1
|
Sun X, Xie Y, Xu K, Li J. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:789-801. [PMID: 37818650 DOI: 10.1093/jxb/erad397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
F-box proteins participate in the regulation of many processes, including cell division, development, and plant hormone responses. Brassinosteroids (BRs) regulate plant growth and development by activating core transcriptional and other multiple factors. In rice, OVATE family proteins (OFPs) participate in BR signalling and regulate grain size. Here we identified an F-box E3 ubiquitin ligase, FBX206, that acts as a negative factor in BR signalling and regulates grain size and yield in rice. Suppressed expression of FBX206 by RNAi leads to promoted plant growth and increased grain yield. Molecular analyses showed that the expression levels of BR biosynthetic genes were up-regulated, whereas those of BR catabolic genes were down-regulated in FBX206-RNAi plants, resulting in the accumulation of 28-homoBL, one of the bioactive BRs. FBX206 interacted with OsOFP8, a positive regulator in BR signalling, and OsOFP19, a negative regulator in BR signalling. SCFFBX206 mediated the degradation of OsOFP8 but suppressed OsOFP19 degradation. OsOFP8 interacted with OsOFP19, and the reciprocal regulation between OsOFP8 and OsOFP19 required the presence of FBX206. FBX206 itself was ubiquitinated and degraded, but interactions of OsOFP8 and OsOFP19 synergistically suppressed the degradation of FBX206. Genetic interactions indicated an additive effect between FBX206 and OsOFP8 and epistatic effects of OsOFP19 on FBX206 and OsOFP8. Our study reveals the regulatory networks of FBX206, OsOFP8, and OsOFP19 in BR signalling that regulate grain size and yield in rice.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kaizun Xu
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
3
|
Mathur R, Yen JL, Kaiser P. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis. PLoS Genet 2015; 11:e1005727. [PMID: 26656496 PMCID: PMC4675558 DOI: 10.1371/journal.pgen.1005727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/14/2015] [Indexed: 11/24/2022] Open
Abstract
Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1. Protein ubiquitylation is the covalent attachment of the small protein ubiquitin onto other proteins and is a key regulatory pathway for most biological processes. The central components of the ubiquitylation process are the E3 ligases, which recognize substrate proteins. The best-studied E3 complexes are the SCF ligases, which are composed of 3 core components—Cdc53, Skp1, Rbx1—that assemble to the functional ligase complex by binding to one of the multiple substrate adaptors—the F-box proteins. Maintaining a balanced repertoire of diverse SCF complexes that represent the entire cellular panel of substrate adapters is challenging. Depending on the cell type, hundreds of different F-box proteins can compete for the single binding site on the common SCF core complex. Rapid degradation of F-box proteins helps in maintaining a critical level of unoccupied Cdc53/Skp1/Rbx1 core, complexes and alterations in levels of F-box proteins has been linked to diseases including cancer. Studying the yeast F-box protein Met30 as a model, we have uncovered a novel mechanism for degradation of F-box proteins. This pathway targets free F-box proteins and requires part of the SCF core. These findings add an additional layer to our understanding of regulation of multisubunit E3 ligase.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
| | - James L. Yen
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Peter Kaiser
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Franciosini A, Lombardi B, Iafrate S, Pecce V, Mele G, Lupacchini L, Rinaldi G, Kondou Y, Gusmaroli G, Aki S, Tsuge T, Deng XW, Matsui M, Vittorioso P, Costantino P, Serino G. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation. MOLECULAR PLANT 2013; 6:1616-29. [PMID: 23475998 DOI: 10.1093/mp/sst045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.
Collapse
Affiliation(s)
- Anna Franciosini
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro. PLoS One 2012; 7:e39210. [PMID: 22815701 PMCID: PMC3398040 DOI: 10.1371/journal.pone.0039210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/21/2012] [Indexed: 01/20/2023] Open
Abstract
The F-box protein, Ufo1, recruits Ho endonuclease to the SCFUfo1 complex for ubiquitylation. Both ubiquitylated Ho and Ufo1 are transferred by the UbL-UbA protein, Ddi1, to the 19S Regulatory Particle (RP) of the proteasome for degradation. The Ddi1-UbL domain binds Rpn1 of the 19S RP, the Ddi1-UbA domain binds ubiquitin chains on the degradation substrate. Here we used complex reconstitution in vitro to identify stages in the transfer of Ho and Ufo1 from the SCFUfo1 complex to the proteasome. We report SCFUfo1 complex at the proteasome formed in the presence of Ho. Subsequently Ddi1 is recruited to this complex by interaction between the Ddi1-UbL domain and Ufo1. The core of Ddi1 binds both Ufo1 and Rpn1; this interaction confers specificity of SCFUfo1 for Ddi1. The substrate-shield model predicts that Ho would protect Ufo1 from degradation and we find that Ddi1 binds Ho, Ufo1, and Rpn1 simultaneously forming a complex for transfer of Ho to the 19S RP. In contrast, in the absence of Ho, Rpn1 displaces Ufo1 from Ddi1 indicating a higher affinity of the Ddi1-UbL for the 19S RP. However, at high Rpn1 levels there is synergistic binding of Ufo1 to Ddi1 that is dependent on the Ddi1-UbA domain. Our interpretation is that in the absence of substrate, the Ddi1-UbL binds Rpn1 while the Ddi1-UbA binds ubiquitin chains on Ufo1. This would promote degradation of Ufo1 and disassembly of SCFUfo1 complexes.
Collapse
|
6
|
Chen G, Zhang B, Liu L, Li Q, Zhang Y, Xie Q, Xue Y. Identification of a ubiquitin-binding structure in the S-locus F-box protein controlling S-RNase-based self-incompatibility. J Genet Genomics 2012; 39:93-102. [PMID: 22361508 DOI: 10.1016/j.jgg.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 01/06/2012] [Indexed: 11/28/2022]
Abstract
In flowering plants, self-incompatibility (SI) serves as an important intraspecific reproductive barrier to promote outbreeding. In species from the Solanaceae, Plantaginaceae and Rosaceae, S-RNase and SLF (S-locus F-box) proteins have been shown to control the female and male specificity of SI, respectively. However, little is known about structure features of the SLF protein apart from its conserved F-box domain. Here we show that the SLF C-terminal region possesses a novel ubiquitin-binding domain (UBD) structure conserved among the SLF protein family. By using an ex vivo system of Nicotiana benthamiana, we found that the UBD mediates the SLF protein turnover by the ubiquitin-proteasome pathway. Furthermore, we detected that the SLF protein was directly involved in S-RNase degradation. Taken together, our results provide a novel insight into the SLF structure and highlight a potential role of SLF protein stability and degradation in S-RNase-based self-incompatibility.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Nibau C, Gibbs DJ, Bunting KA, Moody LA, Smiles EJ, Tubby JA, Bradshaw SJ, Coates JC. ARABIDILLO proteins have a novel and conserved domain structure important for the regulation of their stability. PLANT MOLECULAR BIOLOGY 2011; 75:77-92. [PMID: 21052782 DOI: 10.1007/s11103-010-9709-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/20/2010] [Indexed: 05/10/2023]
Abstract
ARABIDILLO proteins are F-box-Armadillo (ARM) proteins that regulate root branching in Arabidopsis. Many F-box proteins in plants, yeast and mammals are unstable. In plants, the mechanism for this instability has not been fully investigated. Here, we show that a conserved family of plant ARABIDILLO-related proteins has a unique domain structure consisting of an F-box and leucine-rich repeats (LRRs) followed by ARM-repeats. The LRRs are similar to those found in other plant and animal F-box proteins, including cell cycle proteins and hormone receptors. We demonstrate that the LRRs are required for ARABIDILLO1 function in vivo. ARABIDILLO1 protein is unstable: we show that ARABIDILLO1 protein is associated with ubiquitin and is turned over by the proteasome. Both the F-box and LRR regions of ARABIDILLO1 appear to enable this turnover to occur. Application of known lateral root-regulating signals has no effect on ARABIDILLO1 stability. In addition, plants that lack or overexpress ARABIDILLO proteins respond normally to known lateral root-regulating signals. Thus, we suggest that the signal(s) regulating ARABIDILLO stability in vivo may be either highly specific or novel. The structural conservation between ARABIDILLOs and other plant and animal F-box proteins suggests that the stability of other F-box proteins may be controlled by similar mechanisms.
