1
|
Functional expression of Schizosaccharomyces pombe Vba2p in the vacuolar membrane of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2013; 77:1988-90. [PMID: 24018691 DOI: 10.1271/bbb.130387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A vacuolar membrane protein, Vba2p of Schizosaccharomyces pombe, is involved in basic amino acid uptake by intact cells. Here we found evidence that Vba2p mediated ATP-dependent lysine uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. Vba2p was also responsible for quinidine sensitivity, and the addition of lysine improved cell growth on quinidine-containing media. These findings should be useful for further characterization of Vba2p.
Collapse
|
2
|
Tseng HK, Liu CP, Price MS, Jong AY, Chang JC, Toffaletti DL, Betancourt-Quiroz M, Frazzitta AE, Cho WL, Perfect JR. Identification of genes from the fungal pathogen Cryptococcus neoformans related to transmigration into the central nervous system. PLoS One 2012; 7:e45083. [PMID: 23028773 PMCID: PMC3447876 DOI: 10.1371/journal.pone.0045083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/17/2012] [Indexed: 12/25/2022] Open
Abstract
Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry.
Collapse
Affiliation(s)
- Hsiang-Kuang Tseng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chang-Pan Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Michael S. Price
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Ambrose Y. Jong
- Division of Hematology-Oncology, The Saban Research Institute, Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jui-Chih Chang
- Division of Thoracic and Cardiovascular Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Marisol Betancourt-Quiroz
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Aubrey E. Frazzitta
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Wen-Long Cho
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- * E-mail: (WLC); (JRP)
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
- * E-mail: (WLC); (JRP)
| |
Collapse
|
3
|
Chardwiriyapreecha S, Mukaiyama H, Sekito T, Iwaki T, Takegawa K, Kakinuma Y. Avt5p is required for vacuolar uptake of amino acids in the fission yeastSchizosaccharomycespombe. FEBS Lett 2010; 584:2339-45. [DOI: 10.1016/j.febslet.2010.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
|
4
|
Chardwiriyapreecha S, Shimazu M, Morita T, Sekito T, Akiyama K, Takegawa K, Kakinuma Y. Identification of thefnx1+andfnx2+genes for vacuolar amino acid transporters inSchizosaccharomyces pombe. FEBS Lett 2008; 582:2225-30. [DOI: 10.1016/j.febslet.2008.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/12/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
5
|
Sabev HA, Robson GD, Handley PS. Influence of starvation, surface attachment and biofilm growth on the biocide susceptibility of the biodeteriogenic yeast Aureobasidium pullulans. J Appl Microbiol 2007; 101:319-30. [PMID: 16882139 DOI: 10.1111/j.1365-2672.2006.03014.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To investigate the effect of starvation, surface attachment and growth in a biofilm on the susceptibility of Aureobasidium pullulans to the biocides 2-n-octyl-4-isothiazolin-3-one (OIT) and sodium hypochlorite (NaOCl). METHODS AND RESULTS Fluorescence loss from a green fluorescent protein (GFP)-transformed strain was used to monitor real-time loss in viability as previously described in situ in 96-well plates. Exponential phase, yeast-like (YL) cells were settled in the bottom of the wells as a low-density monolayer (LDM) and were susceptible to all biocide concentrations (25-100 mug ml(-1)). The exponential phase YL cells were either starved for 48 h in suspension or starved for 48 h as LDMs in the wells. Starvation in both cases led to a small reduction in susceptibility to the biocides. In contrast, 48-h biofilms grown in malt extract broth showed an apparent lack of susceptibility to 25 and 50 mug ml(-1) OIT and to 25-100 mug ml(-1) NaOCl. However, when the OIT concentration was increased to compensate for the higher cell density in the biofilm, the biofilms were found to be equally susceptible to the LDM. CONCLUSIONS Starvation of A. pullulans YL cells either in suspension or as attached LDM resulted in a decrease in susceptibility to low concentrations of both OIT and NaOCl while the apparent reduced susceptibility of mature biofilms was due to the increase in biofilm cell density rather than true biofilm resistance per se. SIGNIFICANCE AND IMPACT OF THE STUDY Monitoring fluorescence loss from the GFP-transformed strain of A. pullulans can be used as a fast and reliable method for monitoring cell death in real time as a response to biocide and antimicrobial challenge.
