1
|
Gao Z, Smith AL, Scott JF, Bevington S, Boyes J. Temporal analyses reveal a pivotal role for sense and antisense enhancer RNAs in coordinate immunoglobulin lambda locus activation. Nucleic Acids Res 2023; 51:10344-10363. [PMID: 37702072 PMCID: PMC10602925 DOI: 10.1093/nar/gkad741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Transcription enhancers are essential activators of V(D)J recombination that orchestrate non-coding transcription through complementary, unrearranged gene segments. How transcription is coordinately increased at spatially distinct promoters, however, remains poorly understood. Using the murine immunoglobulin lambda (Igλ) locus as model, we find that three enhancer-like elements in the 3' Igλ domain, Eλ3-1, HSCλ1 and HSE-1, show strikingly similar transcription factor binding dynamics and close spatial proximity, suggesting that they form an active enhancer hub. Temporal analyses show coordinate recruitment of complementary V and J gene segments to this hub, with comparable transcription factor binding dynamics to that at enhancers. We find further that E2A, p300, Mediator and Integrator bind to enhancers as early events, whereas YY1 recruitment and eRNA synthesis occur later, corresponding to transcription activation. Remarkably, the interplay between sense and antisense enhancer RNA is central to both active enhancer hub formation and coordinate Igλ transcription: Antisense Eλ3-1 eRNA represses Igλ activation whereas temporal analyses demonstrate that accumulating levels of sense eRNA boost YY1 recruitment to stabilise enhancer hub/promoter interactions and lead to coordinate transcription activation. These studies therefore demonstrate for the first time a critical role for threshold levels of sense versus antisense eRNA in locus activation.
Collapse
Affiliation(s)
- Zeqian Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair L Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah L Bevington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
4
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
5
|
Deng YN, Xia Z, Zhang P, Ejaz S, Liang S. Transcription Factor RREB1: from Target Genes towards Biological Functions. Int J Biol Sci 2020; 16:1463-1473. [PMID: 32210733 PMCID: PMC7085234 DOI: 10.7150/ijbs.40834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
The Ras-responsive element binding protein 1(RREB1) is a member of zinc finger transcription factors, which is widely involved in biological processes including cell proliferation, transcriptional regulation and DNA damage repair. New findings reveal RREB1 functions as both transcriptional repressors and transcriptional activators for transcriptional regulation of target genes. The activation of RREB1 is regulated by MAPK pathway. We have summarized the target genes of RREB1 and discussed RREB1 roles in the cancer development. In addition, increasing evidences suggest that RREB1 is a potential risk gene for type 2 diabetes and obesity. We also review the current clinical application of RREB1 as a biomarker for melanoma detection. In conclusion, RREB1 is a promising diagnostic biomarker or new drug target for cancers and metabolic diseases.
Collapse
Affiliation(s)
- Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P. R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, P. R. China
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, Baghdad Campus, The Islamia University of Bahawalpur, Pakistan
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
| |
Collapse
|
6
|
Hossan T, Kundu S, Alam SS, Nagarajan S. Epigenetic Modifications Associated with the Pathogenesis of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2020; 19:775-786. [PMID: 30827271 DOI: 10.2174/1871530319666190301145545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder. Pancreatic β-cell dysfunction and insulin resistance are the most common and crucial events of T2DM. Increasing evidence suggests the association of epigenetic modifications with the pathogenesis of T2DM through the changes in important biological processes including pancreatic β- cell differentiation, development and maintenance of normal β-cell function. Insulin sensitivity by the peripheral glucose uptake tissues is also changed by the altered epigenetic mechanisms. In this review, we discussed the major epigenetic alterations and their effects on β-cell function, insulin secretion and insulin resistance in context of T2DM. METHODS We investigated the presently available epigenetic modifications including DNA methylation, posttranslational histone modifications, ATP-dependent chromatin remodeling and non-coding RNAs related to the pathogenesis of T2DM. Published literatures on this topic were searched both on Google Scholar and Pubmed with related keywords and investigated for relevant information. RESULTS The epigenetic modifications introduce changes in gene expression which are essential for appropriate β-cell development and functions, insulin secretion and sensitivity resulting in the pathogenesis of T2DM. Interestingly, T2DM could also be a prominent reason for the mentioned epigenetic alterations. CONCLUSION This review article emphasized on the epigenetic modifications associated with T2DM and discussed the consequences in deterioration of the disease condition.
Collapse
Affiliation(s)
- Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sayeda Sadia Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Sankari Nagarajan
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
7
|
Abreu GDM, Tarantino RM, Cabello PH, Zembrzuski VM, da Fonseca ACP, Rodacki M, Zajdenverg L, Campos Junior M. The first case of NEUROD1-MODY reported in Latin America. Mol Genet Genomic Med 2019; 7:e989. [PMID: 31578821 PMCID: PMC6900366 DOI: 10.1002/mgg3.989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/18/2019] [Indexed: 01/06/2023] Open
Abstract
Background MODY‐NEUROD1 is a rare form of monogenic diabetes caused by mutations in Neuronal differentiation 1 (NEUROD1). Until now, only a few cases of MODY‐NEUROD1 have been reported worldwide and the real contribution of mutations in NEUROD1 in monogenic diabetes and its clinical impact remain unclear. Methods Genomic DNA was isolated from peripheral blood lymphocytes of 25 unrelated Brazilians patients with clinical characteristics suggestive of monogenic diabetes and the screening of the entire coding region of NEUROD1 was performed by Sanger sequencing. Results We identified one novel frameshift deletion (p.Phe256Leufs*2) in NEUROD1 segregating in an autosomal dominant inheritance fashion. Almost 20 years after the first report of NEUROD1‐MODY, only a few families in Europe and Asia had shown mutations in NEUROD1 as the cause of monogenic diabetes. Conclusion To our knowledge, we described the first case of NEUROD1‐MODY in a Latin American family.
Collapse
Affiliation(s)
| | - Roberta Magalhães Tarantino
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Ambulatory of Diabetes, State Institute of Diabetes and Endocrinology, Rio de Janeiro, Brazil
| | - Pedro Hernan Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory of Genetics, School of Health Science, Grande Rio University, Rio de Janeiro, Brazil
| | | | | | - Melanie Rodacki
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lenita Zajdenverg
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Zhao Q, Wirka R, Nguyen T, Nagao M, Cheng P, Miller CL, Kim JB, Pjanic M, Quertermous T. TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Med 2019; 11:23. [PMID: 31014396 PMCID: PMC6480881 DOI: 10.1186/s13073-019-0635-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified over 160 loci that are associated with coronary artery disease. As with other complex human diseases, risk in coronary disease loci is determined primarily by altered expression of the causal gene, due to variation in binding of transcription factors and chromatin-modifying proteins that directly regulate the transcriptional apparatus. We have previously identified a coronary disease network downstream of the disease-associated transcription factor TCF21, and in work reported here extends these studies to investigate the mechanisms by which it interacts with the AP-1 transcription complex to regulate local epigenetic effects in these downstream coronary disease loci. METHODS Genomic studies, including chromatin immunoprecipitation sequencing, RNA sequencing, and protein-protein interaction studies, were performed in human coronary artery smooth muscle cells. RESULTS We show here that TCF21 and JUN regulate expression of two presumptive causal coronary disease genes, SMAD3 and CDKN2B-AS1, in part by interactions with histone deacetylases and acetyltransferases. Genome-wide TCF21 and JUN binding is jointly localized and particularly enriched in coronary disease loci where they broadly modulate H3K27Ac and chromatin state changes linked to disease-related processes in vascular cells. Heterozygosity at coronary disease causal variation, or genome editing of these variants, is associated with decreased binding of both JUN and TCF21 and loss of expression in cis, supporting a transcriptional mechanism for disease risk. CONCLUSIONS These data show that the known chromatin remodeling and pioneer functions of AP-1 are a pervasive aspect of epigenetic control of transcription, and thus, the risk in coronary disease-associated loci, and that interaction of AP-1 with TCF21 to control epigenetic features, contributes to the genetic risk in loci where they co-localize.