Collapse
Affiliation(s)
- Cândida Nibau
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pashkova N, Gakhar L, Winistorfer SC, Yu L, Ramaswamy S, Piper RC. WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell 2010; 40:433-43. [PMID: 21070969 DOI: 10.1016/j.molcel.2010.10.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/01/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
WD40-repeat β-propellers are found in a wide range of proteins involved in distinct biological activities. We define a large subset of WD40 β-propellers as a class of ubiquitin-binding domains. Using the β-propeller from Doa1/Ufd3 as a paradigm, we find the conserved top surface of the Doa1 β-propeller binds the hydrophobic patch of ubiquitin centered on residues I44, L8, and V70. Mutations that disrupt ubiquitin binding abrogate Doa1 function, demonstrating the importance of this interaction. We further demonstrate that WD40 β-propellers from a functionally diverse set of proteins bind ubiquitin in a similar fashion. This set includes members of the F box family of SCF ubiquitin E3 ligase adaptors. Using mutants defective in binding, we find that ubiquitin interaction by the F box protein Cdc4 promotes its autoubiquitination and turnover. Collectively, our results reveal a molecular mechanism that may account for how ubiquitin controls a broad spectrum of cellular activities.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
9
|
Koepp DM. The replication stress response and the ubiquitin system: a new link in maintaining genomic integrity. Cell Div 2010; 5:8. [PMID: 20219119 PMCID: PMC2841145 DOI: 10.1186/1747-1028-5-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/10/2010] [Indexed: 11/10/2022] Open
Abstract
Maintenance of genomic integrity is important for cellular viability and proliferation. During DNA replication, cells respond to replication stress by activating checkpoint pathways that stabilize replication forks and prevent cell cycle progression. The Saccharomyces cerevisiae F-box protein Dia2 is a ubiquitin ligase component required for genomic stability and may help replication complexes negotiate damaged DNA or natural fragile sites. We recently implicated Dia2 in the replication stress response. We demonstrated that Dia2 is targeted for ubiquitin-mediated proteolysis and that activation of the S-phase checkpoint inhibits Dia2 protein turnover. S-phase checkpoint mutants fail to stabilize the Dia2 protein and checkpoint mutants that lack Dia2 exhibit increased sensitivity to replication stress. We also showed that Dia2 protein turnover is not the result of an autocatalytic mechanism. Instead, an N-terminal 20 amino acid motif that is also required for nuclear localization is necessary for Dia2 proteolysis. Dia2 mutants lacking this motif but modified with an exogenous strong nuclear localization signal are both nuclear and stable and disrupt cell cycle dynamics. In summary, our studies suggest that inhibition of Dia2 proteolysis is a novel target of the S-phase checkpoint. We think that this work will help to identify the mechanisms that function downstream of checkpoint activation and that intersect with cell cycle control pathways.
Collapse
Affiliation(s)
- Deanna M Koepp
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Activation of the S-phase checkpoint inhibits degradation of the F-box protein Dia2. Mol Cell Biol 2010; 30:160-71. [PMID: 19858292 DOI: 10.1128/mcb.00612-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A stable genome is critical to cell viability and proliferation. During DNA replication, the S-phase checkpoint pathway responds to replication stress. In budding yeast, the chromatin-bound F-box protein Dia2 is required to maintain genomic stability and may help replication complexes overcome sites of damaged DNA and natural fragile regions. SCF (Skp1/Cul1/F-box protein) complexes are modular ubiquitin ligases. We show here that Dia2 is itself targeted for ubiquitin-mediated proteolysis and that activation of the S-phase checkpoint pathway inhibits Dia2 protein degradation. S-phase checkpoint mutants fail to stabilize Dia2 in response to replication stress. Deletion of DIA2 from these checkpoint mutants exacerbates their sensitivity to hydroxyurea, suggesting that stabilization of Dia2 contributes to the replication stress response. Unlike the case for other F-box proteins, deletion of the F-box domain in Dia2 does not stabilize the protein. Rather, an N-terminal domain that is also required for nuclear localization is necessary for degradation. When a strong nuclear localization signal (NLS) is added to dia2 mutants lacking this domain, the Dia2 protein is both stable and nuclear. Together, our results suggest that Dia2 protein turnover does not involve an autocatalytic mechanism and that Dia2 proteolysis is inhibited by activation of the replication stress response.
Collapse
|
11
|
Liu Y, Mimura S, Kishi T, Kamura T. A longevity protein, Lag2, interacts with SCF complex and regulates SCF function. EMBO J 2009; 28:3366-77. [PMID: 19763088 DOI: 10.1038/emboj.2009.268] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
SCF-type E3-ubiquitin ligases control numerous cellular processes through the ubiquitin-proteasome pathway. However, the regulation of SCF function remains largely uncharacterized. Here, we report a novel SCF complex-interacting protein, Lag2, in Saccharomyces cerevisiae. Lag2 interacts with the SCF complex under physiological conditions. Lag2 negatively controls the ubiquitylation activities of SCF E3 ligase by interrupting the association of Cdc34 to SCF complex. Overexpression of Lag2 increases unrubylated Cdc53, whereas deletion of lag2, together with the deletions of dcn1 and jab1, results in the accumulation of Rub1-modified Cdc53. In vitro rubylation assays show that Lag2 inhibits the conjugation of Rub1 to Cdc53 in competition with Dcn1, which suggest that Lag2 down-regulates the rubylation of Cdc53 rather than promoting derubylation. Furthermore, Dcn1 hinders the association of Lag2 to Cdc53 in vivo. Finally, the deletion of lag2 combined with the deletion of either dcn1 or rub1 suppresses the growth of yeast cells. These observations thus indicate that Lag2 has a significant function in regulating the SCF complex by controlling its ubiquitin ligase activities and its rubylation cycle.
