1
|
Tomkova M, Tomek J, Kriaucionis S, Schuster-Böckler B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol 2018; 19:129. [PMID: 30201020 PMCID: PMC6130095 DOI: 10.1186/s13059-018-1509-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND DNA replication plays an important role in mutagenesis, yet little is known about how it interacts with other mutagenic processes. Here, we use somatic mutation signatures-each representing a mutagenic process-derived from 3056 patients spanning 19 cancer types to quantify the strand asymmetry of mutational signatures around replication origins and between early and late replicating regions. RESULTS We observe that most of the detected mutational signatures are significantly correlated with the timing or direction of DNA replication. The properties of these associations are distinct for different signatures and shed new light on several mutagenic processes. For example, our results suggest that oxidative damage to the nucleotide pool substantially contributes to the mutational landscape of esophageal adenocarcinoma. CONCLUSIONS Together, our results indicate an interaction between DNA replication, the associated damage repair, and most mutagenic processes.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Skirmantas Kriaucionis
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| |
Collapse
|
2
|
Hedglin M, Benkovic SJ. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chem Rev 2017; 117:7857-7877. [PMID: 28497687 PMCID: PMC5662946 DOI: 10.1021/acs.chemrev.7b00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles, postponing repair of the offending damage to complete the cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in human cells leads to increased mutation rates that may contribute to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how this critical pathway unfolds, in particular, where and when TLS occurs on each template strand. Given the semidiscontinuous nature of DNA replication, it is likely that TLS on the leading and lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960s, most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) radiation exposure. In this review, we revisit these and other related studies to dissect the step-by-step intricacies of this complex process, provide our current understanding of TLS on leading and lagging strand templates, and propose testable hypotheses to gain further insights.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
3
|
Nucleotide Excision Repair: From Neurodegeneration to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:17-39. [PMID: 28840550 DOI: 10.1007/978-3-319-60733-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage poses a constant threat to genome integrity taking a variety of shapes and arising by normal cellular metabolism or environmental insults. Human syndromes, characterized by increased cancer pre-disposition or early onset of age-related pathology and developmental abnormalities, often result from defective DNA damage responses and compromised genome integrity. Over the last decades intensive research worldwide has made important contributions to our understanding of the molecular mechanisms underlying genomic instability and has substantiated the importance of DNA repair in cancer prevention in the general population. In this chapter, we discuss Nucleotide Excision Repair pathway, the causative role of its components in disease-related pathology and recent technological achievements that decipher mutational landscapes and may facilitate pathological classification and personalized therapy.
Collapse
|
4
|
Ikehata H, Chang Y, Yokoi M, Yamamoto M, Hanaoka F. Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst) 2014; 22:112-22. [PMID: 25128761 DOI: 10.1016/j.dnarep.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh(-/-)) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh(-/-) epidermis and dermis than in the wild-type (Polh(+/+)) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh(-/-) mice were determined and compared with mutant sequences from irradiated Polh(+)(/)(+) mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C→T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5'-TCG-3' sequence context than at the other dipyrimidine contexts in the Polh(+/+) epidermis, whereas the mutations were induced remarkably and exclusively at the 3'-cytosine of almost all dipyrimidine contexts with no preference for 5'-TCG-3' in the Polh(-/-) epidermis. In addition, in Polh(-/-) mice, a small but remarkable fraction of G→T transversions was also observed exclusively at the 3'-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh(+/+) genotype.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yumin Chang
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Masayuki Yamamoto
- Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
5
|
Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu J, Zhi Y, Liu Y, Chen Z, Yang J. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer. PLoS One 2013; 8:e69317. [PMID: 23922701 PMCID: PMC3724822 DOI: 10.1371/journal.pone.0069317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.
Collapse
Affiliation(s)
- Fang Yuan
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhigang Xu
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, The Third Military Medical University, Chongqing, China
| | - Quanfang Wei
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Jin Yu
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
| | - Yi Zhi
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Liu
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People Liberation Army, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail: (ZC); (J. Yang)
| | - Jin Yang
- Department of Cell Biology, The Third Military Medical University, Chongqing, China
- * E-mail: (ZC); (J. Yang)
| |
Collapse
|
6
|
Taggart DJ, Camerlengo TL, Harrison JK, Sherrer SM, Kshetry AK, Taylor JS, Huang K, Suo Z. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis. Nucleic Acids Res 2013; 41:e96. [PMID: 23470999 PMCID: PMC3632128 DOI: 10.1093/nar/gkt141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis-syn thymidine-thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases.
Collapse
Affiliation(s)
- David J Taggart
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kita K, Sugita K, Chen SP, Suzuki T, Sugaya S, Tanaka T, Jin YH, Satoh T, Tong XB, Suzuki N. Extracellular Recombinant Annexin II Confers UVC-Radiation Resistance and Increases the Bcl-xL to Bax Protein Ratios in Human UVC-Radiation-Sensitive Cells. Radiat Res 2011; 176:732-42. [DOI: 10.1667/rr2561.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuko Kita
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Katsuo Sugita
- Department of Clinical Medicine, Faculty Education, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shi-Ping Chen
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Toshikazu Suzuki
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Shigeru Sugaya
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Takeshi Tanaka
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Yuan-Hu Jin
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Tetsuo Satoh
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Xiao-Bo Tong
- Department of Physiology, Faculty of Basic Medical Sciences, Chengde Medical University, Chengde 067000, P.R. China
| | - Nobuo Suzuki
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| |
Collapse
|
8
|
Kaufmann WK. The human intra-S checkpoint response to UVC-induced DNA damage. Carcinogenesis 2009; 31:751-65. [PMID: 19793801 DOI: 10.1093/carcin/bgp230] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
9
|
Biverstål A, Johansson F, Jenssen D, Erixon K. Cyclobutane pyrimidine dimers do not fully explain the mutagenicity induced by UVA in Chinese hamster cells. Mutat Res 2008; 648:32-9. [PMID: 18950648 DOI: 10.1016/j.mrfmmm.2008.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/26/2008] [Accepted: 09/11/2008] [Indexed: 11/25/2022]
Abstract
UVA generates low levels of cyclobutane pyrimidine dimers (CPDs). Here we asked the question whether CPDs could fully explain the level of mutations induced by UVA. Relative mutagenicities of UVA and UVC were calculated at equal levels of CPDs in cell lines, deficient in different aspects of repair. Survival and gene mutations in the hprt locus were analyzed in a set of Chinese hamster ovary (CHO) cell lines, i.e., wild-type, Cockayne syndrome B protein-deficient (CSB), XRCC3-deficient and XRCC1-deficient adjusted to the same level of CPDs which was analyzed as strand breaks as a result of DNA cleavage by T4 endonuclease V at CPD sites. Induced mutagenicity of UVA was approximately 2 times higher than the mutagenicity of UVC in both wild-type and XRCC1-deficient cells when calculated at equal level of CPDs. Since this discrepancy could be explained by the fact that the TT-dimers, induced by UVA, might be more mutagenic than C-containing CPDs induced by UVC, we applied acetophenone, a photosensitizer previously shown to generate enhanced levels of TT-CPDs upon UVB exposure. The results suggested that the TT-CPDs were actually less mutagenic than the C-containing CPDs. We also found that the mutagenic effect of UVA was not significantly enhanced in a cell line deficient in the repair of CPDs. Altogether this suggests that neither base excision- nor nucleotide excision-repair was involved. We further challenge the possibility that the lesion responsible for the mutations induced by UVA was of a more complex nature and which possibly is repaired by homologous recombination (HR). The results indicated that UVA was more recombinogenic than UVC at equal levels of CPDs. We therefore suggest that UVA induces a complex type of lesion, which might be an obstruction during replication fork progression that requires HR repair to be further processed.