Collapse
Affiliation(s)
- Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Robert Wirka
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Manabu Nagao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Milos Pjanic
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Dr., Falk CVRC, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Emmanuel AO, Arnovitz S, Haghi L, Mathur PS, Mondal S, Quandt J, Okoreeh MK, Maienschein-Cline M, Khazaie K, Dose M, Gounari F. TCF-1 and HEB cooperate to establish the epigenetic and transcription profiles of CD4 +CD8 + thymocytes. Nat Immunol 2018; 19:1366-1378. [PMID: 30420627 PMCID: PMC6867931 DOI: 10.1038/s41590-018-0254-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
Thymocyte development requires a complex orchestration of multiple transcription factors. Ablating either TCF-1 or HEB in CD4+CD8+ thymocytes elicits similar developmental outcomes including increased proliferation, decreased survival, and fewer late Tcra rearrangements. Here, we provide a mechanistic explanation for these similarities by showing that TCF-1 and HEB share ~7,000 DNA-binding sites genome wide and promote chromatin accessibility. The binding of both TCF-1 and HEB was required at these shared sites for epigenetic and transcriptional gene regulation. Binding of TCF-1 and HEB to their conserved motifs in the enhancer regions of genes associated with T cell differentiation promoted their expression. Binding to sites lacking conserved motifs in the promoter regions of cell-cycle-associated genes limited proliferation. TCF-1 displaced nucleosomes, allowing for chromatin accessibility. Importantly, TCF-1 inhibited Notch signaling and consequently protected HEB from Notch-mediated proteasomal degradation. Thus, TCF-1 shifts nucleosomes and safeguards HEB, thereby enabling their cooperation in establishing the epigenetic and transcription profiles of CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
| | | | - Leila Haghi
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Priya S Mathur
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Soumi Mondal
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jasmin Quandt
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Khashayarsha Khazaie
- Department of Immunology, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Marei Dose
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Fotini Gounari
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Hoard TM, Yang XP, Jetten AM, ZeRuth GT. PIAS-family proteins negatively regulate Glis3 transactivation function through SUMO modification in pancreatic β cells. Heliyon 2018; 4:e00709. [PMID: 30094379 PMCID: PMC6077130 DOI: 10.1016/j.heliyon.2018.e00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Gli-similar 3 (Glis3) is Krüppel-like transcription factor associated with the transcriptional regulation of insulin. Mutations within the Glis3 locus have been implicated in a number of pathologies including diabetes mellitus and hypothyroidism. Despite its clinical significance, little is known about the proteins and posttranslational modifications that regulate Glis3 transcriptional activity. In this report, we demonstrate that the SUMO-pathway associated proteins, PIASy and Ubc9 are capable of regulating Glis3 transactivation function through a SUMO-dependent mechanism. We present evidence that SUMOylation of Glis3 by PIAS-family proteins occurs at two conserved lysine residues within the Glis3 N-terminus and modification of Glis3 by SUMO dramatically inhibited insulin transcription. Finally, we provide evidence that Glis3 SUMOylation increases under conditions of chronically elevated glucose and correlates with decreased insulin transcription. Collectively, these results indicate that SUMOylation may serve as a mechanism to regulate Glis3 activity in β cells.
Collapse
Affiliation(s)
- Tyler M Hoard
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Xiao Ping Yang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gary T ZeRuth
- Department of Biological Sciences, Murray State University, Murray, KY, USA.,Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
11
|
Singh V, Saluja N. Phylogenetic and promoter analysis of islet amyloid polypeptide gene causing type 2 diabetes in mammalian species. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Wu T, Xiang J, Shan W, Li M, Zhou W, Han X, Chen F. Epigallocatechin-3-Gallate Inhibits Ethanol-Induced Apoptosis Through Neurod1 Regulating CHOP Expression in Pancreatic β-Cells. Anat Rec (Hoboken) 2016; 299:573-82. [DOI: 10.1002/ar.23332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province; Nanjing Medical University; 140 Hanzhong Road Nanjing 210029 China
| | - Jie Xiang
- Department of Endocrinology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi 214023 China
| | - Wei Shan
- Key Laboratory of Human Functional Genomics of Jiangsu Province; Nanjing Medical University; 140 Hanzhong Road Nanjing 210029 China
| | - Mengxiao Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province; Nanjing Medical University; 140 Hanzhong Road Nanjing 210029 China
| | - Wenbo Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province; Nanjing Medical University; 140 Hanzhong Road Nanjing 210029 China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province; Nanjing Medical University; 140 Hanzhong Road Nanjing 210029 China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province; Nanjing Medical University; 140 Hanzhong Road Nanjing 210029 China
| |
Collapse
|
13
|
Galloway JR, Bethea M, Liu Y, Underwood R, Mobley JA, Hunter CS. SSBP3 Interacts With Islet-1 and Ldb1 to Impact Pancreatic β-Cell Target Genes. Mol Endocrinol 2015; 29:1774-86. [PMID: 26495868 DOI: 10.1210/me.2015-1165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Islet-1 (Isl1) is a Lin11, Isl1, Mec3 (LIM)-homeodomain transcription factor important for pancreatic islet cell development, maturation, and function, which largely requires interaction with the LIM domain-binding protein 1 (Ldb1) coregulator. In other tissues, Ldb1 and Isl1 interact with additional factors to mediate target gene transcription, yet few protein partners are known in β-cells. Therefore, we hypothesize that Ldb1 and Isl1 participate in larger regulatory complexes to impact β-cell gene expression. To test this, we used cross-linked immunoprecipitation and mass spectrometry to identify interacting proteins from mouse β-cells. Proteomic datasets revealed numerous interacting candidates, including a member of the single-stranded DNA-binding protein (SSBP) coregulator family, SSBP3. SSBPs potentiate LIM transcription factor complex activity and stability in other tissues. However, nothing was known of SSBP3 interaction, expression, or activity in β-cells. Our analyses confirmed that SSBP3 interacts with Ldb1 and Isl1 in β-cell lines and in mouse and human islets and demonstrated SSBP3 coexpression with Ldb1 and Isl1 pancreas tissue. Furthermore, β-cell line SSBP3 knockdown imparted mRNA deficiencies similar to those observed upon Ldb1 reduction in vitro or in vivo. This appears to be (at least) due to SSBP3 occupancy of known Ldb1-Isl1 target promoters, including MafA and Glp1r. This study collectively demonstrates that SSBP3 is a critical component of Ldb1-Isl1 regulatory complexes, required for expression of critical β-cell target genes.
