1
|
Murakami I, Iwata T, Morisada T, Tanaka K, Aoki D. Nucleosome Positioning on Episomal Human Papillomavirus DNA in Cultured Cells. Pathogens 2021; 10:pathogens10060772. [PMID: 34205361 PMCID: PMC8235217 DOI: 10.3390/pathogens10060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Several human papillomaviruses (HPV) are associated with the development of cervical carcinoma. HPV DNA synthesis is increased during the differentiation of infected host keratinocytes as they migrate from the basal layer of the epithelium to the spinous layer, but the molecular mechanism is unclear. Nucleosome positioning affects various cellular processes such as DNA replication and repair by permitting the access of transcription factors to promoters to initiate transcription. In this study, nucleosome positioning on virus chromatin was investigated in normal immortalized keratinocytes (NIKS) stably transfected with HPV16 or HPV18 genomes to determine if there is an association with the viral life cycle. Micrococcal nuclease-treated DNA analyzed by Southern blotting using probes against HPV16 and HPV18 and quantified by nucleosome scanning analysis using real-time PCR revealed mononucleosomal-sized fragments of 140-200 base pairs that varied in their location within the viral genome according to whether the cells were undergoing proliferation or differentiation. Notably, changes in the regions around nucleotide 110 in proliferating and differentiating host cells were common to HPV16 and HPV18. Our findings suggest that changes in nucleosome positions on viral DNA during host cell differentiation is an important regulatory event in the viral life cycle.
Collapse
Affiliation(s)
- Isao Murakami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan;
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
- Correspondence:
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan;
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan; (I.M.); (T.M.); (D.A.)
| |
Collapse
|
2
|
Onikubo T, Shechter D. Chaperone-mediated chromatin assembly and transcriptional regulation in Xenopus laevis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:271-276. [PMID: 27759155 DOI: 10.1387/ijdb.130188ds] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic genome activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Takashi Onikubo
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
3
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
4
|
Nacht AS, Pohl A, Zaurin R, Soronellas D, Quilez J, Sharma P, Wright RH, Beato M, Vicent GP. Hormone-induced repression of genes requires BRG1-mediated H1.2 deposition at target promoters. EMBO J 2016; 35:1822-43. [PMID: 27390128 DOI: 10.15252/embj.201593260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 06/07/2016] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic gene regulation is associated with changes in chromatin compaction that modulate access to DNA regulatory sequences relevant for transcriptional activation or repression. Although much is known about the mechanism of chromatin remodeling in hormonal gene activation, how repression is accomplished is much less understood. Here we report that in breast cancer cells, ligand-activated progesterone receptor (PR) is directly recruited to transcriptionally repressed genes involved in cell proliferation along with the kinases ERK1/2 and MSK1. PR recruits BRG1 associated with the HP1γ-LSD1 complex repressor complex, which is further anchored via binding of HP1γ to the H3K9me3 signal deposited by SUV39H2. In contrast to what is observed during gene activation, only BRG1 and not the BAF complex is recruited to repressed promoters, likely due to local enrichment of the pioneer factor FOXA1. BRG1 participates in gene repression by interacting with H1.2, facilitating its deposition and stabilizing nucleosome positioning around the transcription start site. Our results uncover a mechanism of hormone-dependent transcriptional repression and a novel role for BRG1 in progestin regulation of breast cancer cell growth.
Collapse
Affiliation(s)
- Ana Silvina Nacht
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andy Pohl
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roser Zaurin
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniel Soronellas
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Javier Quilez
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Priyanka Sharma
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roni H Wright
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Centre de Regulació Genòmica (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
5
|
Flanagan TW, Brown DT. Molecular dynamics of histone H1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:468-75. [PMID: 26454113 DOI: 10.1016/j.bbagrm.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022]
Abstract
The H1 or linker histones bind dynamically to chromatin in living cells via a process that involves transient association with the nucleosome near the DNA entry/exit site followed by dissociation, translocation to a new location, and rebinding. The mean residency time of H1 on any given nucleosome is about a minute, which is much shorter than that of most core histones but considerably longer than that of most other chromatin-binding proteins, including transcription factors. Here we review recent advances in understanding the kinetic pathway of H1 binding and how it relates to linker histone structure and function. We also describe potential mechanisms by which the dynamic binding of H1 might contribute directly to the regulation of gene expression and discuss several situations for which there is experimental evidence to support these mechanisms. Finally, we review the evidence for the participation of linker histone chaperones in mediating H1 exchange.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
6
|
Malik MQ, Bertke MM, Huber PW. Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. J Biol Chem 2014; 289:35468-81. [PMID: 25368327 DOI: 10.1074/jbc.m114.609123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression.
Collapse
Affiliation(s)
- Mariam Q Malik
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michelle M Bertke
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul W Huber
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
7
|
Millán-Ariño L, Islam ABMMK, Izquierdo-Bouldstridge A, Mayor R, Terme JM, Luque N, Sancho M, López-Bigas N, Jordan A. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res 2014; 42:4474-93. [PMID: 24476918 PMCID: PMC3985652 DOI: 10.1093/nar/gku079] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine–cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.
Collapse
Affiliation(s)
- Lluís Millán-Ariño
- Department of Molecular Genomics, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, E-08028 Spain, Research Programme on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, E-08003 Spain, Department of Genetic Engineering, Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh, Centro de Investigación Príncipe Felipe, Valencia, E-46012 Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, E-08010 Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zaytseva OO, Bogdanova VS, Kosterin OE. Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene 2012; 504:192-202. [PMID: 22613846 DOI: 10.1016/j.gene.2012.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/20/2012] [Accepted: 05/12/2012] [Indexed: 10/28/2022]
Abstract
A phylogenetic analysis of the genus Pisum (peas), embracing diverse wild and cultivated forms, which evoke problems with species delimitation, was carried out based on a gene coding for histone H1, a protein that has a long and variable functional C-terminal domain. Phylogenetic trees were reconstructed on the basis of the coding sequence of the gene His5 of H1 subtype 5 in 65 pea accessions. Early separation of a clear-cut wild species Pisum fulvum is well supported, while cultivated species Pisum abyssinicum appears as a small branch within Pisum sativum. Another robust branch within P. sativum includes some wild and almost all cultivated representatives of P. sativum. Other wild representatives form diverse but rather subtle branches. In a subset of accessions, PsbA-trnH chloroplast intergenic spacer was also analysed and found less informative than His5. A number of accessions of cultivated peas from remote regions have a His5 allele of identical sequence, encoding an electrophoretically slow protein product, which earlier attracted attention as likely positively selected in harsh climate conditions. In PsbA-trnH, a 8bp deletion was found, which marks cultivated representatives of P. sativum.