Collapse
Affiliation(s)
- H A Sabev
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
6
|
Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 2007; 27:3154-64. [PMID: 17261596 PMCID: PMC1899950 DOI: 10.1128/mcb.01039-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G(1) arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G(1) phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G(1) arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
7
|
Nakase Y, Fukuda K, Chikashige Y, Tsutsumi C, Morita D, Kawamoto S, Ohnuki M, Hiraoka Y, Matsumoto T. A defect in protein farnesylation suppresses a loss of Schizosaccharomyces pombe tsc2+, a homolog of the human gene predisposing to tuberous sclerosis complex. Genetics 2006; 173:569-78. [PMID: 16624901 PMCID: PMC1526497 DOI: 10.1534/genetics.106.056895] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human Tsc1 and Tsc2 genes predispose to tuberous sclerosis complex (TSC), a disorder characterized by the wide spread of benign tumors. Tsc1 and Tsc2 proteins form a complex and serve as a GTPase-activating protein (GAP) for Rheb, a GTPase regulating a downstream kinase, mTOR. The genome of Schizosaccharomyces pombe contains tsc1(+) and tsc2(+), homologs of human Tsc1 and Tsc2, respectively. In this study we analyzed the gene expression profile on a genomewide scale and found that deletion of either tsc1(+) or tsc2(+) affects gene induction upon nitrogen starvation. Three hours after nitrogen depletion genes encoding permeases and genes required for meiosis are less induced. Under the same condition, retrotransposons, G1-cyclin (pas1(+)), and inv1(+) are more induced. We also demonstrate that a mutation (cpp1-1) in a gene encoding a beta-subunit of a farnesyltransferase can suppress most of the phenotypes associated with deletion of tsc1(+) or tsc2(+). When a mutant of rhb1(+) (homolog of human Rheb), which bypasses the requirement of protein farnesylation, was expressed, the cpp1-1 mutation could no longer suppress, indicating that deficient farnesylation of Rhb1 contributes to the suppression. On the basis of these results, we discuss TSC pathology and possible improvement in chemotherapy for TSC.
Collapse
|
8
|
Tang Y, McLeod M. In vivo activation of protein kinase A in Schizosaccharomyces pombe requires threonine phosphorylation at its activation loop and is dependent on PDK1. Genetics 2005; 168:1843-53. [PMID: 15611161 PMCID: PMC1448717 DOI: 10.1534/genetics.104.032466] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide-dependent protein kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases. This family includes protein kinase C (PKC), protein kinase B (PKB), p70/p90 ribosomal S6 kinases (RSK and S6K), and the catalytic subunit of cAMP-dependent protein kinase (PKA). Although PDK1 phosphorylates and activates PKC, PKB, and RSK in vivo, PDK1 regulation of PKA remains controversial. We isolated ksg1, the fission yeast ortholog of mammalian PDK1, as a suppressor of growth defects caused by loss of the stress-activated MAP kinase, Spc1. Here, we demonstrate that Ksg1 is required for activation of PKA. Cells containing the ksg1.12 thermolabile allele exhibit pleiotropic phenotypes, including the failure to arrest in G(1) and an inability to conjugate. The ksg1.12 allele strongly suppresses defects associated with unregulated PKA. Pka1, the catalytic subunit of cAMP-dependent protein kinase, is phosphorylated in vivo at Thr-356, which is located in the activation loop of the kinase and corresponds to Thr-197 in mammalian PKA. Phosphorylation of Thr-356 is required for in vivo activation of Pka1 and is dependent upon Ksg1. These data provide experimental evidence that PKA is a physiological substrate for PDK1.