Collapse
Affiliation(s)
- Jamie R Galloway
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Maigen Bethea
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yanping Liu
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rachel Underwood
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James A Mobley
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Chad S Hunter
- Department of Medicine (J.R.G., M.B., Y.L., R.U., C.S.H.), Division of Endocrinology, Diabetes and Metabolism, and Comprehensive Diabetes Center, and Department of Surgery (J.A.M.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
14
|
McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep 2015; 10:2032-42. [PMID: 25801033 DOI: 10.1016/j.celrep.2015.02.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.
Collapse
Affiliation(s)
- Brian McKenna
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Lawrence MC, Borenstein-Auerbach N, McGlynn K, Kunnathodi F, Shahbazov R, Syed I, Kanak M, Takita M, Levy MF, Naziruddin B. NFAT targets signaling molecules to gene promoters in pancreatic β-cells. Mol Endocrinol 2014; 29:274-88. [PMID: 25496032 DOI: 10.1210/me.2014-1066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1β. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic β-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation.
Collapse
Affiliation(s)
- Michael C Lawrence
- Islet Cell Laboratory (M.C.L., N.B.-A., F.K., R.S., I.S., M.T.), Baylor Research Institute, Dallas, Texas 75226; Department of Pharmacology (K.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Institute of Biomedical Studies (M.K.), Baylor University, Waco, Texas 76798; and Annette C. and Harold C. Simmons Transplant Institute (M.F.L., B.N.), Baylor University Medical Center, Dallas, Texas 75246
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quednow BB, Brzózka MM, Rossner MJ. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci 2014; 71:2815-35. [PMID: 24413739 PMCID: PMC11113759 DOI: 10.1007/s00018-013-1553-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a genetically complex disease considered to have a neurodevelopmental pathogenesis and defined by a broad spectrum of positive and negative symptoms as well as cognitive deficits. Recently, large genome-wide association studies have identified common alleles slightly increasing the risk for schizophrenia. Among the few schizophrenia-risk genes that have been consistently replicated is the basic Helix-Loop-Helix (bHLH) transcription factor 4 (TCF4). Haploinsufficiency of the TCF4 (formatting follows IUPAC nomenclature: TCF4 protein/protein function, Tcf4 rodent gene cDNA mRNA, TCF4 human gene cDNA mRNA) gene causes the Pitt-Hopkins syndrome-a neurodevelopmental disease characterized by severe mental retardation. Accordingly, Tcf4 null-mutant mice display developmental brain defects. TCF4-associated risk alleles are located in putative coding and non-coding regions of the gene. Hence, subtle changes at the level of gene expression might be relevant for the etiopathology of schizophrenia. Behavioural phenotypes obtained with a mouse model of slightly increased gene dosage and electrophysiological investigations with human risk-allele carriers revealed an overlapping spectrum of schizophrenia-relevant endophenotypes. Most prominently, early information processing and higher cognitive functions appear to be associated with TCF4 risk genotypes. Moreover, a recent human study unravelled gene × environment interactions between TCF4 risk alleles and smoking behaviour that were specifically associated with disrupted early information processing. Taken together, TCF4 is considered as an integrator ('hub') of several bHLH networks controlling critical steps of various developmental, and, possibly, plasticity-related transcriptional programs in the CNS and changes of TCF4 expression also appear to affect brain networks important for information processing. Consequently, these findings support the neurodevelopmental hypothesis of schizophrenia and provide a basis for identifying the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Experimental and Clinical Pharmacopsychology, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Magdalena M. Brzózka
- Department of Psychiatry, Molecular and Behavioral Neurobiology, Ludwig-Maximillians-University, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Department of Psychiatry, Molecular and Behavioral Neurobiology, Ludwig-Maximillians-University, Nussbaumstr. 7, 80336 Munich, Germany
- Research Group Gene Expression, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Goettingen, 37075 Germany
| |
Collapse
|
17
|
CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 2014; 34:2308-17. [PMID: 24732800 DOI: 10.1128/mcb.01600-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gene expression programs required for differentiation depend on both DNA-bound transcription factors and surrounding histone modifications. Expression of the basic helix-loop-helix (bHLH) protein NeuroD1 is restricted to endocrine cells in the gastrointestinal (GI) tract, where it is important for endocrine differentiation. RREB1 (RAS-responsive element binding protein 1), identified as a component of the CtBP corepressor complex, binds to nearby DNA elements to associate with NeuroD and potentiate transcription of a NeuroD1 target gene. Transcriptional activation by RREB1 depends on recruitment of CtBP with its associated proteins, including LSD1, through its PXDLS motifs. The mechanism of transcriptional activation by CtBP has not been previously characterized. Here we found that activation was dependent on the histone H3 lysine 9 (H3K9) demethylase activity of LSD1, which removes repressive methyl marks from dimethylated H3K9 (H3K9Me2), to facilitate subsequent H3K9 acetylation by the NeuroD1-associated histone acetyltransferase, P300/CBP-associated factor (PCAF). The secretin, β-glucokinase, insulin I, and insulin II genes, four known direct targets of NeuroD1 in intestinal and pancreatic endocrine cells, all show similar promoter occupancy by CtBP-associated proteins and PCAF, with acetylation of H3K9. This work may indicate a mechanism for selective regulation of transcription by CtBP and LSD1 involving their association with specific transcription factors and cofactors to drive tissue-specific transcription.
Collapse
|
18
|
ZeRuth GT, Takeda Y, Jetten AM. The Krüppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription. Mol Endocrinol 2013; 27:1692-705. [PMID: 23927931 DOI: 10.1210/me.2013-1117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcriptional regulation of insulin in pancreatic β-cells is mediated primarily through enhancer elements located within the 5' upstream regulatory region of the preproinsulin gene. Recently, the Krüppel-like transcription factor, Gli-similar 3 (Glis3), was shown to bind the insulin (INS) promoter and positively influence insulin transcription. In this report, we examined in detail the synergistic activation of insulin transcription by Glis3 with coregulators, CREB-binding protein (CBP)/p300, pancreatic and duodenal homeobox 1 (Pdx1), neuronal differentiation 1 (NeuroD1), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). Our data show that Glis3 expression, the binding of Glis3 to GlisBS, and its recruitment of CBP are required for optimal activation of the insulin promoter in pancreatic β-cells not only by Glis3, but also by Pdx1, MafA, and NeuroD1. Mutations in the GlisBS or small interfering RNA-directed knockdown of GLIS3 diminished insulin promoter activation by Pdx1, NeuroD1, and MafA, and neither Pdx1 nor MafA was able to stably associate with the insulin promoter when the GlisBS were mutated. In addition, a GlisBS mutation in the INS promoter implicated in the development of neonatal diabetes similarly abated activation by Pdx1, NeuroD1, and MafA that could be reversed by increased expression of exogenous Glis3. We therefore propose that recruitment of CBP/p300 by Glis3 provides a scaffold for the formation of a larger transcriptional regulatory complex that stabilizes the binding of Pdx1, NeuroD1, and MafA complexes to their respective binding sites within the insulin promoter. Taken together, these results indicate that Glis3 plays a pivotal role in the transcriptional regulation of insulin and may serve as an important therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Gary T ZeRuth
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| | | | | |
Collapse
|
19
|
Abstract
HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders.
