1
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Recombination may occur in the absence of transcription in the immunoglobulin heavy chain recombination centre. Nucleic Acids Res 2020; 48:3553-3566. [PMID: 32086526 PMCID: PMC7144927 DOI: 10.1093/nar/gkaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Developing B cells undergo V(D)J recombination to generate a vast repertoire of Ig molecules. V(D)J recombination is initiated by the RAG1/RAG2 complex in recombination centres (RCs), where gene segments become accessible to the complex. Whether transcription is the causal factor of accessibility or whether it is a side product of other processes that generate accessibility remains a controversial issue. At the IgH locus, V(D)J recombination is controlled by Eμ enhancer, which directs the transcriptional, epigenetic and recombinational events in the IgH RC. Deletion of Eμ enhancer affects both transcription and recombination, making it difficult to conclude if Eμ controls the two processes through the same or different mechanisms. By using a mouse line carrying a CpG-rich sequence upstream of Eμ enhancer and analyzing transcription and recombination at the single-cell level, we found that recombination could occur in the RC in the absence of detectable transcription, suggesting that Eμ controls transcription and recombination through distinct mechanisms. Moreover, while the normally Eμ-dependent transcription and demethylating activities were impaired, recruitment of chromatin remodeling complexes was unaffected. RAG1 was efficiently recruited, thus compensating for the defective transcription-associated recruitment of RAG2, and providing a mechanistic basis for RAG1/RAG2 assembly to initiate V(D)J recombination.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| |
Collapse
|
2
|
Grundström C, Kumar A, Priya A, Negi N, Grundström T. ETS1 and PAX5 transcription factors recruit AID to Igh DNA. Eur J Immunol 2018; 48:1687-1697. [PMID: 30089192 DOI: 10.1002/eji.201847625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 08/07/2018] [Indexed: 01/25/2023]
Abstract
B lymphocytes optimize antibody responses by class switch recombination (CSR), which changes the expressed constant region exon of the immunoglobulin heavy chain (IgH), and by somatic hypermutation (SH) that introduces point mutations in the variable regions of the antibody genes. Activation-induced cytidine deaminase (AID) is the key mutagenic enzyme that initiates both these antibody diversification processes by deaminating cytosine to uracil. Here we asked the question if transcription factors can mediate the specific targeting of the antibody diversification by recruiting AID. We have recently reported that AID is together with the transcription factors E2A, PAX5 and IRF4 in a complex on key sequences of the Igh locus. Here we report that also ETS1 is together with AID in this complex on key sequences of the Igh locus in splenic B cells of mice. Furthermore, we show that both ETS1 and PAX5 can directly recruit AID to DNA sequences from the Igh locus with the specific binding site for the transcription factor. Taken together, our findings support the notion of a targeting mechanism for the selective diversification of antibody genes with limited genome wide mutagenesis by recruitment of AID by PAX5 and ETS1 in a transcription factor complex.
Collapse
Affiliation(s)
| | - Anjani Kumar
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anshu Priya
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Neema Negi
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
3
|
Ikeda R, Pak K, Chavez E, Ryan AF. Transcription factors with conserved binding sites near ATOH1 on the POU4F3 gene enhance the induction of cochlear hair cells. Mol Neurobiol 2016; 51:672-84. [PMID: 25015561 DOI: 10.1007/s12035-014-8801-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/22/2014] [Indexed: 01/21/2023]
Abstract
Overexpression of the transcription factor (TF) ATOH1 is known to induce the transformation of nonsensory cells in the organ of Corti into hair cells (HCs). Evaluating DNA 5Œ to the coding sequence of the pou4f3 gene, a target of ATOH1 in HCs, we identified in three regions containing clustered binding sites for ATOH1 and several other TFs that are expressed in developing inner ear sensory epithelia at the time of HC specification. These regions and sites are highly conserved across evolutionarily distant mammalian species. To test the hypothesis that the identified TFs act in combination to regulate the pou4f3 gene, we transfected by electroporation neonatal cochlear sensory epithelium from mice expressing green fluorescent protein (GFP) under the control of an 8.5-kb 5' pou4f3 genomic fragment. Plasmids encoding 21 TFs c-transfected with human ATOH1 (hATOH1). Cotransfection with hETV4, hNMYC, or hETS2 produced significantly more pou4f3/GFP and myosin 7A-positive nonsensory cells than hATOH1 alone. Co-transfection of hATOH1 with hHES1, hHES5, or hNEUROD1 reduced the effects of hATOH1. Chromatin immunoprecipitation (ChIP)of DNA from an inner ear cell line transfected with hNMYC,hETV4, or hETS2 revealed binding to a conserved region immediately proximal to the coding sequence. ChIP similarly revealed binding of hGATA3, hNMYC, and hTFE2 to a region several kilobases distal to the coding sequence, which we have previously shown to bind ATOH1. The results suggest that ATOH1 acts in concert with a subset of other TFs to directly regulate the pou4f3 gene and more broadly to regulate the HC phenotype.