Collapse
Affiliation(s)
- Anna Biverstål
- Stockholm University, Department of Genetics, Microbiology and Toxicology, Stockholm, Sweden
| | | | | | | |
Collapse
|
10
|
Tolentino JH, Burke TJ, Mukhopadhyay S, McGregor WG, Basu AK. Inhibition of DNA replication fork progression and mutagenic potential of 1, N6-ethenoadenine and 8-oxoguanine in human cell extracts. Nucleic Acids Res 2008; 36:1300-8. [PMID: 18184697 PMCID: PMC2275085 DOI: 10.1093/nar/gkm1157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/11/2007] [Accepted: 12/14/2007] [Indexed: 11/29/2022] Open
Abstract
Comparative mutagenesis of 1,N(6)-ethenoadenine (epsilonA) and 8-oxoguanine (8-oxoG), two endogenous DNA lesions that are also formed by exogenous DNA damaging agents, have been evaluated in HeLa and xeroderma pigmentosum variant (XPV) cell extracts. Two-dimensional gel electrophoresis of the duplex M13mp2SV vector containing these lesions established that there was significant inhibition of replication fork movement past epsilonA, whereas 8-oxoG caused only minor stalling of fork progression. In extracts of HeLa cells, epsilonA was weakly mutagenic inducing all three base substitutions in approximately equal frequency, whereas 8-oxoG was 10-fold more mutagenic inducing primarily G-->T transversions. These data suggest that 8-oxoG is a miscoding lesion that presents a minimal, if any, block to DNA replication in human cells. We hypothesized that bypass of epsilonA proceeded principally by an error-free mechanism in which the undamaged strand was used as a template, since this lesion strongly blocked fork progression. To examine this, we determined the sequence of replication products derived from templates in which a G was placed across from the epsilonA. Consistent with our hypothesis, 93% of the progeny were derived from replication of the undamaged strand. When translesion synthesis occurred, epsilonA-->T mutations increased 3-fold in products derived from the mismatched epsilonA: G construct compared with those derived from the epsilonA: T construct. More efficient repair of epsilonA in the epsilonA: T construct may have been responsible for lower mutation frequency. Primer extension studies with purified pol eta have shown that this polymerase is highly error-prone when bypassing epsilonA. To examine if pol eta is the primary mutagenic translesion polymerase in human cells, we determined the lesion bypass characteristics of extracts derived from XPV cells, which lack this polymerase. The epsilonA: T construct induced epsilonA-->G and epsilonA-->C mutant frequencies that were approximately the same as those observed using the HeLa extracts. However, epsilonA-->T events were increased 5-fold relative to HeLa extracts. These data support a model in which pol eta-mediated translesion synthesis past this adduct is error-free in the context of semiconservative replication in the presence of fidelity factors such as PCNA.
Collapse
Affiliation(s)
- Joel H. Tolentino
- Department of Chemistry, University of Connecticut, Storrs CT 06269, CT and Department of Pharmacology and Toxicology, University of Louisville, Louisville KY 40202, KY, USA
| | - Tom J. Burke
- Department of Chemistry, University of Connecticut, Storrs CT 06269, CT and Department of Pharmacology and Toxicology, University of Louisville, Louisville KY 40202, KY, USA
| | - Suparna Mukhopadhyay
- Department of Chemistry, University of Connecticut, Storrs CT 06269, CT and Department of Pharmacology and Toxicology, University of Louisville, Louisville KY 40202, KY, USA
| | - W. Glenn McGregor
- Department of Chemistry, University of Connecticut, Storrs CT 06269, CT and Department of Pharmacology and Toxicology, University of Louisville, Louisville KY 40202, KY, USA
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs CT 06269, CT and Department of Pharmacology and Toxicology, University of Louisville, Louisville KY 40202, KY, USA
| |
Collapse
|
11
|
Laposa RR, Feeney L, Crowley E, de Feraudy S, Cleaver JE. p53 suppression overwhelms DNA polymerase eta deficiency in determining the cellular UV DNA damage response. DNA Repair (Amst) 2007; 6:1794-804. [PMID: 17822965 PMCID: PMC2239317 DOI: 10.1016/j.dnarep.2007.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/15/2007] [Accepted: 07/03/2007] [Indexed: 01/20/2023]
Abstract
Xeroderma pigmentosum variant (XP-V) cells lack the damage-specific DNA polymerase eta and have normal excision repair but show defective DNA replication after UV irradiation. Previous studies using cells transformed with SV40 or HPV16 (E6/E7) suggested that the S-phase response to UV damage is altered in XP-V cells with non-functional p53. To investigate the role of p53 directly we targeted p53 in normal and XP-V fibroblasts using short hairpin RNA. The shRNA reduced expression of p53, and the downstream cell cycle effector p21, in control and UV irradiated cells. Cells accumulated in late S phase after UV, but after down-regulation of p53 they accumulated earlier in S. Cells in which p53 was inhibited showed ongoing genomic instability at the replication fork. Cells exhibited high levels of UV induced S-phase gammaH2Ax phosphorylation representative of exposed single strand regions of DNA and foci of Mre11/Rad50/Nbs1 representative of double strand breaks. Cells also showed increased variability of genomic copy numbers after long-term inhibition of p53. Inhibition of p53 expression dominated the DNA damage response. Comparison with earlier results indicates that in virally transformed cells cellular targets other than p53 play important roles in the UV DNA damage response.
Collapse
Affiliation(s)
- Rebecca R Laposa
- UCSF Comprehensive Cancer Center, University of California, San Francisco Auerback Melanoma Laboratory, Room N461, Box 0808, UCSF Comprehensive Cancer Center, University of California,, San Francisco, CA, 94143-0808
| | - Luzviminda Feeney
- UCSF Comprehensive Cancer Center, University of California, San Francisco Auerback Melanoma Laboratory, Room N461, Box 0808, UCSF Comprehensive Cancer Center, University of California,, San Francisco, CA, 94143-0808
| | - Eileen Crowley
- UCSF Comprehensive Cancer Center, University of California, San Francisco Auerback Melanoma Laboratory, Room N461, Box 0808, UCSF Comprehensive Cancer Center, University of California,, San Francisco, CA, 94143-0808
| | - Sebastien de Feraudy
- UCSF Comprehensive Cancer Center, University of California, San Francisco Auerback Melanoma Laboratory, Room N461, Box 0808, UCSF Comprehensive Cancer Center, University of California,, San Francisco, CA, 94143-0808
| | - James E Cleaver
- UCSF Comprehensive Cancer Center, University of California, San Francisco Auerback Melanoma Laboratory, Room N461, Box 0808, UCSF Comprehensive Cancer Center, University of California,, San Francisco, CA, 94143-0808
| |
Collapse
|
12
|
Wang Y, Woodgate R, McManus TP, Mead S, McCormick JJ, Maher VM. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations. Cancer Res 2007; 67:3018-26. [PMID: 17409408 DOI: 10.1158/0008-5472.can-06-3073] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Xeroderma pigmentosum variant (XPV) patients have normal DNA excision repair, yet are predisposed to develop sunlight-induced cancer. They exhibit a 25-fold higher than normal frequency of UV-induced mutations and very unusual kinds (spectrum), mainly transversions. The primary defect in XPV cells is the lack of functional DNA polymerase (Pol) eta, the translesion synthesis DNA polymerase that readily inserts adenine nucleotides opposite photoproducts involving thymine. The high frequency and striking difference in kinds of UV-induced mutations in XPV cells strongly suggest that, in the absence of Pol eta, an abnormally error-prone polymerase substitutes. In vitro replication studies of Pol iota show that it replicates past 5'T-T3' and 5'T-U3' cyclobutane pyrimidine dimers, incorporating G or T nucleotides opposite the 3' nucleotide. To test the hypothesis that Pol iota causes the high frequency and abnormal spectrum of UV-induced mutations in XPV cells, we identified an unlimited lifespan XPV cell line expressing two forms of Pol iota, whose frequency of UV-induced mutations is twice that of XPV cells expressing one form. We eliminated expression of one form and compared the parental cells and derivatives for the frequency and kinds of UV-induced mutations. All exhibited similar sensitivity to the cytotoxicity of UV((254 nm)), and the kinds of mutations induced were identical, but the frequency of mutations induced in the derivatives was reduced to </=50% that of the parent. These data strongly support the hypothesis that in cells lacking Pol eta, Pol iota is responsible for the high frequency and abnormal spectrum of UV-induced mutations, and ultimately their malignant transformation.
Collapse
Affiliation(s)
- Yun Wang
- Carcinogenesis Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | | | |
Collapse
|
13
|
Dumstorf CA, Clark AB, Lin Q, Kissling GE, Yuan T, Kucherlapati R, McGregor WG, Kunkel TA. Participation of mouse DNA polymerase iota in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc Natl Acad Sci U S A 2006; 103:18083-8. [PMID: 17114294 PMCID: PMC1838710 DOI: 10.1073/pnas.0605247103] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase iota (pol iota) is a conserved Y family enzyme that is implicated in translesion DNA synthesis (TLS) but whose cellular functions remain uncertain. To test the hypothesis that pol iota performs TLS in cells, we compared UV-induced mutagenesis in primary fibroblasts derived from wild-type mice to mice lacking functional pol eta, pol iota, or both. A deficiency in mouse DNA polymerase eta (pol eta) enhanced UV-induced Hprt mutant frequencies. This enhanced UV-induced mutagenesis and UV-induced mutagenesis in wild-type cells were strongly diminished in cells deficient in pol iota, indicating that pol iota participates in the bypass of UV photoproducts in cells. Moreover, a clear strand bias among UV-induced base substitutions was observed in wild-type cells that was diminished in pol eta- and pol iota-deficient mouse cells and abolished in cells deficient in both enzymes. These data suggest that these enzymes bypass UV photoproducts in an asymmetric manner. To determine whether pol iota status affects cancer susceptibility, we compared the UV-induced skin cancer susceptibility of wild-type mice to mice lacking functional pol eta, pol iota, or both. Although pol iota deficiency alone had no effect, UV-induced skin tumors in pol eta-deficient mice developed 4 weeks earlier in mice concomitantly deficient in pol iota. Collectively, these data reveal functions for pol iota in bypassing UV photoproducts and in delaying the onset of UV-induced skin cancer.
