1
|
Altered tRNA processing is linked to a distinct and unusual La protein in Tetrahymena thermophila. Nat Commun 2022; 13:7332. [PMID: 36443289 PMCID: PMC9705548 DOI: 10.1038/s41467-022-34796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Nascent pre-tRNAs are transcribed by RNA polymerase III and immediately bound by La proteins on the UUU-3'OH sequence, using a tandem arrangement of the La motif and an adjacent RNA recognition motif-1 (RRM1), resulting in protection from 3'-exonucleases and promotion of pre-tRNA folding. The Tetrahymena thermophila protein Mlp1 has been previously classified as a genuine La protein, despite the predicted absence of the RRM1. We find that Mlp1 functions as a La protein through binding of pre-tRNAs, and affects pre-tRNA processing in Tetrahymena thermophila and when expressed in fission yeast. However, unlike in other examined eukaryotes, depletion of Mlp1 results in 3'-trailer stabilization. The 3'-trailers in Tetrahymena thermophila are uniquely short relative to other examined eukaryotes, and 5'-leaders have evolved to disfavour pre-tRNA leader/trailer pairing. Our data indicate that this variant Mlp1 architecture is linked to an altered, novel mechanism of tRNA processing in Tetrahymena thermophila.
Collapse
|
2
|
Identification and molecular evolution of the La and LARP genes in 16 plant species: A focus on the Gossypium hirsutum. Int J Biol Macromol 2022; 224:1101-1117. [DOI: 10.1016/j.ijbiomac.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
3
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
4
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
5
|
Phan HD, Lai LB, Zahurancik WJ, Gopalan V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem Sci 2021; 46:976-991. [PMID: 34511335 DOI: 10.1016/j.tibs.2021.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lien B Lai
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Walter J Zahurancik
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Bayfield MA, Vinayak J, Kerkhofs K, Mansouri-Noori F. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol 2021; 18:168-177. [PMID: 30777481 PMCID: PMC7928037 DOI: 10.1080/15476286.2019.1582955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
La shuttles between the nucleus and cytoplasm where it binds nascent RNA polymerase III (pol III) transcripts and mRNAs, respectively. La protects the 3' end of pol III transcribed RNA precursors, such as pre-tRNAs, through the use of a well-characterized UUU-3'OH binding mode. La proteins are also RNA chaperones, and La-dependent RNA chaperone activity is hypothesized to promote pre-tRNA maturation and translation at cellular and viral internal ribosome entry sites via binding sites distinct from those used for UUU-3'OH recognition. Since the publication of La-UUU-3'OH co-crystal structures, biochemical and genetic experiments have expanded our understanding of how La proteins use UUU-3'OH-independent binding modes to make sequence-independent contacts that can increase affinity for ligands and promote RNA remodeling. Other recent work has also expanded our understanding of how La binds mRNAs through contacts to the poly(A) tail. In this review, we focus on advances in the study of La protein-RNA complex surfaces beyond the description of the La-UUU-3'OH binding mode. We highlight recent advances in the functions of expected canonical nucleic acid interaction surfaces, a heightened appreciation of disordered C-terminal regions, and the nature of sequence-independent RNA determinants in La-RNA target binding. We further discuss how these RNA binding modes may have relevance to the function of the La-related proteins.
Collapse
Affiliation(s)
- Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
7
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Dock-Bregeon AC, Lewis KA, Conte MR. The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol 2019; 18:178-193. [PMID: 31752575 DOI: 10.1080/15476286.2019.1695712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs. Recent structures, together with biochemical and biophysical studies, have provided insights into how each LaRP family has evolved unique mechanisms of RNA recognition, not only through the conserved RNA-binding unit, the La-module, but also mediated by other family-specific motifs. Furthermore, in a series of unexpected twists and turns, they have revealed that the dynamic and conformational interplay of multi-structured domains and disordered regions operate in unison to achieve RNA substrate discrimination. This review proposes a perspective of our current knowledge of the structure-function relationship of the LaRP superfamily.
Collapse
Affiliation(s)
| | - Karen A Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
10
|
Shan F, Mei S, Zhang J, Zhang X, Xu C, Liao S, Tu X. A telomerase subunit homolog La protein from
Trypanosoma brucei
plays an essential role in ribosomal biogenesis. FEBS J 2019; 286:3129-3147. [DOI: 10.1111/febs.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Fangzhen Shan
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Song Mei
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | | | - Chao Xu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| |
Collapse
|
11
|
Marrella SA, Brown KA, Mansouri-Noori F, Porat J, Wilson DJ, Bayfield MA. An interdomain bridge influences RNA binding of the human La protein. J Biol Chem 2018; 294:1529-1540. [PMID: 30530494 DOI: 10.1074/jbc.ra118.003995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
La proteins are RNA chaperones that perform various functions depending on distinct RNA-binding modes and their subcellular localization. In the nucleus, they help process UUU-3'OH-tailed nascent RNA polymerase III transcripts, such as pre-tRNAs, whereas in the cytoplasm they contribute to translation of poly(A)-tailed mRNAs. La accumulation in the nucleus and cytoplasm is controlled by several trafficking elements, including a canonical nuclear localization signal in the extreme C terminus and a nuclear retention element (NRE) in the RNA recognition motif 2 (RRM2) domain. Previous findings indicate that cytoplasmic export of La due to mutation of the NRE can be suppressed by mutations in RRM1, but the mechanism by which the RRM1 and RRM2 domains functionally cooperate is poorly understood. In this work, we use electromobility shift assays (EMSA) to show that mutations in the NRE and RRM1 affect binding of human La to pre-tRNAs but not UUU-3'OH or poly(A) sequences, and we present compensatory mutagenesis data supporting a direct interaction between the RRM1 and RRM2 domains. Moreover, we use collision-induced unfolding and time-resolved hydrogen-deuterium exchange MS analyses to study the conformational dynamics that occur when this interaction is intact or disrupted. Our results suggest that the intracellular distribution of La may be linked to its RNA-binding modes and provide the first evidence for a direct protein-protein interdomain interaction in La proteins.