Collapse
|
4
|
Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol 2014; 12:e1001831. [PMID: 24691034 PMCID: PMC3972084 DOI: 10.1371/journal.pbio.1001831] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulin gene enhancers have a conserved function in targeting somatic hypermutation to immunoglobulin genes, thereby supporting the production of high affinity antibodies. Somatic hypermutation (SH) generates point mutations within rearranged immunoglobulin (Ig) genes of activated B cells, providing genetic diversity for the affinity maturation of antibodies. SH requires the activation-induced cytidine deaminase (AID) protein and transcription of the mutation target sequence, but how the Ig gene specificity of mutations is achieved has remained elusive. We show here using a sensitive and carefully controlled assay that the Ig enhancers strongly activate SH in neighboring genes even though their stimulation of transcription is negligible. Mutations in certain E-box, NFκB, MEF2, or Ets family binding sites—known to be important for the transcriptional role of Ig enhancers—impair or abolish the activity. Full activation of SH typically requires a combination of multiple Ig enhancer and enhancer-like elements. The mechanism is evolutionarily conserved, as mammalian Ig lambda and Ig heavy chain intron enhancers efficiently stimulate hypermutation in chicken cells. Our results demonstrate a novel regulatory function for Ig enhancers, indicating that they either recruit AID or alter the accessibility of the nearby transcription units. During the B cell immune response, immunoglobulin (Ig) genes are subject to a unique mutation process known as somatic hypermutation that allows the immune system to generate high-affinity antibodies. Somatic hypermutation preferentially affects Ig genes, relative to other genes, and this is important in preventing catastrophic levels of general genomic mutations that could lead to B cell cancers. We hypothesized that this preferential targeting of somatic hypermutation is assisted by specific DNA sequences in or near Ig genes that focus the action of the mutation machinery on those genes. In this study, we show that Ig genes across species—from human, mouse, and chicken—do indeed contain such mutation targeting sequences and that they coincide with transcriptional regulatory regions known as enhancers. We show that combinations of Ig enhancers cooperate to achieve strong mutation targeting and that this action depends on well-known transcription factor binding sites in these enhancer elements. Our findings establish an evolutionarily conserved function for enhancers in somatic hypermutation targeting, which operates by a mechanism distinct from the conventional enhancer function of increasing levels of transcription. We propose that combinations of Ig enhancers target somatic mutation to Ig genes by recruiting the mutation machinery and/or by making the Ig genes better substrates for mutation.
Collapse
|
5
|
Carey MF, Peterson CL, Smale ST. Identifying cis-acting DNA elements within a control region. Cold Spring Harb Protoc 2012; 2012:279-96. [PMID: 22383646 DOI: 10.1101/pdb.top068171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Computational methods can be used to identify DNA sequence motifs that have been conserved through evolution, as well as motifs that correspond to recognition sites for known DNA-binding proteins. These computational methods, when combined with chromatin immunoprecipitation and other basic experiments, can provide preliminary insight into the elements and factors that regulate a gene of interest. When pursuing a more complete understanding of a control region of interest, a comprehensive mutant analysis should generally be performed as a critical step toward more advanced functional studies. This article describes strategies for such a comprehensive analysis. It also summarizes the insights provided by a comprehensive mutant analysis versus a phylogenetic analysis.
