1
|
Popli P, Oestreich AK, Maurya VK, Rowen MN, Zhang Y, Holtzman MJ, Masand R, Lydon JP, Akira S, Moley K, Kommagani R. The autophagy protein ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport during early pregnancy. eLife 2025; 13:RP97325. [PMID: 40100261 PMCID: PMC11919251 DOI: 10.7554/elife.97325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Recurrent pregnancy loss, characterized by two or more failed clinical pregnancies, poses a significant challenge to reproductive health. In addition to embryo quality and endometrial function, proper oviduct function is also essential for successful pregnancy establishment. Therefore, structural abnormalities or inflammation resulting from infection in the oviduct may impede the transport of embryos to the endometrium, thereby increasing the risk of miscarriage. However, our understanding of the biological processes that preserve the oviductal cellular structure and functional integrity is limited. Here, we report that autophagy-related protein ATG14 plays a crucial role in maintaining the cellular integrity of the oviduct by controlling inflammatory responses, thereby supporting efficient embryo transport. Specifically, the conditional depletion of the autophagy-related gene Atg14 in the oviduct causes severe structural abnormalities compromising its cellular integrity, leading to the abnormal retention of embryos. Interestingly, the selective loss of Atg14 in oviduct ciliary epithelial cells did not impact female fertility, highlighting the specificity of ATG14 function in distinct cell types within the oviduct. Mechanistically, loss of Atg14 triggered unscheduled pyroptosis via altering the mitochondrial integrity, leading to inappropriate embryo retention and impeded embryo transport in the oviduct. Finally, pharmacological activation of pyroptosis in pregnant mice phenocopied the genetically induced defect and caused impairment in embryo transport. Together, we found that ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport from the oviduct to uterus for the successful implantation. Of clinical significance, these findings provide possible insights into the underlying mechanism(s) of early pregnancy loss and might aid in developing novel prevention strategies using autophagy modulators.
Collapse
Affiliation(s)
- Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
| | - Arin K Oestreich
- Department Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, United States
| | - Vineet K Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Marina N Rowen
- Department Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, United States
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, United States
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, United States
| | - Ramya Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka, Japan
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Kelle Moley
- Department Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, United States
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
2
|
Popli P, Oestreich AK, Maurya VK, Rowen MN, Masand R, Holtzman M, Zhang Y, P Lydon J, Shizuo Akira P, Moley K, Kommagnani R. The autophagy protein, ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport during early pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585812. [PMID: 38562843 PMCID: PMC10983954 DOI: 10.1101/2024.03.19.585812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recurrent pregnancy loss (RPL), characterized by two or more failed clinical pregnancies, poses a significant challenge to reproductive health. In addition to embryo quality and endometrial function, proper oviduct function is also essential for successful pregnancy establishment. Therefore, structural abnormalities or inflammation resulting from infection in the oviduct may impede the transport of embryos to the endometrium, thereby increasing the risk of miscarriage. However, our understanding of the biological processes that preserve the oviductal cellular structure and functional integrity is limited. Here, we report that autophagy-related protein ATG14 plays a crucial role in maintaining the cellular integrity of the oviduct by controlling inflammatory responses, thereby supporting efficient embryo transport. Specifically, the conditional depletion of the autophagy-related gene, Atg14 in the oviduct causes severe structural abnormalities compromising its cellular integrity leading to the abnormal retention of embryos. Interestingly, the selective loss of Atg14 in oviduct ciliary epithelial cells did not impact female fertility, highlighting the specificity of ATG14 function in distinct cell types within the oviduct. Mechanistically, loss of Atg14 triggered unscheduled pyroptosis via altering the mitochondrial integrity leading to inappropriate embryo retention and impeded embryo transport in the oviduct. Finally, pharmacological activation of pyroptosis in pregnant mice phenocopied the genetically induced defect and caused impairment in embryo transport. Together, we found that ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport from the oviduct to uterus for the successful implantation. Of clinical significance, these findings provide possible insights into the underlying mechanism(s) of early pregnancy loss and might aid in developing novel prevention strategies using autophagy modulators.
Collapse
|
3
|
Akaeda S, Aikawa S, Hirota Y. Spatial and molecular anatomy of the endometrium during embryo implantation: a current overview of key regulators of blastocyst invasion. FEBS J 2024; 291:4206-4221. [PMID: 38348632 DOI: 10.1111/febs.17077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 10/04/2024]
Abstract
Embryo implantation is composed of three steps: blastocyst apposition, adhesion/attachment and invasion. Blastocyst invasion has been studied less extensively than the other two events. Historically, studies conducted using electron microscopy have shown the removal of epithelial cells in the vicinity of the attached blastocysts in rodents, although the underlying mechanisms have remained unclear. Here, we describe recent studies using mice with uterine-specific gene deletion that demonstrated important roles for nuclear proteins such as progesterone receptor, hypoxia inducible factor and retinoblastoma in the regulation of embryo invasion. In these mouse models, the detachment of the endometrial luminal epithelium, decidualization in the stroma, and the activation of trophoblasts have been found to be important in ensuring embryo invasion. This review summarizes the molecular signaling associated with these cellular events, mainly evidenced by mouse models.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
4
|
Hai L, Maurya VK, DeMayo FJ, Lydon JP. Establishment of Murine Pregnancy Requires the Promyelocytic Leukemia Zinc Finger Transcription Factor. Int J Mol Sci 2024; 25:3451. [PMID: 38542422 PMCID: PMC10970820 DOI: 10.3390/ijms25063451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-β estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| |
Collapse
|
5
|
Chadchan SB, Popli P, Liao Z, Andreas E, Dias M, Wang T, Gunderson SJ, Jimenez PT, Lanza DG, Lanz RB, Foulds CE, Monsivais D, DeMayo FJ, Yalamanchili HK, Jungheim ES, Heaney JD, Lydon JP, Moley KH, O'Malley BW, Kommagani R. A GREB1-steroid receptor feedforward mechanism governs differential GREB1 action in endometrial function and endometriosis. Nat Commun 2024; 15:1947. [PMID: 38431630 PMCID: PMC10908778 DOI: 10.1038/s41467-024-46180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Eryk Andreas
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Dias
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie J Gunderson
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patricia T Jimenez
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin Cancer Biol 2024; 98:51-63. [PMID: 38135020 DOI: 10.1016/j.semcancer.2023.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; INSERM, Montpellier, France.
| |
Collapse
|
7
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
8
|
Popli P, Tang S, Chadchan SB, Talwar C, Rucker EB, Guan X, Monsivais D, Lydon JP, Stallings CL, Moley KH, Kommagani R. Beclin-1-dependent autophagy, but not apoptosis, is critical for stem-cell-mediated endometrial programming and the establishment of pregnancy. Dev Cell 2023; 58:885-897.e4. [PMID: 37040770 PMCID: PMC10289806 DOI: 10.1016/j.devcel.2023.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
The human endometrium shows a remarkable regenerative capacity that enables cyclical regeneration and remodeling throughout a woman's reproductive life. Although early postnatal uterine developmental cues direct this regeneration, the vital factors that govern early endometrial programming are largely unknown. We report that Beclin-1, an essential autophagy-associated protein, plays an integral role in uterine morphogenesis during the early postnatal period. We show that conditional depletion of Beclin-1 in the uterus triggers apoptosis and causes progressive loss of Lgr5+/Aldh1a1+ endometrial progenitor stem cells, with concomitant loss of Wnt signaling, which is crucial for stem cell renewal and epithelial gland development. Beclin-1 knockin (Becn1 KI) mice with disabled apoptosis exhibit normal uterine development. Importantly, the restoration of Beclin-1-driven autophagy, but not apoptosis, promotes normal uterine adenogenesis and morphogenesis. Together, the data suggest that Beclin-1-mediated autophagy acts as a molecular switch that governs the early uterine morphogenetic program by maintaining the endometrial progenitor stem cells.
