cells. Both in vivo and in vitro, ANP enhances endothelial barrier function by reducing RhoA activity and reorganizing the actin cytoskeleton. We established mouse endothelial cells that stably express GC-A and used them to analyze the molecular mechanisms responsible for actin reorganization. Stimulation by ANP resulted in phosphorylation of myosin light chain (MLC) and promotion of cell spreading. p21-activated kinase 4 (PAK4) and cerebral cavernous malformations 2 (CCM2), a scaffold protein involved in a cerebrovascular disease, were required for the phosphorylation of MLC and promotion of cell spreading by ANP. Finally, in addition to the GC domain, the kinase homology domain of GC-A was also required for ANP/GC-A signaling. Our results indicate that CCM2 and PAK4 are important downstream mediators of ANP/GC-A signaling involved in cell spreading, an important initial step in the enhancement of endothelial barrier function.
Collapse
|
45
|
Ávila-Rodríguez D, Solano Agama C, González-Pozos S, Vicente Méndez-Méndez J, Ortiz Plata A, Arreola-Mendoza L, Mendoza-Garrido ME. The shift in GH3 cell shape and cell motility is dependent on MLCK and ROCK. Exp Cell Res 2017; 354:1-17. [PMID: 28300565 DOI: 10.1016/j.yexcr.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 11/24/2022]
Abstract
Cytoskeletal organization, actin-myosin contractility and the cell membrane together regulate cell morphology in response to the cell environment, wherein the extracellular matrix (ECM) is an indispensable component. Plasticity in cell shape enables cells to adapt their migration mode to their surroundings. GH3 endocrine cells respond to different ECM proteins, acquiring different morphologies: a rounded on collagen I-III (C I-III) and an elongated on collagen IV (C IV). However, the identities of the molecules that participate in these responses remain unknown. Considering that actin-myosin contractility is crucial to maintaining cell shape, we analyzed the participation of MLCK and ROCK in the acquisition of cell shape, the generation of cellular tension and the cell motility mode. We found that a rounded shape with high cortical tension depends on MLCK and ROCK, whereas in cells with an elongated shape, MLCK is the primary protein responsible for cell spreading. Further, in cells with a slow and directionally persistent motility, MLCK predominates, while rapid and erratic movement is ROCK-dependent. This behavior also correlates with GTPase activation. Cells on C I-III exhibited higher Rho-GTPase activity than cells on C IV and vice versa with Rac-GTPase activity, showing a plastic response of GH3 cells to their environment, leading to the generation of different cytoskeleton and membrane organizations and resulting in two movement strategies, rounded and fibroblastoid-like.
Collapse
Affiliation(s)
- Dulce Ávila-Rodríguez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Carmen Solano Agama
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Sirenia González-Pozos
- Central Laboratories, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Juan Vicente Méndez-Méndez
- Center of Nanosciences and Micro and Nanotechnology (CNMN), National Polytechnic Institute, Mexico City, Mexico
| | - Alma Ortiz Plata
- Laboratory of Experimental Neuropathology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez, Mexico City, Mexico
| | - Laura Arreola-Mendoza
- Department of Biosciences and Engineering, Center for Interdisciplinary Research and Studies on Environment and Development (CIIEMAD), National Polytechnic Institute, Mexico City, Mexico
| | - María E Mendoza-Garrido
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
46
|
Bouin AP, Kyurmurkov A, Régent-Kloeckner M, Ribba AS, Faurobert E, Fournier HN, Bourrin-Reynard I, Manet-Dupé S, Oddou C, Balland M, Planus E, Albiges-Rizo C. ICAP-1 monoubiquitination coordinates matrix density and rigidity sensing for cell migration through ROCK2- MRCKα balance. J Cell Sci 2017; 130:626-636. [DOI: 10.1242/jcs.200139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/21/2022] Open
Abstract
Cell migration is a complex process requiring density and rigidity sensing of the microenvironment to adapt cell migratory speed through focal adhesion and actin cytoskeleton regulation. ICAP-1, a β1 integrin partner, is essential for ensuring integrin activation cycle and focal adhesion formation. We show that ICAP-1 is monoubiquitinated by Smurf1, preventing ICAP-1 binding to β1 integrin. The non-ubiquitinable form of ICAP-1 modifies β1 integrin focal adhesion organization and interferes with fibronectin density sensing. ICAP-1 is also required for adapting cell migration in response to substrate stiffness in a β1 integrin-independent manner. ICAP-1 monoubiquitination regulates rigidity sensing by increasing MRCKα-dependent cell contractility through myosin phosphorylation independently of substrate rigidity. We provide evidence that ICAP-1 monoubiquitination helps in switching from ROCK2-mediated to MRCKα-mediated cell contractility. ICAP-1 monoubiquitination serves as a molecular switch to coordinate extracellular matrix density and rigidity sensing thus acting as a critical modulator of cell migration and mechanosensing.