Collapse
|
6
|
Hu Z, Gallo SM. Identification of interacting transcription factors regulating tissue gene expression in human. BMC Genomics 2010; 11:49. [PMID: 20085649 PMCID: PMC2822763 DOI: 10.1186/1471-2164-11-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue gene expression is generally regulated by multiple transcription factors (TFs). A major first step toward understanding how tissues achieve their specificity is to identify, at the genome scale, interacting TFs regulating gene expression in different tissues. Despite previous discoveries, the mechanisms that control tissue gene expression are not fully understood. RESULTS We have integrated a function conservation approach, which is based on evolutionary conservation of biological function, and genes with highest expression level in human tissues to predict TF pairs controlling tissue gene expression. To this end, we have identified 2549 TF pairs associated with a certain tissue. To find interacting TFs controlling tissue gene expression in a broad spatial and temporal manner, we looked for TF pairs common to the same type of tissues and identified 379 such TF pairs, based on which TF-TF interaction networks were further built. We also found that tissue-specific TFs may play an important role in recruiting non-tissue-specific TFs to the TF-TF interaction network, offering the potential for coordinating and controlling tissue gene expression across a variety of conditions. CONCLUSION The findings from this study indicate that tissue gene expression is regulated by large sets of interacting TFs either on the same promoter of a gene or through TF-TF interaction networks.
Collapse
Affiliation(s)
- Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Department of Biostatistics, Department of Medicine, State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Steven M Gallo
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
7
|
Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell 2007; 18:3533-44. [PMID: 17615296 PMCID: PMC1951739 DOI: 10.1091/mbc.e07-03-0249] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a crucial event in cancer progression and embryonic development, is induced by transforming growth factor (TGF)-beta in mouse mammary NMuMG epithelial cells. Id proteins have previously been reported to inhibit major features of TGF-beta-induced EMT. In this study, we show that expression of the deltaEF1 family proteins, deltaEF1 (ZEB1) and SIP1, is gradually increased by TGF-beta with expression profiles reciprocal to that of E-cadherin. SIP1 and deltaEF1 each dramatically down-regulated the transcription of E-cadherin in NMuMG cells through direct binding to the E-cadherin promoter. Silencing of the expression of both SIP1 and deltaEF1, but not either alone, completely abolished TGF-beta-induced E-cadherin repression. However, expression of mesenchymal markers, including fibronectin, N-cadherin, and vimentin, was not affected by knockdown of SIP1 and deltaEF1. TGF-beta-induced the expression of Ets1, which in turn activated deltaEF1 promoter activity. Moreover, up-regulation of SIP1 and deltaEF1 expression by TGF-beta was suppressed by knockdown of Ets1 expression. In addition, Id2 suppressed the TGF-beta- and Ets1-induced up-regulation of deltaEF1. Taken together, these findings suggest that the deltaEF1 family proteins, SIP1 and deltaEF1, are necessary, but not sufficient, for TGF-beta-induced EMT and that Ets1 induced by TGF-beta may function as an upstream transcriptional regulator of SIP1 and deltaEF1.
Collapse
Affiliation(s)
- Takuya Shirakihara
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masao Saitoh
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Pawlitzky I, Angeles CV, Siegel AM, Stanton ML, Riblet R, Brodeur PH. Identification of a candidate regulatory element within the 5' flanking region of the mouse Igh locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1, Pax5, and E2A. THE JOURNAL OF IMMUNOLOGY 2006; 176:6839-51. [PMID: 16709844 DOI: 10.4049/jimmunol.176.11.6839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Igh locus is controlled by cis-acting elements, including Emu and the 3' IgH regulatory region which flank the C region genes within the well-studied 3' part of the locus. Although the presence of additional control elements has been postulated to regulate rearrangements of the VH gene array that extends to the 5' end of the locus, the 5' border of Igh and its flanking region have not been characterized. To facilitate the analysis of this unexplored region and to identify potential novel control elements, we physically mapped the most D-distal VH segments and scanned 46 kb of the immediate 5' flanking region for DNase I hypersensitive sites. Our studies revealed a cluster of hypersensitive sites 30 kb upstream of the most 5' VH gene. Detection of one site, HS1, is restricted to pro-B cell lines and HS1 is accessible to restriction enzyme digestion exclusively in normal pro-B cells, the stage defined by actively rearranging Igh-V loci. Sequence motifs within HS1 for PU.1, Pax5, and E2A bind these proteins in vitro and these factors are recruited to HS1 sequence only in pro-B cells. Transient transfection assays indicate that the Pax5 binding site is required for the repression of transcriptional activity of HS1-containing constructs. Thus, our characterization of the region 5' of the VH gene cluster demonstrated the presence of a single cluster of DNase I hypersensitive sites within the 5' flanking region, and identified a candidate Igh regulatory region defined by pro-B cell-specific hypersensitivity and interaction with factors implicated in regulating VDJ recombination.