Collapse
Affiliation(s)
- Yi Tang
- Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203-2098, USA
| | | |
Collapse
|
9
|
Shimazu M, Sekito T, Akiyama K, Ohsumi Y, Kakinuma Y. A family of basic amino acid transporters of the vacuolar membrane from Saccharomyces cerevisiae. J Biol Chem 2004; 280:4851-7. [PMID: 15572352 DOI: 10.1074/jbc.m412617200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the members of the major facilitator superfamily of Saccharomyces cerevisiae, we identified genes involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine. ATP-dependent uptake of histidine and lysine by isolated vacuolar membrane vesicles was impaired in YMR088c, a vacuolar basic amino acid transporter 1 (VBA1)-deleted strain, whereas uptake of tyrosine or calcium was little affected. This defect in histidine and lysine uptake was complemented fully by introducing the VBA1 gene and partially by a gene encoding Vba1p fused with green fluorescent protein, which was determined to localize exclusively to the vacuolar membrane. A defect in the uptake of histidine, lysine, or arginine was also observed in the vacuolar membrane vesicles of mutants YBR293w (VBA2) and YCL069w (VBA3). These three VBA genes are closely related phylogenetically and constitute a new family of basic amino acid transporters in the yeast vacuole.
Collapse
Affiliation(s)
- Masamitsu Shimazu
- Department of Applied Chemistry, Muroran Institute of Technology, Muroran 050-8585, Japan
| | | | | | | | | |
Collapse
|
10
|
Tabancay AP, Gau CL, Machado IMP, Uhlmann EJ, Gutmann DH, Guo L, Tamanoi F. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J Biol Chem 2003; 278:39921-30. [PMID: 12869548 DOI: 10.1074/jbc.m306553200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rheb GTPases represent a unique family of the Ras superfamily of G-proteins. Studies on Rheb in Schizosaccharomyces pombe and Drosophila have shown that this small GTPase is essential and is involved in cell growth and cell cycle progression. The Drosophila studies also raised the possibility that Rheb is involved in the TOR/S6K signaling pathway. In this paper, we first report identification of dominant negative mutants of S. pombe Rheb (SpRheb). Screens of a randomly mutagenized SpRheb library yielded a mutant, SpRhebD60V, whose expression in S. pombe results in growth inhibition, G1 arrest, and induction of fnx1+, a gene whose expression is induced by the disruption of Rheb. Alteration of the Asp-60 residue to all possible amino acids by site-directed mutagenesis led to the identification of two particularly strong dominant negative mutants, D60I and D60K. Characterization of these dominant negative mutant proteins revealed that D60V and D60I exhibit preferential binding of GDP, while D60K lost the ability to bind both GTP and GDP. A possible use of the dominant negative mutants in the study of mammalian Rheb was explored by introducing dominant negative mutations into human Rheb. We show that transient expression of the wild type Rheb1 or Rheb2 causes activation of p70S6K, while expression of Rheb1D60K mutant results in inhibition of basal level activity of p70S6K. In addition, Rheb1D60K and Rheb1D60V mutants blocked nutrient- or serum-induced activation of p70S6K. This provides critical evidence that Rheb plays a role in the mTOR/S6K pathway in mammalian cells.
Collapse
Affiliation(s)
- Angel P Tabancay
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California 90095-1489, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ruíz T, Sánchez M, De la Rosa JM, Rodríguez L, Domínguez A. The sequence of a 15 769 bp segment of Pichia anomala identifies the SEC61 and FBP1 genes and five new open reading frames. Yeast 2001; 18:1187-95. [PMID: 11561286 DOI: 10.1002/yea.766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined the sequence of a 15 769 bp DNA segment of Pichia anomala. The sequence contains seven complete open reading frames (ORFs) longer than 100 amino acids and a putative tRNA gene. Two of the ORFs code for the well-characterized genes SEC61 (which codes for the core subunit of the ER translocation complex) and FBP1 (encoding fructose-1,6-bisphosphatase). A gene coding for a protein similar to S. cerevisiae YDL054c was found between the two genes. These three genes show a different organization (intermingled triples) in three yeast species: Saccharomyces cerevisiae, Candida albicans and P. anomala. Two out of the four remaining ORFs show weak homology with different proteins from other species and the other two show non-significant similarity with previously sequenced genes. The nucleotide sequence has been submitted to the EMBL database under Accession No. AJ306295.