Collapse
Affiliation(s)
- Stefano A Marrella
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Kerene A Brown
- Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada; Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada; Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Farnaz Mansouri-Noori
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jennifer Porat
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada; Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada; Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
12
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
13
|
SUMO Modification of the RNA-Binding Protein La Regulates Cell Proliferation and STAT3 Protein Stability. Mol Cell Biol 2017; 38:MCB.00129-17. [PMID: 29084811 DOI: 10.1128/mcb.00129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
The cancer-associated RNA-binding protein La is posttranslationally modified by phosphorylation and sumoylation. Sumoylation of La regulates not only the trafficking of La in neuronal axons but also its association with specific mRNAs. Depletion of La in various types of cancer cell lines impairs cell proliferation; however, the molecular mechanism whereby La supports cell proliferation is not clearly understood. In this study, we address the question of whether sumoylation of La contributes to cell proliferation of HEK293 cells. We show that HEK293 cells stably expressing green fluorescent protein (GFP)-tagged wild-type La (GFP-LaWT) grow faster than cells expressing a sumoylation-deficient mutant La (GFP-LaSD), suggesting a proproliferative function of La in HEK293 cells. Further, we found that STAT3 protein levels were reduced in GFP-LaSD cells due to an increase in STAT3 ubiquitination and that overexpression of STAT3 partially restored cell proliferation. Finally, we present RNA sequencing data from RNA immunoprecipitations (RIPs) and report that mRNAs associated with the cell cycle and ubiquitination are preferentially bound by GFP-LaWT and are less enriched in GFP-LaSD RIPs. Taken together, results of our study support a novel mechanism whereby sumoylation of La promotes cell proliferation by averting ubiquitination-mediated degradation of the STAT3 protein.
Collapse
|
14
|
Vakiloroayaei A, Shah NS, Oeffinger M, Bayfield MA. The RNA chaperone La promotes pre-tRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res 2017; 45:11341-11355. [PMID: 28977649 PMCID: PMC5737608 DOI: 10.1093/nar/gkx764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs have critical roles in biological processes, and RNA chaperones can promote their folding into the native shape required for their function. La proteins are a class of highly abundant RNA chaperones that contact pre-tRNAs and other RNA polymerase III transcripts via their common UUU-3′OH ends, as well as through less specific contacts associated with RNA chaperone activity. However, whether La proteins preferentially bind misfolded pre-tRNAs or instead engage all pre-tRNA substrates irrespective of their folding status is not known. La deletion in yeast is synthetically lethal when combined with the loss of tRNA modifications predicted to contribute to the native pre-tRNA fold, such as the N2, N2-dimethylation of G26 by the methyltransferase Trm1p. In this work, we identify G26 containing pre-tRNAs that misfold in the absence of Trm1p and/or La (Sla1p) in Schizosaccharomyces pombe cells, then test whether La preferentially associates with such tRNAs in vitro and in vivo. Our data suggest that La does not discriminate a native from misfolded RNA target, and highlights the potential challenges faced by RNA chaperones in preferentially binding defective substrates.
Collapse
Affiliation(s)
- Ana Vakiloroayaei
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Neha S Shah
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
15
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
16
|
Abstract
Numerous surveillance pathways sculpt eukaryotic transcriptomes by degrading unneeded, defective, and potentially harmful noncoding RNAs (ncRNAs). Because aberrant and excess ncRNAs are largely degraded by exoribonucleases, a key characteristic of these RNAs is an accessible, protein-free 5' or 3' end. Most exoribonucleases function with cofactors that recognize ncRNAs with accessible 5' or 3' ends and/or increase the availability of these ends. Noncoding RNA surveillance pathways were first described in budding yeast, and there are now high-resolution structures of many components of the yeast pathways and significant mechanistic understanding as to how they function. Studies in human cells are revealing the ways in which these pathways both resemble and differ from their yeast counterparts, and are also uncovering numerous pathways that lack equivalents in budding yeast. In this review, we describe both the well-studied pathways uncovered in yeast and the new concepts that are emerging from studies in mammalian cells. We also discuss the ways in which surveillance pathways compete with chaperone proteins that transiently protect nascent ncRNA ends from exoribonucleases, with partner proteins that sequester these ends within RNPs, and with end modification pathways that protect the ends of some ncRNAs from nucleases.
Collapse
Affiliation(s)
- Cedric Belair
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| |
Collapse
|
17
|
Brown KA, Sharifi S, Hussain R, Donaldson L, Bayfield MA, Wilson DJ. Distinct Dynamic Modes Enable the Engagement of Dissimilar Ligands in a Promiscuous Atypical RNA Recognition Motif. Biochemistry 2016; 55:7141-7150. [PMID: 27959512 DOI: 10.1021/acs.biochem.6b00995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.