Collapse
Affiliation(s)
- Inka Pawlitzky
- Immunology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
9
|
van der Stoep N, Quinten E, Marcondes Rezende M, van den Elsen PJ. E47, IRF-4, and PU.1 synergize to induce B-cell-specific activation of the class II transactivator promoter III (CIITA-PIII). Blood 2004; 104:2849-57. [PMID: 15242870 DOI: 10.1182/blood-2004-03-0790] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn B cells, expression of CIITA and resulting major histocompatibility complex II (MHCII) is mediated exclusively by promoter III (CIITA-PIII) activation. Recent studies have established that CIITA-PIII also participates in the expression of CIITA in activated human T cells, dendritic cells, and monocytes. In this study we characterized the various regulatory elements and interacting factors of CIITA-PIII that account for specific activation in B lymphocytes. We identified 2 E-box motifs and an Ets/ISRE-consensus element (EICE) in CIITA-PIII as playing a crucial role in the B-cell-specific transcriptional regulation of CIITA. Abolishment of factor binding to these elements resulted in a strong reduction of CIITA-PIII activation in B cells only, whereas it did scarcely affect or not affect the activity of CIITA-PIII in activated T cells and monocytes. We show that in B cells, E47 and PU.1/IRF-4 interact with the E-box motifs and the EICE, respectively, and act synergistically in the activation of CIITA-PIII. Moreover, functional inhibition of either E47 or IRF-4 resulted in strong reduction of CIITA-PIII activity in B lymphocytes only. The finding that PU.1, IRF-4, and E47 play an important role in the B-cell-mediated activation of CIITA-PIII provides a link between antigen presentation functions and activation and differentiation events in B lymphocytes.
Collapse
Affiliation(s)
- Nienke van der Stoep
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, PO Box 9600, 2300 RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
10
|
Giangrande PH, Zhu W, Rempel RE, Laakso N, Nevins JR. Combinatorial gene control involving E2F and E Box family members. EMBO J 2004; 23:1336-47. [PMID: 15014447 PMCID: PMC381409 DOI: 10.1038/sj.emboj.7600134] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 01/29/2004] [Indexed: 12/16/2022] Open
Abstract
Various studies point to the potential role of combinatorial action of transcription factors as a mechanism to achieve the complexity of eukaryotic gene control with a finite number of regulatory proteins. Our previous work has focused on interactions involving the E2F family of transcription factors as an example of combinatorial gene control, leading to the identification of TFE3 and YY1 as transcription partners for several E2F proteins. We now show that additional E2F target genes share a common promoter architecture and are also regulated by the combined action of TFE3 and E2F3. In contrast, the thymidine kinase (TK-1) promoter is also regulated by E2F3 but independent of TFE3. Other promoters exhibit distinct specificity in the interaction with E2F proteins that includes a role for E2F1 but not E2F3, examples where both E2F1 and E2F3 are seen to interact, and promoters that are regulated by TFE3 but independent of an E2F. We propose that these examples of combinatorial interactions involving E2F proteins provide a basis for the specificity of transcription control in the Rb/E2F pathway.