Collapse
Affiliation(s)
- Chad A. Dumstorf
- *Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202-1786
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, and
| | - Qingcong Lin
- Harvard Medical School–Partners Healthcare Center for Genetics and Genomics and Harvard Medical School, Boston, MA 02115
| | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709; and
| | - Tao Yuan
- Harvard Medical School–Partners Healthcare Center for Genetics and Genomics and Harvard Medical School, Boston, MA 02115
| | - Raju Kucherlapati
- Harvard Medical School–Partners Healthcare Center for Genetics and Genomics and Harvard Medical School, Boston, MA 02115
| | - W. Glenn McGregor
- *Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202-1786
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Yuasa MS, Masutani C, Hirano A, Cohn MA, Yamaizumi M, Nakatani Y, Hanaoka F. A human DNA polymerase eta complex containing Rad18, Rad6 and Rev1; proteomic analysis and targeting of the complex to the chromatin-bound fraction of cells undergoing replication fork arrest. Genes Cells 2006; 11:731-44. [PMID: 16824193 DOI: 10.1111/j.1365-2443.2006.00974.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA polymerase eta (Poleta) is responsible for efficient translesion synthesis (TLS) past cis-syn cyclobutane thymine dimers (TT dimers), the major DNA lesions induced by UV irradiation. Loss of human Poleta leads to xeroderma pigmentosum variant syndrome, clearly indicating that Poleta plays a vital role in preventing skin cancer caused by exposure to sunlight. To further examine Poleta functions and the mechanisms that regulate this important protein, Poleta complexes were purified from HeLa cells over-expressing epitope-tagged Poleta, and polypeptides associated with Poleta, including Rad18, Rad6 and Rev1, were identified by a combination of mass spectrometry and Western blot analysis. The chromatin-bound fractions of cells subjected to UV irradiation, S phase synchronization, or S phase arrest were specifically enriched in such complexes. These results suggest that arrested replication forks strengthen interactions among Poleta, Rad18/Rad6 and Rev1, consistent with the requirement for effective TLS by Poleta at sites of DNA lesions.
Collapse
Affiliation(s)
- Mayumi S Yuasa
- Graduate School of Frontier Biosciences, Osaka University, and SORST, Japan Science and Technology Agency, 1-3 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Cruet-Hennequart S, Coyne S, Glynn MT, Oakley GG, Carty MP. UV-induced RPA phosphorylation is increased in the absence of DNA polymerase eta and requires DNA-PK. DNA Repair (Amst) 2006; 5:491-504. [PMID: 16520097 DOI: 10.1016/j.dnarep.2006.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 01/30/2023]
Abstract
Signaling from arrested replication forks plays a role in maintaining genome stability. We have investigated this process in xeroderma pigmentosum variant cells that carry a mutation in the POLH gene and lack functional DNA polymerase eta (poleta). Poleta is required for error-free bypass of UV-induced cyclobutane pyrimidine dimers; in the absence of poleta in XPV cells, DNA replication is arrested at sites of UV-induced DNA damage, and mutagenic bypass of lesions is ultimately carried out by other, error-prone, DNA polymerases. The present study investigates whether poleta expression influences the activation of a number of UV-induced DNA damage responses. In a stably transfected XPV cell line (TR30-9) in which active poleta can be induced by addition of tetracycline, expression of poleta determines the extent of DNA double-strand break formation following UV-irradiation. UV-induced phosphorylation of replication protein A (RPA), a key DNA-binding protein involved in DNA replication, repair and recombination, is increased in cells lacking poleta compared to when poleta is expressed in the same cell line. To identify the protein kinase responsible for increased UV-induced hyperphosphorylation of the p34 subunit of RPA, we have used NU7441, a specific small molecule inhibitor of DNA-PK. DNA-PK is necessary for RPA p34 hyperphosphorylation, but DNA-PK-mediated phosphorylation is not required for recruitment of RPA p34 into nuclear foci in response to UV-irradiation. The results demonstrate that activation of a UV-induced DNA damage response pathway, involving phosphorylation of RPA p34 by DNA-PK, is enhanced in cells lacking poleta.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- DNA Damage Response Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway City, Ireland
| | | | | | | | | |
Collapse
|
16
|
Watson NB, Mukhopadhyay S, McGregor WG. Translesion DNA replication proteins as molecular targets for cancer prevention. Cancer Lett 2005; 241:13-22. [PMID: 16303242 DOI: 10.1016/j.canlet.2005.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 01/10/2023]
Abstract
Mutations in DNA are generally considered to have an etiologic role in the development of cancer. If so, it follows that reducing the frequency of such mutations will reduce the incidence of cancer induced by mutagens. Recent advances in elucidating the molecular mechanisms of carcinogen-induced mutagenesis indicate that replication of DNA templates that contain replication-blocking adducts is accomplished with error-prone DNA polymerases. These polymerases have relaxed base-pairing requirements, and can insert bases across from adducted templates, but with potentially mutagenic consequences. In principle, these proteins present new and attractive molecular targets to reduce mutagenesis. If this can be done in vivo without increasing cytotoxic responses to carcinogens, then novel chemopreventive strategies can be designed to reduce the risk of cancer in exposed populations prior to the appearance of disease symptoms.
Collapse
Affiliation(s)
- Nicholas B Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
17
|
Vaisman A, Takasawa K, Iwai S, Woodgate R. DNA polymerase iota-dependent translesion replication of uracil containing cyclobutane pyrimidine dimers. DNA Repair (Amst) 2005; 5:210-8. [PMID: 16263340 DOI: 10.1016/j.dnarep.2005.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/15/2005] [Accepted: 09/19/2005] [Indexed: 11/20/2022]
Abstract
Analysis of the spectrum of UV-induced mutations generated in synchronized wild-type S-phase cells reveals that only approximately 25% of mutations occur at thymine (T), whilst 75% are targeted to cytosine (C). The mutational spectra changes dramatically in XP-V cells, devoid of poleta, where approximately 45% of mutations occur at Ts and approximately 55% at Cs. At the present time, it is unclear whether the C-->T mutations actually represent true misincorporations opposite C, or perhaps occur as the result of the correct incorporation of adenine (A) opposite a C in a UV-photoproduct that had undergone deamination to uracil (U). In order to assess the role that human poliota might play, if any, in the replicative bypass of such UV-photoproducts, we have analyzed the efficiency and fidelity of pol iota-dependent bypass of a T-U cyclobutane pyrimidine dimer (CPD) in vitro. Interestingly, pol iota-dependent bypass of a T-U CPD occurs more efficiently than that of a corresponding T-T CPD. Guanine (G) was misincorporated opposite the 3'U of the T-U CPD only two-fold less frequently than the correct Watson-Crick base, A. While pol iota generally extended the G:3'U-CPD mispairs less efficiently than the correctly paired primer, pol iota-dependent extension was equal to, or greater than that observed with human pols eta and kappa and S. cerevisiae pol zeta under the same assay conditions. Thus, we hypothesize that the ability of pol iota to bypass T-U CPDs through the frequent misincorporation of G opposite the 3'U of the CPD, may provide a mechanism whereby human cells can decrease the mutagenic potential of these lesions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Section on DNA Replication, Repair, and Mutagenesis, Laboratory of Genomic Integrity, Building 6, Room 1A13, National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA
| | | | | | | |
Collapse
|
18
|
Choi JH, Pfeifer GP. The role of DNA polymerase eta in UV mutational spectra. DNA Repair (Amst) 2005; 4:211-20. [PMID: 15590329 DOI: 10.1016/j.dnarep.2004.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/20/2004] [Indexed: 11/29/2022]
Abstract
UV irradiation generates predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is encoded by the POLH (XPV) gene in humans. In order to clarify the specific role of Pol eta in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells. This strategy provides an advantage over studying mutagenesis in cell lines derived from normal individuals and XP-V patients, since the genetic background of the cells is identical. Synthetic RNA duplexes were used to inhibit Pol eta expression in 293T cells. The reduction of Pol eta mRNA and protein was greater than 90%. The supF shuttle vector was irradiated with UVC and replicated in 293T cells in presence of anti-Pol eta siRNA. The supF mutant frequency was increased by up to 3.6-fold in the siRNA knockdown cells relative to control cells confirming that Pol eta plays an important role in mutation avoidance and that the pol eta knockdown was efficient. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Surprisingly, neither the type of mutations nor their distribution along the supF gene were substantially different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. The data are compatible with two models. (i) Incorrect replication of cytosine-containing photoproducts by a polymerase other than Pol eta produces similar mutations as when Pol eta is present but at a higher frequency. (ii) Due to lack of Pol eta or low levels of remaining Pol eta, lesion replication is delayed allowing more time for cytosine deamination within CPDs to occur. We provide proof of principle that siRNA technology can be used to dissect the in vivo roles of lesion bypass DNA polymerases in DNA damage-induced mutagenesis.