Collapse
Affiliation(s)
- Olga O Zaytseva
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk, Russia
| | | | | |
Collapse
|
9
|
Hayakawa K, Ohgane J, Tanaka S, Yagi S, Shiota K. Oocyte-specific linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency. Epigenetics 2012; 7:1029-36. [PMID: 22868987 DOI: 10.4161/epi.21492] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian oocytes contain the histone H1foo, a distinct member with low sequence similarity to other members in the H1 histone family. Oocyte-specific H1foo exists until the second embryonic cell stage. H1foo is essential for oocyte maturation in mice; however, the molecular function of this H1 subtype is unclear. To explore the function of H1foo, we generated embryonic stem (ES) cells ectopically expressing H1foo fused to an EGFP (H1foo-ES). Interestingly, ectopic expression of H1foo prevented normal differentiation into embryoid bodies (EBs). The EB preparations from H1foo-ES cells maintained the expression of pluripotent marker genes, including Nanog, Myc and Klf9, and prevented the shift of the DNA methylation profile. Because the short hairpin RNA-mediated knockdown of H1foo-EGFP recovered the differentiation ability, H1foo was involved in preventing differentiation. Furthermore, ChIP analysis revealed that H1foo-EGFP bound selectively to a set of hypomethylated genomic loci in H1foo-ES, clearly indicating that these loci were targets of H1foo. Finally, nuclease sensitivity assay suggested that H1foo made these target loci decondensed. We concluded that H1foo has an impact on the genome-wide, locus-specific epigenetic status.
Collapse
Affiliation(s)
- Koji Hayakawa
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Dudnikov AJ. Geographic patterns of histone H1 encoding genes allelic variation in Aegilops tauschii Coss. (Poaceae). Mol Biol Rep 2011; 39:2355-63. [PMID: 21667109 DOI: 10.1007/s11033-011-0986-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/28/2011] [Indexed: 12/01/2022]
Abstract
An electrophoretic analysis of histone H1 of Aegilops tauschii was carried out using the collection of 303 accessions (156 of ssp. tauschii and 147 of ssp. stangulata) representing all the species range. Three, four and six allelic variants were found for Hst1, Hst2 and Hst3 locus, respectively. The level of histone H1 allelic variability in ssp. strangulata was considerably higher than in ssp. tauschii. Expected heterozygosity (H(E)) for the loci Hst1, Hst2 and Hst3 made up 0.066, 0.484 and 0.224 respectively in ssp. strangulata vs. 0.024, 0.051 and 0.214 in ssp. tauschii. Besides the most common haplotype, Hst1 (1000), Hst2 (1000), Hst3 (1000), five other haplotypes with frequencies of occurrence higher than 0.02 were found in ssp. strangulata, and only one such haplotype--in ssp. tauschii. The most part of histone H1 variation in ssp. tauschii was in the western part of the area. In ssp. strangulata, the alleles Hst2 (988) and Hst2 (973) were found only in Caucasia, and the allele Hst1 (1043)--only in Precaspian Iran and south-eastern Azerbaijan. Histone H1 variation patterns in Ae. tauschii are very similar to those of non-coding sequences of chloroplast DNA. Therefore, histone H1 allelic variation in this species seems to be mostly neutral. Nevertheless, the evidences were pointed out, revealing that some part of variation at Hst2 locus in ssp. strangulata could be adaptive. It seems that Hst2 (1026) allele is disadvantageous in western Precaspian Iran, the region with the high annual rainfall, and being eliminated by natural selection.
Collapse
|
11
|
Caterino TL, Hayes JJ. Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem Cell Biol 2011; 89:35-44. [PMID: 21326361 DOI: 10.1139/o10-024] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones are multifunctional proteins that are involved in a myriad of processes ranging from stabilizing the folding and condensation of chromatin to playing a direct role in regulating gene expression. However, how this class of enigmatic proteins binds in chromatin and accomplishes these functions remains unclear. Here we review data regarding the H1 structure and function in chromatin, with special emphasis on the C-terminal domain (CTD), which typically encompasses approximately half of the mass of the linker histone and includes a large excess of positively charged residues. Owing to its amino acid composition, the CTD was previously proposed to function in chromatin as an unstructured polycation. However, structural studies have shown that the CTD adopts detectable secondary structure when interacting with DNA and macromolecular crowding agents. We describe classic and recent experiments defining the function of this domain in chromatin folding and emerging data indicating that the function of this protein may be linked to intrinsic disorder.
Collapse
Affiliation(s)
- Tamara L Caterino
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
12
|
Trollope AF, Sapojnikova N, Thorne AW, Crane-Robinson C, Myers FA. Linker histone subtypes are not generalized gene repressors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:642-52. [DOI: 10.1016/j.bbagrm.2010.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/26/2010] [Accepted: 08/20/2010] [Indexed: 01/24/2023]
|
13
|
Sancho M, Diani E, Beato M, Jordan A. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet 2008; 4:e1000227. [PMID: 18927631 PMCID: PMC2563032 DOI: 10.1371/journal.pgen.1000227] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/15/2008] [Indexed: 11/19/2022] Open
Abstract
At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants. Eukaryotic DNA is packaged into chromatin through its association with histone proteins. The linker histone H1 sits at the base of the nucleosome near the DNA entry and exit sites to stabilize two full turns of DNA. In particular, histone H1 participates in nucleosome spacing and formation of the higher-order chromatin structure. In addition, H1 seems to be actively involved in the regulation of gene expression. Histone H1 in mammals is a family of closely related, single-gene encoded proteins, including five somatic subtypes (from H1.1 to H1.5) and a terminally differentiated expressed isoform (H1.0). It is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible knock-down of each of the H1 variants in breast cancer cells. A different subset of genes is altered in each H1 knock-down, and depletion has different effects on cell survival. Interestingly, H1.2 and H1.4 depletion specifically caused arrest of cell proliferation. Concomitant with this, H1.2 depletion caused decreased global nucleosome spacing and repressed expression of a number of cell cycle genes. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants.
Collapse
Affiliation(s)
- Mónica Sancho
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Erika Diani
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | - Albert Jordan
- Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
- * E-mail:
| |
Collapse
|
14
|
Izzo A, Kamieniarz K, Schneider R. The histone H1 family: specific members, specific functions? Biol Chem 2008; 389:333-43. [PMID: 18208346 DOI: 10.1515/bc.2008.037] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails. These tails are moderately conserved among species, but differ among variants, suggesting a specific function for each H1 variant. Due to compensatory mechanisms and to the lack of proper tools, it has been very difficult to study the biological role of individual variants in chromatin-mediated processes. Our knowledge about H1 variants is indeed limited, and in vitro and in vivo observations have often been contradictory. Therefore, H1 variants were considered to be functionally redundant. However, recent knockout studies and biochemical analyses in different organisms have revealed exciting new insights into the specificity and mechanisms of actions of the H1 family members. Here, we collect and compare the available literature about H1 variants and discuss possible specific roles that challenge the concept of H1 being a mere structural component of chromatin and a general repressor of transcription.