Collapse
Affiliation(s)
- Anne-Pascale Bouin
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Alexander Kyurmurkov
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Myriam Régent-Kloeckner
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Anne-Sophie Ribba
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Eva Faurobert
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Henri-Noël Fournier
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Ingrid Bourrin-Reynard
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Sandra Manet-Dupé
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Christiane Oddou
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Martial Balland
- CNRS UMR 5309, F-38042 Grenoble, France
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588Grenoble, France
| | - Emmanuelle Planus
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| |
Collapse
|
47
|
Shiraishi A, Uruno T, Sanematsu F, Ushijima M, Sakata D, Hara T, Fukui Y. DOCK8 Protein Regulates Macrophage Migration through Cdc42 Protein Activation and LRAP35a Protein Interaction. J Biol Chem 2016; 292:2191-2202. [PMID: 28028174 DOI: 10.1074/jbc.m116.736306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/25/2016] [Indexed: 11/06/2022] Open
Abstract
DOCK8 is an atypical guanine nucleotide exchange factor for Cdc42, and its mutations cause combined immunodeficiency in humans. Accumulating evidence indicates that DOCK8 regulates the migration and activation of various subsets of leukocytes, but its regulatory mechanism is poorly understood. We here report that DOCK8-deficient macrophages exhibit a migration defect in a 2D setting. Although DOCK8 deficiency in macrophages did not affect the global Cdc42 activation induced by chemokine stimulation, rescue experiments revealed that the guanine nucleotide exchange factor activity of DOCK8 was required for macrophage migration. We found that DOCK8 associated with LRAP35a, an adaptor molecule that binds to the Cdc42 effector myotonic dystrophy kinase-related Cdc42-binding kinase, and facilitated its activity to phosphorylate myosin II regulatory light chain. When this interaction was disrupted in WT macrophages, they showed a migration defect, as seen in DOCK8-deficient macrophages. These results suggest that, during macrophage migration, DOCK8 links Cdc42 activation to actomyosin dynamics through the association with LRAP35a.
Collapse
Affiliation(s)
- Akira Shiraishi
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Department of Pediatrics, Graduate School of Medical Sciences, and
| | - Takehito Uruno
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| | - Fumiyuki Sanematsu
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| | - Miho Ushijima
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Daiji Sakata
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Toshiro Hara
- the Fukuoka Children's Hospital, Fukuoka 813-0017, Japan
| | - Yoshinori Fukui
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, .,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| |
Collapse
|
48
|
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2016; 11:5-27. [PMID: 28085224 PMCID: PMC5423224 DOI: 10.1002/1878-0261.12019] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion underlie metastatic dissemination, one of the major problems in cancer. Tumour cells exhibit a striking variety of invasion strategies. Importantly, cancer cells can switch between invasion modes in order to cope with challenging environments. This ability to switch migratory modes or plasticity highlights the challenges behind antimetastasis therapy design. In this Review, we present current knowledge on different tumour invasion strategies, the determinants controlling plasticity and arising therapeutic opportunities. We propose that targeting master regulators controlling plasticity is needed to hinder tumour dissemination and metastasis.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, UK
| |
Collapse
|
49
|
Nestin regulates neural stem cell migration via controlling the cell contractility. Int J Biochem Cell Biol 2016; 78:349-360. [PMID: 27477313 DOI: 10.1016/j.biocel.2016.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/11/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Neural stem cells (NSCs) migration is essential for neurogenesis and neuroregeneration after brain injury. Nestin, a widely used marker of NSCs, is expressed abundantly in several cancers, where it may correlate with tumor migration and invasion. However, it is not yet known whether nestin participates in NSC migration. Here, we show that nestin down-regulation significantly inhibits the migration and contraction of murine neural stem cells, but does not obviously influence the proliferation, filamentous actin (F-actin) content, distribution or focal adhesion assembly of these cells. Mechanistically, nestin knockdown was found to affect the phosphorylation state of myosin regulatory light chain (MRLC) and regulate the activity of myosin light chain kinase (MLCK). Co-immunoprecipitation experiments showed that it interacts with MLCK and MRLC. Together, our results indicate that nestin may increase NSC motility via elevating MLCK activity through direct binding and provide new insight into the roles of nestin in NSC migration and repair.
Collapse
|
50
|
Abstract
Rho family GTPases such as Cdc42 are key regulators of essential cellular processes through their effects on cytoskeletal dynamics, signaling and gene expression. Rho GTPases modulate these functions by engaging a wide variety of downstream effectors. Among these effectors is the largely understudied Cdc42EP/BORG family of Cdc42 effectors. BORG proteins have been linked to actin and septin regulation, but their role in development and disease is only starting to emerge. Recently, Cdc42EP3/BORG2 was shown to coordinate actin and septin cytoskeleton rearrangements in cancer-associated fibroblasts (CAFs). Interestingly, Cdc42EP3 expression potentiated cellular responses to mechanical stimulation leading to signaling and transcriptional adaptations required for the emergence of a fully activated CAF phenotype. These findings uncover a novel role for the BORG/septin network in cancer. Here, we demonstrate that Cdc42EP3 function in CAFs relies on tight regulation by Cdc42.
Collapse
Affiliation(s)
- Aaron J Farrugia
- a Tumour Microenvironment Team, Division of Cancer Biology , Institute of Cancer Research , London , UK
| | - Fernando Calvo
- a Tumour Microenvironment Team, Division of Cancer Biology , Institute of Cancer Research , London , UK
| |
Collapse
|