Collapse
Affiliation(s)
- Yuan Liu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
12
|
Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 2008; 3:7. [PMID: 18282298 PMCID: PMC2266742 DOI: 10.1186/1747-1028-3-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 02/18/2008] [Indexed: 11/29/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed of a cullin, RING H2 finger protein, a variable substrate-recognition subunit (SRS), and for most CRLs, an adaptor that links the SRS to the complex. Eukaryotic species contain multiple cullins, with five major types in metazoa. Each cullin forms a distinct class of CRL complex, with distinct adaptors and/or substrate-recognition subunits. Despite this diversity, each of the classes of CRL complexes is subject to similar regulatory mechanisms. This review focuses on the global regulation of CRL complexes, encompassing: neddylation, deneddylation by the COP9 Signalosome (CSN), inhibitory binding by CAND1, and the dimerization of CRL complexes. We also address the role of cycles of activation and inactivation in regulating CRL activity and switching between substrate-recognition subunits.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, 724 Biological Sciences Bldg,, Athens, GA 30602-2607, USA.
| | | |
Collapse
|
13
|
Fey JP, Lanker S. Delayed accumulation of the yeast G1 cyclins Cln1 and Cln2 and the F-box protein Grr1 in response to glucose. Yeast 2007; 24:419-29. [PMID: 17366522 DOI: 10.1002/yea.1472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ability to integrate nutrient availability into cell cycle regulation is critical for the viability of organisms. The Saccharomyces cerevisiae ubiquitin ligase SCF(Grr1) regulates the stability of several proteins that participate in cell division or nutrient sensing. Two of its targets, the cyclins Cln1 and Cln2, accumulate in the presence of glucose. When glucose is added to cells growing asynchronously, we show that the accumulation of the cyclins is a very slow response. We report that the F-box protein Grr1 also accumulates at higher levels in the presence of glucose, and that the response to glucose follows a delayed pattern strikingly similar to that described for Cln1 and Cln2. A model for the regulation of F-box proteins predicts that substrate accumulation could stabilize Grr1. While we found that Grr1 is more stable in cells growing with glucose, we show that the delayed responses to glucose occur independently: Grr1 accumulates in the absence of the cyclins, and vice versa. Thus, our results indicate that this model might not apply to the cyclins and Grr1. Glucose is known to strengthen the interaction of Grr1 with Skp1 in the SCF complex. We hypothesize that glucose could promote the accumulation of Grr1 and its assembly into a SCF complex as a feedback regulation that helps compensate for higher cyclins levels.
Collapse
Affiliation(s)
- Julien P Fey
- School of Medicine, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
14
|
Scaglione KM, Bansal PK, Deffenbaugh AE, Kiss A, Moore JM, Korolev S, Cocklin R, Goebl M, Kitagawa K, Skowyra D. SCF E3-mediated autoubiquitination negatively regulates activity of Cdc34 E2 but plays a nonessential role in the catalytic cycle in vitro and in vivo. Mol Cell Biol 2007; 27:5860-70. [PMID: 17562869 PMCID: PMC1952114 DOI: 10.1128/mcb.01555-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the several still unexplained aspects of the mechanism by which the Cdc34/SCF RING-type ubiquitin ligases work is the marked stimulation of Cdc34 autoubiquitination, a phenomenon of unknown mechanism and significance. In in vitro experiments with single-lysine-containing Cdc34 mutant proteins of Saccharomyces cerevisiae, we found that the SCF-mediated stimulation of autoubiquitination is limited to specific N-terminal lysines modified via an intermolecular mechanism. In a striking contrast, SCF quenches autoubiquitination of C-terminal lysines catalyzed in an intramolecular manner. Unlike autoubiquitination of the C-terminal lysines, which has no functional consequence, autoubiquitination of the N-terminal lysines inhibits Cdc34. This autoinhibitory mechanism plays a nonessential role in the catalytic cycle, as the lysineless (K0)Cdc34(DeltaC) is indistinguishable from Cdc34(DeltaC) in ubiquitination of the prototype SCF(Cdc4) substrate Sic1 in vitro, and replacement of the CDC34 gene with either the (K0)cdc34(DeltaC) or the cdc34(DeltaC) allele in yeast has no cell cycle phenotype. We discuss the implications of these findings for the mechanism of Cdc34 function with SCF.
Collapse
Affiliation(s)
- K Matthew Scaglione
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Regulation of protein stability through the ubiquitin proteasome system is a key mechanism underlying numerous cellular processes. The ubiquitin protein ligases (or E3) are in charge of substrate specificity and therefore play a pivotal role in the pathway. Among the several different E3 enzyme families, the SCF (Skp1-Cullin-F box protein) is one of the largest and best characterized. F-box proteins, in addition to the loosely conserved F-box motif that binds Skp1, often carry typical protein interaction domains and are proposed to recruit the substrate to the SCF complex. Strikingly, genomes analysis revealed the presence of large numbers of F-box proteins topping to nearly 700 predicted in Arabidopsis thaliana. Recent evidences in various species suggest that some F-box proteins have functions not directly related to the SCF complex raising questions about the actual connection between the large F-box protein family and protein degradation, but also about their origins and evolution.
Collapse
Affiliation(s)
- Damien Hermand
- Laboratoire de Génétique Moléculaire (GEMO), Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
16
|
Ivantsiv Y, Kaplun L, Tzirkin-Goldin R, Shabek N, Raveh D. Unique role for the UbL-UbA protein Ddi1 in turnover of SCFUfo1 complexes. Mol Cell Biol 2006; 26:1579-88. [PMID: 16478980 PMCID: PMC1430233 DOI: 10.1128/mcb.26.5.1579-1588.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/10/2005] [Accepted: 11/18/2005] [Indexed: 01/21/2023] Open
Abstract
SCF complexes are E3 ubiquitin-protein ligases that mediate degradation of regulatory and signaling proteins and control G1/S cell cycle progression by degradation of G1 cyclins and the cyclin-dependent kinase inhibitor, Sic1. Interchangeable F-box proteins bind the core SCF components; each recruits a specific subset of substrates for ubiquitylation. The F-box proteins themselves are rapidly turned over by autoubiquitylation, allowing rapid recycling of SCF complexes. Here we report a role for the UbL-UbA protein Ddi1 in the turnover of the F-box protein, Ufo1. Ufo1 is unique among F-box proteins in having a domain comprising multiple ubiquitin-interacting motifs (UIMs) that mediate its turnover. Deleting the UIMs leads to stabilization of Ufo1 and to cell cycle arrest at G1/S of cells with long buds resembling skp1 mutants. Cells accumulate substrates of other F-box proteins, indicating that the SCF pathway of substrate ubiquitylation is inhibited. Ufo1 interacts with Ddi1 via its UIMs, and Deltaddi1 cells arrest when full-length UFO1 is overexpressed. These results imply a role for the UIMs in turnover of SCF(Ufo1) complexes that is dependent on Ddi1, a novel activity for an UbL-UbA protein.