Collapse
Affiliation(s)
- Kerene A Brown
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
| | - Samel Sharifi
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Rawaa Hussain
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Logan Donaldson
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| |
Collapse
|
18
|
Eichhorn CD, Chug R, Feigon J. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA. Nucleic Acids Res 2016; 44:9977-9989. [PMID: 27679474 PMCID: PMC5175362 DOI: 10.1093/nar/gkw833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal La module binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear. We report the solution NMR structure of the hLARP7 CTD and show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Rahul Chug
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
19
|
Hasler D, Meister G. From tRNA to miRNA: RNA-folding contributes to correct entry into noncoding RNA pathways. FEBS Lett 2016; 590:2354-63. [DOI: 10.1002/1873-3468.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR); Laboratory for RNA Biology; University of Regensburg; Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR); Laboratory for RNA Biology; University of Regensburg; Germany
| |
Collapse
|
20
|
Chen DF, Lin C, Wang HL, Zhang L, Dai L, Jia SN, Zhou R, Li R, Yang JS, Yang F, Clegg JS, Nagasawa H, Yang WJ. An La-related protein controls cell cycle arrest by nuclear retrograde transport of tRNAs during diapause formation in Artemia. BMC Biol 2016; 14:16. [PMID: 26941127 PMCID: PMC4778291 DOI: 10.1186/s12915-016-0239-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/18/2016] [Indexed: 08/30/2023] Open
Abstract
Background In eukaryotes, tRNA trafficking between the nucleus and cytoplasm is a complex process connected with cell cycle regulation. Such trafficking is therefore of fundamental importance in cell biology, and disruption of this process has grave consequences for cell viability and survival. To cope with harsh habitats, Artemia has evolved a special reproductive mode to release encysted embryos in which cell division can be maintained in a dormancy state for a long period. Results Using Artemia as a peculiar model of the cell cycle, an La-related protein from Artemia, named Ar-Larp, was found to bind to tRNA and accumulate in the nucleus, leading to cell cycle arrest and controlling the onset of diapause formation in Artemia. Furthermore, exogenous gene expression of Ar-Larp could induce cell cycle arrest in cancer cells and suppress tumor growth in a xenograft mouse model, similar to the results obtained in diapause embryos of Artemia. Our study of tRNA trafficking indicated that Ar-Larp controls cell cycle arrest by binding to tRNAs and influencing their retrograde movement from the cytoplasm to the nucleus, which is connected to pathways involved in cell cycle checkpoints. Conclusions These findings in Artemia offer new insights into the mechanism underlying cell cycle arrest regulation, as well as providing a potentially novel approach to study tRNA retrograde movement from the cytoplasm to the nucleus. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dian-Fu Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Cheng Lin
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hong-Liang Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Li Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Li Dai
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Sheng-Nan Jia
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Rong Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410018, People's Republic of China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, People's Republic of China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Fan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - James S Clegg
- Section of Molecular and Cellular Biology and Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California, 94923, USA
| | - Hiromichi Nagasawa
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Department of Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Leung E, Schneider C, Yan F, Mohi-El-Din H, Kudla G, Tuck A, Wlotzka W, Doronina VA, Bartley R, Watkins NJ, Tollervey D, Brown JD. Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Res 2014; 42:10698-710. [PMID: 25159613 PMCID: PMC4176351 DOI: 10.1093/nar/gku761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and mature scR1 retains a U4–5 sequence at its 3′ end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5–6 tail that presumably represents the primary transcript. The 3′ U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assembly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also implicated in protecting the 3′ end of scR1, which accumulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a primary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degradation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, potentially facilitating the decision between these alternative fates.
Collapse
Affiliation(s)
- Eileen Leung
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Fu Yan
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hatem Mohi-El-Din
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Wiebke Wlotzka
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Victoria A Doronina
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ralph Bartley
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas J Watkins
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jeremy D Brown
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
22
|
Rubio MAT, Paris Z, Gaston KW, Fleming IMC, Sample P, Trotta CR, Alfonzo JD. Unusual noncanonical intron editing is important for tRNA splicing in Trypanosoma brucei. Mol Cell 2013; 52:184-92. [PMID: 24095278 DOI: 10.1016/j.molcel.2013.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/16/2013] [Accepted: 08/20/2013] [Indexed: 02/01/2023]
Abstract
In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.
Collapse
Affiliation(s)
- Mary Anne T Rubio
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
SIGNIFICANCE Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. RECENT ADVANCES A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to regulate cell death, beyond its role in gene expression. CRITICAL ISSUES The nature of the tRNA-cytochrome c binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular metabolism, and apoptotic sensitivity are unanswered. FUTURE DIRECTIONS Investigations into the critical issues raised above will improve the understanding of tRNA in the fundamental processes of cell death and metabolism. Such knowledge will inform therapies in cell death-related diseases.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
24
|
Aoki K, Adachi S, Homoto M, Kusano H, Koike K, Natsume T. LARP1 specifically recognizes the 3' terminus of poly(A) mRNA. FEBS Lett 2013; 587:2173-8. [PMID: 23711370 DOI: 10.1016/j.febslet.2013.05.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023]
Abstract
A poly(A) tail functions in mRNA turnover and in facilitating translation as a ribonucleoprotein complex with poly(A) binding proteins (PABPs). However, factors that associate with the poly(A) tail other than PABPs have not been described. Using proteomics, we identified candidate proteins that interact to the 3' terminus of the poly(A) tail. Among these proteins, we focused on La motif-related protein 1 (LARP1) and found that LARP1 specifically recognizes the 3' termini of normal poly(A) tails. We also reveal that LARP1 stabilizes multiple mRNAs carrying 5' terminal oligopyrimidine tract (5'TOP). Our findings suggest that LARP1 may be involved in the post-transcriptional regulation of gene expression, at least in several 5'TOP mRNAs, through the binding to 3' terminus of the poly(A) tail.