Collapse
Affiliation(s)
- Jun-Hyuk Choi
- Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
19
|
Yang J, Chen Z, Liu Y, Hickey RJ, Malkas LH. Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res 2004; 64:5597-607. [PMID: 15313897 DOI: 10.1158/0008-5472.can-04-0603] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recently discovered human enzyme DNA polymerase iota (pol iota) has been shown to have an exceptionally high error rate on artificial DNA templates. Although there is a considerable body of in vitro evidence for a role for pol iota in DNA lesion bypass, there is no in vivo evidence to confirm this action. We report here that pol iota expression is elevated in breast cancer cells and correlates with a significant decrease in DNA replication fidelity. We also demonstrate that UV treatment of breast cancer cells additionally increases pol iota expression with a peak occurring between 30 min and 2 h after cellular insult. This implies that the change in pol iota expression is an early event after UV-mediated DNA damage. That pol iota may play a role in the higher mutation frequencies observed in breast cancer cells was suggested when a reduction in mutation frequency was found after pol iota was immunodepleted from nuclear extracts of the cells. Analysis of the UV-induced mutation spectra revealed that > 90% were point mutations. The analysis also demonstrated a decreased C --> T nucleotide transition and an increased C --> A transversion rate. Overall, our data strongly suggest that pol iota may be involved in the generation of both increased spontaneous and translesion mutations during DNA replication in breast cancer cells, thereby contributing to the accumulation of genetic damage.
Collapse
Affiliation(s)
- Jin Yang
- Department of Medicine, Division of Hematology/Oncology, Cancer Research Institute, Indiana University of School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
20
|
Vaisman A, Frank EG, Iwai S, Ohashi E, Ohmori H, Hanaoka F, Woodgate R. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota. DNA Repair (Amst) 2003; 2:991-1006. [PMID: 12967656 DOI: 10.1016/s1568-7864(03)00094-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Humans possess four Y-family polymerases: pols eta, iota, kappa and the Rev1 protein. The pivotal role that pol eta plays in protecting us from UV-induced skin cancers is unquestioned given that mutations in the POLH gene (encoding pol eta), lead to the sunlight-sensitive and cancer-prone xeroderma pigmentosum variant phenotype. The roles that pols iota, kappa and Rev1 play in the tolerance of UV-induced DNA damage is, however, much less clear. For example, in vitro studies in which the ability of pol iota to bypass UV-induced cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-pyrimidone (6-4PP) lesions has been assayed, are somewhat varied with results ranging from limited misinsertion opposite CPDs to complete lesion bypass. We have tested the hypothesis that such discrepancies might have arisen from different assay conditions and local sequence contexts surrounding each UV-photoproduct and find that pol iota can facilitate significant levels of unassisted highly error-prone bypass of a T-T CPD, particularly when the lesion is located in a 3'-A[T-T]A-5' template sequence context and the reaction buffer contains no KCl. When encountering a T-T 6-4PP dimer under the same assay conditions, pol iota efficiently and accurately inserts the correct base, A, opposite the 3'T of the 6-4PP by factors of approximately 10(2) over the incorporation of incorrect nucleotides, while incorporation opposite the 5'T is highly mutagenic. Pol kappa has been proposed to function in the bypass of UV-induced lesions by helping extend primers terminated opposite CPDs. However, we find no evidence that the combined actions of pol iota and pol kappa result in a significant increase in bypass of T-T CPDs when compared to pol iota alone. Our data suggest that under certain conditions and sequence contexts, pol iota can bypass T-T CPDs unassisted and can efficiently incorporate one or more bases opposite a T-T 6-4PP. Such biochemical activities may, therefore, be of biological significance especially in XP-V cells lacking the primary T-T CPD bypassing enzyme, pol eta.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Building 6, Room 1A13, 9000 Rockville Pike, Bethesda, MD 20892-2725,USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Stary A, Kannouche P, Lehmann AR, Sarasin A. Role of DNA polymerase eta in the UV mutation spectrum in human cells. J Biol Chem 2003; 278:18767-75. [PMID: 12644471 DOI: 10.1074/jbc.m211838200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In humans, inactivation of the DNA polymerase eta gene (pol eta) results in sunlight sensitivity and causes the cancer-prone xeroderma pigmentosum variant syndrome (XP-V). Cells from XP-V individuals have a reduced capacity to replicate UV-damaged DNA and show hypermutability after UV exposure. Biochemical assays have demonstrated the ability of pol eta to bypass cis-syn-cyclobutane thymine dimers, the most common lesion generated in DNA by UV. In most cases, this bypass is error-free. To determine the actual requirement of pol eta in vivo, XP-V cells (XP30RO) were complemented by the wild type pol eta gene. We have used two pol eta-corrected clones to study the in vivo characteristics of mutations produced by DNA polymerases during DNA synthesis of UV-irradiated shuttle vectors transfected into human host cells, which had or had not been exposed previously to UV radiation. The functional complementation of XP-V cells by pol eta reduced the mutation frequencies both at CG and TA base pairs and restored UV mutagenesis to a normal level. UV irradiation of host cells prior to transfection strongly increased the mutation frequency in undamaged vectors and, in addition, especially in the pol eta-deficient XP30RO cells at 5'-TT sites in UV-irradiated plasmids. These results clearly show the protective role of pol eta against UV-induced lesions and the activation by UV of pol eta-independent mutagenic processes.
Collapse
Affiliation(s)
- Anne Stary
- Laboratory of Genetic Instability and Cancer, UPR 2169 CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | |
Collapse
|
22
|
Lee DH, Pfeifer GP. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J Biol Chem 2003; 278:10314-21. [PMID: 12525487 DOI: 10.1074/jbc.m212696200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UVB mutagenesis is characterized by an abundance of C --> T and 5-methylcytosine --> T transitions at dipyrimidine sequences. It is not known how these mutations might arise. One hypothesis is that UV-induced mutations occur only after deamination of the cytosine or 5-methylcytosine within the pyrimidine dimer. It is not clear how methylation of cytosines at the 5-position influences deamination and how this affects mutagenesis. We have now conducted experiments with a CpG-methylated supF shuttle vector that was irradiated with UVB and then incubated at 37 degrees C to allow time for deamination before passage through a human cell line to establish mutations. This led to a significantly increased frequency of CC --> TT mutations and of transition mutations at 5'-PymCG-3' sequences. A spectrum of deaminated cis-syn cyclobutane pyrimidine dimers in the supF gene was determined using the mismatch glycosylase activities of MBD4 protein in combination with ligation-mediated PCR. Methylation at the C-5 position promoted the deamination of cytosines within cis-syn cyclobutane pyrimidine dimers, and these two events combined led to a significantly increased frequency of UVB-induced transition mutations at 5'-PymCG-3' sequences. Under these conditions, the majority of all supF mutations were transition mutations at 5'-PymCG-3', and they clustered at several mutational hot spots. Exactly these types of mutations are frequently observed in the p53 gene of nonmelanoma skin tumors. This particular mutagenic pathway may become prevalent under conditions of inefficient DNA repair and slow proliferation of cells in the human epidermis.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Division of Biology, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
23
|
Abstract
The p53 gene (TP53) is mutated in numerous human cancers. We have used it as a molecular target to characterize the induction of mutations in human skin cancers. About 50% of all skin cancers in normal individuals exhibit p53 mutations. This frequency rises to 90% in skin cancers of patients with the DNA-repair deficiency known as xeroderma pigmentosum (XP). These mutations are characterized by a specific signature, attributed to the ultraviolet uvB part of the solar spectrum. In this review, we will describe different p53 mutation spectra, in relation to the various histopathological types of skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma as well as to the DNA repair efficiency of the patients. In particular, different mutational hot spots are found among the various spectra. We have tried to elucidate them in terms of induced DNA lesion hot spots, as well as speed of local nucleotide excision repair (NER) or sequence effects. The molecular analysis of these mutagenic characteristics should help in the understanding of the origin of human skin cancers in the general population.
Collapse
|
24
|
Cordeiro-Stone M, Nikolaishvili-Feinberg N. Asymmetry of DNA replication and translesion synthesis of UV-induced thymine dimers. Mutat Res 2002; 510:91-106. [PMID: 12459446 DOI: 10.1016/s0027-5107(02)00255-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vitro replication assays for detection and quantification of bypass of UV-induced DNA photoproducts were used to compare the capacity of extracts prepared from different human cell lines to replicate past the cis,syn cyclobutane thymine dimer ([c,s]TT). The results demonstrated that neither nucleotide excision repair (NER) nor mismatch repair (MMR) activities in the intact cells interfered with measurements of bypass replication efficiencies in vitro. Extracts prepared from HeLa (NER- and MMR-proficient), xeroderma pigmentosum group A (NER-deficient), and HCT116 (MMR-deficient) cells displayed similar capacity for translesion synthesis, when the substrate carried the site-specific [c,s]TT on the template for the leading or the lagging strand of nascent DNA. Extracts from xeroderma pigmentosum variant cells, which lack DNA polymerase eta, were devoid of bypass activity. Bypass-proficient extracts as a group (n=16 for 3 extracts) displayed higher efficiency (P=0.005) for replication past the [c,s]TT during leading strand synthesis (84+/-22%) than during lagging strand synthesis (64+/-13%). These findings are compared to previous results concerning the bypass of the (6-4) photoproduct [Biochemistry 40 (2001) 15215] and analyzed in the context of the reported characteristics of bypass DNA polymerases implicated in translesion synthesis of UV-induced DNA lesions. Models to explain how these enzymes might interact with the DNA replication machinery are considered. An alternative pathway of bypass replication, which avoids translesion synthesis, and the mutagenic potential of post-replication repair mechanisms that contribute to the duplication of the human genome damaged by UV are discussed.