Collapse
Affiliation(s)
- Yelena Ivantsiv
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba 84105, Israel
| | | | | | | | | |
Collapse
|
17
|
Liu B, Sarkis PTN, Luo K, Yu Y, Yu XF. Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 2005; 79:9579-87. [PMID: 16014920 PMCID: PMC1181563 DOI: 10.1128/jvi.79.15.9579-9587.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human cytidine deaminase Apobec3F (h-A3F), a protein related to the previously recognized antiviral factor Apobec3G (h-A3G), has antiviral activity against human immunodeficiency virus type 1 (HIV-1) that is suppressed by the viral protein Vif. The mechanism of HIV-1 Vif-mediated suppression of h-A3F is not fully understood. Here, we demonstrate that while h-A3F, like h-A3G, was able to suppress primate lentiviruses other than HIV-1 (simian immunodeficiency virus from African green monkeys [SIVagm] and Rhesus macaques [SIVmac]), the interaction between Vif proteins and h-A3F appeared to differ from that with h-A3G. H-A3F showed no change in its species specificity against HIV-1 or SIVagm Vif when a negatively charged amino acid was replaced with a lysine at position 128, a residue critical for h-A3G recognition by HIV-1 Vif. However, HIV-1 Vif, but not SIVagm Vif, was able to bind h-A3F and induce its polyubiquitination and degradation through the Cul5-containing E3 ubiquitin ligase. Interference with Cul5-E3 ligase function by depletion of Cul5, through RNA interference or overexpression of Cul5 mutants, blocked the ability of HIV-1 Vif to suppress h-A3F. A BC-box mutant of HIV-1 Vif that failed to recruit Cul5-E3 ligase but was still able to interact with h-A3F failed to suppress h-A3F. Interestingly, interference with Cul5-E3 ligase function or overexpression of h-A3F or h-A3G also increased the stability of HIV-1 Vif, suggesting that like the substrate molecules h-A3F and h-A3G, the substrate receptor protein Vif is itself also regulated by Cul5-E3 ligase. Our results indicate that Cul5-E3 ligase appears to be a common pathway hijacked by HIV-1 Vif to defeat both h-A3F and h-A3G. Developing inhibitors to disrupt the interaction between Vif and Cul5-E3 ligase could be therapeutically useful, allowing multiple host antiviral factors to suppress HIV-1.
Collapse
Affiliation(s)
- Bindong Liu
- Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
18
|
Chae HS, Kieber JJ. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. TRENDS IN PLANT SCIENCE 2005; 10:291-6. [PMID: 15949763 DOI: 10.1016/j.tplants.2005.04.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/18/2005] [Accepted: 04/25/2005] [Indexed: 05/02/2023]
Abstract
Ethylene influences many plant growth and developmental processes. To achieve this diversity of function, the biosynthesis of this gaseous hormone is tightly regulated by a diverse array of factors, including developmental cues, wounding, biotic and abiotic stresses, and other phytohormones. Many studies have demonstrated that differential transcription of 1-aminocyclopropane-1-carboxylate synthase (ACS) gene family members is an important factor regulating ethylene production in response to different stimuli. Recently, several studies, focusing primarily on the Arabidopsis eto mutants, have indicated that the regulation of ACS protein stability also plays a significant role in the control of ethylene biosynthesis. Here, we review this post-transcriptional control of ethylene biosynthesis and discuss the mechanisms that underlie it.
Collapse
Affiliation(s)
- Hyun Sook Chae
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
19
|
Brunson LE, Dixon C, LeFebvre A, Sun L, Mathias N. Identification of residues in the WD-40 repeat motif of the F-box protein Met30p required for interaction with its substrate Met4p. Mol Genet Genomics 2005; 273:361-70. [PMID: 15883825 DOI: 10.1007/s00438-005-1137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
The SCF family of ubiquitin-ligases consists of a common core machinery, namelySkp1p, Cdc53p, Hrt1p, and a variable component, the F-box protein that is responsible for substrate recognition. The F-box motif, which consists of approximately 40 amino acids, connects the F-box protein to the core ubiquitin-ligase machinery. Distinct SCF complexes, defined by distinct F-box proteins, target different substrate proteins for proteasome-dependent degradation. As part of the SCF(Met30p) complex, the F-box protein Met30p selects the substrate Met4p, a transcriptional activator for MET biosynthetic genes that mediate sulfur uptake and biosynthesis of sulfur containing compounds. When cells are grown in the absence of methionine, Met4p evades degradation by the SCF(Met30p) complex and activates the MET biosynthetic pathway. However, overproduction of Met30p represses MET gene expression and induces methionine auxotrophy in an otherwise methionine prototrophic strain. Here we demonstrate that overproduction of the C-terminal portion of Met30p, which is composed almost entirely of seven WD-40 repeat motifs, is necessary and sufficient to induce methionine auxotrophy and complement the temperature sensitive (ts) met30-6 mutation. Furthermore, we show that this region of Met30p is important for binding Met4p and that mutations that disrupt this interaction prevent both the induction of methionine auxotrophy and complementation of the met30-6 mutation. These assays have been exploited to identify residues that are important for the interaction of Met30p with its substrate. Since the C-terminal domain of Met30p lacks the F-box and cannot support the ubiquitination of Met4p, our results indicate that the recruitment of Met4p to the SCF(Met30p) complex itself results in inactivation of Met4p, independently of its ubiquitination.
Collapse
Affiliation(s)
- Lee Ellen Brunson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | | | | | | | | |
Collapse
|
20
|
Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 2004; 119:517-28. [PMID: 15537541 DOI: 10.1016/j.cell.2004.10.019] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/07/2004] [Accepted: 09/13/2004] [Indexed: 12/01/2022]
Abstract
The SCF ubiquitin ligase complex regulates diverse cellular functions by ubiquitinating numerous protein substrates. Cand1, a 120 kDa HEAT repeat protein, forms a tight complex with the Cul1-Roc1 SCF catalytic core, inhibiting the assembly of the multisubunit E3 complex. The crystal structure of the Cand1-Cul1-Roc1 complex shows that Cand1 adopts a highly sinuous superhelical structure, clamping around the elongated SCF scaffold protein Cul1. At one end, a Cand1 beta hairpin protrusion partially occupies the adaptor binding site on Cul1, inhibiting its interactions with the Skp1 adaptor and the substrate-recruiting F box protein subunits. At the other end, two Cand1 HEAT repeats pack against a conserved Cul1 surface cleft and bury a Cul1 lysine residue, whose modification by the ubiquitin-like protein, Nedd8, is able to block Cand1-Cul1 association. Together with biochemical evidence, these structural results elucidate the mechanisms by which Cand1 and Nedd8 regulate the assembly-disassembly cycles of SCF and other cullin-dependent E3 complexes.
Collapse
Affiliation(s)
- Seth J Goldenberg
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kim JH, Kim J, Kim DH, Ryu GH, Bae SH, Seo YS. SCFhFBH1 can act as helicase and E3 ubiquitin ligase. Nucleic Acids Res 2004; 32:2287-97. [PMID: 15118074 PMCID: PMC419438 DOI: 10.1093/nar/gkh534] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In our previous study, we found that a human F-box DNA helicase, named hFBH1, interacted with SKP1 to form an SCF (SKP1-Cul1-F-box protein) complex together with CUL1 and ROC1 in an F-box-dependent manner. The complex immunoprecipitated from crude cell extracts catalyzed polyubiquitin formation in the presence of the ubiquitin-activating and ubiquitin-conjugating enzymes, E1 and E2, respectively. In this report, we characterized the enzymatic properties of the recombinant SCF(hFBH1) complex purified from insect cells expressing hFBH1, SKP1, CUL1 and ROC1. The SCF(hFBH1) complex was isolated as a single tight complex that retained DNA helicase, DNA-dependent ATPase and E3 ubiquitin ligase activities. The helicase and ATPase activities residing in the SCF(hFBH1) complex were indistinguishable from those of the hFBH1 protein alone. Moreover, the ubiquitin ligase activity of the SCF(hFBH1) complex was hardly affected by single-stranded or double-stranded DNA. The multiple activities present in this complex act independently of each other, suggesting that the SCF(hFBH1) complex can catalyze a ubiquitination reaction while acting as a DNA helicase or translocating along DNA. The potential roles of the SCF(hFBH1) complex in DNA metabolism based upon the enzymatic activities associated with this complex are discussed.