Collapse
Affiliation(s)
- Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sangappa B Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chandni Talwar
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Edmund B Rucker
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelle H Moley
- Department Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Wen L, Wei Q, Livingston MJ, Dong G, Li S, Hu X, Li Y, Huo Y, Dong Z. PFKFB3 mediates tubular cell death in cisplatin nephrotoxicity by activating CDK4. Transl Res 2023; 253:31-40. [PMID: 36243313 PMCID: PMC10416729 DOI: 10.1016/j.trsl.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Nephrotoxicity is a major side effect of cisplatin, a widely used cancer therapy drug. However, the mechanism of cisplatin nephrotoxicity remains unclear and no effective kidney protective strategies are available. Here, we report the induction of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in both in vitro cell culture and in vivo mouse models of cisplatin nephrotoxicity. Notably, PFKFB3 was mainly induced in the nucleus of kidney tubular cells, suggesting a novel function other than its canonical role in glycolysis. Both pharmacological inhibition and genetic silencing of PFKFB3 led to the suppression of cisplatin-induced apoptosis in cultured renal proximal tubular cells (RPTCs). Moreover, cisplatin-induced kidney injury or nephrotoxicity was ameliorated in renal proximal tubule-specific PFKFB3 knockout mice. Mechanistically, we demonstrated the interaction of PFKFB3 with cyclin-dependent kinase 4 (CDK4) during cisplatin treatment, resulting in CDK4 activation and consequent phosphorylation and inactivation of retinoblastoma tumor suppressor (Rb). Inhibition of CDK4 reduced cisplatin-induced apoptosis in RPTCs and kidney injury in mice. Collectively, this study unveils a novel pathological role of PFKFB3 in cisplatin nephrotoxicity through the activation of the CDK4/Rb pathway, suggesting a new kidney protective strategy for cancer patients by blocking PFKFB3.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
10
|
Yoo JY, Kim TH, Shin JH, Marquardt RM, Müller U, Fazleabas AT, Young SL, Lessey BA, Yoon HG, Jeong JW. Loss of MIG-6 results in endometrial progesterone resistance via ERBB2. Nat Commun 2022; 13:1101. [PMID: 35232969 PMCID: PMC8888616 DOI: 10.1038/s41467-022-28608-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects. Female subfertility is highly associated with endometriosis. Here the authors show that progesterone-induced MIG-6 is reduced in endometrium of infertile women and non-human primates with endometriosis, and in a mouse model find that Erbb2 is the key mediator of Mig-6 loss induced endometriosis-related infertility.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Guro Hospital, Korea University Medical Center, Seoul, South Korea
| | - Ryan M Marquardt
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
11
|
Zhang X, Li Y, Chen X, Jin B, Shu C, Ni W, Jiang Y, Zhang J, Ma L, Shu J. Single-cell transcriptome analysis uncovers the molecular and cellular characteristics of thin endometrium. FASEB J 2022; 36:e22193. [PMID: 35201635 DOI: 10.1096/fj.202101579r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Infertility is a social and medical problem around the world and the incidence continues to rise. Thin endometrium (TE) is a great challenge of infertility treatment, even by in vitro fertilization and embryo transfer. It is widely believed that TE impairs endometrium receptivity. However, only a few studies have explained the molecular mechanism. Herein, in order to reveal the possible mechanism, we sampled endometrium from a TE patient and a control volunteer and got a transcriptomic atlas of 18 775 individual cells which was constructed using single-cell RNA sequencing, and seven cell types have been identified. The cells were acquired during proliferative and secretory phases, respectively. The proportion of epithelial cells and stromal cells showed a significant difference between the TE group and the control group. In addition, differential expressed genes (DEGs) in diverse cell types were revealed, the enriched pathways of DEGs were found closely related to the protein synthesis in TE of both proliferative and secretory phases. Some DEGs can influence cell-type ratio and impaired endometrial receptivity in TE. Furthermore, divergent expression of estrogen receptors 1 and progesterone receptors in stromal and epithelial cells were compared in the TE sample from the control. The cellular and molecular heterogeneity found in this study provided valuable information for disclosing the mechanisms of impaired receptivity in TE.
Collapse
Affiliation(s)
- Xirong Zhang
- Department of Obstetrics and Gynecology, Qingdao Medical College of Qingdao University, Qingdao, China.,Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yini Li
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaopan Chen
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chongyi Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wanmao Ni
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yinshen Jiang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Department of Obstetrics, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lijia Ma
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Jing Shu
- Department of Obstetrics and Gynecology, Qingdao Medical College of Qingdao University, Qingdao, China.,Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
12
|
Fan B, Han Y, Yang Y, Zhao X, Tang Y, Li X, Diao Y, Xu B. Transcriptomic analysis of ovarian signaling at the emergence of the embryo from obligate diapause in the American mink (Neovison vison). Anim Reprod Sci 2021; 232:106823. [PMID: 34390943 DOI: 10.1016/j.anireprosci.2021.106823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022]
Abstract
Mink embryonic diapause occurs when embryos, at the blastocyst stage, enter a state of a reversible arrest in development and metabolism. Some ovarian factors are required because ovariectomy leads to prevention of implantation in mink. Mechanisms regulating this process, however, remain largely unknown. To explore ovarian modifications associated with emergence of embryonic diapause in mink, there was comparison of transcriptomes after embryonic activation to when there was embryonic diapause using RNA-sequencing. A library of 655 differentially expressed genes (DEGs) of all assembled 33,656 genes was generated. Among these, 558 genes were annotated with 106 genes being expressed to a greater extent in ovaries during embryonic diapause, whereas 452 genes were more abundantly expressed in ovaries after embryonic activation. The major categories of genes with differential transcript abundances include metabolic pathways, metabolism of tryptophan, tyrosine and vitamin B6, oxidoreductase activity, calcium signaling pathway, steroid biosynthesis and lysosome. The APOE and APOA1 hub genes identified through the protein-protein interaction (PPI) analysis have important functions in cholesterol transport and steroidogenesis. Transcript abundances associated with 39 genes were investigated using RT-qPCR procedures to confirm RNA-sequencing data. Of 29 mRNA transcripts, 26 were validated using RNA-sequencing, whereas three of ten indistinguishable genes determined using RNA-sequencing were confirmed. Most of these verified DEGs are involved in the prolactin signaling pathway, formation of functional corpora lutea, and steroid synthesis, suggesting these biological processes are implicated in embryonic reactivation. Overall, results provide new insights into ovarian signaling at the time of emergence of the blastocyst from diapause in mink.
Collapse
Affiliation(s)
- Bingfeng Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yuping Han
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yifeng Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xiangyuan Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yu Tang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xiaoxia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yunfei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
13
|
Yin Y, Haller ME, Chadchan SB, Kommagani R, Ma L. Signaling through retinoic acid receptors is essential for mammalian uterine receptivity and decidualization. JCI Insight 2021; 6:e150254. [PMID: 34292881 PMCID: PMC8492326 DOI: 10.1172/jci.insight.150254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoic acid (RA) signaling has long been speculated to regulate embryo implantation, because many enzymes and proteins responsible for maintaining RA homeostasis and transducing RA signals are tightly regulated in the endometrium during this critical period. However, due to a lack of genetic data, it was unclear whether RA signaling is truly required for implantation and which specific RA signaling cascades are at play. Herein we utilize a genetic murine model that expresses a dominant-negative form of RA receptor (RAR) specifically in female reproductive organs to show that functional RA signaling is fundamental to female fertility, particularly implantation and decidualization. Reduction in RA signaling activity severely affects the ability of the uterus to achieve receptive status and decidualize, partially through dampening follistatin expression and downstream activin B/bone morphogenetic protein 2 signaling. To confirm translational relevance of these findings to humans, human endometrial stromal cells (hESCs) were treated with a pan-RAR antagonist to show that in vitro decidualization is impaired. RNA interference perturbation of individual RAR transcripts in hESCs revealed that RARα in particular was essential for proper decidualization. These data provide direct functional evidence that uterine RAR-mediated RA signaling was crucial for mammalian embryo implantation, and its disruption led to failure of uterine receptivity and decidualization, resulting in severely compromised fertility.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Meade E Haller
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
14
|
Mauro LJ, Seibel MI, Diep CH, Spartz A, Perez Kerkvliet C, Singhal H, Swisher EM, Schwartz LE, Drapkin R, Saini S, Sesay F, Litovchick L, Lange CA. Progesterone Receptors Promote Quiescence and Ovarian Cancer Cell Phenotypes via DREAM in p53-Mutant Fallopian Tube Models. J Clin Endocrinol Metab 2021; 106:1929-1955. [PMID: 33755733 PMCID: PMC8499172 DOI: 10.1210/clinem/dgab195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT The ability of ovarian steroids to modify ovarian cancer (OC) risk remains controversial. Progesterone is considered to be protective; recent studies indicate no effect or enhanced OC risk. Knowledge of progesterone receptor (PR) signaling during altered physiology that typifies OC development is limited. OBJECTIVE This study defines PR-driven oncogenic signaling mechanisms in p53-mutant human fallopian tube epithelia (hFTE), a precursor of the most aggressive OC subtype. METHODS PR expression in clinical samples of serous tubal intraepithelial carcinoma (STIC) lesions and high-grade serous OC (HGSC) tumors was analyzed. Novel PR-A and PR-B isoform-expressing hFTE models were characterized for gene expression and cell cycle progression, emboli formation, and invasion. PR regulation of the DREAM quiescence complex and DYRK1 kinases was established. RESULTS STICs and HGSC express abundant activated phospho-PR. Progestin promoted reversible hFTE cell cycle arrest, spheroid formation, and invasion. RNAseq/biochemical studies revealed potent ligand-independent/-dependent PR actions, progestin-induced regulation of the DREAM quiescence complex, and cell cycle target genes through enhanced complex formation and chromatin recruitment. Disruption of DREAM/DYRK1s by pharmacological inhibition, HPV E6/E7 expression, or DYRK1A/B depletion blocked progestin-induced cell arrest and attenuated PR-driven gene expression and associated OC phenotypes. CONCLUSION Activated PRs support quiescence and pro-survival/pro-dissemination cell behaviors that may contribute to early HGSC progression. Our data support an alternative perspective on the tenet that progesterone always confers protection against OC. STICs can reside undetected for decades prior to invasive disease; our studies reveal clinical opportunities to prevent the ultimate development of HGSC by targeting PRs, DREAM, and/or DYRKs.