Collapse
|
20
|
Hunter CS, Dixit S, Cohen T, Ediger B, Wilcox C, Ferreira M, Westphal H, Stein R, May CL. Islet α-, β-, and δ-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor. Diabetes 2013; 62. [PMID: 23193182 PMCID: PMC3581213 DOI: 10.2337/db12-0952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ldb1 and Ldb2 are coregulators that mediate Lin11-Isl1-Mec3 (LIM)-homeodomain (HD) and LIM-only transcription factor-driven gene regulation. Although both Ldb1 and Ldb2 mRNA were produced in the developing and adult pancreas, immunohistochemical analysis illustrated a broad Ldb1 protein expression pattern during early pancreatogenesis, which subsequently became enriched in islet and ductal cells perinatally. The islet-enriched pattern of Ldb1 was similar to pan-endocrine cell-expressed Islet-1 (Isl1), which was demonstrated in this study to be the primary LIM-HD transcription factor in developing and adult islet cells. Endocrine cell-specific removal of Ldb1 during mouse development resulted in a severe reduction of hormone⁺ cell numbers (i.e., α, β, and δ) and overt postnatal hyperglycemia, reminiscent of the phenotype described for the Isl1 conditional mutant. In contrast, neither endocrine cell development nor function was affected in the pancreas of Ldb2(-/-) mice. Gene expression and chromatin immunoprecipitation (ChIP) analyses demonstrated that many important Isl1-activated genes were coregulated by Ldb1, including MafA, Arx, insulin, and Glp1r. However, some genes (i.e., Hb9 and Glut2) only appeared to be impacted by Ldb1 during development. These findings establish Ldb1 as a critical transcriptional coregulator during islet α-, β-, and δ-cell development through Isl1-dependent and potentially Isl1-independent control.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Shilpy Dixit
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Tsadok Cohen
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Ediger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Crystal Wilcox
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mark Ferreira
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Heiner Westphal
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| |
Collapse
|
21
|
Novotny GW, Lundh M, Backe MB, Christensen DP, Hansen JB, Dahllöf MS, Pallesen EMH, Mandrup-Poulsen T. Transcriptional and translational regulation of cytokine signaling in inflammatory β-cell dysfunction and apoptosis. Arch Biochem Biophys 2012; 528:171-84. [PMID: 23063755 DOI: 10.1016/j.abb.2012.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/19/2022]
Abstract
Disease is conventionally viewed as the chaotic inappropriate outcome of deranged tissue function resulting from aberrancies in cellular processes. Yet the patho-biology of cellular dysfunction and death encompasses a coordinated network no less sophisticated and regulated than maintenance of homeostatic balance. Cellular demise is far from passive subordination to stress but requires controlled coordination of energy-requiring activities including gene transcription and protein translation that determine the graded transition between defensive mechanisms, cell cycle regulation, dedifferentiation and ultimately to the activation of death programmes. In fact, most stressors stimulate both homeostasis and regeneration on one hand and impairment and destruction on the other, depending on the ambient circumstances. Here we illustrate this bimodal ambiguity in cell response by reviewing recent progress in our understanding of how the pancreatic β cell copes with inflammatory stress by changing gene transcription and protein translation by the differential and interconnected action of reactive oxygen and nitric oxide species, microRNAs and posttranslational protein modifications.
Collapse
Affiliation(s)
- Guy W Novotny
- Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sakamoto S, Wakae K, Anzai Y, Murai K, Tamaki N, Miyazaki M, Miyazaki K, Romanow WJ, Ikawa T, Kitamura D, Yanagihara I, Minato N, Murre C, Agata Y. E2A and CBP/p300 Act in Synergy To Promote Chromatin Accessibility of the Immunoglobulin κ Locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:5547-60. [DOI: 10.4049/jimmunol.1002346] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Hyndman BD, Thompson P, Bayly R, Côté GP, LeBrun DP. E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:446-53. [PMID: 22387215 DOI: 10.1016/j.bbagrm.2012.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022]
Abstract
The E2A gene encodes the E-protein transcription factors E12 and E47 that play critical roles in B-lymphopoiesis. A somatic chromosomal translocation detectable in 5% of cases of acute lymphoblastic leukemia (ALL) involves E2A and results in expression of the oncogenic transcription factor E2A-PBX1. CREB binding protein (CBP) and its close paralog p300 are transcriptional co-activators with intrinsic histone acetyltransferase (HAT) activity. We and others have shown that direct binding of an N-terminal transcriptional activation domain present in E12/E47 and E2A-PBX1 to the KIX domain of CBP/p300 contributes to E2A protein function. In the current work we show for the first time that the catalytic HAT activity of CBP/p300 is increased in the presence of residues 1-483 of E2A (i.e., the portion present in E2A-PBX1). The addition of purified, recombinant E2A protein to in vitro assays results in a two-fold augmentation of CBP/p300 HAT activity, whereas in vivo assays show a ten-fold augmentation of HAT-dependent transcriptional induction and a five-fold augmentation of acetylation of reporter plasmid-associated histone by CBP in response to co-transfected E2A. Our results indicate that the HAT-enhancing effect is independent of the well-documented E2A-CBP interaction involving the KIX domain and suggest a role for direct, perhaps low affinity binding of E2A to a portion of CBP that includes the HAT domain and flanking elements. Our findings add to a growing body of literature indicating that interactions between CBP/p300 and transcription factors can function in a specific manner to modulate HAT catalytic activity.
Collapse
Affiliation(s)
- Brandy D Hyndman
- Department of Pathology and Molecular Medicine, Queen's University, Canada
| | | | | | | | | |
Collapse
|
24
|
Biochemical and phosphoproteomic analysis of the helix-loop-helix protein E47. Mol Cell Biol 2012; 32:1671-82. [PMID: 22354994 DOI: 10.1128/mcb.06452-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Numerous in vitro as well as genetic studies have demonstrated that the activities of the E2A proteins are regulated at multiple levels, including modulation of DNA binding by the Id proteins, association with the transcriptional modulators p300 and ETO, and posttranslational modifications. Here, we use affinity purification of tagged E47 combined with mass spectrometry in order to show that E47 interacts with the entire ensemble of Id proteins, namely, Id1, Id2, Id3, and Id4. Furthermore, we find that the lysine-specific histone demethylase 1 (LSD1), the protein arginine N-methyltransferase 5 (PRMT5), the corepressor CoREST, and the chaperones of the 14-3-3 family associate with affinity-purified E47. We also identify a spectrum of amino acid residues in E47 that are phosphorylated, including an AKT substrate site. We did, however, find that mutation of the identified AKT substrate site by itself did not perturb B cell development. In sum, these studies show that the entire ensemble of Id proteins has the ability to interact with E47, identify factors that associate with E47, and reveal a spectrum of phosphorylated residues in E47, including an AKT substrate site.