Collapse
Affiliation(s)
- Annalisa Izzo
- Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | |
Collapse
|
15
|
Schnitzler GR. Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochem Biophys 2008; 51:67-80. [DOI: 10.1007/s12013-008-9015-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 12/24/2022]
|
16
|
Bhan S, May W, Warren SL, Sittman DB. Global gene expression analysis reveals specific and redundant roles for H1 variants, H1c and H1(0), in gene expression regulation. Gene 2008; 414:10-8. [PMID: 18372120 PMCID: PMC2706510 DOI: 10.1016/j.gene.2008.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
In mammals, the functional significance of the presence of evolutionarily conserved, multiple non-allelic H1 variants remains unclear. We used a unique overproduction approach coupled with cell cycle synchronization and early time point assays to assess differential effects of H1 variants, H1c and H1(0), on global gene expression in the absence of compensatory events that may mask variant-specific effects. We found that H1c and H1(0) act primarily as specific rather than global regulators of gene expression. Many of the genes affected were uniquely targeted by either H1c or H1(0), affirming that H1 variants have some unique roles. We also identified genes that were affected by both variants, in which cases the expression of these genes was, for the most part, affected similarly by both the variants. This observation suggests that as well as having specific functions, the H1 variants share common roles in the organization of chromatin. We further noted that H1(0) repressed more genes than did H1c, which may underlie the prevailing notion that H1(0) is a stronger repressor of transcription.
Collapse
Affiliation(s)
- Sheetal Bhan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
17
|
Sims HI, Lane JM, Ulyanova NP, Schnitzler GR. Human SWI/SNF drives sequence-directed repositioning of nucleosomes on C-myc promoter DNA minicircles. Biochemistry 2007; 46:11377-88. [PMID: 17877373 PMCID: PMC2526049 DOI: 10.1021/bi7008823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human SWI/SNF (hSWI/SNF) ATP-dependent chromatin remodeling complex is a tumor suppressor and essential transcriptional coregulator. SWI/SNF complexes have been shown to alter nucleosome positions, and this activity is likely to be important for their functions. However, previous studies have largely been unable to determine the extent to which DNA sequence might control nucleosome repositioning by SWI/SNF complexes. Here, we employ a minicircle remodeling approach to provide the first evidence that hSWI/SNF moves nucleosomes in a sequence dependent manner, away from nucleosome positioning sequences favored during nucleosome assembly. This repositioning is unaffected by the presence of DNA nicks, and can occur on closed-circular DNAs in the absence of topoisomerases. We observed directed nucleosome movement on minicircles derived from the human SWI/SNF-regulated c-myc promoter, which may contribute to the previously observed "disruption" of two promoter nucleosomes during c-myc activation in vivo. Our results suggest a model wherein hSWI/SNF-directed nucleosome movement away from default positioning sequences results in sequence-specific regulatory effects.
Collapse
Affiliation(s)
- Hillel I. Sims
- The Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| | | | | | - Gavin R. Schnitzler
- The Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| |
Collapse
|
18
|
Douet J, Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity (Edinb) 2007; 99:5-13. [PMID: 17487217 DOI: 10.1038/sj.hdy.6800964] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5S ribosomal DNA is a highly conserved tandemly repeated multigenic family. As suggested for a long time, we have shown that only a fraction of the 5S rRNA genes are expressed in Arabidopsis thaliana. In Xenopus laevis, there is a developmental control of the expression of the 5S rRNA genes with only one of the two 5S rDNA families expressed during oogenesis. For both Arabidopsis and Xenopus, the strongest transcription of 5S rRNA, respectively in the seed and during oogenesis is correlated with heterogeneity in the transcribed 5S rRNAs. Epigenetic mechanisms such as modification of the chromatin structure are involved in the transcriptional regulation of the 5S rRNA genes in both organisms. In Arabidopsis, two silencing pathways, methylation-dependent (RNAi) and methylation-independent (MOM pathway), are involved in the silencing of a 5S rDNA fraction.
Collapse
Affiliation(s)
- J Douet
- Unité Mixte de Recherche CNRS 6547 BIOMOVE, Université Blaise Pascal, Aubière Cedex, France
| | | |
Collapse
|
19
|
Bogdanova VS, Kosterin OE, Berdnikov VA. Phenotypic effect of substitution of allelic variants for a histone H1 subtype specific for growing tissues in the garden pea (Pisum sativum L.). Genetica 2007; 130:61-72. [PMID: 16900316 DOI: 10.1007/s10709-006-0021-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
In pea, subtype H1-7 of histone H1 is specific for young actively growing tissues and disappears from chromatin of mature tissues. We sequenced the alleles coding for three main variants, numbered according to the increase of the electrophoretic mobility. Allele 1 differs from the most common allele 2 by eight nucleotide substitutions, two of them associated with amino acid replacements, His->Tyr in the globular domain and Ala->Val in the C-terminal domain. Allele 3 differs from alleles 1 and 2 by a 24-bp deletion in the part coding for the C-terminal domain. In three greenhouse experiments, we compared quantitative traits in nearly isogenic lines differing by these H1-7 variants. In experiment 1, three lines bearing either of the three allelic variants were compared, the other experiments involved pairs of lines bearing variants 1 and 3. In all experiments, statistically significant differences between the lines were registered, mostly related to the plant size. The most prominent effect was associated with plant growth dynamics. Plants of line 3, carrying the 8-amino acid deletion in histone H1-7, on average grew slower. In two experiments, the differences of the mean stem length persisted throughout plant growth while in experiment 2 differences disappeared upon maturity. The H1-7 subtype is supposed to be related to maintenance of chromatin state characteristic for cell growth and division.