Collapse
Affiliation(s)
- Laura J Mauro
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Department of Animal Science, St. Paul, MN 55108, USA
| | - Megan I Seibel
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Caroline H Diep
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Angela Spartz
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
| | | | - Hari Singhal
- Northwestern University, Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M Swisher
- University of Washington Seattle, Dept Obstetrics & Gynecology, Division of Gynecologic Oncology, Seattle, WA 98109, USA
| | - Lauren E Schwartz
- University of Pennsylvania, Dept of Pathology and Laboratory Medicine, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Dept Obstetrics & Gynecology, Philadelphia, PA 19104, USA
| | - Siddharth Saini
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Fatmata Sesay
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Larisa Litovchick
- Virginia Commonwealth University, Massey Cancer Center, Dept. Internal Medicine, Division of Hematology, Oncology & Palliative Care, Richmond, VA 23298, USA
| | - Carol A Lange
- University of Minnesota, Masonic Cancer Center, Minneapolis, MN 55455, USA
- University of Minnesota, Dept Medicine, Division of Hematology, Oncology & Transplantation, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
McAvey B, Kuokkanen S, Zhu L, Pollard JW. The selective progesterone receptor modulator, telapristone acetate, is a mixed antagonist/agonist in the human and mouse endometrium and inhibits pregnancy in mice. F&S SCIENCE 2021; 2:59-70. [PMID: 35559765 DOI: 10.1016/j.xfss.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the effect of the selective progesterone receptor modulator, telapristone acetate (CDB-4124), on endometrial biology and reproductive outcomes. Ovariectomized and hormone-treated CD1 female mice, CD1 female mice with xenotransplants of reconstructed human endometrial tissue, mated wildtype female mice, and cultured human endometrial stromal cells (hESCs) were treated with CDB-4124, followed by the assessment of endometrial cell deoxyribonucleic acid (DNA) proliferation, stromal decidual response, and embryo implantation. DESIGN Experimental study. SETTING Academic research laboratory. PATIENTS Healthy volunteer women from the community were recruited for endometrial biopsies. ANIMALS CD1 out-bred mice (Charles River Laboratories) and nude mice, NU/J (Jackson Laboratories, Bar Harbor, ME). INTERVENTION Treatment of mice and hESCs with CDB-4124. MAIN OUTCOME MEASURE The effect of CDB-4124 on endometrial cell morphology and DNA synthesis, decidual response, and mouse embryo implantation. RESULTS CDB-4124 inhibited estradiol-induced epithelial DNA synthesis in the mouse uterus and xenotransplanted human endometrium. This antiproliferative effect was less than that of progesterone (P4) and was observed when CDB-4124 was administered alone or concomitantly with P4. In the uterine epithelium, CDB-4124 acted as a P4 agonist and partial antagonist. In contrast, CDB-4124 acted as a complete P4 antagonist in the uterine stroma, where it blocked P4's action to induce a decidual response in the pseudopregnant mouse uterus and wildtype mouse uterus after copulation. In mated female mice, CDB-4124 impaired embryo implantation. Similarly, CDB-4124 inhibited the morphological and biochemical transformations of hESCs to decidual cells in vitro. CONCLUSION CDB-4124 exerts mixed P4 antagonistic/agonistic effects in the human and mouse endometrium, which result in failed embryo implantation because of the absence of stromal decidualization.
Collapse
Affiliation(s)
- Beth McAvey
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; Ichan School of Medicine, RMA, New York
| | - Satu Kuokkanen
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; NYU Langone Reproductive Specialists of NY, NYU Langone School of Medicine, NYU Langone Long Island School of Medicine, Mineola, New York
| | - Liyin Zhu
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey W Pollard
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York; Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburg, Edinburgh, United Kingdom.
| |
Collapse
|
16
|
Akaeda S, Hirota Y, Fukui Y, Aikawa S, Shimizu-Hirota R, Kaku T, Gebril M, Hirata T, Hiraoka T, Matsuo M, Haraguchi H, Saito-Kanatani M, Takeda N, Fujii T, Osuga Y. Retinoblastoma protein promotes uterine epithelial cell cycle arrest and necroptosis for embryo invasion. EMBO Rep 2021; 22:e50927. [PMID: 33399260 DOI: 10.15252/embr.202050927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma protein (RB) encoded by Rb1 is a prominent inducer of cell cycle arrest (CCA). The hormone progesterone (P4 ) promotes CCA in the uterine epithelium and previous studies indicated that P4 activates RB by reducing the phosphorylated, inactive form of RB. Here, we show that embryo implantation is impaired in uterine-specific Rb1 knockout mice. We observe persistent cell proliferation of the Rb1-deficient uterine epithelium until embryo attachment, loss of epithelial necroptosis, and trophoblast phagocytosis, which correlates with subsequent embryo invasion failure, indicating that Rb1-induced CCA and necroptosis of uterine epithelium are involved in embryo invasion. Pre-implantation P4 supplementation is sufficient to restore these defects and embryo invasion. In Rb1-deficient uterine epithelial cells, TNFα-primed necroptosis is impaired, which is rescued by the treatment with a CCA inducer thymidine or P4 through the upregulation of TNF receptor type 2. TNFα is expressed in the luminal epithelium and the embryo at the embryo attachment site. These results provide evidence that uterine Rb1-induced CCA is involved in TNFα-primed epithelial necroptosis at the implantation site for successful embryo invasion.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Frontier Outstanding Research for Clinical Empowerment (FORCE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center of Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mona Gebril
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuko Saito-Kanatani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotuke, Tochigi, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Brain-Derived Neurotrophic Factor Regulates Ishikawa Cell Proliferation through the TrkB-ERK1/2 Signaling Pathway. Biomolecules 2020; 10:biom10121645. [PMID: 33302387 PMCID: PMC7762527 DOI: 10.3390/biom10121645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Endometrial regulation is a necessary condition for maintaining normal uterine physiology, which is driven by many growth factors. Growth factors produced in the endometrium are thought to be related to the proliferation of endometrial cells induced by estradiol-17β (E2). In this study, we found that E2 can induce the secretion of brain-derived neurotrophic factor (BDNF) in Ishikawa cells (the cells of an endometrial cell line). Furthermore, Ishikawa cells were used in exploring the regulatory role of BDNF in endometrial cells and to clarify the potential mechanism. (2) Methods: Ishikawa cells were treated with different concentrations of BDNF (100, 200, 300, 400, and 500 ng/mL). The mRNA expression levels of various proliferation-related genes were detected through quantitative reverse transcription polymerase chain reaction, and the expression of various proliferation-related genes was detected by knocking out BDNF or inhibiting the binding of BDNF to its receptor TrkB. The expression levels of various proliferation-related genes were detected by performing Western blotting on the TrkB-ERK1/2 signaling pathway. (3) Results: Exogenous BDNF promoted the growth of the Ishikawa cells, but the knocking down of BDNF or the inhibition of TrkB reduced their growth. Meanwhile, BDNF enhanced cell viability and increased the expression of proliferation-related genes, including cyclin D1 and cyclin E2. More importantly, the BDNF-induced proliferation of the Ishikawa cells involved the ERK1/2 signaling pathway. (4) Conclusions: The stimulating effect of exogenous E2 on the expression of BDNF in the uterus and the action of BDNF promoted the proliferation of the Ishikawa cells through the TrkB-ERK1/2 signal pathway.
Collapse
|
18
|
Thomas MU, Messex JK, Dang T, Abdulkadir SA, Jorcyk CL, Liou GY. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK. FEBS J 2020; 288:1871-1886. [PMID: 32865335 DOI: 10.1111/febs.15541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
The risk factors for prostate cancer include a high-fat diet and obesity, both of which are associated with an altered cell environment including increased inflammation. It has been shown that chronic inflammation due to a high-fat diet or bacterial infection has the potential to accelerate prostate cancer as well as its precursor, prostatic intraepithelial neoplasia (PIN), development. However, the underlying mechanism of how chronic inflammation promotes prostate cancer development, especially PIN, remains unclear. In this study, we showed that more macrophages were present in PIN areas as compared to the normal areas of human prostate. When co-culturing PIN cells with macrophages in 3D, more PIN cells had nuclear localized cyclin D1, indicating that macrophages enhanced PIN cell proliferation. We identified ICAM-1 and CCL2 as chemoattractants expressed by PIN cells to recruit macrophages. Furthermore, we discovered that macrophage-secreted cytokines including C5a, CXCL1, and CCL2 were responsible for increased PIN cell proliferation. These three cytokines activated ERK and JNK signaling in PIN cells through a ligand-receptor interaction. However, only blockade of ERK abolished macrophage cytokines-induced cell proliferation of PIN. Overall, our results provide a mechanistic view on how macrophages activated through chronic inflammation can expedite PIN progression during prostate cancer development. The information from our work can facilitate a comprehensive understanding of prostate cancer development, which is required for improvement of current strategies for prostate cancer therapy.