Collapse
Affiliation(s)
- Kazuma Aoki
- Molecular Profiling Research Center for Drug Discovery(molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Liang C, Xiong K, Szulwach KE, Zhang Y, Wang Z, Peng J, Fu M, Jin P, Suzuki HI, Liu Q. Sjogren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition. J Biol Chem 2013; 288:723-36. [PMID: 23129761 PMCID: PMC3537071 DOI: 10.1074/jbc.m112.401323] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/23/2012] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.
Collapse
Affiliation(s)
- Chunyang Liang
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ke Xiong
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- the College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Keith E. Szulwach
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yi Zhang
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhaohui Wang
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Junmin Peng
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Mingui Fu
- the Department of Basic Medical Science, University of Missouri School of Medicine, Kansas, Missouri 64108, and
| | - Peng Jin
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hiroshi I. Suzuki
- the Department of Molecular Pathology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Qinghua Liu
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
26
|
Naeeni AR, Conte MR, Bayfield MA. RNA chaperone activity of human La protein is mediated by variant RNA recognition motif. J Biol Chem 2012; 287:5472-82. [PMID: 22203678 PMCID: PMC3285324 DOI: 10.1074/jbc.m111.276071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/23/2011] [Indexed: 02/05/2023] Open
Abstract
La proteins are conserved factors in eukaryotes that bind and protect the 3' trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3'OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3'OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets.
Collapse
Affiliation(s)
- Amir R. Naeeni
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada and
| | - Maria R. Conte
- the Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Mark A. Bayfield
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada and
| |
Collapse
|
27
|
Martino L, Pennell S, Kelly G, Bui TTT, Kotik-Kogan O, Smerdon SJ, Drake AF, Curry S, Conte MR. Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein. Nucleic Acids Res 2012; 40:1381-94. [PMID: 22009680 PMCID: PMC3273827 DOI: 10.1093/nar/gkr890] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022] Open
Abstract
Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3' oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3' UUU(OH) trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3' UUU(OH) trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3' oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Simon Pennell
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Geoff Kelly
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Tam T. T. Bui
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Olga Kotik-Kogan
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Stephen J. Smerdon
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Stephen Curry
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
28
|
Gerlier D, Lyles DS. Interplay between innate immunity and negative-strand RNA viruses: towards a rational model. Microbiol Mol Biol Rev 2011; 75:468-90, second page of table of contents. [PMID: 21885681 PMCID: PMC3165544 DOI: 10.1128/mmbr.00007-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of a new class of cytosolic receptors recognizing viral RNA, called the RIG-like receptors (RLRs), has revolutionized our understanding of the interplay between viruses and host cells. A tremendous amount of work has been accumulating to decipher the RNA moieties required for an RLR agonist, the signal transduction pathway leading to activation of the innate immunity orchestrated by type I interferon (IFN), the cellular and viral regulators of this pathway, and the viral inhibitors of the innate immune response. Previous reviews have focused on the RLR signaling pathway and on the negative regulation of the interferon response by viral proteins. The focus of this review is to put this knowledge in the context of the virus replication cycle within a cell. Likewise, there has been an expansion of knowledge about the role of innate immunity in the pathophysiology of viral infection. As a consequence, some discrepancies have arisen between the current models of cell-intrinsic innate immunity and current knowledge of virus biology. This holds particularly true for the nonsegmented negative-strand viruses (Mononegavirales), which paradoxically have been largely used to build presently available models. The aim of this review is to bridge the gap between the virology and innate immunity to favor the rational building of a relevant model(s) describing the interplay between Mononegavirales and the innate immune system.
Collapse
Affiliation(s)
- Denis Gerlier
- INSERM U758, CERVI, 21 avenue Tony Garnier, 69007 Lyon, France.
| | | |
Collapse
|
29
|
Vashist S, Bhullar D, Vrati S. La protein can simultaneously bind to both 3'- and 5'-noncoding regions of Japanese encephalitis virus genome. DNA Cell Biol 2011; 30:339-46. [PMID: 21294637 DOI: 10.1089/dna.2010.1114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with noncoding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may interact with viral or host proteins important for viral replication. We have previously shown that La protein binds the 3'-stem-loop (SL) structure of JEV 3'-NCR. Using electrophoretic mobility shift and ultraviolet crosslinking assays, we now show that La protein binds both 3'-SL and 5'-NCR of JEV. La protein binding to 5'-NCR RNA was stable under high salt condition (300 mM KCl) and the affinity of RNA protein interaction was high; the dissociation constant (K(d)) for La binding with 5'-NCR RNA was 8.8 nM, indicating the physiological relevance of the interaction. RNA toe-printing assays showed that La protein interacted with nucleotides located in the top loop of the predicted structure of 5'-NCR RNA. Using competitive binding studies and 5'-3' coprecipitation assay, we have demonstrated that La protein could simultaneously bind both JEV 3'- and 5'-NCRs. This may help circularize the viral genome for its efficient transcription and translation.