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- National Creative Research Initiative Center for Cell Cycle Control, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejoen, 305-701, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Li Y, Gazdoiu S, Pan ZQ, Fuchs SY. Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J Biol Chem 2004; 279:11074-80. [PMID: 14707120 DOI: 10.1074/jbc.m312301200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The homologue of Slimb (HOS) F-box protein is a receptor of the Skp1-Cullin1-F-box protein (SCF(HOS)) E3 ubiquitin ligase, which mediates ubiquitination and degradation of beta-catenin and the inhibitor of NFkappaB, IkappaB. We found that HOS itself is an unstable protein that undergoes ubiquitination and degradation in a 26 S proteasome-dependent manner. A HOS mutant lacking the F-box that is deficient in binding to the core SCF components underwent ubiquitination less efficiently and was more stable than the wild type protein. Furthermore, ubiquitination and degradation of HOS was impaired in ts41 cells, in which the activities of Cullin-based ligases were decreased because the NEDD8 pathway was abrogated. Whereas HOS was directly ubiquitinated within the SCF(HOS) complex in vitro, the addition of phosphorylated IkappaBalpha inhibited this ubiquitination. Increasing cellular levels of HOS substrate (phosphorylated IkappaBalpha) by activating IkappaB kinase inhibited HOS ubiquitination and led to stabilization of HOS, indicating that interaction between HOS and its substrate might protect HOS from proteolysis. Taken together, our data suggest that proteolysis of HOS depends on its interaction with active components of the SCF complex and that HOS stability is regulated by a bound substrate. These findings may define a mechanism for maintaining activities of specific SCF complexes based on availability of a particular substrate.
Collapse
Affiliation(s)
- Ying Li
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
23
|
Michel JJ, McCarville JF, Xiong Y. A role for Saccharomyces cerevisiae Cul8 ubiquitin ligase in proper anaphase progression. J Biol Chem 2003; 278:22828-37. [PMID: 12676951 DOI: 10.1074/jbc.m210358200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have undertaken a study of the yeast cullin family members Cul3 and Cul8, as little is known about their biochemical and physiological functions. We demonstrate that these cullins are associated in vivo with ubiquitin ligase activity. We show that Cul3 and Cul8 are functionally distinct from Cdc53 and do not interact with ySkp1, suggesting that they target substrates by Skp1- and possibly F-box protein-independent mechanisms. Whereas null mutants of CUL3 appear normal, yeast cells lacking CUL8 have a slower growth rate and are delayed in their progress through anaphase. The anaphase delay phenotype can be complemented by ectopic expression of Cul8 but not by any other yeast or human cullins, nor by a cul8 mutant deficient in binding to RING finger protein Roc1. Deletion of the RAD9 gene suppressed the anaphase delay phenotype of cul8delta, suggesting that loss of Cul8 function may compromise genomic integrity. These results indicate that in addition to the anaphase promoting complex, mitotic progression may involve another E3 ubiquitin ligase mediated by Cul8 protein.
Collapse
Affiliation(s)
- Jennifer J Michel
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | |
Collapse
|
24
|
Dixon C, Brunson LE, Roy MM, Smothers D, Sehorn MG, Mathias N. Overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p inhibits ubiquitin ligase activities of their SCF complexes. EUKARYOTIC CELL 2003; 2:123-33. [PMID: 12582129 PMCID: PMC141164 DOI: 10.1128/ec.2.1.123-133.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 11/01/2002] [Indexed: 11/20/2022]
Abstract
Ubiquitin ligases direct the transfer of ubiquitin onto substrate proteins and thus target the substrate for proteasome-dependent degradation. SCF complexes are a family of ubiquitin ligases composed of a common core of components and a variable component called an F-box protein that defines substrate specificity. Distinct SCF complexes, defined by a particular F-box protein, target different substrate proteins for degradation. Although a few have been identified to be involved in important biological pathways, such as the cell division cycle and coordinating cellular responses to changes in environmental conditions, the role of the overwhelming majority of F-box proteins is not clear. Creating inhibitors that will block the in vivo activities of specific SCF ubiquitin ligases may provide identification of substrates of these uncharacterized F-box proteins. Using Saccharomyces cerevisiae as a model system, we demonstrate that overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p results in specific inhibition of their SCF complexes. Analyses of mutant amino-terminal alleles demonstrate that the interaction of these polypeptides with their full-length counterparts is an important step in the inhibitory process. These results suggest a common means to inhibit specific SCF complexes in vivo.
Collapse
Affiliation(s)
- Cheryl Dixon
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
25
|
Fung TK, Siu WY, Yam CH, Lau A, Poon RYC. Cyclin F is degraded during G2-M by mechanisms fundamentally different from other cyclins. J Biol Chem 2002; 277:35140-9. [PMID: 12122006 DOI: 10.1074/jbc.m205503200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclin F, a cyclin that can form SCF complexes and bind to cyclin B, oscillates in the cell cycle with a pattern similar to cyclin A and cyclin B. Ectopic expression of cyclin F arrests the cell cycle in G(2)/M. How the level of cyclin F is regulated during the cell cycle is completely obscure. Here we show that, similar to cyclin A, cyclin F is degraded when the spindle assembly checkpoint is activated and accumulates when the DNA damage checkpoint is activated. Cyclin F is a very unstable protein throughout much of the cell cycle. Unlike other cyclins, degradation of cyclin F is independent of ubiquitination and proteasome-mediated pathways. Interestingly, proteolysis of cyclin F is likely to involve metalloproteases. Rapid destruction of cyclin F does not require the N-terminal F-box motif but requires the COOH-terminal PEST sequences. The PEST region alone is sufficient to interfere with the degradation of cyclin F and confer instability when fused to cyclin A. These data show that although cyclin F is degraded at similar time as the mitotic cyclins, the underlying mechanisms are entirely distinct.
Collapse
Affiliation(s)
- Tsz Kan Fung
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | |
Collapse
|
26
|
Kamura T, Conaway JW, Conaway RC. Roles of SCF and VHL ubiquitin ligases in regulation of cell growth. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 29:1-15. [PMID: 11908068 DOI: 10.1007/978-3-642-56373-7_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takumi Kamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
27
|
Kamura T, Brower CS, Conaway RC, Conaway JW. A molecular basis for stabilization of the von Hippel-Lindau (VHL) tumor suppressor protein by components of the VHL ubiquitin ligase. J Biol Chem 2002; 277:30388-93. [PMID: 12048197 DOI: 10.1074/jbc.m203344200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multiprotein von Hippel-Lindau (VHL) tumor suppressor (CBC(VHL), Cul2-Elongin BC-VHL) and SCF (Skp1-Cul1/Cdc53-F-box protein) complexes are members of structurally related families of E3 ubiquitin ligases that use a heterodimeric module composed of a member of the Cullin protein family and the RING finger protein Rbx1 (ROC1/Hrt1) to activate ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34. VHL and F-box proteins function as the substrate recruitment subunits of CBC(VHL) and SCF complexes, respectively. In cells, many F-box proteins are short lived and are proposed to be ubiquitylated by an autocatalytic mechanism and destroyed by the proteasome following assembly into SCF complexes. In contrast, the VHL protein is stabilized by interaction with the Elongin B and C subunits of CBC(VHL) in cells. In this report, we have presented direct biochemical evidence that unlike the F-box protein Cdc4, which is ubiquitylated in vitro by Cdc34 in the context of the SCF, the VHL protein is protected from Ubc5-catalyzed ubiquitylation following assembly into the CBC(VHL) complex. CBC(VHL) is continuously required for negative regulation of hypoxia-inducible transcription factors in normoxic cells and of SCF complexes, many of which function only transiently during the cell cycle or in response to cellular signals. Our findings provide a molecular basis for the different modes of cellular regulation of VHL and F-box proteins and are consistent with the known roles of CBC(VHL).