Collapse
Affiliation(s)
- Mikalah U Thomas
- Department of Biological Sciences, Clark Atlanta University, GA, USA
| | - Justin K Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Tu Dang
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, IL, USA.,Department of Pathology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Cheryl L Jorcyk
- Department of Biological Science, Boise State University, ID, USA
| | - Geou-Yarh Liou
- Department of Biological Sciences, Clark Atlanta University, GA, USA.,Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| |
Collapse
|
19
|
Macrophage Cytokines Enhance Cell Proliferation of Normal Prostate Epithelial Cells through Activation of ERK and Akt. Sci Rep 2018; 8:7718. [PMID: 29769604 PMCID: PMC5955920 DOI: 10.1038/s41598-018-26143-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophage infiltrations (inflammation) are associated with prostate disorders such as prostatitis, prostatic hyperplasia and prostate cancer. All prostate disorders have elevated cell proliferation, and are initiated from normal prostate epithelial cells. To date, the mechanism of how macrophages regulate normal prostate epithelial cell proliferation remains largely unknown. Using a 3D co-culture system, we here show that Raw 264.7 macrophages increased cell proliferation of normal prostate epithelial PZ-HPV-7 cells. In addition, these Raw 264.7 macrophages expressed higher levels of Ym1 and CD206. We further identify macrophage-secreted cytokines including CCL3, IL-1ra, osteopontin, M-CSF1 and GDNF as mediators for potentiating PZ-HPV-7 cell proliferation in 3D. All these cytokines differentially activated ERK and Akt. Blockade of both kinases through their inhibitors hindered macrophage-induced cell proliferation of PZ-HPV-7 cells. Hence, our data provide mechanistic insight of how inflammation may contribute to development of prostatic diseases at a very early stage through augment of cell proliferation of normal prostate epithelial cells.
Collapse
|
20
|
van der Weijden VA, Flöter VL, Ulbrich SE. Gestational oral low-dose estradiol-17β induces altered DNA methylation of CDKN2D and PSAT1 in embryos and adult offspring. Sci Rep 2018; 8:7494. [PMID: 29748642 PMCID: PMC5945594 DOI: 10.1038/s41598-018-25831-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting chemicals (EDC) interfere with the natural hormone balance and may induce epigenetic changes through exposure during sensitive periods of development. In this study, the effects of short-term estradiol-17β (E2) exposure on various tissues of pregnant sows (F0) and on day 10 blastocysts (F1) were assessed. Intergenerational effects were investigated in the liver of 1-year old female offspring (F1). During gestation, sows were orally exposed to two low doses and a high dose of E2 (0.05, 10, and 1000 µg/kg body weight/day). In F0, perturbed tissue specific mRNA expression of cell cycle regulation and tumour suppressor genes was found at low and high dose exposure, being most pronounced in the endometrium and corpus luteum. The liver showed the most significant DNA hypomethylation in three target genes; CDKN2D, PSAT1, and RASSF1. For CDKN2D and PSAT1, differential methylation in blastocysts was similar as observed in the F0 liver. Whereas blastocysts showed hypomethylation, the liver of 1-year old offspring showed subtle, but significant hypermethylation. We show that the level of effect of estrogenic EDC, with the periconceptual period as a sensitive time window, is at much lower concentration than currently presumed and propose epigenetics as a sensitive novel risk assessment parameter.
Collapse
Affiliation(s)
| | - Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technical University of Munich, Munich, Germany.,Department of Animal Physiology & Immunology, School of Life Sciences, Life Science Center Weihenstephan, Technical University Munich, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland. .,Physiology Weihenstephan, Technical University of Munich, Munich, Germany. .,Department of Animal Physiology & Immunology, School of Life Sciences, Life Science Center Weihenstephan, Technical University Munich, Munich, Germany.
| |
Collapse
|
21
|
Lee WS, Lu YC, Kuo CT, Chen CT, Tang PH. Effects of female sex hormones on folic acid-induced anti-angiogenesis. Acta Physiol (Oxf) 2018; 222:e13001. [PMID: 29178430 DOI: 10.1111/apha.13001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
AIM Pregnant women have been recommended to take FA daily to prevent birth defects in the brain and spinal cord. We previously showed that folic acid (FA) exerts an anti-angiogenic activity. As angiogenesis is important for endometrial reorganization and embryonic development, there should be some mechanisms to allow the pregnant mother and the foetus to escape from the FA-induced anti-angiogenesis. This study was designed to investigate the effect of female sex hormones on the FA-induced anti-angiogenic activity. METHODS The protein levels and protein-protein interaction were examined by Western blot analysis and immunoprecipitation assay respectively. The cell proliferation and migration were examined by MTT assay and wound healing assay respectively. The in vivo angiogenesis was evaluated by Matrigel angiogenesis assay. RESULTS In human umbilical venous endothelial cells (HUVEC), FA receptor (FR) formed a complex with progesterone receptor (PR), oestradiol receptor (ER) and cSrc. Pregnancy levels of progesterone (P4) or oestradiol (E2) prevented FA-induced inhibitions of proliferation and migration in HUVEC. Both E2 and P4 prevented the FA-induced anti-angiogenesis in vivo. Moreover, cotreatment with FA and P4 or E2 inhibited the signalling pathways involved in FA-induced inhibitions of proliferation and migration in HUVEC. CONCLUSION Female sex hormones interrupt the FA-induced anti-angiogenic action through receptor-receptor interaction.
Collapse
Affiliation(s)
- W.-S. Lee
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Physiology; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Cancer Research Center; Taipei Medical University Hospital; Taipei Taiwan
| | - Y.-C. Lu
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - C.-T. Kuo
- Graduate Institute of Medical Sciences; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - C.-T. Chen
- Institute of Biotechnology and Pharmaceutical Research; National Health Research Institutes; Zhunan Miaoli Taiwan
| | - P.-H. Tang
- Institute of Biotechnology and Pharmaceutical Research; National Health Research Institutes; Zhunan Miaoli Taiwan
| |
Collapse
|
22
|
Lee SH, Kim BJ, Kim UH. The critical role of uterine CD31 as a post-progesterone signal in early pregnancy. Reproduction 2017; 154:595-605. [DOI: 10.1530/rep-17-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 11/08/2022]
Abstract
CD31 has been shown to play a role in endothelial cell migration and angiogenesis, which are critical to the formation and function of the endometrium and myometrium in uterine development during early pregnancy. However, the role of CD31 in uterine receptivity during blastocyst implantation is poorly understood. The pregnancy rate in CD31−/− female mice mated with CD31+/+ male mice was higher than that observed in CD31+/+ female mice mated with CD31+/+ male mice. During the receptive phase of implantation, uterine glands were more developed in CD31−/− mice than in CD31+/+ mice, and the uterine weights of CD31−/− mice were increased. Leukemia inhibitory factor (LIF) was highly expressed in the CD31−/− mice during implantation and the expression of LIF was up-regulated by estradiol-17β (E2) + progesterone (P4) in ovariectomized CD31−/− mice, compared with CD31+/+ mice at 8 h after hormone treatment. E2-induced protein synthesis was inhibited by P4 in the CD31+/+ uterus, but not in the uterus of CD31−/− mice. Also, STAT3, HAND2, LIF, and mTOR signals were enhanced in CD31−/− mice. Stromal DNA replication was highly activated in the uterus of CD31−/− mice, manifested by upregulated cyclin series signaling and PCNA expression after E2 + P4treatment. Collectively, CD31 inhibits E2-mediated epithelial proliferation via recruitment and phosphorylation of SHP-2 upon receiving P4signal in early pregnancy.
Collapse
|
23
|
Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A 2017; 114:E4772-E4781. [PMID: 28559342 PMCID: PMC5474784 DOI: 10.1073/pnas.1620903114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Embryo implantation remains a significant challenge for assisted reproductive technology, with implantation failure occurring in ∼50% of in vitro fertilization attempts. Understanding the molecular mechanisms underlying uterine receptivity will enable the development of new interventions and biomarkers. TGFβ family signaling in the uterus is critical for establishing and maintaining pregnancy. Follistatin (FST) regulates TGFβ family signaling by selectively binding TGFβ family ligands and sequestering them. In humans, FST is up-regulated in the decidua during early pregnancy, and women with recurrent miscarriage have lower endometrial expression of FST during the luteal phase. Because global knockout of Fst is perinatal lethal in mice, we generated a conditional knockout (cKO) of Fst in the uterus using progesterone receptor-cre to study the roles of uterine Fst during pregnancy. Uterine Fst-cKO mice demonstrate severe fertility defects and deliver only 2% of the number of pups delivered by control females. In Fst-cKO mice, the uterine luminal epithelium does not respond properly to estrogen and progesterone signals and remains unreceptive to embryo attachment by continuing to proliferate and failing to differentiate. The uterine stroma of Fst-cKO mice also responds poorly to artificial decidualization, with lower levels of proliferation and differentiation. In the absence of uterine FST, activin B expression and signaling are up-regulated, and bone morphogenetic protein (BMP) signals are impaired. Our findings support a model in which repression of activin signaling by FST enables uterine receptivity by preserving critical BMP signaling.