Collapse
Affiliation(s)
- Surender Vashist
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, India.
| | | | | |
Collapse
|
30
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:362-75. [PMID: 21572561 PMCID: PMC3092161 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
31
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
32
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
33
|
Hoffmann MH, Trembleau S, Muller S, Steiner G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J Autoimmun 2009; 34:J178-206. [PMID: 20031372 DOI: 10.1016/j.jaut.2009.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autoimmunity to ubiquitously expressed macromolecular nucleic acid-protein complexes such as the nucleosome or the spliceosome is a characteristic feature of systemic autoimmune diseases. Disease-specificity and/or association with clinical features of some of these autoimmune responses suggest pathogenic involvement which, however, has been proven in only a few cases so far. Although the mechanisms leading to autoimmunity against nucleic acid-containing complexes are still far from being fully understood, there is increasing experimental evidence that the nucleic acid component may act as a co-stimulator or adjuvans via activation of nucleic acid-binding receptor systems such as Toll-like receptors in antigen-presenting cells. Dysregulated apoptosis and inappropriate stimulation of nucleic acid-sensing receptors may lead to loss of tolerance against the protein components of such complexes, activation of autoreactive T cells and formation of autoantibodies. This has been demonstrated to occur in systemic lupus erythematosus and seems to represent a general mechanism that may be crucial for the development of systemic autoimmune diseases. This review provides a comprehensive overview of the most thoroughly-characterized nucleic acid-associated autoantigens, describing their structure and biological function, as well as the nature and pathogenic importance of the reactivities directed against them. Furthermore, recent advances in immunotherapy such as antigen-specific approaches targeted at nucleic acid-binding antigens are discussed.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Curry S, Kotik-Kogan O, Conte MR, Brick P. Getting to the end of RNA: structural analysis of protein recognition of 5' and 3' termini. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:653-66. [PMID: 19619683 DOI: 10.1016/j.bbagrm.2009.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
The specific recognition by proteins of the 5' and 3' ends of RNA molecules is an important facet of many cellular processes, including RNA maturation, regulation of translation initiation and control of gene expression by degradation and RNA interference. The aim of this review is to survey recent structural analyses of protein binding domains that specifically bind to the extreme 5' or 3' termini of RNA. For reasons of space and because their interactions are also governed by catalytic considerations, we have excluded enzymes that modify the 5' and 3' extremities of RNA. It is clear that there is enormous structural diversity among the proteins that have evolved to bind to the ends of RNA molecules. Moreover, they commonly exhibit conformational flexibility that appears to be important for binding and regulation of the interaction. This flexibility has sometimes complicated the interpretation of structural results and presents significant challenges for future investigations.
Collapse
Affiliation(s)
- Stephen Curry
- Biophysics Section, Blackett Laboratory, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
35
|
Vashist S, Anantpadma M, Sharma H, Vrati S. La protein binds the predicted loop structures in the 3' non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 2009; 90:1343-1352. [PMID: 19264640 DOI: 10.1099/vir.0.010850-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with non-coding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may bind to viral or host proteins important for viral replication. It has been shown previously that three proteins of 32, 35 and 50 kDa bind the 3' stem-loop (SL) structure of the JEV 3' NCR, and one of these was identified as 36 kDa Mov34 protein. Using electrophoretic mobility-shift and UV cross-linking assays, as well as a yeast three-hybrid system, it was shown here that La protein binds to the 3' SL of JEV. The binding was stable under high-salt conditions (300 mM KCl) and the affinity of the RNA-protein interaction was high; the dissociation constant (Kd) for binding of La protein to the 3' SL was 12 nM, indicating that this RNA-protein interaction is physiologically plausible. Only the N-terminal half of La protein containing RNA recognition motifs 1 and 2 interacted with JEV RNA. An RNA toe-printing assay followed by deletion mutagenesis showed that La protein bound to predicted loop structures in the 3' SL RNA. Furthermore, it was shown that small interfering RNA-mediated downregulation of La protein resulted in repression of JEV replication in cultured cells.
Collapse
Affiliation(s)
| | | | - Himani Sharma
- National Institute of Immunology, New Delhi 110067, India
| | | |
Collapse
|
36
|
Van den Bergh K, Hooijkaas H, Blockmans D, Westhovens R, Op De Beéck K, Verschueren P, Dufour D, van de Merwe JP, Fijak M, Klug J, Michiels G, Devogelaere B, De Smedt H, Derua R, Waelkens E, Blanckaert N, Bossuyt X. Heterogeneous Nuclear Ribonucleoprotein H1, a Novel Nuclear Autoantigen. Clin Chem 2009; 55:946-54. [DOI: 10.1373/clinchem.2008.115626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Serum samples from patients with autoimmune connective tissue diseases that show a finely speckled antinuclear antibody (ANA) on indirect immune-fluorescence often have antibodies against unknown nuclear target antigens. To search for such autoantigens we applied a proteomic approach using sera from patients with a high ANA titer (≥640) and finely speckled fluorescence but in whom no antibodies to extractable nuclear antigens (ENA) could be identified.
Methods: Using an immunoproteomics approach we identified heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1) as a novel nuclear target of autoantibody response.
Results: Recombinant rat hnRNP H1 reacted in Western blot analyses with 48% of 93 sera from patients with primary Sjögren syndrome and with 5.2% of 153 sera from patients with other connective tissue diseases (diseased controls). For comparison, the diagnostic sensitivity and specificity of anti–Sjögren syndrome A (SSA) antibodies for primary Sjögren syndrome in the same patient cohort were 88.2% and 76.3%, respectively. Interestingly, 5 of 11 primary Sjögren syndrome patients with no anti-SSA or anti-SSB antibodies had anti–hnRNP H1 antibodies. Anti–hnRNP H1 antibodies were preabsorbed by hnRNP H1, as demonstrated by indirect immunofluorescence. In an evaluation of the presence of anti–hnRNP H1 antibodies in 188 consecutive samples submitted to the clinical laboratory with positive ANA (titer ≥160), anti–hnRNP H1 antibodies were found in 3 of 7 (2 primary and 5 secondary) Sjögren syndrome patients and in 8.3% of the diseased controls.