Collapse
|
25
|
Gray SG. The Potential of Epigenetic Compounds in Treating Diabetes. EPIGENETICS IN HUMAN DISEASE 2012:331-367. [DOI: 10.1016/b978-0-12-388415-2.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
A small molecule differentiation inducer increases insulin production by pancreatic β cells. Proc Natl Acad Sci U S A 2011; 108:20713-8. [PMID: 22143803 DOI: 10.1073/pnas.1118526109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
New drugs for preserving and restoring pancreatic β-cell function are critically needed for the worldwide epidemic of type 2 diabetes and the cure for type 1 diabetes. We previously identified a family of neurogenic 3,5-disubstituted isoxazoles (Isx) that increased expression of neurogenic differentiation 1 (NeuroD1, also known as BETA2); this transcription factor functions in neuronal and pancreatic β-cell differentiation and is essential for insulin gene transcription. Here, we probed effects of Isx on human cadaveric islets and MIN6 pancreatic β cells. Isx increased the expression and secretion of insulin in islets that made little insulin after prolonged ex vivo culture and increased expression of neurogenic differentiation 1 and other regulators of islet differentiation and insulin gene transcription. Within the first few hours of exposure, Isx caused biphasic activation of ERK1/2 and increased bulk histone acetylation. Although there was little effect on histone deacetylase activity, Isx increased histone acetyl transferase activity in nuclear extracts. Reconstitution assays indicated that Isx increased the activity of the histone acetyl transferase p300 through an ERK1/2-dependent mechanism. In summary, we have identified a small molecule with antidiabetic activity, providing a tool for exploring islet function and a possible lead for therapeutic intervention in diabetes.
Collapse
|
27
|
Yang W, Itoh F, Ohya H, Kishimoto F, Tanaka A, Nakano N, Itoh S, Kato M. Interference of E2-2-mediated effect in endothelial cells by FAM96B through its limited expression of E2-2. Cancer Sci 2011; 102:1808-14. [DOI: 10.1111/j.1349-7006.2011.02022.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
Sepp M, Kannike K, Eesmaa A, Urb M, Timmusk T. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing. PLoS One 2011; 6:e22138. [PMID: 21789225 PMCID: PMC3137626 DOI: 10.1371/journal.pone.0022138] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms.
Collapse
Affiliation(s)
- Mari Sepp
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Kannike
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Ave Eesmaa
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mari Urb
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
29
|
Bonnefond A, Lomberk G, Buttar N, Busiah K, Vaillant E, Lobbens S, Yengo L, Dechaume A, Mignot B, Simon A, Scharfmann R, Neve B, Tanyolaç S, Hodoglugil U, Pattou F, Cavé H, Iovanna J, Stein R, Polak M, Vaxillaire M, Froguel P, Urrutia R. Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J Biol Chem 2011; 286:28414-24. [PMID: 21592955 PMCID: PMC3151084 DOI: 10.1074/jbc.m110.215822] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11−/− mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus.
Collapse
Affiliation(s)
- Amélie Bonnefond
- CNRS-UMR-8199, Lille Pasteur Institute, Lille Nord de France University, F-59800 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Christensen DP, Dahllöf M, Lundh M, Rasmussen DN, Nielsen MD, Billestrup N, Grunnet LG, Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 2011; 17:378-90. [PMID: 21274504 DOI: 10.2119/molmed.2011.00021] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022] Open
Abstract
Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.
Collapse
Affiliation(s)
- Dan P Christensen
- Center for Medical Research Methodology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Wolf G, Hessabi B, Karkour A, Henrion U, Dahlhaus M, Ostmann A, Giese B, Fraunholz M, Grabarczyk P, Jack R, Walther R. The activation of the rat insulin gene II by BETA2 and PDX-1 in rat insulinoma cells is repressed by Pax6. Mol Endocrinol 2010; 24:2331-42. [PMID: 20943817 DOI: 10.1210/me.2009-0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transcriptional transactivator Pax6 binds the pancreatic islet cell-specific enhancer sequence (PISCES) of the rat insulin I gene. However the human, mouse, and rat insulin gene II promoters do not contain a PISCES element. To analyze the role of Pax6 in those PISCES-less promoters, we investigated its influence on rat insulin gene II expression and included in our studies the main activators: pancreatic and duodenal homeobox protein-1 (PDX-1) and BETA2/E47. Luciferase assays, Northern blots, and RIA were used to study effects of Pax6 overexpression, gel shift and chromatin precipitation assays to study its binding to the DNA, and yeast two-hybrid assays and glutathione S transferase capture assays to investigate its interactions with PDX-1 and BETA2. Finally, glucose-dependent intracellular transport of Pax6 was demonstrated by fluorescence microscopy. Overexpression of Pax6 prevents activation of the rat insulin II gene by BETA2 and PDX-1 and hence suppresses insulin synthesis and secretion. In vitro, Pax6 binds to the A-boxes, thereby blocking binding of PDX-1, and at the same time, its paired domain interacts with BETA2. Fluorescence microscopy demonstrated that the nuclear-cytoplasmic localization of Pax6 and PDX-1 are oppositely regulated by glucose. From the results, it is suggested that at low concentrations of glucose, Pax6 is localized in the nucleus and prevents the activation of the insulin gene by occupying the PDX-1 binding site and by interacting with BETA2.
Collapse
Affiliation(s)
- Gabriele Wolf
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Klinikum, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kiselyuk A, Farber-Katz S, Cohen T, Lee SH, Geron I, Azimi B, Heynen-Genel S, Singer O, Price J, Mercola M, Itkin-Ansari P, Levine F. Phenothiazine neuroleptics signal to the human insulin promoter as revealed by a novel high-throughput screen. ACTA ACUST UNITED AC 2010; 15:663-70. [PMID: 20547533 DOI: 10.1177/1087057110372257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of diabetogenic stimuli interact to influence insulin promoter activity, making it an attractive target for both mechanistic studies and therapeutic interventions. High-throughput screening (HTS) for insulin promoter modulators has the potential to reveal novel inputs into the control of that central element of the pancreatic beta-cell. A cell line from human islets in which the expression of insulin and other beta-cell-restricted genes are modulated by an inducible form of the bHLH transcription factor E47 was developed. This cell line, T6PNE, was adapted for HTS by transduction with a vector expressing green fluorescent protein under the control of the human insulin promoter. The resulting cell line was screened against a library of known drugs for those that increase insulin promoter activity. Members of the phenothiazine class of neuroleptics increased insulin gene expression upon short-term exposure. Chronic treatment, however, resulted in suppression of insulin promoter activity, consistent with the effect of phenothiazines observed clinically to induce diabetes in chronically treated patients. In addition to providing insights into previously unrecognized targets and mechanisms of action of phenothiazines, the novel cell line described here provides a broadly applicable platform for mining new molecular drug targets and central regulators of beta-cell differentiated function.