Collapse
Affiliation(s)
- Paul T Fullerton
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
24
|
Ma CX, Gao F, Luo J, Northfelt DW, Goetz M, Forero A, Hoog J, Naughton M, Ademuyiwa F, Suresh R, Anderson KS, Margenthaler J, Aft R, Hobday T, Moynihan T, Gillanders W, Cyr A, Eberlein TJ, Hieken T, Krontiras H, Guo Z, Lee MV, Spies NC, Skidmore ZL, Griffith OL, Griffith M, Thomas S, Bumb C, Vij K, Bartlett CH, Koehler M, Al-Kateb H, Sanati S, Ellis MJ. NeoPalAna: Neoadjuvant Palbociclib, a Cyclin-Dependent Kinase 4/6 Inhibitor, and Anastrozole for Clinical Stage 2 or 3 Estrogen Receptor-Positive Breast Cancer. Clin Cancer Res 2017; 23:4055-4065. [PMID: 28270497 DOI: 10.1158/1078-0432.ccr-16-3206] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 01/15/2023]
Abstract
Purpose: Cyclin-dependent kinase (CDK) 4/6 drives cell proliferation in estrogen receptor-positive (ER+) breast cancer. This single-arm phase II neoadjuvant trial (NeoPalAna) assessed the antiproliferative activity of the CDK4/6 inhibitor palbociclib in primary breast cancer as a prelude to adjuvant studies.Experimental Design: Eligible patients with clinical stage II/III ER+/HER2- breast cancer received anastrozole 1 mg daily for 4 weeks (cycle 0; with goserelin if premenopausal), followed by adding palbociclib (125 mg daily on days 1-21) on cycle 1 day 1 (C1D1) for four 28-day cycles unless C1D15 Ki67 > 10%, in which case patients went off study due to inadequate response. Anastrozole was continued until surgery, which occurred 3 to 5 weeks after palbociclib exposure. Later patients received additional 10 to 12 days of palbociclib (Cycle 5) immediately before surgery. Serial biopsies at baseline, C1D1, C1D15, and surgery were analyzed for Ki67, gene expression, and mutation profiles. The primary endpoint was complete cell cycle arrest (CCCA: central Ki67 ≤ 2.7%).Results: Fifty patients enrolled. The CCCA rate was significantly higher after adding palbociclib to anastrozole (C1D15 87% vs. C1D1 26%, P < 0.001). Palbociclib enhanced cell-cycle control over anastrozole monotherapy regardless of luminal subtype (A vs. B) and PIK3CA status with activity observed across a broad range of clinicopathologic and mutation profiles. Ki67 recovery at surgery following palbociclib washout was suppressed by cycle 5 palbociclib. Resistance was associated with nonluminal subtypes and persistent E2F-target gene expression.Conclusions: Palbociclib is an active antiproliferative agent for early-stage breast cancer resistant to anastrozole; however, prolonged administration may be necessary to maintain its effect. Clin Cancer Res; 23(15); 4055-65. ©2017 AACR.
Collapse
Affiliation(s)
- Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Feng Gao
- Division of Public Health Science, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri
| | - Jingqin Luo
- Division of Public Health Science, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri
| | - Donald W Northfelt
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Matthew Goetz
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Andres Forero
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy Hoog
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Naughton
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Foluso Ademuyiwa
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Rama Suresh
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Karen S Anderson
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - Julie Margenthaler
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Rebecca Aft
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy Hobday
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Timothy Moynihan
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - William Gillanders
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Amy Cyr
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy J Eberlein
- Section of Endocrine and Oncologic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Tina Hieken
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhanfang Guo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle V Lee
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas C Spies
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Obi L Griffith
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Shana Thomas
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Caroline Bumb
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kiran Vij
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Hussam Al-Kateb
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Souzan Sanati
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
25
|
Pan JL, Yuan DZ, Zhao YB, Nie L, Lei Y, Liu M, Long Y, Zhang JH, Blok LJ, Burger CW, Yue LM. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells. Acta Physiol (Oxf) 2017; 219:683-692. [PMID: 27458709 DOI: 10.1111/apha.12762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/16/2016] [Accepted: 07/21/2016] [Indexed: 12/28/2022]
Abstract
AIM This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. METHODS The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. RESULTS Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. CONCLUSION We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle.
Collapse
Affiliation(s)
- J.-l. Pan
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - D.-z. Yuan
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Y.-b. Zhao
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - L. Nie
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Y. Lei
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - M. Liu
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Y. Long
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - J.-h. Zhang
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - L. J. Blok
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam the Netherlands
| | - C. W. Burger
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam the Netherlands
| | - L.-m. Yue
- Department of Physiology; West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| |
Collapse
|
26
|
Abstract
The hormone estrogen is involved in both female and male reproduction, as well as numerous other biological systems including the neuroendocrine, vascular, skeletal, and immune systems. Therefore, it is also implicated in many different diseases and conditions such as infertility, obesity, osteoporosis, endometriosis, and a variety of cancers. Estrogen works through its two distinct nuclear receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Various transcriptional regulation mechanisms have been identified as the mode of action for estrogen, mainly the classical mechanism with direct DNA binding but also a nongenomic mode of action and one using tethered or indirect binding. The expression profiles of ERα and ERβ are unique with the primary sites of ERα expression being the uterus and pituitary gland and the main site of ERβ expression being the granulosa cells of the ovary. Mouse models with knockout or mutation of Esr1 and Esr2 have furthered our understanding of the role of each individual receptor plays in physiology. From these studies, it is known that the primary roles for ERα are in the uterus and neuroendocrine system, as female mice lacking ERα are infertile due to impaired ovarian and uterine function, whereas female mice lacking ERβ are subfertile due to ovarian defects. The development of effective therapies for estrogen-related diseases has relied on an understanding of the physiological roles and mechanistic functionalities of ERα and ERβ in human health and disease.
Collapse
Affiliation(s)
- Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States.
| |
Collapse
|
27
|
Rugo HS, Vidula N, Ma C. Improving Response to Hormone Therapy in Breast Cancer: New Targets, New Therapeutic Options. Am Soc Clin Oncol Educ Book 2017; 35:e40-54. [PMID: 27249746 DOI: 10.1200/edbk_159198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The majority of breast cancer expresses the estrogen and or progesterone receptors (ER and PR). In tumors without concomitant HER2 amplification, hormone therapy is a major treatment option for all disease stages. Resistance to hormonal therapy is associated with disease recurrence and progression. Recent studies have identified a number of resistance mechanisms leading to estrogen-independent growth of hormone receptor-positive (HR+) breast cancer as a result of genetic and epigenetic alterations, which could be exploited as novel therapeutic targets. These include acquired mutations in ER-alpha (ESR1) in response to endocrine deprivation; constitutive activation of cyclin-dependent kinases (CDK) 4 and 6; cross talk between ER and growth factor receptor signaling such as HER family members, fibroblast growth factor receptor (FGFR) pathways, intracellular growth, and survival signals PI3K/Akt/mTOR; and epigenetic modifications by histone deacetylase (HDAC) as well as interactions with tumor microenvironment and host immune response. Inhibitors of these pathways are being developed to improve efficacy of hormonal therapy for treatment of both metastatic and early-stage disease. Two agents are currently approved in the United States for the treatment of metastatic HR+ breast cancer, including the mTOR inhibitor everolimus and the CDK4/6 inhibitor palbociclib. Management of toxicity is a critical aspect of treatment; the primary toxicity of everolimus is stomatitis (treated with topical steroids) and of palbociclib is neutropenia (treated with dose reduction/delay). Many agents are in clinical trials, primarily in combination with hormone therapy; novel combinations are under active investigation.