Collapse
Affiliation(s)
- Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina,Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
25
|
Servant L, Cazaux C, Bieth A, Iwai S, Hanaoka F, Hoffmann JS. A role for DNA polymerase beta in mutagenic UV lesion bypass. J Biol Chem 2002; 277:50046-53. [PMID: 12388548 DOI: 10.1074/jbc.m207101200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability.
Collapse
Affiliation(s)
- Laurence Servant
- Group "Genetic instability and cancer" at the Institut de Pharmacologie et Biologie Structurale, UMR CNRS 5089, 31077 Toulouse cédex 4, France
| | | | | | | | | | | |
Collapse
|
26
|
Zhang Y, Wu X, Guo D, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Lesion bypass activities of human DNA polymerase mu. J Biol Chem 2002; 277:44582-7. [PMID: 12228225 DOI: 10.1074/jbc.m207297200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase mu (Polmu) is a newly discovered member of the polymerase X family with unknown cellular function. The understanding of Polmu function should be facilitated by an understanding of its biochemical activities. By using purified human Polmu for biochemical analyses, we discovered the lesion bypass activities of this polymerase in response to several types of DNA damage. When it encountered a template 8-oxoguanine, abasic site, or 1,N(6)-ethenoadenine, purified human Polmu efficiently bypassed the lesion. Even bulky DNA adducts such as N-2-acetylaminofluorene-adducted guanine, (+)- and (-)-trans-anti-benzo[a]pyrene-N(2)-dG were unable to block the polymerase activity of human Polmu. Bypass of these simple base damage and bulky adducts was predominantly achieved by human Polmu through a deletion mechanism. The Polmu specificity of nucleotide incorporation indicates that the deletion resulted from primer realignment before translesion synthesis. Purified human Polmu also effectively bypassed a template cis-syn TT dimer. However, this bypass was achieved in a mainly error-free manner with AA incorporation opposite the TT dimer. These results provide new insights into the biochemistry of human Polmu and show that efficient translesion synthesis activity is not strictly confined to the Y family polymerases.
Collapse
Affiliation(s)
- Yanbin Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Stary A, Sarasin A. Molecular mechanisms of UV-induced mutations as revealed by the study of DNA polymerase eta in human cells. Res Microbiol 2002; 153:441-5. [PMID: 12405351 DOI: 10.1016/s0923-2508(02)01343-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Replication of UV-induced photoproducts requires the activity of specific DNA polymerases. The DNA polymerase eta, the absence of which gives rise to the cancer-prone xeroderma pigmentosum variant syndrome, is one of these translesion DNA polymerases. Other error-prone DNA polymerases are present in human cells and may contribute to the UV-induced mutation spectrum.
Collapse
Affiliation(s)
- Anne Stary
- Laboratory of Genetic Instability and Cancer, UPR 2169 CNRS, Villejuif, France
| | | |
Collapse
|
28
|
Cordeiro-Stone M, Frank A, Bryant M, Oguejiofor I, Hatch SB, McDaniel LD, Kaufmann WK. DNA damage responses protect xeroderma pigmentosum variant from UVC-induced clastogenesis. Carcinogenesis 2002; 23:959-65. [PMID: 12082017 DOI: 10.1093/carcin/23.6.959] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lack of DNA polymerase eta and the attendant defect in bypass replication of pyrimidine dimers induced in DNA by ultraviolet light (UV) underlie the enhanced mutagenesis and carcinogenesis observed in xeroderma pigmentosum variant (XP-V). We investigated whether diploid XP-V fibroblasts growing in culture are also more susceptible to UV-induced clastogenesis than normal human fibroblasts (NHF). This study utilized diploid fibroblasts immortalized by the ectopic expression of human telomerase. The cell lines displayed checkpoint responses to DNA damage comparable with those measured in the parental strains. Shortly after exposure to low doses of UVC (< or =4 J/m2), XP-V cells accumulated daughter strand gaps in excess of normal controls (>25-fold). Daughter strand gaps generated in UV-irradiated S phase cells are potential precursors of chromatid-type chromosomal aberrations. Nonetheless, chromatid-type chromosomal aberrations were only 1.5 to 2 times more abundant in XP-V than in NHF exposed to the same UVC dose. XP-V cells, however, displayed S phase delays at lower doses of UVC and for longer periods of time than NHF. These results support the hypothesis that aberrant DNA structures activate S phase checkpoint responses that increase the time available for postreplication repair. Alternatively, cells that cannot be properly repaired remain permanently arrested and never reach mitosis. These responses protect human cells from chromosomal aberrations, especially when other pathways, such as accurate lesion bypass, are lost.
Collapse
Affiliation(s)
- Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, University of NC at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
You YH, Lee DH, Yoon JH, Nakajima S, Yasui A, Pfeifer GP. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J Biol Chem 2001; 276:44688-94. [PMID: 11572873 DOI: 10.1074/jbc.m107696200] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The most prevalent DNA lesions induced by UVB are the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). It has been a long standing controversy as to which of these photoproduct is responsible for mutations in mammalian cells. Here we have introduced photoproduct-specific DNA photolyases into a mouse cell line carrying the transgenic mutation reporter genes lacI and cII. Exposure of the photolyase-expressing cell lines to photoreactivating light resulted in almost complete repair of either CPDs or (6-4)PPs within less than 3 h. The mutations produced by the remaining, nonrepaired photoproducts were scored. The mutant frequency in the cII gene after photoreactivation by CPD photolyase was reduced from 127 x 10(-5) to 34 x 10(-5) (background, 8-10 x 10(-5)). Photoreactivation with (6-4) photolyase did not lower the mutant frequency appreciably. In the lacI gene the mutant frequency after photoreactivation repair of CPDs was reduced from 148 x 10(-5) to 28 x 10(-5) (background, 6-10 x 10(-5)). Mutation spectra obtained with and without photoreactivation by CPD photolyase indicated that the remaining mutations were derived from background mutations, unrepaired CPDs, and other DNA photopoducts including perhaps a small contribution from (6-4)PPs. We conclude that CPDs are responsible for at least 80% of the UVB-induced mutations in this mammalian cell model.
Collapse
Affiliation(s)
- Y H You
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
30
|
Xu X, Hamhouyia F, Thomas SD, Burke TJ, Girvan AC, McGregor WG, Trent JO, Miller DM, Bates PJ. Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 2001; 276:43221-30. [PMID: 11555643 DOI: 10.1074/jbc.m104446200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of G-rich oligonucleotides (GROs) that have non-antisense antiproliferative activity against a number of cancer cell lines has been recently described. This biological activity of GROs was found to be associated with their ability to form stable G-quartet-containing structures and their binding to a specific cellular protein, most likely nucleolin (Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377). In this report, we further investigate the novel mechanism of GRO activity by examining their effects on cell cycle progression and on nucleic acid and protein biosynthesis. Cell cycle analysis of several tumor cell lines showed that cells accumulate in S phase in response to treatment with an active GRO. Analysis of 5-bromodeoxyuridine incorporation by these cells indicated the absence of de novo DNA synthesis, suggesting an arrest of the cell cycle predominantly in S phase. At the same time point, RNA and protein synthesis were found to be ongoing, indicating that arrest of DNA replication is a primary event in GRO-mediated inhibition of proliferation. This specific blockade of DNA replication eventually resulted in altered cell morphology and induction of apoptosis. To characterize further GRO-mediated inhibition of DNA replication, we used an in vitro assay based on replication of SV40 DNA. GROs were found to be capable of inhibiting DNA replication in the in vitro assay, and this activity was correlated to their antiproliferative effects. Furthermore, the effect of GROs on DNA replication in this assay was related to their inhibition of SV40 large T antigen helicase activity. The data presented suggest that the antiproliferative activity of GROs is a direct result of their inhibition of DNA replication, which may result from modulation of a replicative helicase activity.
Collapse
Affiliation(s)
- X Xu
- Human Molecular Biology Group, James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From E. coli to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999-2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the E. coli UmuC, the E. coli DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V, IV, eta, iota, and dCMP transferase, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.