Conclusions: HnRNP H1 is a newly discovered autoantigen that could become an additional diagnostic marker.
Collapse
Affiliation(s)
| | - Herbert Hooijkaas
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | | | | | | | | | - Diana Dufour
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Joop P van de Merwe
- Department of Immunology and Department of Internal Medicine, Erasmus Medical Center Rotterdam, the Netherlands
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Germany
| | - Georges Michiels
- Laboratory Medicine, Immunology, University Hospitals Leuven, Belgium
| | - Benoit Devogelaere
- Department of Molecular Cell Biology (Laboratory of Molecular and Cellular Signalling), Catholic University of Leuven, Belgium
| | - Humbert De Smedt
- Department of Molecular Cell Biology (Laboratory of Molecular and Cellular Signalling), Catholic University of Leuven, Belgium
| | - Rita Derua
- Department of Molecular Cell Biology (Laboratory of Protein Phosphorylation and Proteomics) and Biomacs, Catholic University of Leuven, Belgium
| | - Etienne Waelkens
- Department of Molecular Cell Biology (Laboratory of Protein Phosphorylation and Proteomics) and Biomacs, Catholic University of Leuven, Belgium
| | | | - Xavier Bossuyt
- Laboratory Medicine, Immunology, University Hospitals Leuven, Belgium
| |
Collapse
|
37
|
Brenet F, Socci ND, Sonenberg N, Holland EC. Akt phosphorylation of La regulates specific mRNA translation in glial progenitors. Oncogene 2009; 28:128-39. [PMID: 18836485 DOI: 10.1038/onc.2008.376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 11/09/2022]
Abstract
The Akt signaling pathway activity increases as normal tissue progresses to malignant transformation, and regulates the translation of specific messenger RNAs (mRNAs) through multiple mechanisms. We have identified one such mechanism of Akt-dependent translation control as involving the lupus autoantigen La. La is an RNA-associated protein that contains multiple trafficking elements to support the interaction with RNAs in different subcellular locations. We show here that the La protein is a direct target of the serine/threonine protein kinase Akt on threonine 301, and La nuclear export in mouse glial progenitors, as well as its association with polysomes is modulated by Akt activity. Using a functional approach to determine the network of genes affected by La in the cytoplasm by microarray analysis of polysome-bound mRNAs, we found that La binds 34% of the polysome bound mRNAs and regulates the expression of a specific pool of mRNAs under KRas/Akt activation. Therefore, La appears to be an important contributor to Akt-mediated translational regulation of these transcripts in murine glial cells.
Collapse
Affiliation(s)
- F Brenet
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | | | | | |
Collapse
|
38
|
Kotik-Kogan O, Valentine ER, Sanfelice D, Conte MR, Curry S. Structural analysis reveals conformational plasticity in the recognition of RNA 3' ends by the human La protein. Structure 2008; 16:852-62. [PMID: 18547518 PMCID: PMC2430598 DOI: 10.1016/j.str.2008.02.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/19/2008] [Accepted: 02/24/2008] [Indexed: 01/29/2023]
Abstract
The eukaryotic La protein recognizes the 3' poly(U) sequences of nascent RNA polymerase III transcripts to assist folding and maturation. The 3' ends of such RNAs are bound by the N-terminal domain of La (LaNTD). We have solved the crystal structures of four LaNTD:RNA complexes, each containing a different single-stranded RNA oligomer, and compared them to the structure of a previously published LaNTD:RNA complex containing partially duplex RNA. The presence of purely single-stranded RNA in the binding pocket at the interface between the La motif and RRM domains allows significantly closer contact with the 3' end of the RNA. Comparison of the different LaNTD:RNA complexes identifies a conserved set of interactions with the last two nucleotides at the 3' end of the RNA ligand that are key to binding. Strikingly, we also observe two alternative conformations of bound ssRNA, indicative of an unexpected degree of plasticity in the modes of RNA binding.
Collapse
Affiliation(s)
- Olga Kotik-Kogan
- Biophysics Section, Blackett Laboratory, Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Elizabeth R. Valentine
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Domenico Sanfelice
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Stephen Curry
- Biophysics Section, Blackett Laboratory, Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
39
|
Fleurdépine S, Deragon JM, Devic M, Guilleminot J, Bousquet-Antonelli C. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res 2007; 35:3306-21. [PMID: 17459889 PMCID: PMC1904278 DOI: 10.1093/nar/gkm200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 01/28/2023] Open
Abstract
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3'-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.
Collapse
Affiliation(s)
- Sophie Fleurdépine
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Martine Devic
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jocelyne Guilleminot
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
40
|
Park JM, Intine RV, Maraia RJ. Mouse and human La proteins differ in kinase substrate activity and activation mechanism for tRNA processing. Gene Expr 2007; 14:71-81. [PMID: 18257391 PMCID: PMC6042041 DOI: 10.3727/105221607783417619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The La protein interacts with a variety of small RNAs as well as certain growth-associated mRNAs such as Mdm2 mRNA. Human La (hLa) phosphoprotein is so highly conserved that it can replace the tRNA processing function of the fission yeast La protein in vivo. We used this system, which is based on tRNA-mediated suppression (TMS) of ade6-704 in S. pombe, to compare the activities of mouse and human La proteins. Prior studies indicate that hLa is activated by phosphorylation of serine-366 by protein kinase CK2, neutralizing a negative effect of a short basic motif (SBM). First, we report the sequence mapping of the UGA stop codon that requires suppressor tRNA for TMS, to an unexpected site in S. pombe ade6-704. Next, we show that, unlike hLa, native mLa is unexpectedly inactive for TMS, although its intrinsic activity is revealed by deletion of its SBM. We then show that mLa is not phosphorylated by CK2, accounting for the mechanistic difference between mLa and hLa. We found a PKA/PKG target sequence in mLa (S199) that is not present in hLa, and show that PKA/PKG efficiently phosphorylates mLa S199 in vitro. A noteworthy conclusion that comes from this work is that this fission yeast system can be used to gain insight into differences in control mechanisms used by La proteins of different mammalian species. Finally, RNA binding assays indicate that while mutation of mLa S199 has little effect on pre-tRNA binding, it substantially decreases binding to a probe derived from Mdm2 mRNA. In closing, we note that species-specific signaling through La may be relevant to the La-dependent Mdm2 pathways of p53 metabolism and cancer progression in mice and humans.