Collapse
Affiliation(s)
- Hope S Rugo
- From the UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; University of San Francisco School of Medicine, San Francisco, CA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Neelima Vidula
- From the UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; University of San Francisco School of Medicine, San Francisco, CA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Cynthia Ma
- From the UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA; University of San Francisco School of Medicine, San Francisco, CA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
28
|
Davoudi M, Zavareh S, Ghorbanian MT, Paylakhi SH, Mohebbi SR. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause. Int J Reprod Biomed 2016; 14:471-6. [PMID: 27525332 PMCID: PMC4971560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND The uterus is a dynamic tissue responding to hormonal changes during reproductive cycles. As such, uterine stem cells have been studied in recent years. Transcription factors oct4 and sox2 are critical for effective maintenance of pluripotent cell identity. OBJECTIVE The present research evaluated the mRNA expression of oct4 and sox2 in the uterine tissues of ovariectomized mice treated with steroid hormones. MATERIALS AND METHODS In this experimental study, adult virgin female mice were ovariectomized and treated with estradiol 17β (E2), progesterone (P4), and a combination of E2 and P4 (E2 & P4) for 5 days. Uterine tissues were removed, and immunofluorescent (IF) staining and quantitative real-time PCR of oct4 and sox2 markers were performed. RESULTS IF showed oct4 and sox2 expression in the uterine endometrium and myometrium among all groups. The mRNA expression of oct4 (p=0.022) and sox2 (p=0.042) in the E2-treated group significantly were decreased compared to that in the control group. By contrast, the mRNA expression of oct4 and sox2 in the P4 (p=0.641 and 0.489 respectively) and E2 & P4-treated groups (p=0.267 and 0.264 respectively) did not show significant differences compared to the control group. CONCLUSION The results indicate ovarian steroid hormones change the expression of oct4 and sox2 in the mice uterine tissues, which suggest the involvement of steroid hormonal regulation in uterine stem cells.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | - Mohammad Taghi Ghorbanian
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | - Seyed Hassan Paylakhi
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | - Seyed Reza Mohebbi
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran.
| |
Collapse
|
29
|
Davoudi M, Zavareh S, Ghorbanian MT, Paylakhi SH, Mohebbi SR. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.7.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Rosario GX, Cheng JG, Stewart CL. Gene expression analysis in the compartments of the murine uterus. Differentiation 2016; 91:42-9. [DOI: 10.1016/j.diff.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
31
|
Kim YS, Kim HR, Kim H, Yang SC, Park M, Yoon JA, Lim HJ, Hong SH, DeMayo FJ, Lydon JP, Choi Y, Lee DR, Song H. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice. Sci Rep 2016; 6:20242. [PMID: 26833131 PMCID: PMC4735737 DOI: 10.1038/srep20242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022] Open
Abstract
DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8d/d) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8d/d females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8d/d mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice.
Collapse
Affiliation(s)
- Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea
| | - Hyongbum Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Hyunjung J Lim
- Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Stem Cell Institute, Kangwon National University, Chuncheon, Kangwon 200-701, Korea
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea.,Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 463-400 Korea.,Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
32
|
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, Ku BJ, Jeong JW. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS Genet 2015; 11:e1005537. [PMID: 26378916 PMCID: PMC4574948 DOI: 10.1371/journal.pgen.1005537] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 02/03/2023] Open
Abstract
AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shikha Khatri
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard E. Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Health System, Greenville, South Carolina, United States of America
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- * E-mail: (BJK); (JWJ)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
- * E-mail: (BJK); (JWJ)
| |
Collapse
|
33
|
Characterization of the Transcriptional Complexity of the Receptive and Pre-receptive Endometria of Dairy Goats. Sci Rep 2015; 5:14244. [PMID: 26373443 PMCID: PMC4571617 DOI: 10.1038/srep14244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729–77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals.
Collapse
|
34
|
Nakajima T, Tanimoto Y, Tanaka M, Chambon P, Watanabe H, Iguchi T, Sato T. Neonatal Estrogen Receptor β Is Important in the Permanent Inhibition of Epithelial Cell Proliferation in the Mouse Uterus. Endocrinology 2015; 156:3317-28. [PMID: 26020796 DOI: 10.1210/en.2015-1012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the mouse uterine and vaginal epithelial cell proliferation stimulated by estrogen, whereas ERβ inhibits cell proliferation. ERβ mRNA is expressed in neonatal uteri and vaginae; however, its functions in neonatal tissues have not been ascertained. In this study, we investigated the ontogenic mRNA expression and localization of ERβ, and its roles in cell proliferation in neonatal uteri and vaginae of ERβ knockout (βERKO) mice. ERβ mRNA and protein were abundant in the uterine and vaginal epithelia of 2-day-old mice and decreased with age. In uterine and vaginal epithelia of 2-day-old βERKO mice, cell proliferation was greater than that in wild-type animals and in uterine epithelia of 90- and 365-day-old βERKO mice. In addition, p27 protein, known as a cyclin-dependent kinase inhibitor, was decreased in the uteri of 90- and 365-day-old βERKO mice. Inhibition of neonatal ERs by ICI 182780 (an ER antagonist) treatment stimulated cell proliferation and decreased p27 protein in the uterine luminal epithelium of 90-day-old mice but not in the vaginal epithelium. These results suggest that neonatal ERβ is important in the persistent inhibition of epithelial cell proliferation with accumulation of p27 protein in the mouse uterus. Thus, suppression of ERβ function in the uterine epithelium during the neonatal period may be responsible for a risk for proliferative disease in adults.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Yuki Tanimoto
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Masami Tanaka
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Pierre Chambon
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hajime Watanabe
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience (T.N., Y.T., T.S.), Yokohama City University, Yokohama 236-0027, Japan; Department of Biological Science and Technology (T.N.), Tokyo University of Science, Tokyo 125-8585, Japan; Department of Food and Nutrition (M.T.), Junior College of Aizu, Aizu 965-8570, Japan; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur (P.C.), Collège de France, 67404 Illkirch, France; Graduate School of Engineering (H.W.), Osaka University, Suita 565-0871, Japan; and Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
35
|
Nanjappa MK, Medrano TI, Lydon JP, Bigsby RM, Cooke PS. Maximal Dexamethasone Inhibition of Luminal Epithelial Proliferation Involves Progesterone Receptor (PR)- and Non-PR-Mediated Mechanisms in Neonatal Mouse Uterus. Biol Reprod 2015; 92:122. [PMID: 25882702 DOI: 10.1095/biolreprod.114.123463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 04/02/2015] [Indexed: 11/01/2022] Open
Abstract
Progesterone (P4) and the synthetic glucocorticoid dexamethasone (Dex) inhibit luminal epithelial (LE) proliferation in neonatal mouse uteri. This study determined the roles of progesterone receptor and estrogen receptor 1 (PR and ESR1, respectively) in P4- and Dex-induced inhibition of LE proliferation using PR knockout (PRKO) and Esr1 knockout (Esr1KO) mice. Wild-type (WT), heterozygous, and homozygous PRKO female pups were injected with vehicle, P4 (40 μg/g body weight), or Dex (4 or 40 μg/g body weight) on Postnatal Day 5, then 24 h later immunostained for markers of cell proliferation. In WT and heterozygous mice, P4 sharply reduced LE proliferation, and Dex produced dose-responsive decreases equaling those of P4 at the higher dose. Critically, although both doses of Dex similarly decreased proliferation compared to vehicle-treated PRKOs, treatment of PRKO pups with the high Dex dose (40 μg/g) did not inhibit LE as much as treatments of WT mice with this Dex dose or with P4. Stromal proliferation was stimulated by P4 in WT but not PRKO mice, and Dex did not alter stromal proliferation. Uteri of all genotypes strongly expressed glucocorticoid receptor (GR), demonstrating that impaired Dex effects in PRKOs did not reflect GR deficiency. Furthermore, inhibition of LE proliferation by Dex (40 μg/g body weight) in Esr1KO mice was normal, so this process does not involve ESR1. In summary, inhibitory Dex effects on LE proliferation occur partially through non-PR-mediated mechanisms, presumably GR, as indicated by Dex inhibition of LE proliferation in PRKOs. However, maximal inhibitory Dex effects on uterine LE proliferation are not seen in PRKO mice with even high Dex, indicating that maximal Dex effects in WT mice also involve PR.
Collapse
Affiliation(s)
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Robert M Bigsby
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
36
|
Ma J, Li J, Yang S, Huang K, Dong X, Sui C, Zhang H. P57 and cyclin G1 express differentially in proliferative phase endometrium and early pregnancy decidua. Int J Clin Exp Med 2015; 8:5144-5149. [PMID: 26131088 PMCID: PMC4483989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To compare the expression of P57 and Cyclin G1 in proliferation endometrium and early pregnancy decidua. METHODS Human endometrial samples were acquired from normal menstrual cycle women undergoing laparoscopy or hysterectomy for fallopian tubes problems. Decidua were acquired from women in early pregnancy who underwent artificial abortion without any endometrial problems. Twelve were in proliferative phase and 13 were deciduas. P57 and Cyclin G1 mRNA and protein were measured by real-time PCR and Western blot. RESULTS The expression of P57 mRNA and protein were lower in proliferation phase compared with the early pregnancy decidua. Cyclin G1 mRNA and protein expression were slightly higher in decidua than proliferation endometrium but it had no significant difference. CONCLUSION P57 and Cyclin G1 may play an important role in the endometrial change during the embryo implantation.