Collapse
Affiliation(s)
- Vera S Bogdanova
- Institute of Cytology & Genetics, Acad Lavrentiev Ave 10, Novosibirsk, Russia.
| | | | | |
Collapse
|
20
|
Yang Z, Zheng C, Hayes JJ. The Core Histone Tail Domains Contribute to Sequence-dependent Nucleosome Positioning. J Biol Chem 2007; 282:7930-8. [PMID: 17234628 DOI: 10.1074/jbc.m610584200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
21
|
Konesky KL, Nyborg JK, Laybourn PJ. Tax abolishes histone H1 repression of p300 acetyltransferase activity at the human T-cell leukemia virus type 1 promoter. J Virol 2006; 80:10542-53. [PMID: 16943293 PMCID: PMC1641794 DOI: 10.1128/jvi.00631-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Upon infection of human T-cell leukemia virus type 1 (HTLV-1), the provirus is integrated into the host cell genome and subsequently packaged into chromatin that contains histone H1. Consequently, transcriptional activation of the virus requires overcoming the environment of chromatin and H1. To efficiently activate transcription, HTLV-1 requires the virally encoded protein Tax and cellular transcription factor CREB. Together Tax and CREB interact with three cis-acting promoter elements called viral cyclic-AMP response elements (vCREs). Binding of Tax and CREB to the vCREs promotes association of p300/CBP into the complex and leads to transcriptional activation. Therefore, to fully understand the mechanism of Tax transactivation, it is necessary to examine transcriptional activation from chromatin assembled with H1. Using a DNA template harboring the complete HTLV-1 promoter sequence and a highly defined recombinant assembly system, we demonstrate proper incorporation of histone H1 into chromatin. Addition of H1 to the chromatin template reduces HTLV-1 transcriptional activation through a novel mechanism. Specifically, H1 does not inhibit CREB or Tax binding to the vCREs or p300 recruitment to the promoter. Rather, H1 directly targets p300 acetyltransferase activity. Interestingly, in determining the mechanism of H1 repression, we have discovered a previously undefined function of Tax, overcoming the repressive effects of H1-chromatin. Tax specifically abrogates the H1 repression of p300 enzymatic activity in a manner independent of p300 recruitment and without displacement of H1 from the promoter.
Collapse
Affiliation(s)
- Kasey L Konesky
- Department of Biochemistry and Molecular Biology, Colorado State University, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
22
|
McGraw S, Vigneault C, Tremblay K, Sirard MA. Characterization of linker histone H1FOO during bovine in vitro embryo development. Mol Reprod Dev 2006; 73:692-9. [PMID: 16470586 DOI: 10.1002/mrd.20448] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Linker histones H1 are involved in various mechanisms, such as chromatin organization and gene transcription. In different organisms, a unique subtype can be found in the oocyte, however its function remains unclear. To assess the potential involvement of this oocyte linker histone (H1FOO) in chromatin modulation, we have cloned and sequenced the bovine H1FOO cDNA and followed its mRNA profile by quantitative RT-PCR in the oocyte and throughout bovine early embryo development. The highest level of mRNA was found in the germinal vesicle (GV) oocyte and diminished constantly throughout embryo development. In the 16-cell embryo and blastocyst, respectively, the mRNA levels were 200 and 2,000 times lower than in the GV oocyte. A specific antibody raised against bovine H1FOO was used to establish protein distribution in the oocyte and preimplantation embryo by immunocytochemistry. In the GV and metaphase II (MII) oocyte, as well as in the 1-, 2- and 4-cell embryo, H1FOO was localized in the cytoplasm and nucleus. The protein was uniformly spread within the cytoplasm, while it was concentrated onto the chromatin in the nucleus. In the 8- to 16-cell embryo, H1FOO's presence diminished in the cytoplasm, although it was still strongly expressed in nucleus. In the morula and blastocyst stages, the protein was totally lacking. By its position on chromatin, H1FOO could not only be involved in chromatin conformation but could also participate in activation or repression of genes during oogenesis and embryo development before embryonic genome activation.
Collapse
Affiliation(s)
- Serge McGraw
- Department of Animal Sciences, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
23
|
Lim JH, West KL, Rubinstein Y, Bergel M, Postnikov YV, Bustin M. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J 2005; 24:3038-48. [PMID: 16096646 PMCID: PMC1201349 DOI: 10.1038/sj.emboj.7600768] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 07/14/2005] [Indexed: 11/08/2022] Open
Abstract
The acetylation levels of lysine residues in nucleosomes, which are determined by the opposing activities of histone acetyltransferases (HATs) and deacetylases, play an important role in regulating chromatin-related processes, including transcription. We report that HMGN1, a nucleosomal binding protein that reduces the compaction of the chromatin fiber, increases the levels of acetylation of K14 in H3. The levels of H3K14ac in Hmgn1-/- cells are lower than in Hmgn1+/+ cells. Induced expression of wild-type HMGN1, but not of a mutant that does not bind to chromatin, in Hmgn1-/- cells elevates the levels of H3K14ac. In vivo, HMGN1 elevates the levels of H3K14ac by enhancing the action of HAT. In vitro, HMGN1 enhances the ability of PCAF to acetylate nucleosomal, but not free, H3. Thus, HMGN1 modulates the levels of H3K14ac by binding to chromatin. We suggest that HMGN1, and perhaps similar architectural proteins, modulates the levels of acetylation in chromatin by altering the equilibrium generated by the opposing enzymatic activities that continuously modify and de-modify the histone tails in nucleosomes.
Collapse
Affiliation(s)
- Jae-Hwan Lim
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L West
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yaffa Rubinstein
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Bergel
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuri V Postnikov
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, NIH, Building 37, Room 2D-21, 9000 Rockville Pike, Bethesda, MD 20892, USA. Tel: +1 301 496 5234; Fax: +1 301 496 8419; E-mail:
| |
Collapse
|
24
|
Becker M, Becker A, Miyara F, Han Z, Kihara M, Brown DT, Hager GL, Latham K, Adashi EY, Misteli T. Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol Biol Cell 2005; 16:3887-95. [PMID: 15944219 PMCID: PMC1182324 DOI: 10.1091/mbc.e05-04-0350] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Matthias Becker
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The oocyte is a highly differentiated cell. It makes organelles specialized to its unique functions and progresses through a series of developmental stages to acquire a fertilization competent phenotype. This review will integrate the biology of the oocyte with what is known about oocyte-specific gene regulation and transcription factors involved in oocyte development. We propose that oogenesis is reliant on a dynamic gene regulatory network that includes oocyte-specific transcriptional regulators.
Collapse
Affiliation(s)
- Jia L Song
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 69 Brown Street, Box G-J4, Providence, RI 02912, USA
| | | |
Collapse
|
26
|
Jason LJM, Finn RM, Lindsey G, Ausió J. Histone H2A Ubiquitination Does Not Preclude Histone H1 Binding, but It Facilitates Its Association with the Nucleosome. J Biol Chem 2005; 280:4975-82. [PMID: 15546875 DOI: 10.1074/jbc.m410203200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H2A ubiquitination is a bulky posttranslational modification that occurs at the vicinity of the binding site for linker histones in the nucleosome. Therefore, we took several experimental approaches to investigate the role of ubiquitinated H2A (uH2A) in the binding of linker histones. Our results showed that uH2A was present in situ in histone H1-containing nucleosomes. Notably in vitro experiments using nucleosomes reconstituted onto 167-bp random sequence and 208-bp (5 S rRNA gene) DNA fragments showed that ubiquitination of H2A did not prevent binding of histone H1 but it rather enhanced the binding of this histone to the nucleosome. We also showed that ubiquitination of H2A did not affect the positioning of the histone octamer in the nucleosome in either the absence or the presence of linker histones.