Collapse
Affiliation(s)
- Paloma H Giangrande
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Wencheng Zhu
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Rachel E Rempel
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Nina Laakso
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph R Nevins
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, CARL Building, Room 268, Durham, NC 27710, USA. Tel.: +1 919 684 2746; Fax: +1 919 681 8973; E-mail:
| |
Collapse
|
11
|
Marecki S, McCarthy KM, Nikolajczyk BS. PU.1 as a chromatin accessibility factor for immunoglobulin genes. Mol Immunol 2004; 40:723-31. [PMID: 14644098 DOI: 10.1016/j.molimm.2003.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hematopoietic-specific transcription factor PU.1 is a chromatin accessibility factor, based on analysis of the immunoglobulin heavy chain intronic (mu) enhancer. Whether PU.1 functions as an accessibility factor for additional PU.1-regulated genes is unknown. Outside the constraints of chromatin, PU.1 binds and activates transcription through both mu and kappa3' immunoglobulin enhancers, among others. The DNA-binding ETS domain of PU.1 is sufficient for activating both enhancers in an extrachromosomal context. New data show that the ETS domain of PU.1 is sufficient for increasing accessibility of a closed mu enhancer chromatin structure proximal to the PU.1-binding site. In contrast, PU.1 does not alter widespread chromatin accessibility. Furthermore, PU.1 does not induce accessibility proximal or distal to its binding site on the kappa3' enhancer. Taken together the data demonstrate that PU.1 induces chromatin accessibility proximal to its binding site at a locus activated early in development, the mu locus. PU.1 does not function as an accessibility factor for the kappa3' enhancer, which regulates a locus important for later stages of B cell development. We conclude that PU.1 is a context-dependent chromatin accessibility factor that, alone, cannot establish widespread accessibility required for critical developmental processes such as antigen receptor recombination.
Collapse
Affiliation(s)
- Sylvia Marecki
- Department of Medicine, Boston University School of Medicine, 650 Albany Street X-438, Boston, MA 02118, USA
| | | | | |
Collapse
|
12
|
Cheng CK, Hoo RLC, Chow BKC, Leung PCK. Functional cooperation between multiple regulatory elements in the untranslated exon 1 stimulates the basal transcription of the human GnRH-II gene. Mol Endocrinol 2003; 17:1175-91. [PMID: 12663744 DOI: 10.1210/me.2002-0418] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The wide distribution of GnRH-II and conservation of its structure over all vertebrate classes suggest that the neuropeptide possesses vital biological functions. Although recent studies have shown that the expression of the human GnRH-II gene is regulated by cAMP and estrogen, the molecular mechanisms governing its basal transcription remain poorly understood. Using the neuronal TE-671 and placental JEG-3 cells, we showed that the minimal human GnRH-II promoter was located between nucleotide -1124 and -750 (relative to the translation start codon) and that the untranslated exon 1 was important to produce full promoter activity. Two putative E-box binding sites and one Ets-like element were identified within the first exon, and mutational analysis demonstrated that these cis-acting elements functioned cooperatively to stimulate the human GnRH-II gene transcription. EMSAs, UV cross-linking, and Southwestern blot analyses indicated that the basic helix-loop-helix transcription factor AP-4 bound specifically to the two E-box binding sites, whereas an unidentified protein bound to the Ets-like element. The functional importance of AP-4 in controlling human GnRH-II gene transcription was demonstrated by overexpression of sense and antisense full-length AP-4 cDNAs. Taken together, our present data demonstrate a novel mechanism in stimulating basal human GnRH-II gene transcription mediated by cooperative actions of multiple regulatory elements within the untranslated first exon of the gene.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada V6H 3V5
| | | | | | | |
Collapse
|
13
|
Paratore C, Brugnoli G, Lee HY, Suter U, Sommer L. The role of the Ets domain transcription factor Erm in modulating differentiation of neural crest stem cells. Dev Biol 2002; 250:168-80. [PMID: 12297104 DOI: 10.1006/dbio.2002.0795] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcription factor Erm is a member of the Pea3 subfamily of Ets domain proteins that is expressed in multipotent neural crest cells, peripheral neurons, and satellite glia. A specific role of Erm during development has not yet been established. We addressed the function of Erm in neural crest development by forced expression of a dominant-negative form of Erm. Functional inhibition of Erm in neural crest cells interfered with neuronal fate decision, while progenitor survival and proliferation were not affected. In contrast, blocking Erm function in neural crest stem cells did not influence their ability to adopt a glial fate, independent of the glia-inducing signal. Furthermore, glial survival and differentiation were normal. However, the proliferation rate was drastically diminished in glial cells, suggesting a glia-specific role of Erm in controlling cell cycle progression. Thus, in contrast to other members of the Pea3 subfamily that are involved in late steps of neurogenesis, Erm appears to be required in early neural crest development. Moreover, our data point to multiple, lineage-specific roles of Erm in neural crest stem cells and their derivatives, suggesting that Erm function is dependent on the cell intrinsic and extrinsic context.