Collapse
Affiliation(s)
- Takumi Kamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
28
|
Ulrich HD. Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr Top Microbiol Immunol 2002; 268:137-74. [PMID: 12083004 DOI: 10.1007/978-3-642-59414-4_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multitude of natural substrates of the 26S proteasome demonstrates convincingly the diversity and flexibility of the ubiquitin/proteasome system: at the same time, the number of pathways in which ubiquitin-dependent degradation is involved highlights the importance of regulated proteolysis for cellular metabolism. This review has addressed recent advances in our understanding of the principles that govern the recognition and targeting of potential substrates. While the mechanism of ubiquitin activation and conjugation is largely understood, the determination of substrate specificity by ubiquitin protein ligases remains a field of active research. Several conserved degradation signals within substrate proteins have been identified, and it is becoming increasingly clear that these serve as docking sites for specific sets of E3s, which in turn adhere to a number of well-defined strategies for the recognition of these motifs. In particular, RING finger proteins are now emerging as a new and apparently widespread class of ubiquitin ligases. The discovery of more and more E3s will undoubtedly reveal even better the common principles in architecture and mechanisms of this class of enzymes. In contrast to substrate recognition by the ubiquitin conjugation system, the way in which a ubiquitylated protein is delivered to the 26S proteasome is poorly understood. There is no doubt that multiubiquitin chains serve as the principal determinant for recognition by the proteasome, and a number of receptors and candidate targeting factors are known, some of which are associated with the proteasome itself; however, unresolved issues are the significance of the different geometries that alternatively linked multiubiquitin chains can adopt, the role of transport between subcellular compartments, as well as the participation of chaperones in the delivery step. Finally, the analysis of ubiquitin-independent, substrate-specific targeting mechanisms, such as the AZ-dependent degradation of ODC, may provide unexpected answers to questions about protein recognition by the 26S proteasome.
Collapse
Affiliation(s)
- H D Ulrich
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, 35043 Marburg/Lahn, Germany
| |
Collapse
|
29
|
Hyman LE, Kwon E, Ghosh S, McGee J, Chachulska AMB, Jackson T, Baricos WH. Binding to Elongin C inhibits degradation of interacting proteins in yeast. J Biol Chem 2002; 277:15586-91. [PMID: 11864988 DOI: 10.1074/jbc.m200800200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongin C is a highly conserved, low molecular weight protein found in a variety of multiprotein complexes in human, rat, fly, worm, and yeast cells. Among the best characterized of these complexes is a mammalian E3 ligase that targets proteins for ubiquitination and subsequent degradation by the 26 S proteasome. Despite its crucial role as a component of such E3 ligases and other complexes, the specific function of Elongin C is unknown. In yeast, Elongin C is a non-essential gene and there is no obvious phenotype as associated with its absence. We previously reported that in Saccharomyces cerevisiae Elongin C (Elc1) interacts specifically and strongly with a class of proteins loosely defined as stress response proteins. In the present study, we examined the role of yeast Elc1 in the turnover of two of these binding partners, Snf4 and Pcl6. Deletion of Elc1 resulted in decreased steady-state levels of Snf4 and Pcl6 as indicated by Western blot analysis. Northern blot analysis of mRNA prepared from elc1 null and wild type strains revealed no difference in mRNA levels for Snf4 and Pcl6 establishing that the effects of Elc1 are not transcriptionally mediated. Reintroduction of either yeast or human Elongin C into Elc1 null strains abrogated this effect. Taken together, these data document that the levels of Snf4 and Pcl6 are dependent on the presence of Elc1 and that binding to Elc1 inhibits the degradation of these proteins. The results suggest a new function for yeast Elongin C that is distinct from a direct role in targeting proteins for ubiquitination and subsequent proteolysis.
Collapse
Affiliation(s)
- Linda E Hyman
- Department of Biochemistry, Tulane University Health Science Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Smardon AM, Tarsio M, Kane PM. The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 2002; 277:13831-9. [PMID: 11844802 DOI: 10.1074/jbc.m200682200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton-translocating ATPases are composed of a peripheral complex, V(1), attached to an integral membrane complex, V(o). Association of the two complexes is essential for ATP-driven proton transport and is regulated post-translationally in response to glucose concentration. A new complex, RAVE, was recently isolated and implicated in glucose-dependent reassembly of V-ATPase complexes that had disassembled in response to glucose deprivation (Seol, J. H., Shevchenko, A., and Deshaies, R. J. (2001) Nat. Cell Biol. 3, 384-391). Here, we provide evidence supporting a role for RAVE in reassembly of the V-ATPase but also demonstrate an essential role in V-ATPase assembly under other conditions. The RAVE complex associates reversibly with V(1) complexes released from the membrane by glucose deprivation but binds constitutively to cytosolic V(1) sectors in a mutant lacking V(o) sectors. V-ATPase complexes from cells lacking RAVE subunits show serious structural and functional defects even in glucose-grown cells or in combination with a mutation that blocks disassembly of the V-ATPase. RAVE small middle dotV(1) interactions are specifically disrupted in cells lacking V(1) subunits E or G, suggesting a direct involvement for these subunits in interaction of the two complexes. Skp1p, a RAVE subunit involved in many different signal transduction pathways, binds stably to other RAVE subunits under conditions that alter RAVE small middle dotV(1) binding; thus, Skp1p recruitment to the RAVE complex does not appear to provide a signal for V-ATPase assembly.
Collapse
Affiliation(s)
- Anne M Smardon
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
31
|
Abstract
The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.
Collapse
Affiliation(s)
- C M Pickart
- School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
32
|
Kepinski S, Leyser O. Ubiquitination and auxin signaling: a degrading story. THE PLANT CELL 2002; 14 Suppl:S81-S95. [PMID: 12782723 PMCID: PMC151249 DOI: 10.1105/tpc.010447] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 02/05/2002] [Indexed: 05/17/2023]
Affiliation(s)
| | - Ottoline Leyser
- To whom correspondence should be addressed. E-mail ; fax 44-1904-434312
| |
Collapse
|
33
|
Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 2001; 98:14440-5. [PMID: 11717410 PMCID: PMC64700 DOI: 10.1073/pnas.251541198] [Citation(s) in RCA: 1331] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.