Collapse
|
27
|
Chioda M, Spada F, Eskeland R, Thompson EM. Histone mRNAs do not accumulate during S phase of either mitotic or endoreduplicative cycles in the chordate Oikopleura dioica. Mol Cell Biol 2004; 24:5391-403. [PMID: 15169902 PMCID: PMC419869 DOI: 10.1128/mcb.24.12.5391-5403.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan histones are generally classified as replication-dependent or replacement variants. Replication-dependent histone genes contain cell cycle-responsive promoter elements, their transcripts terminate in an unpolyadenylated conserved stem-loop, and their mRNAs accumulate sharply during S phase. Replacement variant genes lack cell cycle-responsive promoter elements, their polyadenylated transcripts lack the stem-loop, and they are expressed at low levels throughout the cell cycle. During early development of some organisms with rapid cleavage cycles, replication-dependent mRNAs are not fully S phase restricted until complete cell cycle regulation is achieved. The accumulation of polyadenylated transcripts during this period has been considered incompatible with metazoan development. We show here that histone metabolism in the urochordate Oikopleura dioica does not accord with some key tenets of the replication-dependent/replacement variant paradigm. During the premetamorphic mitotic phase of development, expressed variants shared characteristics of replication-dependent histones, including the 3' stem-loop, but, in contrast, were extensively polyadenylated. After metamorphosis, when cells in many tissues enter endocycles, there was a global downregulation of histone transcript levels, with most variant transcripts processed at the stem-loop. Contrary to the 30-fold S-phase upregulation of histone transcripts described in common metazoan model organisms, we observed essentially constant histone transcript levels throughout both mitotic and endoreduplicative cell cycles.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, N-5008 Bergen, Norway
| | | | | | | |
Collapse
|
28
|
Ghose R, Malik M, Huber PW. Restricted specificity of Xenopus TFIIIA for transcription of somatic 5S rRNA genes. Mol Cell Biol 2004; 24:2467-77. [PMID: 14993284 PMCID: PMC355861 DOI: 10.1128/mcb.24.6.2467-2477.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus transcription factor IIIA (TFIIIA) is phosphorylated on serine-16 by CK2. Replacements with alanine or glutamic acid were made at this position in order to address the question of whether phosphorylation possibly influences the function of this factor. Neither substitution has an effect on the DNA or RNA binding activity of TFIIIA. The wild-type factor and the alanine variant activate transcription of somatic- and oocyte-type 5S rRNA genes in nuclear extract immunodepleted of endogenous TFIIIA. The glutamic acid variant (S16E) supports the transcription of somatic-type genes at levels comparable to those of wild-type TFIIIA; however, there is no transcription of the oocyte-type genes. This differential behavior of the phosphomimetic mutant protein is also observed in vivo when using early-stage embryos, where this mutant failed to activate transcription of the endogenous oocyte-type genes. Template exclusion assays establish that the S16E mutant binds to the oocyte-type 5S rRNA genes and recruits at least one other polymerase III transcription factor into an inactive complex. Phosphorylation of TFIIIA by CK2 may allow the factor to continue to act as a positive activator of the somatic-type genes and simultaneously as a repressor of the oocyte-type 5S rRNA genes, indicating that there is a mechanism that actively promotes repression of the oocyte-type genes at the end of oogenesis.
Collapse
Affiliation(s)
- Romi Ghose
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
29
|
Ragab A, Travers A. HMG-D and histone H1 alter the local accessibility of nucleosomal DNA. Nucleic Acids Res 2004; 31:7083-9. [PMID: 14654683 PMCID: PMC291865 DOI: 10.1093/nar/gkg923] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.
Collapse
Affiliation(s)
- Anan Ragab
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
30
|
The linker histones. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Ramachandran A, Omar M, Cheslock P, Schnitzler GR. Linker Histone H1 Modulates Nucleosome Remodeling by Human SWI/SNF. J Biol Chem 2003; 278:48590-601. [PMID: 14512420 DOI: 10.1074/jbc.m309033200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin, a combination of nucleosomes and linker histones, inhibits transcription by blocking polymerase movement and access of factors to DNA. ATP-dependent remodeling complexes such as SWI/SNF and RSC alter chromatin structure to increase or decrease this repression. To further our understanding of how human SWI/SNF (hSWI/SNF) "remodels" chromatin we examined the octamer location, nature, and template specificity of hSWI/SNF-remodeled mononucleosomes when free or bound by linker histone H1. We find that, in the absence of H1, hSWI/SNF consistently moves nucleosomes to DNA ends, regardless of template sequence. On some sequences the repositioned histone octamer appears to be moved approximately 45 bp off the DNA edge, whereas on others it appears to be normal, suggesting that the nature of the remodeled nucleosome can be influenced by DNA sequence. By contrast, in the presence of histone H1, hSWI/SNF slides octamers to more central positions and does not promote nucleosome movement off the ends of the DNA. Our results indicate that the nature and position of hSWI/SNF products may be influenced both by DNA sequence and linker histone, and shed light on the roles of H1 and hSWI/SNF in modulating chromatin structure.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
32
|
Yang Z, Hayes JJ. Xenopus transcription factor IIIA and the 5S nucleosome: development of a useful in vitro system. Biochem Cell Biol 2003; 81:177-84. [PMID: 12897852 DOI: 10.1139/o03-043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5S RNA genes in Xenopus are regulated during development via a complex interplay between assembly of repressive chromatin structures and productive transcription complexes. Interestingly, 5S genes have been found to harbor powerful nucleosome positioning elements and therefore have become an important model system for reconstitution of eukaryotic genes into nucleosomes in vitro. Moreover, the structure of the primary factor initiating transcription of 5S DNA, transcription factor IIIA, has been extensively characterized. This has allowed for numerous studies of the effect of nucleosome assembly and histone modifications on the DNA binding activity of a transcription factor in vitro. For example, linker histones bind 5S nucleosomes and repress TFIIIA binding in vitro in a similar manner to that observed in vivo. In addition, TFIIIA binding to nucleosomes assembled with 5S DNA is stimulated by acetylation or removal of the core histone tail domains. Here we review the development of the Xenopus 5S in vitro system and discuss recent results highlighting new aspects of transcription factor - nucleosome interactions,
Collapse
Affiliation(s)
- Zungyoon Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14625, USA
| | | |
Collapse
|
33
|
Koop R, Di Croce L, Beato M. Histone H1 enhances synergistic activation of the MMTV promoter in chromatin. EMBO J 2003; 22:588-99. [PMID: 12554659 PMCID: PMC140736 DOI: 10.1093/emboj/cdg052] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Minichromosomes assembled on the mouse mammary tumor virus (MMTV) promoter in vitro exhibit positioned nucleosomes, one of which covers the binding sites for progesterone receptor (PR) and nuclear factor 1 (NF1). Incorporation of histone H1 into MMTV minichromosomes improves the stability of this nucleosome and decreases basal transcription from the MMTV promoter, as well as its response to either PR or NF1. However, histone H1-containing minichromosomes display better PR binding and support a more efficient synergism between PR and NF1, leading to enhanced transcription initiation. A mutant MMTV promoter lacking positioned nucleosomes does not display enhanced transcriptional synergism in the presence of H1. Binding of PR leads to phosphorylation of H1, which leaves the promoter upon transcription initiation. Thus, H1 assumes a complex and dynamic role in the regulation of the MMTV promoter.