Collapse
Affiliation(s)
- Alice Kiselyuk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Multiple chromatin-bound protein kinases assemble factors that regulate insulin gene transcription. Proc Natl Acad Sci U S A 2009; 106:22181-6. [PMID: 20018749 DOI: 10.1073/pnas.0912596106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During the onset of diabetes, pancreatic beta cells become unable to produce sufficient insulin to maintain blood glucose within the normal range. Proinflammatory cytokines have been implicated in impaired beta cell function. To understand more about the molecular events that reduce insulin gene transcription, we examined the effects of hyperglycemia alone and together with the proinflammatory cytokine interleukin-1beta (IL-1beta) on signal transduction pathways that regulate insulin gene transcription. Exposure to IL-1beta in fasting glucose activated multiple protein kinases that associate with the insulin gene promoter and transiently increased insulin gene transcription in beta cells. In contrast, cells exposed to hyperglycemic conditions were sensitized to the inhibitory actions of IL-1beta. Under these conditions, IL-1beta caused the association of the same protein kinases, but a different combination of transcription factors with the insulin gene promoter and began to reduce transcription within 2 h; stimulatory factors were lost, RNA polymerase II was lost, and inhibitory factors were bound to the promoter in a kinase-dependent manner.
Collapse
|
35
|
Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol 2009; 42:148-56. [PMID: 19828133 DOI: 10.1016/j.biocel.2009.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 01/13/2023]
Abstract
During musculoskeletal development, Sry-type HMG box 9 (Sox9) has a crucial role in mesenchymal condensation and chondrogenesis. On the other hand, a tissue-specific basic helix-loop-helix (bHLH) transcription factor Scleraxis (Scx) regulates the differentiation of tendon and ligament progenitors. Whereas these two transcription factors cooperatively participate in the determination of cellular lineages, the precise interaction between Sox9 and Scx remains unclear. We have previously demonstrated that the Sox9-dependent transcription is synergistically activated by several Sox9-associating molecules, such as p300 and Smad3, on chromatin. In this study, we investigated the function of Scx in the Sox9-dependent transcription. The expression of alpha1(II) collagen (Col2a1) gene was stimulated by an appropriate transduction of Sox9 and Scx. Scx and its partner E47, which dimerizes with other bHLH proteins, cooperatively enhanced the Sox9-dependent transcription in luciferase reporter assays. Coactivator p300 synergistically increased the activity of Sox9-regulated reporter gene, which contains promoter and enhancer regions of Col2a1, in the presence of Scx and E47. Immunoprecipitation analyses revealed that Scx and E47 formed a transcriptional complex with Sox9 and p300. Scx/E47 heterodimer also associated with a conserved E-box sequence (CAGGTG) in the Col2a1 promoter on chromatin. These findings suggest that Scx and E47 might modulate the primary chondrogenesis by associating with the Sox9-related transcriptional complex, and by binding to the conserved E-box on Col2a1 promoter.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan.
| | | | | | | | | |
Collapse
|
36
|
Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61:489-96. [PMID: 19393272 DOI: 10.1016/j.addr.2008.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/15/2008] [Indexed: 01/01/2023]
Abstract
Pancreatic beta-cell-specific insulin gene expression is regulated by a variety of pancreatic transcription factors and the conserved A3, C1 and E1 elements in the insulin gene enhancer region are very important for activation of insulin gene. Indeed, PDX-1 binding to the A3 element and NeuroD binding to the E1 element are crucial for insulin gene transcription. Recently, C1 element-binding transcription factor was identified as MafA, which is a basic-leucine zipper transcription factor and functions as a potent transactivator for the insulin gene. Under diabetic conditions, chronic hyperglycemia gradually deteriorates pancreatic beta-cell function, which is accompanied by decreased expression and/or DNA binding activities of MafA and PDX-1. Furthermore, MafA overexpression, together with PDX-1 and NeuroD, markedly induces insulin biosynthesis in various non-beta-cells and thereby is a useful tool to efficiently induce insulin-producing surrogate beta-cells. These results suggest that MafA plays a crucial role in pancreatic beta-cells and could be a novel therapeutic target for diabetes.
Collapse
|
37
|
Scheele JS, Kolanczyk M, Gantert M, Zemojtel T, Dorn A, Sykes DB, Sykes DP, Möbest DCC, Kamps MP, Räpple D, Duchniewicz M. The Spt-Ada-Gcn5-acetyltransferase complex interaction motif of E2a is essential for a subset of transcriptional and oncogenic properties of E2a-Pbx1. Leuk Lymphoma 2009; 50:816-28. [PMID: 19399691 DOI: 10.1080/10428190902836107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The oncogene E2a-Pbx1 is formed by the t(1;19) translocation, which joins the N-terminal transactivation domain of E2a with the C-terminal homeodomain of PBX1. The goal of this work was to elucidate the mechanisms by which E2a-Pbx1 can lead to deregulated target gene expression. For reporter constructs it was shown that E2a-Pbx1 can activate transcription through homodimer elements (TGATTGAT) or through heterodimer elements with Hox proteins (e.g. TGATTAAT). We show a novel mechanism by which E2a-Pbx1 activates transcription of EF-9 using a promoter in intron 1 of the EF-9 gene, resulting in an aminoterminal truncated transcript. Our results indicate that the LDFS motif of E2a is essential for the transactivation of EF-9, but dispensable for transactivation of fibroblast growth factor 15. The E2a LDFS motif was also essential for proliferation of NIH3T3 fibroblasts but was dispensable for the E2a-Pbx1-induced differentiation arrest of myeloid progenitors.
Collapse
Affiliation(s)
- Jürgen S Scheele
- Department of Medicine I and Pharmacology I, University Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Regulation of V(D)J recombination by E-protein transcription factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:148-56. [PMID: 19731808 DOI: 10.1007/978-1-4419-0296-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive study of the E-proteins E2A and HEB duringlymphocyte development has revealed various functions for these bHLH transcription factors in regulating V(D)J recombination in both B- and T-cells. The study of E-proteins in mammals began with the identification of E2A by its ability to bind immunoglobulin heavy and light chain enhancers. Subsequent analysis has identified numerous roles for E2A and HEB at the immunoglobulin and T-cell receptor loci. E-protein targets also include the rag genes and other factors critical for recombination and for regulation of the developmental windows when cells undergo recombination. E-proteins appear to be master regulators that coordinate antigen receptor gene rearrangement and expression. This chapter focuses on how E-proteins regulate V(D)J recombination by activating transcription, initiating rearrangement and driving differentiation during B- and T-cell development.
Collapse
|
39
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
40
|
Gonsorcíková L, Průhová S, Cinek O, Ek J, Pelikánová T, Jørgensen T, Eiberg H, Pedersen O, Hansen T, Lebl J. Autosomal inheritance of diabetes in two families characterized by obesity and a novel H241Q mutation in NEUROD1. Pediatr Diabetes 2008; 9:367-72. [PMID: 18331410 DOI: 10.1111/j.1399-5448.2008.00379.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The aim of the study was to search for mutations in the NEUROD1 and IPF-1 genes in patients with clinical characteristics of maturity-onset diabetes of the young (MODY) but with no mutations in the HNF-4A (MODY1), GCK (MODY2) and TCF1 (MODY3) genes. METHODS We studied 30 unrelated Czech probands with a clinical diagnosis of MODY (median age at testing, 18 yr; median age at the recognition of hyperglycaemia, 16 yr). The promoter, exons and exon/intron boundaries of the NEUROD1 and IPF-1 genes were examined by polymerase chain reaction-denaturing high performance liquid chromatography and direct sequencing. RESULTS While no mutations were found in the IPF-1 gene, a novel H241Q substitution of NEUROD1 gene was identified in two unrelated families. In the first proband, the H241Q mutation led to early diagnosed (20 yr) hyperglycaemia followed by development of diabetic microvascular complications by the age of 32 yr. The second proband suffered from slowly progressing hyperglycaemia detected at the age of 30 yr. Affected members of both families were obese. The overall prevalence of the variant among the general population was 4 of 13 568 chromosomes. CONCLUSIONS We report a novel disease-associated variant in NEUROD1 identified among a set of MODYX families. The variant seems to precipitate type-2-like diabetes in excessively obese individuals.