Collapse
Affiliation(s)
- Christian Paratore
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Sun P, Loh HH. Transcriptional regulation of mouse delta-opioid receptor gene: role of Ets-1 in the transcriptional activation of mouse delta-opioid receptor gene. J Biol Chem 2001; 276:45462-9. [PMID: 11583993 DOI: 10.1074/jbc.m104793200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified a minimum core promoter of the mouse delta-opioid receptor (DOR) gene. The DOR promoter contains an E-box that binds upstream stimulatory factor and is crucial for the DOR promoter activity in NS20Y cells, a mouse neuronal cell line that constitutively expresses DOR. In the present study, we further analyzed the DOR promoter in NS20Y cells and have demonstrated that transcription factor Ets-1 binds to an Ets-1-binding site overlapping the E-box and trans-activates the DOR promoter by synergizing with upstream stimulatory factor in specific DNA binding. In addition, the Ets-1 DNA-binding domain is sufficient to play the functional role of Ets-1 in trans-activating the DOR promoter. Furthermore, through in vivo cross-linking assays and Northern blot analyses, we have demonstrated that Ets-1 binds to the DOR promoter in the neonatal mouse brain and that overexpressed Ets-1 can significantly enhance the expression of DOR mRNA in primary neonatal mouse neuronal cells. Collectively, our data suggest that Ets-1 functions as a trans-activator of the DOR promoter in the neonatal mouse brain and thus may contribute to the development of the mouse brain DOR system.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Brain/metabolism
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- Cross-Linking Reagents/pharmacology
- DNA/metabolism
- Deoxyribonuclease I/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Mice
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Receptors, Opioid, delta/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- P Sun
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
15
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
16
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
17
|
Rao S, Garrett-Sinha LA, Yoon J, Simon MC. The Ets factors PU.1 and Spi-B regulate the transcription in vivo of P2Y10, a lymphoid restricted heptahelical receptor. J Biol Chem 1999; 274:34245-52. [PMID: 10567398 DOI: 10.1074/jbc.274.48.34245] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the in vivo functions of PU.1 and Spi-B, two highly related Ets transcription factors, we previously generated PU. 1(+/+)Spi-B(-/-) and PU.1(+/-)Spi-B(-/-) mice and demonstrated a significant decrease in B-cell receptor (BCR) signaling in mutants. Major components of BCR signaling appear to be expressed at normal levels in these mice, implying that PU.1 and Spi-B cooperate in the transcription of additional target genes important for antigen receptor signaling. We used subtractive hybridization to identify novel in vivo PU.1/Spi-B target genes and determined that the expression of a heptahelical receptor, P2Y10, is dramatically reduced in PU.1(+/-)Spi-B(-/-) B-cells. Further analysis shows that P2Y10 expression is restricted to lymphoid cells and parallels that of Spi-B in B-lymphocytes. Lastly, the P2Y10 promoter contains a PU. 1/Spi-B binding site functionally required for efficient transcription in B-cells. Thus, P2Y10 is likely to be a direct in vivo transcriptional target for PU.1 and Spi-B and provides a unique model to explore transcriptional regulation by this Ets factor subfamily. Furthermore, P2Y10 suggests an intriguing connection between heterotrimeric G-proteins and BCR signaling.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- B-Lymphocytes/metabolism
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Cell Lineage
- DNA/genetics
- DNA/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Expression
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Amino Acid
- Tissue Distribution
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Rao
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
18
|
Jung F, Johnson AD, Kumar MS, Wei B, Hautmann M, Owens GK, McNamara C. Characterization of an E-box-dependent cis element in the smooth muscle alpha-actin promoter. Arterioscler Thromb Vasc Biol 1999; 19:2591-9. [PMID: 10559000 DOI: 10.1161/01.atv.19.11.2591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identification of the regulators of smooth muscle specific gene expression is critical for understanding smooth muscle cell (SMC) differentiation and the alterations in SMC phenotype seen in vascular diseases. Previous studies have identified that a 2-bp mutation in a conserved cis-acting element (TGTTTATC) in the promoter of the chicken smooth muscle (SM) alpha-actin gene abolished nuclear factor binding and decreased transcriptional activity of a 271-bp SM alpha-actin promoter fragment when transfected into rat aortic SMC. However, the promoter region containing this conserved sequence has negative cis regulatory activity when studied in homologous systems. The goal of the present studies was to further characterize the transcriptional activity of the rat SM alpha-actin promoter region between -224 and -236 that is conserved across mammals. DNAse I analysis and electrophoretic mobility shift assays demonstrated that SMC nuclear proteins bound an extended sequence (TGTTTATCCCCATAA). Transient transfection experiments of wild-type and mutant rat SM alpha-actin promoter-luciferase constructs into rat aortic SMC revealed that promoter activity was enhanced by mutations of specific nucleotides in the TGTTTATCCCCA region. Interestingly, the TGTTTATCCCCA element in the rat SM alpha-actin promoter is centered between 2 canonical E-boxes. Mutations of the flanking E-boxes abolished the enhancement in promoter activity seen with mutation of the TGTTTATCCCCA element alone. Thus studies provide evidence for a regulatory cassette in the rat SM alpha-actin promoter that regulates gene expression via combinatorial interactions between 2 E-boxes and a newly described TGTTTATCCCCA element.