Collapse
Affiliation(s)
- Junying Ma
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Juan Li
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Kai Huang
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Xiyuan Dong
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
37
|
Abstract
Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
Collapse
Affiliation(s)
- Caroline H Diep
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Andrea R Daniel
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Laura J Mauro
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Todd P Knutson
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Carol A Lange
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| |
Collapse
|
38
|
Wang Y, Zhu L, Kuokkanen S, Pollard JW. Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci U S A 2015; 112:E1382-91. [PMID: 25733860 PMCID: PMC4371960 DOI: 10.1073/pnas.1418973112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The uterine epithelium of mice and humans undergoes cyclical waves of cell proliferation and differentiation under the regulation of estradiol-17β (E2) and progesterone (P4). These epithelial cells respond to E2 with increased protein and DNA synthesis, whereas P4 inhibits only the E2-induced DNA synthetic response. Here we show that E2 regulates protein synthesis in these epithelial cells through activating PKC that in turn stimulates ERK1/2 to phosphorylate and thereby activate the central regulator of protein synthesis mechanistic target of rapamycin (mTOR). This mTOR pathway is not inhibited by P4. Inhibitor studies with an estrogen receptor (ESR1) antagonist showed the dependence of this mTOR pathway on ESR1 but that once activated, a phosphorylation cascade independent of ESR1 propagates the pathway. E2 also stimulates an IGF1 receptor (IGF1R) to PI3 kinase to AKT to GSK-3β pathway required for activation of the canonical cell cycle machinery that is inhibited by P4. PKC activation did not stimulate this pathway nor does inhibition of PKC or ERK1/2 affect it. These studies therefore indicate a mechanism whereby DNA and protein synthesis are regulated by two ESR1-activated pathways that run in parallel with only the one responsible for the initiation of DNA synthesis blocked by P4. Inhibition of mTOR by rapamycin in vivo resulted in inhibition of E2-induced protein and DNA synthesis. Proliferative diseases of the endometrium such as endometriosis and cancer are common and E2 dependent. Thus, defining this mTOR pathway suggests that local (intrauterine or peritoneal) rapamycin administration might be a therapeutic option for these diseases.
Collapse
Affiliation(s)
- Yuxiang Wang
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and
| | - Liyin Zhu
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and
| | - Satu Kuokkanen
- Center for the Study of Reproductive Biology and Women's Health, Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Jeffrey W Pollard
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461; and Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
39
|
Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer. Breast Cancer Res Treat 2015; 150:231-42. [DOI: 10.1007/s10549-015-3316-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/27/2023]
|
40
|
Coudyzer P, Lemoine P, Po C, Jordan BF, Van Der Smissen P, Courtoy PJ, Henriet P, Marbaix E. Induction of post-menstrual regeneration by ovarian steroid withdrawal in the functionalis of xenografted human endometrium. Hum Reprod 2015; 30:1156-68. [PMID: 25750204 DOI: 10.1093/humrep/dev043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Does the endometrial functionalis have the potential to undergo self-renewal after menstruation and how is this process controlled by ovarian steroids? SUMMARY ANSWER Endometrial xenografts subjected to withdrawal of estradiol and progesterone shrink but also show signs of proliferation and tissue repair; new estradiol supply prevents atrophy but is not sufficient to increase graft volume. WHAT IS KNOWN ALREADY Menstruation, i.e. cyclic proteolysis of the extracellular matrix of endometrial functionalis, is induced by a fall in estrogen and progesterone concentration and is followed by tissue regeneration. However, there is debate about whether regenerating cells must originate from the basalis or from stem cells and whether new estrogen supply is required for the early repair concomitant with menstruation. STUDY DESIGN, SIZE, DURATION Fragments from human endometrial functionalis (from 24 hysterectomy specimens) were xenografted in ovariectomized SCID mice and submitted to a 4-day estradiol and progesterone withdrawal (to mimic menstruation) followed by re-exposure to estradiol (to mimic the proliferative phase). We measured signs of proliferation and changes in graft volume. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrium was collected from spontaneously cycling women. Cell proliferation was examined by immunolabeling Ki-67, cyclin D1 and phosphorylated-histone H3. Xenograft volume was measured by magnetic resonance imaging. Xenograft histomorphometry was performed to determine how the different tissue compartments contributed to volume change. MAIN RESULTS AND THE ROLE OF CHANCE Hormone withdrawal induced a rapid decrease in graft volume mainly attributable to stroma condensation and breakdown, concomitant with an increase of proliferation markers. Reinsertion of estradiol pellets after induced menstruation blocked volume decrease and stimulated epithelial and stromal growth, but, surprisingly, did not induce graft enlargement. Reinsertion of both estradiol and progesterone pellets blocked apoptosis. LIMITATIONS, REASONS FOR CAUTION Mechanisms of endometrial remodeling are different in women and mice and the contribution of circulating inflammatory cells in both species remains to be clarified. Moreover, during human menstruation, endometrial fragments resulting from tissue proteolysis can be expelled by the menstrual flow, unlike in this model. WIDER IMPLICATIONS OF THE FINDINGS Menstruation is a multifocal event within the functionalis. This is the first evidence that endometrial fragments that are not shed after menstrual tissue breakdown can support endometrial regeneration. Endometriosis is commonly thought to result from the retrograde migration of menstrual fragments of the degraded functionalis into the peritoneal cavity. Our study supports their potential to regenerate as ectopic endometrium. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Fonds de la Recherche Scientifique Médicale, Concerted Research Actions, Communauté Française de Belgique, Région wallonne, Région bruxelloise and Loterie nationale. P.H. and B.F.J. are research associates of the Belgian Fonds de la Recherche Scientifique (F.R.S.-F.N.R.S.). E.M. is Associate Editor at Human Reproduction. There is no conflict of interest to declare.
Collapse
Affiliation(s)
- Pauline Coudyzer
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Pascale Lemoine
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Chrystelle Po
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Etienne Marbaix
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
41
|
The Role of Steroid Hormone Receptors in the Establishment of Pregnancy in Rodents. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2015; 216:27-49. [DOI: 10.1007/978-3-319-15856-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Silva E, Scoggin K, Canisso I, Troedsson M, Squires E, Ball B. Expression of receptors for ovarian steroids and prostaglandin E2 in the endometrium and myometrium of mares during estrus, diestrus and early pregnancy. Anim Reprod Sci 2014; 151:169-81. [DOI: 10.1016/j.anireprosci.2014.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/30/2022]
|
43
|
Li H, Li H, Bai L, Yu H. Lefty inhibits in vitro decidualization by regulating P57 and cyclin D1 expressions. Cell Biochem Funct 2014; 32:657-64. [PMID: 25339094 DOI: 10.1002/cbf.3069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/20/2023]
Abstract
Endometrial decidualization is highly important for successful construction and maintenance of embryo implantation and pregnancy. Lefty gene at different menstrual cycle phases has different expressions, indicating its regulatory significance. To study the mechanism of Lefty in decidualization, human endometrial stromal cells (hESCs) were cultured and induced with medroxyprogesterone acetate (MPA) and 8-bromoadenosine-cAMP (8-Br-cAMP) in vitro as a research model. Our results showed that Lefty1 overexpression inhibited MPA- and 8-Br-cAMP-induced hESC decidualization and significantly reduced the secretion of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP-1). With the inhibition of Lefty1 expression, hESC decidualization induced by MPA and 8-Br-cAMP became more remarkable, and the secretions of PRL and IGFBP-1 were higher too. Further tests indicated that during the process of decidualization, P57 expression increased, whereas cyclin D1 expression decreased. Although Lefty1 overexpression did not significantly change the expressions of P57 and cyclin D1, inhibition of Lefty1 expression resulted in more evident changes in P57 and cyclin D1 expressions. Meanwhile, cell cycle examination showed that Lefty1 overexpression reduced the cell cycle arrest at G1/S phase in the in vitro hESC decidualization model. Therefore, Lefty1 could regulate the cell cycle via modulating the expressions of P57 and cyclin D1 and then inhibit the decidualization in vitro.
Collapse
Affiliation(s)
- Hong Li
- Obstetric Department, ShengJing Hospital of China Medical University, Shenyang, China; Obstetric Department, The Maternity Hospital of Dalian, Dalian, China
| | | | | | | |
Collapse
|
44
|
Care AS, Ingman WV, Moldenhauer LM, Jasper MJ, Robertson SA. Ovarian steroid hormone-regulated uterine remodeling occurs independently of macrophages in mice. Biol Reprod 2014; 91:60. [PMID: 25061095 DOI: 10.1095/biolreprod.113.116509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophages are abundant in the uterine stroma and are intimately juxtaposed with other cell lineages comprising the uterine epithelial and stromal compartments. We postulated that macrophages may participate in mediating or amplifying the effects of ovarian steroid hormones to facilitate the uterine remodeling that is a characteristic feature of every estrus cycle and is essential for pregnancy. Using the Cd11b-Dtr transgenic mouse model with an ovariectomy and hormone replacement strategy, we depleted macrophages to determine their role in hormone-driven proliferation of uterine epithelial and stromal cells and uterine vascular development. Following diphtheria toxin (DT) administration, approximately 85% of EMR1-positive (EMR1⁺) macrophages, as well as 70% of CD11C⁺ dendritic cells, were depleted from Cd11b-Dtr mice. There was no change in bromodeoxyuridine incorporation into epithelial cells induced to proliferate by administration of 17beta-estradiol (E2) to ovariectomized mice or into stromal cells induced to proliferate in response to E2 and progesterone (P4), and the resulting sizes and structures of the luminal epithelial and stromal cell compartments were not altered compared with those of leukocyte replete controls. Depletion of CD11B⁺ myeloid cells failed to alter the density or pattern of distribution of uterine blood vessels, as identified by staining PECAM1-positive endothelial cells in the uterine stroma of E2- or E2 combined with P4 (E2P4)-treated ovariectomized mice. These experiments support the interpretation that macrophages are dispensable to regulation of proliferative events induced by steroid hormones in the cycling and early pregnant mouse uterus to establish the epithelial, stromal, and vascular architecture which is critical for normal reproductive competence.