Collapse
Affiliation(s)
- Ronald Koop
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität, E.-Mannkopff-Strasse 2, D-35033 Marburg, Germany and Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Passeig Maritim 37–49, E-08003 Barcelona, Spain Present address: Department of Experimental Oncology, Istituto Europeo d’Oncologia, Via Ripamonti 435, 20141 Milano, Italy Corresponding author e-mail:
| | - Luciano Di Croce
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität, E.-Mannkopff-Strasse 2, D-35033 Marburg, Germany and Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Passeig Maritim 37–49, E-08003 Barcelona, Spain Present address: Department of Experimental Oncology, Istituto Europeo d’Oncologia, Via Ripamonti 435, 20141 Milano, Italy Corresponding author e-mail:
| | - Miguel Beato
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität, E.-Mannkopff-Strasse 2, D-35033 Marburg, Germany and Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Passeig Maritim 37–49, E-08003 Barcelona, Spain Present address: Department of Experimental Oncology, Istituto Europeo d’Oncologia, Via Ripamonti 435, 20141 Milano, Italy Corresponding author e-mail:
| |
Collapse
|
34
|
Vicent GP, Meliá MJ, Beato M. Asymmetric binding of histone H1 stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE. J Mol Biol 2002; 324:501-17. [PMID: 12445785 DOI: 10.1016/s0022-2836(02)01101-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Packaging of mouse mammary tumor virus (MMTV) promoter sequences in nucleosomes modulates access of DNA binding proteins and influences the interaction among DNA bound transcription factors. Here we analyze the binding of histone H1 to MMTV mononucleosomes assembled with recombinant histones and study its influence on nucleosome structure and stability as well as on progesterone receptor (PR) binding to the hormone responsive elements (HREs). The MMTV nucleosomes can be separated into three main populations, two of which exhibited precise translational positioning. Histone H1 bound preferentially to the 5' distal nucleosomal DNA protecting additional 27-28 nt from digestion by micrococcal nuclease. Binding of histone H1 was unaffected by prior crosslinking of protein and DNA in nucleosomes with formaldehyde. Neither the translational nor the rotational nucleosome positioning was altered by histone H1 binding, but the nucleosomes were stabilized as judged by the kinetics of nuclease cleavage. Unexpectedly, binding of recombinant PR to the exposed distal HRE-I in nucleosomes was enhanced in the presence of histone H1, as demonstrated by band shift and footprinting experiments. This enhanced PR affinity may contribute to the reported positive effect of histone H1 on the hormonal activation of MMTV reporter genes.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Institüt für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität, Emil-Mannkoppf-Str. 2, D-35033, Marburg, Germany
| | | | | |
Collapse
|
35
|
Abstract
Maternally synthesised factors contribute to the establishment of the germ cell lineage in lower vertebrates. In zebrafish, germ-soma segregation appears to be completed by the late blastula stage of development. To search for new germ cell factors in the zebrafish, we have used subtractive cDNA cloning. Here we report that linker histone H1M transcripts mark the germ line from the early gastrulation up to 18 h post-fertilisation.
Collapse
Affiliation(s)
- Karin Wibrand
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt 55, N-5008 Bergen, Norway
| | | |
Collapse
|
36
|
De S, Brown DT, Lu ZH, Leno GH, Wellman SE, Sittman DB. Histone H1 variants differentially inhibit DNA replication through an affinity for chromatin mediated by their carboxyl-terminal domains. Gene 2002; 292:173-81. [PMID: 12119111 DOI: 10.1016/s0378-1119(02)00675-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple forms of histone H1 are found in most mammalian tissues, and diversity in their temporal and spatial expression likely corresponds to diversity in function. Here, using Xenopus egg extracts, we show that while the somatic H1s significantly inhibit DNA replication in Xenopus sperm nuclei, little or no inhibition is seen in the case of the testes-specific variant, H1t. We suggest that differences in H1-chromatin interactions might explain some of the diversity in H1 function. To demonstrate this, we show that the somatic H1 variants preferentially assemble into chromatin relative to H1t. Differences in chromatin structure are seen depending on whether chromatin assembly occurs in the presence of somatic H1s or H1t. These data suggest that the mechanistic basis for some of the functional differences of H1 variants lies in their relative affinity for chromatin. Using a series of domain-switch mutants of H1(0) and H1t we identify the H1 carboxyl-terminal domains as the domains responsible for the differential affinity for chromatin and, concurrently, for the differential effects of H1 variants upon DNA replication.
Collapse
Affiliation(s)
- Siddhartha De
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|
37
|
Banks GC, Deterding LJ, Tomer KB, Archer TK. Hormone-mediated dephosphorylation of specific histone H1 isoforms. J Biol Chem 2001; 276:36467-73. [PMID: 11479299 DOI: 10.1074/jbc.m104641200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown a connection between histone H1 phosphorylation and the transcriptional competence of the hormone inducible mouse mammary tumor virus (MMTV) promoter. Prolonged exposure of mouse cells to dexamethasone concurrently dephosphorylated histone H1 and rendered the MMTV promoter refractory to hormonal stimulation and, therefore, transcriptionally unresponsive. Using electrospray mass spectrometry, we demonstrate here that prolonged dexamethasone treatment differentially effects a subset of the six somatic H1 isoforms in mouse cells. H1 isoforms H1.0, H1.1, and H1.2 are non-responsive to hormone whereas prolonged dexamethasone treatment effectively dephosphorylated the H1.3, H1.4, and H1.5 isoforms. The protein kinase inhibitor staurosporine, shown to dephosphorylate histone H1 and down-regulate MMTV in cultured cells, appears only to completely dephosphorylate the H1.3 isoform. These results suggest that dephosphorylation of specific histone H1 isoforms may contribute to the previously observed decrease in transcriptional competence of the MMTV promoter through the modulation of chromatin structure. In a broader sense, this work advances the hypothesis that post-translational modifications of individual histone H1 isoforms directly influence the transcriptional activation/repression of specific genes.