Collapse
Affiliation(s)
- M D Gomes
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
34
|
Block K, Boyer TG, Yew PR. Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. J Biol Chem 2001; 276:41049-58. [PMID: 11546811 DOI: 10.1074/jbc.m106453200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-conjugating enzyme, CDC34, has been implicated in the ubiquitination of a number of vertebrate substrates, including p27(Kip1), IkappaBalpha, Wee1, and MyoD. We show that mammalian CDC34 is a phosphoprotein that is phosphorylated in proliferating cells. By yeast two-hybrid screening, we identified the regulatory (beta) subunit of human casein kinase 2 (CK2) as a CDC34-interacting protein and show that human CDC34 interacts in vivo with CK2beta in transfected cells. CDC34 is specifically phosphorylated in vitro by recombinant CK2 and HeLa nuclear extract at five sites within the carboxyl-terminal 36 amino acids of CDC34. Importantly, this phosphorylation is inhibited by heparin, a substrate-specific inhibitor of CK2. We have also identified a kinase activity associated with CDC34 in proliferating cells, and we show that this kinase is sensitive to heparin and can utilize GTP, strongly suggesting it is CK2. Phosphorylation of CDC34 by the associated kinase maps predominantly to residues 203 and 222. Mutation of CDC34 at CK2-targeted residues, Ser-203, Ser-222, Ser-231, Thr-233, and Ser-236, abolishes the phosphorylation of CDC34 observed in vivo and markedly shifts nuclearly localized CDC34 to the cytoplasm. These results suggest a potential role for CK2-mediated phosphorylation in the regulation of CDC34 cell localization and function.
Collapse
Affiliation(s)
- K Block
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA
| | | | | |
Collapse
|
35
|
Jäger S, Strayle J, Heinemeyer W, Wolf DH. Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J 2001; 20:4423-31. [PMID: 11500370 PMCID: PMC125261 DOI: 10.1093/emboj/20.16.4423] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2001] [Revised: 06/21/2001] [Accepted: 06/21/2001] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, the ubiquitin-proteasome system plays a major role in selective protein breakdown for cellular regulation. Here we report the discovery of a new essential component of this degradation machinery. We found the Saccharomyces cerevisiae protein Cic1 attached to 26S proteasomes playing a crucial role in substrate specificity for proteasomal destruction. Whereas degradation of short-lived test proteins is not affected, cic1 mutants stabilize the F-box proteins Cdc4 and Grr1, substrate recognition subunits of the SCF complex. Cic1 interacts in vitro and in vivo with Cdc4, suggesting a function as a new kind of substrate recruiting factor or adaptor associated with the proteasome.
Collapse
Affiliation(s)
- Sibylle Jäger
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Present address: MPI of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany Present address: Pharma Research Center, Bayer AG, Aprather Weg 18A, D-42096 Wuppertal, Germany Corresponding author e-mail:
S.Jäger and J.Strayle contributed equally to this work
| | - Jochen Strayle
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Present address: MPI of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany Present address: Pharma Research Center, Bayer AG, Aprather Weg 18A, D-42096 Wuppertal, Germany Corresponding author e-mail:
S.Jäger and J.Strayle contributed equally to this work
| | | | - Dieter H. Wolf
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Present address: MPI of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany Present address: Pharma Research Center, Bayer AG, Aprather Weg 18A, D-42096 Wuppertal, Germany Corresponding author e-mail:
S.Jäger and J.Strayle contributed equally to this work
| |
Collapse
|
36
|
Lockington RA, Kelly JM. Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Mol Microbiol 2001; 40:1311-21. [PMID: 11442830 DOI: 10.1046/j.1365-2958.2001.02474.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The best studied role of ubiquitination is to mark proteins for destruction by the proteasome but, in addition, it has recently been shown to promote macromolecular assembly and function, and alter protein function, thus playing a regulatory role distinct from protein degradation. Deubiquinating enzymes, the ubiquitin-processing proteases (ubps) and the ubiquitin carboxy-terminal hydrolases (uchs), remove ubiquitin from ubiquitinated substrates. We show here that the creB gene involved in carbon catabolite repression in Aspergillus nidulans encodes a functional member of the novel subfamily of the ubp family defined by the human homologue UBH1, thus implicating ubiquitination in the process of carbon catabolite repression. Members of the novel subfamily of ubps that include CreB are widespread amongst eukaryotes, with homologues present in mammals, nematodes, Drosophila and Arabidopsis, but mutations in the genes have only been identified in A. nidulans. From phenotypes of the A. nidulans mutants it is probable that this subfamily is involved in complex regulatory pathways. Mutations in the gene encoding the WD40 repeat protein CreC result in an identical phenotype, implicating both genes in this pathway.
Collapse
Affiliation(s)
- R A Lockington
- Department of Molecular Biosciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | |
Collapse
|
37
|
Smothers DB, Kozubowski L, Dixon C, Goebl MG, Mathias N. The abundance of Met30p limits SCF(Met30p) complex activity and is regulated by methionine availability. Mol Cell Biol 2000; 20:7845-52. [PMID: 11027256 PMCID: PMC86396 DOI: 10.1128/mcb.20.21.7845-7852.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated degradation plays a crucial role in many fundamental biological pathways, including the mediation of cellular responses to changes in environmental conditions. A family of ubiquitin ligase complexes, called SCF complexes, found throughout eukaryotes, is involved in a variety of biological pathways. In Saccharomyces cerevisiae, an SCF complex contains a common set of components, namely, Cdc53p, Skp1p, and Hrt1p. Substrate specificity is defined by a variable component called an F-box protein. The F- box is a approximately 40-amino-acid motif that allows the F-box protein to bind Skp1p. Each SCF complex recognizes different substrates according to which F-box protein is associated with the complex. In yeasts, three SCF complexes have been demonstrated to associate with the ubiquitin-conjugating enzyme Cdc34p and have ubiquitin ligase activity. F-box proteins are not abundant and are unstable. As part of the SCF(Met30p) complex, the F-box protein Met30p represses methionine biosynthetic gene expression when availability of L-methionine is high. Here we demonstrate that in vivo SCF(Met30p) complex activity can be regulated by the abundance of Met30p. Furthermore, we provide evidence that Met30p abundance is regulated by the availability of L-methionine. We propose that the cellular responses mediated by an SCF complex are directly regulated by environmental conditions through the control of F-box protein stability.
Collapse
Affiliation(s)
- D B Smothers
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
38
|
Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 2000; 10:429-39. [PMID: 10998601 DOI: 10.1016/s0962-8924(00)01834-1] [Citation(s) in RCA: 475] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recently, many new examples of E3 ubiquitin ligases or E3 enzymes have been found to regulate a host of cellular processes. These E3 enzymes direct the formation of multiubiquitin chains on specific protein substrates, and - typically - the subsequent destruction of those proteins. We discuss how the modular architecture of E3 enzymes connects one of two distinct classes of catalytic domains to a wide range of substrate-binding domains. In one catalytic class, a HECT domain transfers ubiquitin directly to substrate bound to a non-catalytic domain. Members of the other catalytic class, found in the SCF, VBC and APC complexes, use a RING finger domain to facilitate ubiquitylation. The separable substrate-recognition domains of E3 enzymes provides a flexible means of linking a conserved ubiquitylation function to potentially thousands of ubiquitylated substrates in eukaryotic cells.