Collapse
Affiliation(s)
- Z Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
32
|
Frank EG, Tissier A, McDonald JP, Rapić-Otrin V, Zeng X, Gearhart PJ, Woodgate R. Altered nucleotide misinsertion fidelity associated with poliota-dependent replication at the end of a DNA template. EMBO J 2001; 20:2914-22. [PMID: 11387224 PMCID: PMC125476 DOI: 10.1093/emboj/20.11.2914] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Revised: 03/30/2001] [Accepted: 03/30/2001] [Indexed: 11/12/2022] Open
Abstract
A hallmark of human DNA polymerase iota (poliota) is the asymmetric fidelity of replication at template A and T when the enzyme extends primers annealed to a single-stranded template. Here, we report on the efficiency and accuracy of poliota-dependent replication at a nick, a gap, the very end of a template and from a mispaired primer. Poliota cannot initiate synthesis on a nicked DNA substrate, but fills short gaps efficiently. Surprisingly, poliota's ability to blunt-end a 1 bp recessed terminus is dependent upon the template nucleotide encountered and is highly erroneous. At template G, both C and T are inserted with roughly equal efficiency, whilst at template C, C and A are misinserted 8- and 3-fold more often than the correct base, G. Using substrates containing mispaired primer termini, we show that poliota can extend all 12 mispairs, but with differing efficiencies. Poliota can also extend a tandem mispair, especially when it is located within a short gap. The enzymatic properties of poliota appear consistent with that of a somatic hypermutase and suggest that poliota may be one of the low-fidelity DNA polymerases hypothesized to participate in the hypermutation of immunoglobulin variable genes in vivo.
Collapse
Affiliation(s)
- Ekaterina G. Frank
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Agnès Tissier
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - John P. McDonald
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Vesna Rapić-Otrin
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Xianmin Zeng
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Patricia J. Gearhart
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Roger Woodgate
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 and Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA Present address: UPR 9003, CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Blvd S. Brant, 67400 Strasbourg, France Present address: Aptus Genomics, 9700 Great Seneca Hwy, Rockville, MD 20850, USA Present address: University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| |
Collapse
|
33
|
Zhang Y, Yuan F, Wu X, Taylor JS, Wang Z. Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res 2001; 29:928-35. [PMID: 11160925 PMCID: PMC29608 DOI: 10.1093/nar/29.4.928] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2000] [Revised: 12/14/2000] [Accepted: 12/14/2000] [Indexed: 11/14/2022] Open
Abstract
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol iota encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol eta. To investigate whether human Pol iota plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol iota. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol iota, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol iota efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol iota was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol iota responded to a template TT (6-4) photoproduct by inserting predominantly an A opposite the 3' T of the lesion before aborting DNA synthesis. In contrast, human Pol iota was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol iota in DNA lesion bypass.
Collapse
Affiliation(s)
- Y Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA and Department of Chemistry, Washington University, St Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
34
|
Bullock SK, Kaufmann WK, Cordeiro-Stone M. Enhanced S phase delay and inhibition of replication of an undamaged shuttle vector in UVC-irradiated xeroderma pigmentosum variant. Carcinogenesis 2001; 22:233-41. [PMID: 11181443 DOI: 10.1093/carcin/22.2.233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Xeroderma pigmentosum variant (XP-V) cells are defective in bypass replication of UVC-induced thymine dimers in DNA because they lack a novel DNA polymerase (polymerase eta). In this study the effects of UVC on S phase cells were compared in fibroblasts derived from normal donors (IDH4) and XP-V patients (CTag) and immortalized by expression of the SV40 large T antigen. These transformed fibroblasts did not activate the G(1) checkpoint or inhibit replicon initiation when damaged by UVC or gamma-rays. The transformed XP-V cells (CTag) retained the increased sensitivity to UVC-induced inhibition of DNA strand growth previously observed with their diploid counterpart. Cell cycle progression analyses showed that CTag cells displayed a stronger S phase delay than transformed fibroblasts from normal individuals (IDH4) after treatment with only 2 J/m(2) UVC. Low doses of UVC also caused a lag in CTag cell proliferation. The extent of replication of an episomal DNA (pSV011), not previously exposed to radiation, was measured after the host cells were irradiated with 1-3 J/m(2) UVC. Replication of pSV011 was barely affected in irradiated IDH4 cells. Plasmid replication was inhibited by 50% in irradiated CTag cells and this inhibition could not be accounted for by increased killing of host cells by UVC. These results suggest that even in transformed cells UVC induces DNA damage responses that are reflected in transient cell cycle arrest, delay in proliferation and inhibition of episomal DNA replication. These responses are enhanced in CTag cells, presumably because of their bypass replication defect. The accumulation of replication complexes blocked at thymine dimers and extended single-stranded regions in chromosomal DNA might sequester replication factors that are needed for plasmid and chromosomal replication. Alternatively, aberrant replication structures might activate a signal transduction pathway that down-regulates DNA synthesis.
Collapse
Affiliation(s)
- S K Bullock
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, 517 Brinkhous-Bullitt Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | | | | |
Collapse
|
35
|
McDonald JP, Tissier A, Frank EG, Iwai S, Hanaoka F, Woodgate R. DNA polymerase iota and related rad30-like enzymes. Philos Trans R Soc Lond B Biol Sci 2001; 356:53-60. [PMID: 11205331 PMCID: PMC1087691 DOI: 10.1098/rstb.2000.0748] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Until recently, the molecular mechanisms of translesion DNA synthesis (TLS), a process whereby a damaged base is used as a template for continued replication, was poorly understood. This area of scientific research has, however, been revolutionized by the finding that proteins long implicated in TLS are, in fact, DNA polymerases. Members of this so-called UmuC/DinB/Rev1/Rad30 superfamily of polymerases have been identified in prokaryotes, eukaryotes and archaea. Biochemical studies with the highly purified polymerases reveal that some, but not all, can traverse blocking lesions in template DNA. All of them share a common feature, however, in that they exhibit low fidelity when replicating undamaged DNA. Of particular interest to us is the Rad30 subfamily of polymerases found exclusively in eukaryotes. Humans possess two Rad30 paralogs, Rad30A and Rad30B. The RAD30A gene encodes DNA polymerase eta and defects in the protein lead to the xeroderma pigmentosum variant (XP-V) phenotype in humans. Very recently RAD30B has also been shown to encode a novel DNA polymerase, designated as Pol iota. Based upon in vitro studies, it appears that Pol iota has the lowest fidelity of any eukaryotic polymerase studied to date and we speculate as to the possible cellular functions of such a remarkably error-prone DNA polymerase.
Collapse
Affiliation(s)
- J P McDonald
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | |
Collapse
|
36
|
You YH, Pfeifer GP. Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis. J Mol Biol 2001; 305:389-99. [PMID: 11152598 DOI: 10.1006/jmbi.2000.4322] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the p53 gene of human sunlight-associated skin cancers, 35 % of the mutations involve trinucleotide sequences with the rare base 5-methylcytosine (5'PymCG). In order to determine the involvement of 5-methylcytosine in sunlight-induced mutations, we have analyzed the cII transgene in mouse cells, a mutational target gene that we found is methylated at most CpG sequences. We report that the mutational spectra produced by irradiation with 254 nm UVC radiation and simulated sunlight, respectively, differ most dramatically by the much higher involvement of dipyrimidine structures containing 5-methylcytosine in the solar UV mutation spectrum (32 % versus 9 % of all mutations). A distinct mutational hotspot induced by simulated sunlight occurs at a sequence 5'TmCG and is associated with high levels of cis-syn cyclobutane pyrimidine dimer formation. A comparison of sunlight-induced mutational spectra of the cII and lacI transgenes, as well as the p53 gene in skin tumors, shows that 5-methylcytosine is involved in 25 to 40 % of all mutations in all three systems. The combined data make a strong case that cyclobutane pyrimidine dimers forming preferentially at dipyrimidine sequences with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells.
Collapse
Affiliation(s)
- Y H You
- Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
37
|
Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev 2001; 15:158-72. [PMID: 11157773 PMCID: PMC312610 DOI: 10.1101/gad.187501] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA polymerase eta carries out translesion synthesis past UV photoproducts and is deficient in xeroderma pigmentosum (XP) variants. We report that poleta is mostly localized uniformly in the nucleus but is associated with replication foci during S phase. Following treatment of cells with UV irradiation or carcinogens, it accumulates at replication foci stalled at DNA damage. The C-terminal third of poleta is not required for polymerase activity. However, the C-terminal 70 aa are needed for nuclear localization and a further 50 aa for relocalization into foci. Poleta truncations lacking these domains fail to correct the defects in XP-variant cells. Furthermore, we have identified mutations in two XP variant patients that leave the polymerase motifs intact but cause loss of the localization domains.