Collapse
Affiliation(s)
- Lucie Gonsorcíková
- Department of Paediatrics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim HS, Noh JH, Hong SH, Hwang YC, Yang TY, Lee MS, Kim KW, Lee MK. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochem Biophys Res Commun 2008; 367:623-9. [DOI: 10.1016/j.bbrc.2007.12.192] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 12/29/2007] [Indexed: 11/16/2022]
|
42
|
Babu DA, Chakrabarti SK, Garmey JC, Mirmira RG. Pdx1 and BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA looping at the insulin gene. J Biol Chem 2008; 283:8164-72. [PMID: 18252719 DOI: 10.1074/jbc.m800336200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The activity of the insulin gene, Ins, in islet beta cells is thought to arise in part from the synergistic action of the transcription factors Pdx1 and BETA2/NeuroD1. We asked how the binding of these factors to A and E elements many tens or hundreds of base pairs upstream of the start site could influence activity of transcriptional machinery. We therefore tested the hypothesis that the complex of Pdx1 and BETA2/NeuroD1 maintains a DNA conformation such that distal regions of the gene are brought into proximity of the promoter and coding region. We show by coimmunoprecipitation that Pdx1 and BETA2/NeuroD1 exist within a complex and that the two physically interact with one another in this complex as assessed by fluorescence resonance energy transfer. Consistent with this interaction, we found that the two factors simultaneously occupy the same fragment of the Ins gene in beta cell lines using the chromatin immunoprecipitation/re-chromatin immunoprecipitation assay. Using a modification of the chromosome conformation capture assay in vitro and in beta cells, we observed that Pdx1 and BETA2/NeuroD1 mediate looping of a segment of Ins that brings EcoRI sites located at -623 and +761 bp (relative to the transcriptional start site) in proximity to one another. This looping appears to be dependent in vitro upon an intact A3 binding element, but not upon the E2 element. Based on our findings, we propose a model whereby Pdx1 and BETA2/NeuroD1 physically interact to form a nucleoprotein complex on the Ins gene that mediates formation of a short DNA loop. Our results suggest that such short loop conformations may be a general mechanism to permit interactions between transcription factors and basal transcriptional machinery.
Collapse
Affiliation(s)
- Daniella A Babu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
43
|
Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem 2007; 282:15589-96. [PMID: 17403669 PMCID: PMC2096475 DOI: 10.1074/jbc.m701762200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked GlcNAc modification of nuclear and cytosolic proteins has been shown to regulate the function of many cellular proteins. Increased O-linked glycosylation, observed under chronic hyperglycemia conditions, has been implicated in the pathogenesis of diabetes. However, the exact role of O-GlcNAc modification in regulating glucose homeostasis remains to be established. We report here that the subcellular localization of the pancreatic beta cell-specific transcription factor NeuroD1 is regulated by O-linked glycosylation in the mouse insulinoma cell line MIN6. Under low glucose conditions, NeuroD1 is mainly in the cytosol. However, treatment of MIN6 cells with high glucose results in O-linked GlcNAc modification of NeuroD1 and its subsequent translocation into the nucleus. Consistent with these data, treatment of MIN6 cells with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)-amino N-phenylcarbamate, an inhibitor of O-GlcNAcase, causes Neuro-D1 localization to the nucleus and induction of insulin gene expression even on low glucose. Furthermore, we demonstrate that NeuroD1 interacts with the O-GlcNAc transferase, OGT only at high concentrations of glucose and depletion of OGT by using small interfering RNA oligos interferes with the nuclear localization of NeuroD1 on high glucose. On low glucose NeuroD1 interacts with the O-GlcNAcase and becomes deglycosylated, which is likely to be important for export of Neuro-D1 into cytosol in the presence of low glucose. In summary, the presented data suggest that glucose regulates the subcellular localization of NeuroD1 in pancreatic beta cells via O-linked GlcNAc modification of NeuroD1 by OGT.
Collapse
Affiliation(s)
- Sreenath S Andrali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
44
|
Breslin MB, Wang HW, Pierce A, Aucoin R, Lan MS. Neurogenin 3 recruits CBP co-activator to facilitate histone H3/H4 acetylation in the target gene INSM1. FEBS Lett 2007; 581:949-54. [PMID: 17300785 PMCID: PMC1839826 DOI: 10.1016/j.febslet.2007.01.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/30/2022]
Abstract
INSM1 is a downstream target gene of neurogenin 3 (ngn3). A promoter construct containing the -426/+40bp region transiently co-transfected into NIH-3T3 cells with a ngn3 expression plasmid resulted in a 12-fold increase in promoter activity. The ngn3/E47 heterodimer selectively binds and activates the E-box3 of the INSM1 promoter. The endogenous ngn3 and CREB-binding protein (CBP) co-activator occupy the INSM1 promoter, resulting in hyper-acetylation of histone H3/H4 chromatin in a human neuroblastoma cell line, IMR-32. Additionally, adenoviral ngn3 can induce endogenous INSM-1 expression in pancreatic ductal carcinoma-1 cells through the recruitment of CBP to the INSM1 promoter and increase the acetylation of the INSM1 promoter region.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Lan
- To whom correspondence should be addressed: The Research Institute for Children, Children’s Hospital, 200 Henry Clay Avenue, Research and Education Building, Rm. 2211, New Orleans, LA 70118, USA. Tel: 504-896-2705, Fax: 504-896-2722,
| |
Collapse
|
45
|
Ren J, Jin P, Wang E, Liu E, Harlan DM, Li X, Stroncek DF. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. J Transl Med 2007; 5:1. [PMID: 17201925 PMCID: PMC1769476 DOI: 10.1186/1479-5876-5-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/03/2007] [Indexed: 01/28/2023] Open
Abstract
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Liu
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Harlan
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Li
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
Eto K, Kaur V, Thomas MK. Regulation of pancreas duodenum homeobox-1 expression by early growth response-1. J Biol Chem 2006; 282:5973-83. [PMID: 17150967 DOI: 10.1074/jbc.m607288200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The homeodomain transcription factor pancreas duodenum homeobox-1 (PDX-1) is a key regulator of pancreatic beta-cell development, function, and survival. Deficits in PDX-1 expression result in insulin deficiency and hyperglycemia. We previously found that the glucose-responsive transcription factor early growth response-1 (Egr-1) activates the insulin promoter in part by increasing expression levels of PDX-1. We now report that Egr-1 binds and activates multiple regulatory sites within the pdx-1 promoter. We identified consensus Egr-1 recognition sequences within proximal and distal regions of the mouse pdx-1 promoter and demonstrated specific binding of Egr-1 by chromatin immunoprecipitation and electrophoretic mobility shift assays. Overexpression of Egr-1 increased transcriptional activation of the -4500 proximal pdx-1 promoter and of the highly conserved regulatory Areas I, II, and III. Mutagenesis of a specific Egr-1 binding site within Area III substantially decreased Egr-1-mediated activation. Egr-1 increased the transcriptional activation of Areas I and II, despite the absence of Egr-1 recognition sequences within this promoter segment, suggesting that Egr-1 also can regulate the pdx-1 promoter indirectly. Egr-1 increased, and a dominant-negative Egr-1 mutant repressed, the transcriptional activation of distal pdx-1 promoter sequences. Mutagenesis of a specific Egr-1 binding site within regulatory Area IV reduced basal and Egr-1-mediated transcriptional activation. Our data indicate that Egr-1 regulates expression of PDX-1 in pancreatic beta-cells by both direct and indirect activation of the pdx-1 promoter. We propose that Egr-1 expression levels may act as a sensor in pancreatic beta-cells to translate extracellular signals into changes in PDX-1 expression levels and pancreatic beta-cell function.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
47
|
Abstract
DNA sequences that regulate expression of the insulin gene are located within a region spanning approximately 400 bp that flank the transcription start site. This region, the insulin promoter, contains a number of cis-acting elements that bind transcription factors, some of which are expressed only in the beta-cell and a few other endocrine or neural cell types, while others have a widespread tissue distribution. The sequencing of the genome of a number of species has allowed us to examine the manner in which the insulin promoter has evolved over a 450 million-year period. The major findings are that the A-box sites that bind PDX-1 are among the most highly conserved regulatory sequences, and that the conservation of the C1, E1, and CRE sequences emphasize the importance of MafA, E47/beta2, and cAMP-associated regulation. The review also reveals that of all the insulin gene promoters studied, the rodent insulin promoters are considerably dissimilar to the human, leading to the conclusion that extreme care should be taken when extrapolating rodent-based data on the insulin gene to humans.