Collapse
Affiliation(s)
- P K Jackson
- Dept of Pathology, The Stanford University School of Medicine, Stanford, CA 94305-5324, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Blondel M, Galan JM, Peter M. Isolation and characterization of HRT1 using a genetic screen for mutants unable to degrade Gic2p in saccharomyces cerevisiae. Genetics 2000; 155:1033-44. [PMID: 10880467 PMCID: PMC1461161 DOI: 10.1093/genetics/155.3.1033] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Skp1p-cullin-F-box (SCF) protein complexes are ubiquitin ligases required for degradation of many regulatory proteins involved in cell cycle progression, morphogenesis, and signal transduction. Using a genetic screen, we have isolated a novel allele of the HRT1/RBX1 gene in budding yeast (hrt1-C81Y). hrt1-C81Y mutant cells exhibited an aberrant morphology but were viable at all temperatures. The cells displayed multiple genetic interactions with mutations in known SCF components and were defective for the degradation of several SCF targets including Gic2p, Far1p, Sic1p, and Cln2p. In addition, they also failed to degrade the F-box proteins Grr1p, Cdc4p, and Met30p. Wild-type Hrt1p but not Hrt1p-C81Y was able to bind multiple F-box proteins in an F-box-dependent manner. Hrt1p-C81Y harbors a single mutation in its ring-finger domain, which is conserved in subunits of distinct E3 ligases. Finally, Hrt1p was localized in both nucleus and cytoplasm and despite a short half-life was expressed constitutively throughout the cell cycle. Taken together, these results suggest that Hrt1p is a core subunit of multiple SCF complexes.
Collapse
Affiliation(s)
- M Blondel
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges/VD, Switzerland
| | | | | |
Collapse
|
40
|
Abstract
The ubiquitin system drives the cell division cycle by the timely destruction of numerous regulatory proteins. Remarkably, the two main activities that catalyze substrate ubiquitination in the cell cycle, the Skp1-Cdc53/cullin-F-box protein (SCF) complexes and the anaphase-promoting complex/cyclosome (APC/C), define a new superfamily of E3 ubiquitin ligases, all based on related cullin and RING-H2 finger protein subunits. The circuits that interconnect the SCF, APC/C and cyclin-dependent kinase activities form a master oscillator that coordinates the replication and segregation of the genome.
Collapse
Affiliation(s)
- M Tyers
- Programme in Molecular Biology and Cancer, Graduate Department of Molecular and Medical Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, M5G 1X5, M5S 1A8, Canada.
| | | |
Collapse
|
41
|
Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCF(Met30 )complex. EMBO J 2000; 19:282-94. [PMID: 10637232 PMCID: PMC305562 DOI: 10.1093/emboj/19.2.282] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1999] [Revised: 11/08/1999] [Accepted: 11/11/1999] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae SCF(Met30) ubiquitin-protein ligase controls cell cycle function and sulfur amino acid metabolism. We report here that the SCF(Met30 )complex mediates the transcriptional repression of the MET gene network by triggering degradation of the transcriptional activator Met4p when intracellular S-adenosylmethionine (AdoMet) increases. This AdoMet-induced Met4p degradation is dependent upon the 26S proteasome function. Unlike Met4p, the other components of the specific transcriptional activation complexes that are assembled upstream of the MET genes do not appear to be regulated at the protein level. We provide evidence that the interaction between Met4p and the F-box protein Met30p occurs irrespective of the level of intracellular AdoMet, suggesting that the timing of Met4p degradation is not controlled by its interaction with the SCF(Met30) complex. We also demonstrate that Met30p is a short-lived protein, which localizes within the nucleus. Furthermore, transcription of the MET30 gene is regulated by intracellular AdoMet levels and is dependent upon the Met4p transcription activation function. Thus Met4p appears to control its own degradation by regulating the amount of assembled SCF(Met30) ubiquitin ligase.
Collapse
Affiliation(s)
- A Rouillon
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Protein degradation is deployed to modulate the steady-state abundance of proteins and to switch cellular regulatory circuits from one state to another by abrupt elimination of control proteins. In eukaryotes, the bulk of the protein degradation that occurs in the cytoplasm and nucleus is carried out by the 26S proteasome. In turn, most proteins are thought to be targeted to the 26S proteasome by covalent attachment of a multiubiquitin chain. Ubiquitination of proteins requires a multienzyme system. A key component of ubiquitination pathways, the ubiquitin ligase, controls both the specificity and timing of substrate ubiquitination. This review is focused on a conserved ubiquitin ligase complex known as SCF that plays a key role in marking a variety of regulatory proteins for destruction by the 26S proteasome.
Collapse
Affiliation(s)
- R J Deshaies
- Department of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
43
|
Abstract
The recent identification of an essential RING-H2 finger protein in the SCF E3 ubiquitin ligase complex of budding yeast has uncovered a family of related E3 enzymes, including the other main cell cycle E3 complex, the anaphase promoting complex (APC). Recent insights into APC-dependent proteolysis include a novel protease activity that dissolves cohesion between sister chromatids at anaphase, and a crucial phosphatase, Cdc14, whose release from the nucleolus eliminates cyclin-dependent kinase activity and thereby drives exit from mitosis.
Collapse
Affiliation(s)
- P Jorgensen
- Programme in Molecular Biology and Cancer, Graduate Department of Molecular and Medical Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, M5G 1X5, M5S 1A8, Canada
| | | |
Collapse
|
44
|
Ohta T, Michel JJ, Xiong Y. Association with cullin partners protects ROC proteins from proteasome-dependent degradation. Oncogene 1999; 18:6758-66. [PMID: 10597284 DOI: 10.1038/sj.onc.1203115] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cullin 1/CDC53 represents a multigene family and has been linked to the ubiquitin-mediated proteolysis of several different proteins. We recently identified two closely related RING finger proteins, ROC1 and ROC2, that share considerable sequence similarity to an APC subunit, APC11, and demonstrated ROC1 as an essential subunit of CUL1 and CDC53 ubiquitin ligases. We report here that the expression of ROC1, ROC2 and APC11 genes are induced by mitogens and remain constant during the cell cycle. Unlike other subunits of SCF and APC E3 ligases, ectopically expressed ROC family proteins are degraded by a proteasome-inhibitor sensitive pathway and are stabilized by associating with cullins. Mutations at the conserved Phe79 and His80 residues in the RING finger of ROC1 diminish its binding with cullins, resulting in a loss of cullin protection and ubiquitin ligase activity. These results suggest a potential mechanism for regulating the activity of ROC-cullin ligases through complex assembly and ROC/APC11 subunit ubiquitination.
Collapse
Affiliation(s)
- T Ohta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | |
Collapse
|
45
|
Galan JM, Peter M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc Natl Acad Sci U S A 1999; 96:9124-9. [PMID: 10430906 PMCID: PMC17743 DOI: 10.1073/pnas.96.16.9124] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin-dependent degradation of regulatory proteins controls many cellular processes, including cell cycle progression, morphogenesis, and signal transduction. Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin ligases composed of a core complex including Skp1p, Cdc53p, one of multiple F-box proteins that are thought to provide substrate specificity to the complex, and the ubiquitin-conjugating enzyme, Cdc34p. It is not understood how SCF complexes are regulated and how physiological conditions alter their levels. Here we show that three F-box proteins, Grr1p, Cdc4p, and Met30p, are unstable components of the SCF, and are themselves degraded in a ubiquitin- and proteasome-dependent manner in vivo. Ubiquitination requires all the core components of the SCF and an intact F-box, suggesting that ubiquitination occurs within the SCF complex by an autocatalytic mechanism. Cdc4p and Grr1p are intrinsically unstable, and their steady-state levels did not fluctuate through the cell cycle. Taken together, our results suggest that ubiquitin-dependent degradation of F-box proteins allows rapid switching among multiple SCF complexes, thereby enabling cells to adapt quickly to changing physiological conditions and progression through different phases of the cell cycle.
Collapse
Affiliation(s)
- J M Galan
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses 155, 1066 Epalinges/VD, Switzerland
| | | |
Collapse
|