Collapse
Affiliation(s)
- F Jung
- Department of Internal Medicine, Division of Cardiology, University of Virginia Health Science Center, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Rodrigo I, Cato AC, Cano A. Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 1999; 248:358-71. [PMID: 10222128 DOI: 10.1006/excr.1999.4438] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new regulatory region (-108 to -86), named CE, containing potential CRE- and Ets-binding sites has been identified in the murine E-cadherin promoter. The Ets-binding site (at -97 position) negatively modulates the activity of the E-cadherin promoter in expressing keratinocyte cell lines and was responsible for the specific retarded complexes obtained with the CE region. Analysis of the methylation status of the endogenous E-cadherin promoter indicated that silencing of E-cadherin expression in malignant keratinocytes cannot be explained by hypermethylation mechanisms. Furthermore, treatment with 5'-aza-2'-deoxycytidine was unable to induce the expression of E-cadherin in deficient keratinocytes. However, in vivo footprinting analysis of the endogenous E-cadherin promoter showed a very distinct pattern in expressing and nonexpressing keratinocytes. Extensive interactions in the previously postulated proximal regulatory elements and in the CE region were detected in expressing cells, while only some nucleotides of the E-pal element and of the CE region were protected in nonexpressing keratinocytes. These results indicate a complex regulation of the mouse E-cadherin promoter and support a model where the combination of positive (CCAAT-box and GC-rich region) and negative (E-pal element and CE region) cis-acting elements contribute to the final level of E-cadherin gene expression. In addition, our results show that downregulation of E-cadherin expression in transformed epidermal keratinocytes is mainly exerted through the interaction of repressor factor(s) with the E-pal element and to the lack of interaction of positive acting factors with the proximal regions.
Collapse
Affiliation(s)
- I Rodrigo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, Madrid, 28029, Spain
| | | | | |
Collapse
|
20
|
Rao S, Matsumura A, Yoon J, Simon MC. SPI-B activates transcription via a unique proline, serine, and threonine domain and exhibits DNA binding affinity differences from PU.1. J Biol Chem 1999; 274:11115-24. [PMID: 10196196 DOI: 10.1074/jbc.274.16.11115] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SPI-B is a B lymphocyte-specific Ets transcription factor that shares a high degree of similarity with PU.1/SPI-1. In direct contrast to PU.1(-/-) mice that die in utero and lack monocytes, neutrophils, B cells, and T cells, Spi-B-/- mice are viable and exhibit a severe B cell proliferation defect. Since PU.1 is expressed at wild type levels in Spi-B-/- B cells, the mutant mice provide genetic evidence that SPI-B and PU.1 have at least some non-redundant roles in B lymphocytes. To begin to understand the molecular basis for these defects, we delineated functional domains of SPI-B for comparison to those of PU.1. By using a heterologous co-transfection system, we identified two independent transactivation domains in the N terminus of SPI-B. Interestingly, only one of these domains (amino acids 31-61), a proline/serine/threonine-rich region, unique among Ets proteins, is necessary for transactivation of the immunoglobulin lambda light chain enhancer. This transactivation motif is in marked contrast to PU.1, which contains acidic and glutamine-rich domains. In addition, we describe a functional PU.1 site within the c-FES promoter which SPI-B fails to bind efficiently and transactivate. Finally, we show that SPI-B interacts with the PU.1 cofactors Pip, TBP, c-Jun and with lower affinity to nuclear factor interleukin-6beta and retinoblastoma. Taken together, these data suggest that SPI-B binds DNA with a different affinity for certain sites than PU.1 and harbors different transactivation domains. We conclude that SPI-B may activate unique target genes in B lymphocytes and interact with unique, although currently unidentified, cofactors.