Collapse
Affiliation(s)
- G C Banks
- Laboratories of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
38
|
Rastelli L, Robinson K, Xu Y, Majumder S. Reconstitution of enhancer function in paternal pronuclei of one-cell mouse embryos. Mol Cell Biol 2001; 21:5531-40. [PMID: 11463835 PMCID: PMC87275 DOI: 10.1128/mcb.21.16.5531-5540.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How chromatin-mediated transcription regulates the beginning of mammalian development is currently unknown. Factors responsible for promoter repression and enhancer-mediated relief of this repression are not present in the paternal pronuclei of one-cell mouse embryos but are present in the zygotic nuclei of two-cell embryos. Here we show that coinjection of purified histones and a plasmid-encoded reporter gene into the paternal pronuclei of one-cell embryos at a specific histone-DNA concentration could recreate the behavior observed in two-cell embryos: acquisition of promoter repression and subsequent relief of this repression either by functional enhancers or by histone deacetylase inhibitors. Furthermore, the extent of enhancer-mediated stimulation in one-cell embryos depended on the acetylation status of the injected histones, on the treatment of embryos with a histone deacetylase inhibitor, and on the developmentally regulated appearance of enhancer-specific coactivator activity. The coinjected plasmids in one-cell embryos also exhibited chromatin assembly, as determined by a supercoiling assay. Thus, injection of histones into one-cell embryos faithfully reproduced the chromatin-mediated transcription observed in two-cell embryos. These results suggest that the need for enhancers to stimulate promoters through relief of chromatin-mediated repression occurs once the parental genomes are organized into chromatin. Furthermore, we present a model mammalian system in which the role of individual histones, and particular domains within the histones that are targeted in enhancer function, can be examined using purified mutant histones.
Collapse
Affiliation(s)
- L Rastelli
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Genes encoding linker histone variants have evolved to link their expression to signals controlling the proliferative capacities of cells, i.e. cycling and growth-arrested cells express distinct and specific H1 subtypes. In metazoan, these variants show a tripartite structure, with considerably divergent sequences in their amino and carboxyl terminus domains. The aim of this review is to show how specific regulatory signals control the expression of an individual H1 and to discuss the functional significance of the two variables associated with a linker histone: its primary sequence and the timing of its expression.
Collapse
Affiliation(s)
- S Khochbin
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation - INSERM U309, Equipe chromatine et expression des gènes, Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France.
| |
Collapse
|
40
|
Parseghian MH, Hamkalo BA. A compendium of the histone H1 family of somatic subtypes: An elusive cast of characters and their characteristics. Biochem Cell Biol 2001. [DOI: 10.1139/o01-099] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The last 35 years has seen a substantial amount of information collected about the somatic H1 subtypes, yet much of this work has been overshadowed by research into highly divergent isoforms of H1, such as H5. Reports from several laboratories in the past few years have begun to call into question some of the traditional views regarding the general function of linker histones and their heterogeneity. Hence, the impression in some circles is that less is known about these ubiquitous nuclear proteins as compared with the core histones. The goal of the following review is to acquaint the reader with the ubiquitous somatic H1s by categorizing them and their characteristics into several classes. The reasons for our current state of misunderstanding is put into a historical context along with recent controversies centering on the role of H1 in the nucleus. Finally, we propose a model that may explain the functional role of H1 heterogeneity in chromatin compaction.Key words: histone H1, linker histones, chromatin organization, chromatin compaction, heat shock.
Collapse
|
41
|
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Pt. Richmond Tech Center, 501 Canal Blvd., Suite A100, Richmond, CA 94804, USA
| | | | | |
Collapse
|
42
|
Parseghian MH, Newcomb RL, Winokur ST, Hamkalo BA. The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosome Res 2001; 8:405-24. [PMID: 10997781 DOI: 10.1023/a:1009262819961] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chromatin immunoprecipitation was employed to determine whether or not the previously reported depletion of histone H1 on actively transcribed sequences was selective with respect to H1 subtypes. DNA of immunofractionated chromatin was analyzed by slot-blots for repetitive sequences and PCR for single and low-copy sequences. Based on the analysis of a diverse set of sequences, we report distinct differences in subtype distributions. Actively transcribed chromatin, as well as chromatin poised for transcription, is characterized by a relative depletion of somatic H1 subtypes 2 and 4 (H1s-2 and H1s-4),whereas facultative and constitutive heterochromatin contain all four somatic subtypes. These results support a model in which subtypes are selectively depleted upon gene expression. In turn, the data also support the possibility that the somatic subtypes have different functional roles based on their selective depletion from different classes of DNA sequences.
Collapse
Affiliation(s)
- M H Parseghian
- Research and Development, Techniclone Corporation, Tustin, CA 92780, USA
| | | | | | | |
Collapse
|
43
|
Gui CY, Dean A. Acetylation of a specific promoter nucleosome accompanies activation of the epsilon-globin gene by beta-globin locus control region HS2. Mol Cell Biol 2001; 21:1155-63. [PMID: 11158302 PMCID: PMC99569 DOI: 10.1128/mcb.21.4.1155-1163.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
On stably replicating episomes, transcriptional activation of the epsilon-globin promoter by the beta-globin locus control region HS2 enhancer is correlated with an increase in nuclease sensitivity which is limited to the TATA-proximal nucleosome (N1). To elucidate what underlies this increase in nuclease sensitivity and the link between chromatin modification and gene expression, we examined the nucleoprotein composition and histone acetylation status of transcriptionally active and inactive promoters. Micrococcal nuclease digestion of active promoters in nuclei released few nucleosome-like nucleoprotein complexes containing N1 sequences in comparison to results with inactive promoters. We also observed that N1 DNA fragments from active promoters are of a subnucleosomal length. Nevertheless, chromatin immunoprecipitation experiments indicate that histones H3 and H4 are present on N1 sequences from active promoters, with H3 being dramatically hyperacetylated compared with that from inactive promoters and vector sequences. Strikingly, H3 in the adjacent upstream nucleosome (N2) does not appear to be differentially acetylated in active and inactive promoters, indicating that the nucleosome modification of the promoter that accompanies transactivation by HS2 is highly directed and specific. However, global acetylation of histones in vivo by trichostatin A did not activate transcription in the absence of HS2, suggesting that HS2 contributes additional activities necessary for transactivation. N1 sequences from active promoters also contain reduced levels of linker histone H1. The detection of a protected subnucleosomal sized N1 DNA fragment and the recovery of N1 DNA sequences in immunoprecipitations using anti-acetylated H3 and H4 antibodies argue that N1 is present, but in an altered conformation, in the active promoters.