Collapse
Affiliation(s)
- T Ruíz
- Departamento de Microbiología y Biología Celular, Facultad de Farmacia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
12
|
Mach KE, Furge KA, Albright CF. Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 2000; 155:611-22. [PMID: 10835385 PMCID: PMC1461131 DOI: 10.1093/genetics/155.2.611] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Rheb GTPase is most similar in primary sequence to the Ras, Rap, R-Ras, and Ral GTPases, which regulate cell growth and differentiation in many cell types. A likely fission yeast homologue of mammalian Rheb, which we designated Rhb1, was identified by genome sequencing. Our investigation of rhb1 showed that rhb1(-) cells arrested cell growth and division with a terminal phenotype similar to that of nitrogen-starved cells. In particular, cells depleted of Rhb1 arrested as small, round cells with 1N DNA content, arrested more quickly in low-nitrogen medium, and induced expression of fnx1 and mei2 mRNA, two mRNAs that were normally induced by nitrogen starvation. Since mammalian Rheb binds and may regulate Raf-1, a Ras effector, we tested for functional overlap between Ras1 and Rhb1 in fission yeast. This analysis showed that Ras1 overexpression did not suppress rhb1(-) mutant phenotypes, Rhb1 overexpression did not suppress ras1(-) mutant phenotypes, and ras1(-) rhb1(-) double mutants had phenotypes equal to the sum of the corresponding single-mutant phenotypes. Hence, there is no evidence for overlapping functions between Ras1 and Rhb1. On the basis of this study, we hypothesize that Rhb1 negatively regulates entry into stationary phase when extracellular nitrogen levels are adequate for growth. If this hypothesis is correct, then Rhb1 and Ras1 regulate alternative responses to limiting nutrients.
Collapse
Affiliation(s)
- K E Mach
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | |
Collapse
|
13
|
Ding DQ, Tomita Y, Yamamoto A, Chikashige Y, Haraguchi T, Hiraoka Y. Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells 2000; 5:169-90. [PMID: 10759889 DOI: 10.1046/j.1365-2443.2000.00317.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Intracellular localization is an important part of the characterization of a gene product. In an attempt to search for genes based on the intracellular localization of their products, we constructed a green fluorescent protein (GFP)-fusion genomic DNA library of S. pombe. RESULTS We constructed the S. pombe GFP-fusion genomic DNA library by fusing, in all three reading frames, random fragments of genomic DNA to the 5' end of the GFP gene in such a way that expression of potential GFP-fusion proteins would be under the control of the own promoters contained in the genomic DNA fragments. Fission yeast cells were transformed with this plasmid library, and microscopic screening of 49 845 transformants yielded 6954 transformants which exhibited GFP fluorescence, of which 728 transformants showed fluorescence localized to distinct intracellular structures such as the nucleus, the nuclear membrane, and cytoskeletal structures. Plasmids were isolated from 516 of these transformants, and a determination of their DNA sequences identified 250 independent genes. The intracellular localizations of the 250 GFP-fusion constructs was categorized as an image database; using this database, DNA sequences can be searched for based on the localizations of their products. CONCLUSIONS A number of new intracellular structural components were found in this library. The library of GFP-fusion constructs also provides useful fluorescent markers for various intracellular structures and cellular activities, which can be readily used for microscopic observation in living cells.
Collapse
Affiliation(s)
- D Q Ding
- Structural Biology Section and CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | | | | | | | | | | |
Collapse
|