Collapse
Affiliation(s)
- S Rao
- Department of Pathology, the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
21
|
Tian G, Erman B, Ishii H, Gangopadhyay SS, Sen R. Transcriptional activation by ETS and leucine zipper-containing basic helix-loop-helix proteins. Mol Cell Biol 1999; 19:2946-57. [PMID: 10082562 PMCID: PMC84089 DOI: 10.1128/mcb.19.4.2946] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunoglobulin mu heavy-chain gene enhancer contains closely juxtaposed binding sites for ETS and leucine zipper-containing basic helix-loop-helix (bHLH-zip) proteins. To understand the mu enhancer function, we have investigated transcription activation by the combination of ETS and bHLH-zip proteins. The bHLH-zip protein TFE3, but not USF, cooperated with the ETS domain proteins PU.1 and Ets-1 to activate a tripartite domain of this enhancer. Deletion mutants were used to identify the domains of the proteins involved. Both TFE3 and USF enhanced Ets-1 DNA binding in vitro by relieving the influence of an autoinhibitory domain in Ets-1 by direct protein-protein associations. Several regions of Ets-1 were found to be necessary, whereas the bHLH-zip domain was sufficient for this effect. Our studies define novel interactions between ETS and bHLH-zip proteins that may regulate combinatorial transcription activation by these protein families.
Collapse
Affiliation(s)
- G Tian
- Rosenstiel Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | |
Collapse
|
22
|
Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD. Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J 1999; 18:968-76. [PMID: 10022839 PMCID: PMC1171189 DOI: 10.1093/emboj/18.4.968] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. Id proteins are thought to inhibit differentiation mainly through interaction with other HLH proteins and by blocking their DNA-binding activity. Members of the ternary complex factor (TCF) subfamily of ETS-domain proteins have key functions in regulating immediate-early gene expression in response to mitogenic stimulation. TCFs form DNA-bound complexes with the serum response factor (SRF) and are direct targets of MAP kinase (MAPK) signal transduction cascades. In this study we demonstrate functional interactions between Id proteins and TCFs. Ids bind to the ETS DNA-binding domain and disrupt the formation of DNA-bound complexes between TCFs and SRF on the c-fos serum response element (SRE). Inhibition occurs by disrupting protein-DNA interactions with the TCF component of this complex. In vivo, the Id proteins cause down-regulation of the transcriptional activity mediated by the TCFs and thereby block MAPK signalling to SREs. Therefore, our results demonstrate a novel facet of Id function in the coordination of mitogenic signalling and cell cycle entry.
Collapse
Affiliation(s)
- P R Yates
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH
| | | | | | | | | |
Collapse
|
23
|
Dang W, Nikolajczyk BS, Sen R. Exploring functional redundancy in the immunoglobulin mu heavy-chain gene enhancer. Mol Cell Biol 1998; 18:6870-8. [PMID: 9774700 PMCID: PMC109270 DOI: 10.1128/mcb.18.11.6870] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Accepted: 07/22/1998] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin (Ig) mu heavy-chain gene enhancer activity is mediated by multiple DNA binding proteins. Mutations of several protein binding sites in the enhancer do not affect enhancer activity significantly. This feature, termed redundancy, is thought to be due to functional compensation of the mutated sites by other elements within the enhancer. In this study, we identified the elements that make the basic helix-loop-helix (bHLH) protein binding sites, muE2 and muE3, redundant. The major compensatory element is a binding site for interferon regulatory factors (IRFs) and not one of several other bHLH protein binding sites. These studies also provide the first evidence for a role of IRF proteins in Ig heavy-chain gene expression. In addition, we reconstituted the activity of a monomeric mu enhancer in nonlymphoid cells and defined the domains of the ETS gene required for function.
Collapse
Affiliation(s)
- W Dang
- Rosenstiel Research Center and Departments of Biology and Biochemistry, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|