Collapse
Affiliation(s)
- P Kannouche
- MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton BN1 9RR, UK
| | | | | | | | | | | |
Collapse
|
38
|
Yao J, Dixon K, Carty MP. A single (6-4) photoproduct inhibits plasmid DNA replication in xeroderma pigmentosum variant cell extracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:19-29. [PMID: 11473384 DOI: 10.1002/em.1046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The human skin cancer-prone disease xeroderma pigmentosum variant (XPV) results from a mutation in the human RAD30 gene, which encodes the lesion bypass DNA polymerase eta. XPV cells are characterized by delayed completion of DNA replication and increased mutagenesis following UV-irradiation. Using extracts of an XPV lymphoblast cell line (GM2449C) that has a truncating mutation in the RAD30 gene, we investigated the effect of a (6-4) photoproduct and a cyclobutane pyrimidine dimer (CPD), at a unique -TT- site on either the leading or lagging strand, on plasmid DNA replication. Compared to normal cell extracts, XPV cell extracts have a reduced capacity to carry out complete replication of DNA containing either a (6-4) photoproduct or a CPD on the leading strand, whereas there is little difference between the two cell extracts in replication of DNA containing a lesion on the lagging strand. Inhibition of replication in the presence of a (6-4) photoproduct is attributed to arrest of nascent DNA strand synthesis at the lesion site; in XPV cell extracts, the proportion of arrested products is increased compared to that of normal cell extracts. These results are consistent with a requirement for functional DNA polymerase eta in the replication of a double-stranded plasmid containing either a (6-4) photoproduct or a CPD, on the leading but not the lagging strand.
Collapse
Affiliation(s)
- J Yao
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
39
|
Zhang Y, Yuan F, Wu X, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Res 2000; 28:4717-24. [PMID: 11095682 PMCID: PMC115171 DOI: 10.1093/nar/28.23.4717] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase eta (Pol(eta)), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Pol(eta), we have examined bypass activities of this polymerase opposite several other DNA lesions. Human Pol(eta) efficiently bypassed a template 8-oxoguanine, incorporating an A or a C opposite the lesion with similar efficiencies. Human Pol(eta) effectively bypassed a template abasic site, incorporating an A and less frequently a G opposite the lesion. Significant -1 deletion was also observed when the template base 5' to the abasic site is a T. Human Pol(eta) partially bypassed a template (+)-trans-anti-benzo[a]pyrene-N:(2)-dG and predominantly incorporated an A, less frequently a T, and least frequently a G or a C opposite the lesion. This specificity of nucleotide incorporation correlates well with the known mutation spectrum of (+)-trans-anti-benzo[a]pyrene-N:(2)-dG lesion in mammalian cells. These results show that human Pol(eta) is capable of error-prone translesion DNA syntheses in vitro and suggest that Pol(eta) may bypass certain lesions with a mutagenic consequence in humans.
Collapse
Affiliation(s)
- Y Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro. Nucleic Acids Res 2000; 28:4138-46. [PMID: 11058110 PMCID: PMC113145 DOI: 10.1093/nar/28.21.4138] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Revised: 09/13/2000] [Accepted: 09/13/2000] [Indexed: 11/12/2022] Open
Abstract
Error-free lesion bypass and error-prone lesion bypass are important cellular responses to DNA damage during replication, both of which require a DNA polymerase (Pol). To identify lesion bypass DNA polymerases, we have purified human Polkappa encoded by the DINB1 gene and examined its response to damaged DNA templates. Here, we show that human Polkappa is a novel lesion bypass polymerase in vitro. Purified human Polkappa efficiently bypassed a template 8-oxoguanine, incorporating mainly A and less frequently C opposite the lesion. Human Polkappa most frequently incorporated A opposite a template abasic site. Efficient further extension required T as the next template base, and was mediated mainly by a one-nucleotide deletion mechanism. Human Polkappa was able to bypass an acetylaminofluorene-modified G in DNA, incorporating either C or T, and less efficiently A opposite the lesion. Furthermore, human Polkappa effectively bypassed a template (-)-trans-anti-benzo[a]pyrene-N:(2)-dG lesion in an error-free manner by incorporating a C opposite the bulky adduct. In contrast, human Polkappa was unable to bypass a template TT dimer or a TT (6-4) photoproduct, two of the major UV lesions. These results suggest that Polkappa plays an important role in both error-free and error-prone lesion bypass in humans.
Collapse
Affiliation(s)
- Y Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tissier A, Frank EG, McDonald JP, Iwai S, Hanaoka F, Woodgate R. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. EMBO J 2000; 19:5259-66. [PMID: 11013228 PMCID: PMC302107 DOI: 10.1093/emboj/19.19.5259] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human DNA polymerase iota (pol(iota)) is a recently discovered enzyme that exhibits extremely low fidelity on undamaged DNA templates. Here, we show that poliota is able to facilitate limited translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). More importantly, however, the bypass event is highly erroneous. Gel kinetic assays reveal that pol(iota) misinserts T or G opposite the 3' T of the CPD approximately 1.5 times more frequently than the correct base, A. While pol(iota) is unable to extend the T.T mispair significantly, the G.T mispair is extended and the lesion completely bypassed, with the same efficiency as that of the correctly paired A. T base pair. By comparison, pol(iota) readily misinserts two bases opposite a 6-4 thymine-thymine pyrimidine-pyrimidone photoproduct (6-4PP), but complete lesion bypass is only a fraction of that observed with the CPD. Our data indicate, therefore, that poliota possesses the ability to insert nucleotides opposite UV photoproducts as well as to perform unassisted translesion replication that is likely to be highly mutagenic.
Collapse
Affiliation(s)
- A Tissier
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zhang Y, Yuan F, Wu X, Wang Z. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 2000; 20:7099-108. [PMID: 10982826 PMCID: PMC86254 DOI: 10.1128/mcb.20.19.7099-7108.2000] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase activity is essential for replication, recombination, repair, and mutagenesis. All DNA polymerases studied so far from any biological source synthesize DNA by the Watson-Crick base-pairing rule, incorporating A, G, C, and T opposite the templates T, C, G, and A, respectively. Non-Watson-Crick base pairs would lead to mutations. In this report, we describe the ninth human DNA polymerase, Pol(iota), encoded by the RAD30B gene. We show that human Pol(iota) violates the Watson-Crick base-pairing rule opposite template T. During base selection, human Pol(iota) preferred T-G base pairing, leading to G incorporation opposite template T. The resulting T-G base pair was less efficiently extended by human Pol(iota) compared to the Watson-Crick base pairs. Consequently, DNA synthesis frequently aborted opposite template T, a property we designated the T stop. This T stop restricted human Pol(iota) to a very short stretch of DNA synthesis. Furthermore, kinetic analyses show that human Pol(iota) copies template C with extraordinarily low fidelity, misincorporating T, A, and C with unprecedented frequencies of 1/9, 1/10, and 1/11, respectively. Human Pol(iota) incorporated one nucleotide opposite a template abasic site more efficiently than opposite a template T, suggesting a role for human Pol(iota) in DNA lesion bypass. The unique features of preferential G incorporation opposite template T and T stop suggest that DNA Pol(iota) may additionally play a specialized function in human biology.
Collapse
Affiliation(s)
- Y Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
43
|
Lehmann AR. Replication of UV-damaged DNA: new insights into links between DNA polymerases, mutagenesis and human disease. Gene 2000; 253:1-12. [PMID: 10925197 DOI: 10.1016/s0378-1119(00)00250-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A R Lehmann
- MRC Cell Mutation Unit, University of Sussex, Falmer, BN1 9RR, Brighton, UK.
| |
Collapse
|
44
|
Limoli CL, Giedzinski E, Morgan WF, Cleaver JE. Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair. Proc Natl Acad Sci U S A 2000; 97:7939-46. [PMID: 10859352 PMCID: PMC16649 DOI: 10.1073/pnas.130182897] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2000] [Indexed: 11/18/2022] Open
Abstract
The xeroderma pigmentosum variant (XPV) is a genetic disease involving high levels of solar-induced cancer that has normal excision repair but shows defective DNA replication after UV irradiation because of mutations in the damage-specific polymerase hRAD30. We previously found that the induction of sister chromatid exchanges by UV irradiation was greatly enhanced in transformed XPV cells, indicating the activation of a recombination pathway. We now have identified that XPV cells make use of a homologous recombination pathway involving the hMre11/hRad50/Nbs1 protein complex, but not the Rad51 recombination pathway. The hMre11 complexes form at arrested replication forks, in association with proliferating cell nuclear antigen. In x-ray-damaged cells, in contrast, there is no association between hMre11 and proliferating cell nuclear antigen. This recombination pathway assumes greater importance in transformed XPV cells that lack a functional p53 pathway and can be detected at lower frequencies in excision-defective XPA fibroblasts and normal cells. DNA replication arrest after UV damage, and the associated S phase checkpoint, is therefore a complex process that can recruit a recombination pathway that has a primary role in repair of double-strand breaks from x-rays. The symptoms of elevated solar carcinogenesis in XPV patients therefore may be associated with increased genomic rearrangements that result from double-strand breakage and rejoining in cells of the skin in which p53 is inactivated by UV-induced mutations.