Collapse
Affiliation(s)
- Alison S Care
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Wendy V Ingman
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia School of Medicine, Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Melinda J Jasper
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Rosario GX, Hondo E, Jeong JW, Mutalif R, Ye X, Yee LX, Stewart CL. The LIF-mediated molecular signature regulating murine embryo implantation. Biol Reprod 2014; 91:66. [PMID: 25031358 DOI: 10.1095/biolreprod.114.118513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The establishment of a receptive uterus is the prime requirement for embryo implantation. In mice, the E2-induced cytokine leukemia inhibitory factor (LIF) is essential in switching the uterine luminal epithelium (LE) from a nonreceptive to a receptive state. Here we define the LIF-mediated switch using array analysis and informatics to identify LIF-induced changes in gene expression and annotated signaling pathways specific to the LE. We compare gene expression profiles at 0, 1, 3, and 6 h, following LIF treatment. During the first hour, the JAK-STAT signaling pathway is activated and the expression of 54 genes declines, primarily affecting LE cytoskeletal and chromatin organization as well as a transient reduction in the progesterone, TGFbetaR1, and ACVR1 receptors. Simultaneously 256 genes increase expression, of which 42 are transcription factors, including Sox, Kfl, Hes, Hey, and Hox families. Within 3 h, the expression of 3987 genes belonging to more than 25 biological process pathways was altered. We confirmed the mRNA and protein distribution of key genes from 10 pathways, including the Igf-1, Vegf, Toll-like receptors, actin cytoskeleton, ephrin, integrins, TGFbeta, Wnt, and Notch pathways. These data identify novel LIF-activated pathways in the LE and define the molecular basis between the refractory and receptive uterine phases. More broadly, these findings highlight the staggering capacity of a single cytokine to induce a dynamic and complex network of changes in a simple epithelium essential to mammalian reproduction and provide a basis for identifying new routes to regulating female reproduction.
Collapse
Affiliation(s)
- Gracy X Rosario
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Division of Biofunctional Development, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jae-Wook Jeong
- Department of Obstetrics and Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Rafidah Mutalif
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Xiaoqian Ye
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Li Xuan Yee
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, A*STAR, Immunos, Singapore
| |
Collapse
|
46
|
The epidermal growth factor receptor critically regulates endometrial function during early pregnancy. PLoS Genet 2014; 10:e1004451. [PMID: 24945252 PMCID: PMC4063709 DOI: 10.1371/journal.pgen.1004451] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/02/2014] [Indexed: 01/11/2023] Open
Abstract
Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. Approximately 10% of reproductive aged women are considered infertile. While great strides have been made in assisted reproductive technologies, overall success rates, especially considering the cost, remain low. Studies indicate that due to its sequential nature, nearly 75% of pregnancy failures are due to defects that occur very early in gestation. Therefore, understanding the physiological changes that occur in the endometrium during this period and how those changes are regulated is of paramount importance if we are to improve our ability to address female reproductive health concerns. We investigated a family of growth factor receptors and identified one that critically regulates the growth and survival of the endometrium in response to the implanting embryo. Furthermore, we used unbiased approaches to identify which signaling pathways and genetic networks are activated downstream of this receptor to execute each of the processes necessary for a successful pregnancy. Understanding the mechanisms and genetic networks with which pregnancy is regulated is a prerequisite to the development of effective pharmaceutical therapeutics.
Collapse
|
47
|
Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, Xu Q, He YP, Zhang JH, Yue LM. Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci 2014; 22:223-34. [PMID: 24925854 DOI: 10.1177/1933719114537714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In endometrial epithelial cells, progesterone (P4) functions in regulating the cell structure and opposing the effects of estrogen. However, the mechanisms of P4 that oppose the effects of estrogen remain unclear. MicroRNAs (miRNAs) are important posttranscriptional regulators that are involved in various physiological and pathological processes. Whether P4 directly induces miRNA expression to antagonize estrogen in endometrial epithelium is unclear. In this study, total RNAs were extracted from endometrial epithelium of ovariectomized mice, which were treated with estrogen alone or a combination of estrogen and P4. MicroRNA high-throughput sequencing with bioinformatics analysis was used to identify P4-induced miRNAs, predict their potential target genes, and analyze their possible biological functions. We observed that 146 mature miRNAs in endometrial epithelial cells were significantly upregulated by P4. These miRNAs were extensively involved in multiple biological processes. The miRNA-145a demonstrated a possible function in the antiproliferative action of P4 on endometrial epithelial cells.
Collapse
Affiliation(s)
- Dong-zhi Yuan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin-lin Yu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ting Qu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shi-mao Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - You-bo Zhao
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jun-li Pan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qian Xu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ya-Ping He
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin-hu Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-min Yue
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Bridges GA, Day ML, Geary TW, Cruppe LH. Triennial Reproduction Symposium: deficiencies in the uterine environment and failure to support embryonic development. J Anim Sci 2014; 91:3002-13. [PMID: 23798511 DOI: 10.2527/jas.2013-5882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. The focus of this review is on cattle and factors affecting and mechanisms related to uterine insufficiency for pregnancy. A variety of factors contribute to embryonic loss and it may be exacerbated in certain animals, such as high-producing lactating dairy cows, and in some cattle in which estrous synchronization and timed AI was performed, due to reduced concentrations of reproductive steroids. Recent research in beef cattle induced to ovulate immature follicles and in lactating dairy cows indicates that deficient uterine function is a major factor responsible for infertility in these animals. Failure to provide adequate concentrations of estradiol before ovulation results in prolonged effects on expression and localization of uterine genes and proteins that participate in regulating uterine functions during early gestation. Furthermore, progesterone concentrations during early gestation affect embryonic growth, interferon-tau production, and uterine function. Therefore, an inadequate uterine environment induced by insufficient steroid concentrations before and after ovulation could cause early embryonic death either by failing to provide an adequate uterine environment for recognition of embryo signaling, adhesion, and implantation or by failing to support appropriate embryonic growth, which could lead to decreased conceptus size and failed maternal recognition of pregnancy.
Collapse
Affiliation(s)
- G A Bridges
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN 55744, USA.
| | | | | | | |
Collapse
|
49
|
Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans. PLoS Genet 2013; 9:e1003863. [PMID: 24244176 PMCID: PMC3828128 DOI: 10.1371/journal.pgen.1003863] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/22/2013] [Indexed: 01/19/2023] Open
Abstract
Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice). In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC) and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3′ UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization. A couple is defined as infertile when failing to become pregnant after one year of regular, unprotected intercourse. Infertility affects more than 10% of couples. The implantation of the embryo in the uterus is one of the most critical steps of pregnancy, and it has been estimated that 75% of pregnancy fails because of peri-implantation defects. An intricate network of molecular pathways regulates the peri-implantation process. It is known that the bone morphogenetic protein (BMP) pathways are part of this network, and herein we investigated how one of the BMP signaling receptors interacts with other factors in the uterus. Our results show an essential and conserved role of this BMP receptor during the implantation of the embryo in mice and humans. Furthermore, we discovered that BMPs act in a linear pathway upstream of two other key regulators of implantation, CEBPB and PGR.
Collapse
|
50
|
Kommagani R, Szwarc MM, Kovanci E, Gibbons WE, Putluri N, Maity S, Creighton CJ, Sreekumar A, DeMayo FJ, Lydon JP, O'Malley BW. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet 2013; 9:e1003900. [PMID: 24204309 PMCID: PMC3812085 DOI: 10.1371/journal.pgen.1003900] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/03/2013] [Indexed: 12/23/2022] Open
Abstract
Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy. Failure of an embryo to correctly implant into the endometrium is a common cause of pregnancy failure or early embryo miscarriage. Although advances in our understanding of oocyte and embryo development have significantly increased pregnancy success rates, these rates remain unacceptably low due in part to an endometrium that is unreceptive to embryo implantation. Using experimental mouse genetics and a primary human cell culture model, we show here that the development of a receptive endometrium requires steroid receptor coactivator-2, a factor which modulates the response of an endometrial cell to the pregnancy hormone, progesterone. Specifically, we show that SRC-2 increases progesterone-dependent glycolysis in the endometrial cell to provide energy and biomolecules for the next round of cell division. For an endometrium to be receptive to embryo implantation, specific endometrial cells (termed stromal cells) need to divide and numerically increase just prior to development of the receptive state. Therefore, SRC-2 is critical for the metabolic reprogramming of the endometrium to a receptive state, which provides the pretext for considering this factor and its metabolic targets in the design of future clinical approaches to diagnose and therapeutically treat those women at a high risk for early pregnancy loss.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ertug Kovanci
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suman Maity
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad J. Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (JPL); (BWO)
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (JPL); (BWO)
| |
Collapse
|