Collapse
Affiliation(s)
- Jung-Min Park
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert V. Intine
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J. Maraia
- Intramural Research Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Jackson SA, Koduvayur S, Woodson SA. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA (NEW YORK, N.Y.) 2006; 12:2149-59. [PMID: 17135489 PMCID: PMC1664722 DOI: 10.1261/rna.184206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stable RNAs must form specific three-dimensional structures, yet many RNAs become kinetically trapped in misfolded conformations. To understand the factors that control the accuracy of RNA folding in the cell, the self-splicing activity of the Tetrahymena group I intron was compared in different genetic contexts in budding yeast. The extent of splicing was 98% when the intron was placed in its natural rDNA context, but only 3% when the intron was expressed in an exogenous pre-mRNA. Further experiments showed that the probability of forming the active intron structure depends on local sequence context and transcription by Pol I. Pre-rRNAs decayed at similar rates, whether the intron was wild type or inactivated by an internal deletion, suggesting that most of the unreacted pre-rRNA is incompetent to splice. Northern blots and complementation assays showed that mutations that destabilize the intron tertiary structure inhibited self-splicing and processing of internal transcribed spacer 2. The data are consistent with partitioning of pre-rRNAs into active and inactive populations. The misfolded RNAs are sequestered and degraded without refolding to a significant extent. Thus, the initial fidelity of folding can dictate the intracellular fate of transcripts containing this group I intron.
Collapse
Affiliation(s)
- Scott A Jackson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
42
|
Routsias JG, Vlachoyiannopoulos PG, Tzioufas AG. Autoantibodies to intracellular autoantigens and their B-cell epitopes: molecular probes to study the autoimmune response. Crit Rev Clin Lab Sci 2006; 43:203-48. [PMID: 16574554 DOI: 10.1080/10408360500523837] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A common laboratory finding in systemic autoimmune diseases is the presence of autoantibodies against intracellular autoantigens. Although their pathogenesis is not fully understood, autoantibodies are important tools for establishing diagnosis, classification, and prognosis of autoimmune diseases. Autoantibodies mainly target multicomponent complexes containing both protein antigens and (ribo)-nucleic acid(s), such as the spliceosome or Ro/La RNPs. In this review, we address the main characteristics and the clinical value of the main autoantibody types with respect to their disease association, and we describe the corresponding autoantigens, their biologic function, and their B-cell antigenic determinants (epitopes). The structural characteristics and clinical associations of these epitopes, and their utility as tools to investigate the autoimmune response, are discussed in detail. New insights into the pathogenetic role of epitopes in systemic autoimmunity are also examined. In this regard, using the defined structures of the B-cell antigenic epitopes, complementary epitopes can be designed according to the "molecular recognition" theory. These complementary epitopes can be used as probes to study pathogenetic and immunoregulatory aspects of the anti-idiotypic response. The origin of humoral autoimmunity and the spreading of the epitopes in systemic lupus erythematosus are also discussed. Finally, the ability of post-translational modifications to induce autoreactive immune attack via the generation of neo-epitopes is summarized.
Collapse
Affiliation(s)
- John G Routsias
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
| | | | | |
Collapse
|
43
|
Huang Y, Bayfield MA, Intine RV, Maraia RJ. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol 2006; 13:611-8. [PMID: 16799560 DOI: 10.1038/nsmb1110] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 05/15/2006] [Indexed: 11/08/2022]
Abstract
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, US National Institutes of Health, 31 Center Dr., Rm. 2A25, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
44
|
Terzoglou AG, Routsias JG, Avrameas S, Moutsopoulos HM, Tzioufas AG. Preferential recognition of the phosphorylated major linear B-cell epitope of La/SSB 349-368 aa by anti-La/SSB autoantibodies from patients with systemic autoimmune diseases. Clin Exp Immunol 2006; 144:432-9. [PMID: 16734612 PMCID: PMC1941980 DOI: 10.1111/j.1365-2249.2006.03088.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2006] [Indexed: 11/29/2022] Open
Abstract
Sera from patients with primary Sjögren Syndrome (pSS) or Systemic Lupus Erythematosus (SLE) often contain autoantibodies directed against La/SSB. The sequence 349-368 aa represents the major B-cell epitope of La/SSB, also it contains, at position 366, a serine amino acid residue which constitutes the main phosphorylation site of the protein. In this study we investigated the differential recognition of the 349-368 aa epitope and its phosphorylated form by antibodies found in sera from patients with systemic autoimmune diseases. Peptides corresponding to the sequence of the unphosphorylated (pep349-368 aa) and the phosphorylated form (pep349-368 aa Ph) of the La/SSB epitope 349-368 aa, as well as to a truncated form spanning the sequence 349-364 aa and lacking the phosphorylation site (pep349-364 aa), were synthesized. Sera from 53 patients with pSS and SLE with anti-La/SSB specificity, 30 patients with pSS and SLE without anti-La/SSB antibodies, 25 patients with rheumatoid arthritis and 32 healthy individuals were investigated by ELISA experiments. Autoantibodies to pep349-368 aa Ph were detected in sera of anti-La/SSB positive patients with a higher prevalence compared to the pep349-368 aa (66%versus 45%). Pep349-368 aa Ph inhibited the antibody binding almost completely (92%), while pep349-368 aa inhibited the binding only partially (45%). Anti-La/SSB antibodies presented a higher relative avidity for the phosphorylated than the unphosphorylated peptide. Immunoadsorbent experiments using the truncated peptide pep349-364 aa indicated that the flow through showed a selective specificity for pep349-368 aa Ph, while the eluted antibodies reacted with both peptide analogues of the La/SSB epitope. These data suggest that sera from pSS and SLE patients with anti-La/SSB reactivity possess autoantibodies that bind more frequently and with a higher avidity to the phosphorylated major B-cell epitope of the molecule.