Collapse
Affiliation(s)
- C L Limoli
- Departments of Radiology and Radiation Oncology, University of California, San Francisco, CA 94103-0806, USA
| | | | | | | |
Collapse
|
45
|
Tissier A, McDonald JP, Frank EG, Woodgate R. polι, a remarkably error-prone human DNA polymerase. Genes Dev 2000. [DOI: 10.1101/gad.14.13.1642] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Saccharomyces cerevisiae RAD30 gene encodes DNA polymerase η. Humans possess two Rad30 homologs. One (RAD30A/POLH) has previously been characterized and shown to be defective in humans with the Xeroderma pigmentosum variant phenotype. Here, we report experiments demonstrating that the second human homolog (RAD30B), also encodes a novel DNA polymerase that we designate polι. polι, is a distributive enzyme that is highly error-prone when replicating undamaged DNA. At template G or C, the average error frequency was ∼1 × 10−2. Our studies revealed, however, a striking asymmetry in misincorporation frequency at template A and T. For example, template A was replicated with the greatest accuracy, with misincorporation of G, A, or C occurring with a frequency of ∼1 × 10−4 to 2 × 10−4. In dramatic contrast, most errors occurred at template T, where the misincorporation of G was, in fact, favored ∼3:1 over the correct nucleotide, A, and misincorporation of T occurred at a frequency of ∼6.7 × 10−1. These findings demonstrate that polι is one of the most error-prone eukaryotic polymerases reported to date and exhibits an unusual misincorporation spectrum in vitro.
Collapse
|
46
|
Tissier A, McDonald JP, Frank EG, Woodgate R. poliota, a remarkably error-prone human DNA polymerase. Genes Dev 2000; 14:1642-50. [PMID: 10887158 PMCID: PMC316739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Saccharomyces cerevisiae RAD30 gene encodes DNA polymerase eta. Humans possess two Rad30 homologs. One (RAD30A/POLH) has previously been characterized and shown to be defective in humans with the Xeroderma pigmentosum variant phenotype. Here, we report experiments demonstrating that the second human homolog (RAD30B), also encodes a novel DNA polymerase that we designate poliota. poliota, is a distributive enzyme that is highly error-prone when replicating undamaged DNA. At template G or C, the average error frequency was approximately 1 x 10(-2). Our studies revealed, however, a striking asymmetry in misincorporation frequency at template A and T. For example, template A was replicated with the greatest accuracy, with misincorporation of G, A, or C occurring with a frequency of approximately 1 x 10(-4) to 2 x 10(-4). In dramatic contrast, most errors occurred at template T, where the misincorporation of G was, in fact, favored approximately 3:1 over the correct nucleotide, A, and misincorporation of T occurred at a frequency of approximately 6.7 x 10(-1). These findings demonstrate that poliota is one of the most error-prone eukaryotic polymerases reported to date and exhibits an unusual misincorporation spectrum in vitro.
Collapse
Affiliation(s)
- A Tissier
- Section on DNA Replication, Repair, and Mutagenesis, National Institute of Child Health and Human Development, Bethesda, MD 20892-2725, USA
| | | | | | | |
Collapse
|
47
|
Yuan F, Zhang Y, Rajpal DK, Wu X, Guo D, Wang M, Taylor JS, Wang Z. Specificity of DNA lesion bypass by the yeast DNA polymerase eta. J Biol Chem 2000; 275:8233-9. [PMID: 10713149 DOI: 10.1074/jbc.275.11.8233] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase eta (Pol(eta), xeroderma pigmentosum variant, or Rad30) plays an important role in an error-free response to unrepaired UV damage during replication. It faithfully synthesizes DNA opposite a thymine-thymine cis-syn-cyclobutane dimer. We have purified the yeast Pol(eta) and studied its lesion bypass activity in vitro with various types of DNA damage. The yeast Pol(eta) lacked a nuclease or a proofreading activity. It efficiently bypassed 8-oxoguanine, incorporating C, A, and G opposite the lesion with a relative efficiency of approximately 100:56:14, respectively. The yeast Pol(eta) efficiently incorporated a C opposite an acetylaminofluorene-modified G, and efficiently inserted a G or less frequently an A opposite an apurinic/apyrimidinic (AP) site but was unable to extend the DNA synthesis further in both cases. However, some continued DNA synthesis was observed in the presence of the yeast Pol(zeta) following the Pol(eta) action opposite an AP site, achieving true lesion bypass. In contrast, the yeast Pol(alpha) was able to bypass efficiently a template AP site, predominantly incorporating an A residue opposite the lesion. These results suggest that other than UV damage, Pol(eta) may also play a role in bypassing additional DNA lesions, some of which can be error-prone.
Collapse
Affiliation(s)
- F Yuan
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- H Wallin
- National Institute of Occupational Health, Lerso Parkalle 105, DK 2100, Copenhagen, Denmark.
| |
Collapse
|
49
|
D'Errico M, Calcagnile A, Canzona F, Didona B, Posteraro P, Cavalieri R, Corona R, Vorechovsky I, Nardo T, Stefanini M, Dogliotti E. UV mutation signature in tumor suppressor genes involved in skin carcinogenesis in xeroderma pigmentosum patients. Oncogene 2000; 19:463-7. [PMID: 10656695 DOI: 10.1038/sj.onc.1203313] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular analysis of p53 and patched (PTCH), two candidate tumor suppressor genes for non-melanocytic skin cancer, was performed in skin tumors from six patients affected by the cancer-prone disease xeroderma pigmentosum (XP). UV-specific p53 mutations were detected at a frequency of 38-50% in all the tumor types analysed, including melanomas. Additional analysis of PTCH mutations in the subset of eight basal call carcinomas (BCC) revealed a very high mutation frequency of this gene (90%) which exceeded that detected in the p53 gene in the same tumors (38%). PTCH mutations were predominantly UV-specific C>T transitions. This mutation pattern is different from that reported in BCC from normal donors where PTCH mutation frequency is 27% and mutations are frequently deletions and insertions. These findings suggest that PTCH mutations represent an earlier event in BCC development than p53 alterations and that the inability of XP patients to repair UV-induced PTCH mutations might significantly contribute to the early and frequent appearance of BCC observed in these patients.
Collapse
Affiliation(s)
- M D'Errico
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cordonnier AM, Fuchs RP. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutat Res 1999; 435:111-9. [PMID: 10556591 DOI: 10.1016/s0921-8777(99)00047-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Individuals with Xeroderma pigmentosum (XP) syndrome have a genetic predisposition to sunlight-induced skin cancer. Genetically different forms of XP have been identified by cell fusion. Cells of individuals expressing the classical form of XP (complementation groups A through G) are deficient in the nucleotide excision repair (NER) pathway. In contrast, the cells belonging to the variant class of XP (XPV) are NER-proficient and are only slightly more sensitive than normal cells to the killing action of UV light radiation. The XPV fibroblasts replicate damaged DNA generating abnormally short fragments either in vivo [A.R. Lehmann, The relationship between pyramidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res. 7 (1979) 1901-1912; S.D. Park, J.E. Cleaver, Postreplication repair: question of its definition and possible alteration in Xeroderma pigmentosum cell strains, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3927-3931.] or in vitro [S.M. Cordeiro, L.S. Zaritskaya, L.K. Price, W.K. Kaufmann, Replication fork bypass of a pyramidine dimer blocking leading strand DNA synthesis, J. Biol. Chem. 272 (1997) 13945-13954; D.L. Svoboda, L.P. Briley, J.M. Vos, Defective bypass replication of a leading strand cyclobutane thymine dimer in Xeroderma pigmentosum variant cell extracts, Cancer Res. 58 (1998) 2445-2448; I. Ensch-Simon, P.M. Burgers, J.S. Taylor, Bypass of a site-specific cis-syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry 37 (1998) 8218-8226.], suggesting that in XPV cells, replication has an increased probability of being blocked at a lesion. Furthermore, extracts from XPV cells were found to be defective in translesion synthesis [A. Cordonnier, A.R. Lehmann, R.P.P. Fuchs, Impaired translesion synthesis in Xeroderma pigmentosum variant extracts, Mol. Cell. Biol. 19 (1999) 2206-2211.]. Recently, Masutani et al. [C. Masutani, M. Araki, A. Yamada, R. Kusomoto, T. Nogimori, T. Maekawa, S. Iwai, F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J. 18 (1999) 3491-3501.] have shown that the XPV defect can be corrected by a novel human DNA polymerase, homologue to the yeast DNA polymerase eta, which is able to replicate past cyclobutane pyrimidine dimers in DNA templates. This review focuses on our current understanding of translesion synthesis in mammalian cells whose defect, unexpectedly, is responsible for the hypermutability of XPV cells and for the XPV pathology.
Collapse
Affiliation(s)
- A M Cordonnier
- UPR9003 du CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS et IRCAD, Strasbourg, France
| | | |
Collapse
|