Collapse
Affiliation(s)
- C Y Gui
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-2715, USA
| | | |
Collapse
|
44
|
Roles of histones and nucleosomes in gene transcription. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf03187162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Abstract
In most eukaryotes, histones, which are the major structural components of chromatin, are expressed as a family of sequence variants encoded by multiple genes. Because different histone variants can contribute to a distinct or unique nucleosomal architecture, this heterogeneity can be exploited to regulate a wide range of nuclear functions, and evidence is accumulating that histone variants do indeed have distinct functions.
Collapse
Affiliation(s)
- D T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
46
|
Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 2000; 275:33850-60. [PMID: 10913152 DOI: 10.1074/jbc.m005341200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have targeted the activation of an endogenous chromosomal locus including the human erythropoietin gene using synthetic transcription factors. These transcription factors are targeted to particular DNA sequences in the 5'-flanking region of the erythropoietin gene through engineering of a zinc finger DNA binding domain. The DNA binding domain is linked to a VP16 transcriptional activation domain. We find that these synthetic transcription factors invariably activate transiently transfected templates in which sequences within the 5' flank of the erythropoietin gene are fused to a luciferase reporter. The efficiency of activation under these circumstances at a defined site is dependent on DNA binding affinity. In contrast, only a subset of these same zinc finger proteins is able to activate the endogenous chromosomal locus. The activity of these proteins is influenced by their capacity to gain access to their recognition elements within the chromatin infrastructure. Zinc finger transcription factors will provide a powerful tool to probe the determinants of chromatin accessibility and remodeling within endogenous chromosomal loci.
Collapse
Affiliation(s)
- L Zhang
- Sangamo BioSciences Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chafin DR, Vitolo JM, Henricksen LA, Bambara RA, Hayes JJ. Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J 2000; 19:5492-501. [PMID: 11032816 PMCID: PMC314012 DOI: 10.1093/emboj/19.20.5492] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The access to DNA within nucleosomes is greatly restricted for most enzymes and trans-acting factors that bind DNA. We report here that human DNA ligase I, which carries out the final step of Okazaki fragment processing and of many DNA repair pathways, can access DNA that is wrapped about the surface of a nucleosome in vitro and carry out its enzymatic function with high efficiency. In addition, we find that ligase activity is not affected by the binding of linker histone (H1) but is greatly influenced by the disposition of the core histone tail domains. These results suggest that the window of opportunity for human DNA ligase I may extend well beyond the first stages of chromatin reassembly after DNA replication or repair.
Collapse
Affiliation(s)
- D R Chafin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
48
|
Zlatanova J, Caiafa P, Van Holde K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J 2000; 14:1697-704. [PMID: 10973918 DOI: 10.1096/fj.99-0869rev] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, the connection between chromatin structure and its transcriptional activity has attracted considerable experimental effort. The post-translational modifications to both the core histones and the linker histones are finely tuned through interactions with transcriptional regulators and change chromatin structure in a way to allow transcription to occur. Here we review evidence for the involvement of linker histones in transcriptional regulation and suggest a scenario in which the reversible and controllable binding/displacement of proteins of this class to the nucleosome entry/exit point determine the accessibility of the nucleosomal DNA to the transcriptional machinery.
Collapse
Affiliation(s)
- J Zlatanova
- Biochip Technology Center, Argonne National Laboratory, Argonne, Illinois 60439-4833, USA.
| | | | | |
Collapse
|
49
|
Steinbac OC, Wolffe AP, Rupp RA. Histone deacetylase activity is required for the induction of the MyoD muscle cell lineage in Xenopus. Biol Chem 2000; 381:1013-6. [PMID: 11076034 DOI: 10.1515/bc.2000.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acetylation of nucleosome core histones, which is positively correlated with transcriptional activity, is developmentally regulated in Xenopus. Here we have used the specific histone deacetylase (HDAC)-inhibitor trichostatin A (TSA) to induce precocious histone hyperacetylation in the early frog embryo in order to investigate the potential role of the endogenous changes in chromatin acetylation for the temporally programmed induction of skeletal myogenesis. We show that TSA-treatment (i) selectively blocked the transcriptional induction of the myoD gene, and (ii) severely reduced subsequent muscle differentiation. Both phenotypes required TSA application before gastrulation. This indicates that HDAC activity is required early for the formation of the frog embryonic musculature, apparently for the induction of the MyoD-dependent muscle cell lineage.
Collapse
Affiliation(s)
- O C Steinbac
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Tübingen, Germany
| | | | | |
Collapse
|
50
|
Adenot PG, Campion E, Legouy E, Allis CD, Dimitrov S, Renard J, Thompson EM. Somatic linker histone H1 is present throughout mouse embryogenesis and is not replaced by variant H1 degrees. J Cell Sci 2000; 113 ( Pt 16):2897-907. [PMID: 10910774 DOI: 10.1242/jcs.113.16.2897] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A striking feature of early embryogenesis in a number of organisms is the use of embryonic linker histones or high mobility group proteins in place of somatic histone H1. The transition in chromatin composition towards somatic H1 appears to be correlated with a major increase in transcription at the activation of the zygotic genome. Previous studies have supported the idea that the mouse embryo essentially follows this pattern, with the significant difference that the substitute linker histone might be the differentiation variant H1 degrees, rather than an embryonic variant. We show that histone H1 degrees is not a major linker histone during early mouse development. Instead, somatic H1 was present throughout this period. Though present in mature oocytes, somatic H1 was not found on maternal metaphase II chromatin. Upon formation of pronuclear envelopes, somatic H1 was rapidly incorporated onto maternal and paternal chromatin, and the amount of somatic H1 steadily increased on embryonic chromatin through to the 8-cell stage. Microinjection of somatic H1 into oocytes, and nuclear transfer experiments, demonstrated that factors in the oocyte cytoplasm and the nuclear envelope, played central roles in regulating the loading of H1 onto chromatin. Exchange of H1 from transferred nuclei onto maternal chromatin required breakdown of the nuclear envelope and the extent of exchange was inversely correlated with the developmental advancement of the donor nucleus.
Collapse
Affiliation(s)
- P G Adenot
- Unité de Biologie du Développement, Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France. adenot@biotec. jouy.inra.fr
| | | | | | | | | | | | | |
Collapse
|