Collapse
Affiliation(s)
- A G Terzoglou
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
45
|
Curry S, Conte MR. A terminal affair: 3'-end recognition by the human La protein. Trends Biochem Sci 2006; 31:303-5. [PMID: 16679019 DOI: 10.1016/j.tibs.2006.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 03/15/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The La protein, an autoantigen in rheumatic disease, orchestrates several aspects of the metabolism of noncoding RNA molecules. More than 20 years ago it was shown that La primarily binds the 3' UUU-OH tails of nascent transcripts of RNA polymerase III. A recent study now reveals how the structure of the amino-terminal domain of the human La protein achieves specific 3'-end recognition.
Collapse
Affiliation(s)
- Stephen Curry
- Biophysics Section, Blackett Laboratory, Faculty of Natural Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | | |
Collapse
|
46
|
Copela LA, Chakshusmathi G, Sherrer RL, Wolin SL. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA (NEW YORK, N.Y.) 2006; 12:644-54. [PMID: 16581807 PMCID: PMC1421099 DOI: 10.1261/rna.2307206] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/09/2006] [Indexed: 05/02/2023]
Abstract
Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p. In addition, two pseudouridine synthases, PUS3 and PUS4, are important for growth in strains carrying a mutation in tRNA(Arg)(CCG) and are essential when La is deleted in these strains. Depletion of Pus3p results in accumulation of the aminoacylated mutant tRNA(Arg)(CCG) in nuclei, while depletion of Pus4p results in decreased stability of the mutant tRNA. Interestingly, the degradation of mutant unstable forms of tRNA(Arg)(CCG) does not require the Trf4p poly(A) polymerase, suggesting that yeast cells possess multiple pathways for tRNA decay. These data demonstrate that La functions redundantly with both tRNA modifications and proteins that associate with tRNAs to achieve tRNA structural stability and efficient biogenesis.
Collapse
Affiliation(s)
- Laura A Copela
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
48
|
Teplova M, Yuan YR, Phan AT, Malinina L, Ilin S, Teplov A, Patel DJ. Structural basis for recognition and sequestration of UUU(OH) 3' temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen. Mol Cell 2006; 21:75-85. [PMID: 16387655 PMCID: PMC4689297 DOI: 10.1016/j.molcel.2005.10.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/24/2005] [Accepted: 10/25/2005] [Indexed: 11/25/2022]
Abstract
The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUU(OH) 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the beta sheet edge, rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUU(OH) 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.
Collapse
Affiliation(s)
- Marianna Teplova
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| | - Yu-Ren Yuan
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| | - Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| | - Lucy Malinina
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| | - Serge Ilin
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| | - Alexei Teplov
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer
Center, New York, New York 10021
| |
Collapse
|
49
|
Fairley JA, Kantidakis T, Kenneth NS, Intine RV, Maraia RJ, White RJ. Human La is found at RNA polymerase III-transcribed genes in vivo. Proc Natl Acad Sci U S A 2005; 102:18350-5. [PMID: 16344466 PMCID: PMC1317925 DOI: 10.1073/pnas.0506415102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Indexed: 11/18/2022] Open
Abstract
The human La autoantigen can bind to nascent RNA transcripts and has also been postulated to act as an RNA polymerase III (pol III) transcription initiation and termination factor. Here, we show by chromatin immunoprecipitation (ChIP) that La is associated with pol III-transcribed genes in vivo. In contrast, the Ro autoantigen, which can also bind pol III transcripts, is not found at these genes. The putative pol III transcription factors NF1 and TFIIA are also not detected at class III genes. Binding of La remains when transcription is repressed at mitosis and does not correlate with the presence of polymerase at the gene. However, gene occupancy depends on the phosphorylation status of La, with the less prevalent, unphosphorylated form being found selectively on pol III templates.
Collapse
Affiliation(s)
- Jennifer A Fairley
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Arhin GK, Shen S, Pérez IF, Tschudi C, Ullu E. Downregulation of the essential Trypanosoma brucei La protein affects accumulation of elongator methionyl-tRNA. Mol Biochem Parasitol 2005; 144:104-8. [PMID: 16055205 DOI: 10.1016/j.molbiopara.2005.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/29/2022]
Affiliation(s)
- George K Arhin
- Department of Internal Medicine, Yale University Medical School, BCMM 136D, 295 Congress Avenue, Box 9812, New Haven, CT 06536-8012, USA
| | | | | | | | | |
Collapse
|