Collapse
Affiliation(s)
- Colin W Hay
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | | |
Collapse
|
48
|
Verma SC, Lan K, Robertson E. Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol 2006; 312:101-36. [PMID: 17089795 PMCID: PMC3142369 DOI: 10.1007/978-3-540-34344-8_4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Latency-associated nuclear antigen (LANA) encoded by open reading frame 73 (ORF73) is the major latent protein expressed in all forms of KSHV-associated malignancies. LANA is a large (222-234 kDa) nuclear protein that interacts with various cellular as well as viral proteins. LANA has been classified as an oncogenic protein as it dysregulates various cellular pathways including tumor suppressor pathways associated with pRb and p53 and can transform primary rat embryo fibroblasts in cooperation with the cellular oncogene Hras. It associates with GSK-3beta, an important modulator of Wnt signaling pathway leading to the accumulation of cytoplasmic beta-catenin, which upregulates Tcf/Lef regulated genes after entering into the nucleus. LANA also blocks the expression of RTA, the reactivation transcriptional activator, which is critical for the latency to lytic switch, and thus helps in maintaining viral latency. LANA tethers the viral episomal DNA to the host chromosomes by directly binding to its cognate binding sequence within the TR region of the genome through its C terminus and to the nucleosomes through the N terminus of the molecule. Tethering to the host chromosomes helps in efficient partitioning of the viral episomes in the dividing cells. Disruptions of LANA expression led to reduction in the episomal copies of the viral DNA, supporting its role in persistence of the viral DNA. The functions known so far suggest that LANA is a key player in KSHV-mediated pathogenesis.
Collapse
Affiliation(s)
- S C Verma
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
49
|
Bayly R, Murase T, Hyndman BD, Savage R, Nurmohamed S, Munro K, Casselman R, Smith SP, LeBrun DP. Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol Cell Biol 2006; 26:6442-52. [PMID: 16914730 PMCID: PMC1592826 DOI: 10.1128/mcb.02025-05] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In roughly 5% of cases of acute lymphoblastic leukemia, a chromosomal translocation leads to expression of the oncogenic protein E2A-PBX1. The N-terminal portion of E2A-PBX1, encoded by the E2A gene, is identical in sequence to the corresponding portion of the E proteins E12/E47 and includes transcriptional activation domains. The C terminus consists of most of the HOX interacting transcription factor PBX1, including its DNA-binding homeodomain. Structure-function correlative experiments have suggested that oncogenesis by E2A-PBX1 requires an activation domain, called AD1, at the extreme N terminus. We recently demonstrated that a potentially helical portion of AD1 interacts directly with the transcriptional coactivator protein cyclic AMP response element-binding protein (CBP) and that this interaction is essential in the immortalization of primary bone marrow cells in tissue culture. Here we show that a conserved LXXLL motif within AD1 is required in the interaction between E2A-PBX1 and the KIX domain of CBP. We show by circular dichroism spectroscopy that the LXXLL-containing portion of AD1 undergoes a helical transition upon interacting with the KIX domain and that amino acid substitutions that prevent helix formation prevent both the KIX interaction and cell immortalization by E2A-PBX1. Perhaps most strikingly, substitution of a single, conserved leucine residue (L20) within the LXXLL motif impairs leukemia induction in mice after transplantation with E2A-PBX1-expressing bone marrow. The KIX domain of CBP mediates well-characterized interactions with several transcription factors of relevance to leukemia induction. Circumstantial evidence suggests that the side chain of L20 might interact with a deep hydrophobic pocket in the KIX domain. Therefore, our results serve to identify a potential new drug target.
Collapse
Affiliation(s)
- Richard Bayly
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Green MR, Yoon H, Boss JM. Epigenetic Regulation during B Cell Differentiation Controls CIITA Promoter Accessibility. THE JOURNAL OF IMMUNOLOGY 2006; 177:3865-73. [PMID: 16951349 DOI: 10.4049/jimmunol.177.6.3865] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell to plasma cell maturation is marked by the loss of MHC class II expression. This loss is due to the silencing of the MHC class II transcriptional coactivator CIITA. In this study, experiments to identify the molecular mechanism responsible for CIITA silencing were conducted. CIITA is expressed from four promoters in humans, of which promoter III (pIII) controls the majority of B cell-mediated expression. Chromatin immunoprecipitation assays were used to establish the histone code for pIII and determine the differences between B cells and plasma cells. Specific histone modifications associated with accessible promoters and transcriptionally active genes were observed at pIII in B cells but not in plasma cells. A reciprocal exchange of histone H3 lysine 9 acetylation to methylation was also observed between B cells and plasma cells. The lack of histone acetylation correlated with an absence of transcription factor binding to pIII, particularly that of Sp1, PU.1, CREB, and E47. Intriguingly, changes in chromatin architecture of the 13-kb region encompassing all CIITA promoters showed a remarkable deficit in histone H3 and H4 acetylation in plasma cells, suggesting that the mechanism of silencing is global. When primary B cells were differentiated ex vivo, most of the histone marks associated with pIII activation and expression were lost within 24 h. The results demonstrate that CIITA silencing occurs by controlling chromatin accessibility through a multistep mechanism that includes the loss of histone acetylation and transcription factor binding, and the acquisition of repressive histone methylation marks.
Collapse
Affiliation(s)
- Myesha R Green
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|