1
|
Mura G, Karaca Atabay E, Menotti M, Martinengo C, Ambrogio C, Giacomello G, Arigoni M, Olivero M, Calogero RA, Chiarle R, Voena C. Regulation of CD45 phosphatase by oncogenic ALK in anaplastic large cell lymphoma. Front Oncol 2023; 12:1085672. [PMID: 36698412 PMCID: PMC9869957 DOI: 10.3389/fonc.2022.1085672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Anaplastic Large Cell Lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma frequently driven by the chimeric tyrosine kinase NPM-ALK, generated by the t (2,5)(p23;q35) translocation. While ALK+ ALCL belongs to mature T cell lymphomas, loss of T cell identity is observed in the majority of ALCL secondary to a transcriptional and epigenetic repressive program induced by oncogenic NPM-ALK. While inhibiting the expression of T cell molecules, NPM-ALK activates surrogate TCR signaling by directly inducing pathways downstream the TCR. CD45 is a tyrosine phosphatase that plays a central role in T cell activation by controlling the TCR signaling and regulating the cytokine responses through the JAK/STAT pathway and exists in different isoforms depending on the stage of T-cell maturation, activation and differentiation. ALK+ ALCL cells mainly express the isoform CD45RO in keeping with their mature/memory T cell phenotype. Because of its regulatory effect on the JAK/STAT pathway that is essential for ALK+ ALCL, we investigated whether CD45 expression was affected by oncogenic ALK. We found that most ALK+ ALCL cell lines express the CD45RO isoform with modest CD45RA expression and that NPM-ALK regulated the expression of these CD45 isoforms. Regulation of CD45 expression was dependent on ALK kinase activity as CD45RO expression was increased when NPM-ALK kinase activity was inhibited by treatment with ALK tyrosine kinase inhibitors (TKIs). Silencing ALK expression through shRNA or degradation of ALK by the PROTAC TL13-112 caused upregulation of CD45RO both at mRNA and protein levels with minimal changes on CD45RA, overall indicating that oncogenic ALK downregulates the expression of CD45. CD45 repression was mediated by STAT3 as demonstrated by ChIP-seq data on ALCL cells treated with the ALK-TKI crizotinib or cells treated with a STAT3 degrader. Next, we found that knocking-out CD45 with the CRISPR/Cas9 system resulted in increased resistance to ALK TKI treatment and CD45 was down-regulated in ALCL cells that developed resistance in vitro to ALK TKIs. Overall, these data suggest that CD45 expression is regulated by ALK via STAT3 and acts as a rheostat of ALK oncogenic signaling and resistance to TKI treatment in ALCL.
Collapse
Affiliation(s)
- Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elif Karaca Atabay
- Department of Pathology, Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Gloria Giacomello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Kästle M, Merten C, Hartig R, Plaza-Sirvent C, Schmitz I, Bommhardt U, Schraven B, Simeoni L. Type of PaperY192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int J Mol Sci 2022; 23:ijms23137271. [PMID: 35806279 PMCID: PMC9267008 DOI: 10.3390/ijms23137271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.
Collapse
Affiliation(s)
- Matthias Kästle
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Camilla Merten
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Carlos Plaza-Sirvent
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| |
Collapse
|
3
|
Siokis A, Robert PA, Demetriou P, Kvalvaag A, Valvo S, Mayya V, Dustin ML, Meyer-Hermann M. Characterization of mechanisms positioning costimulatory complexes in immune synapses. iScience 2021; 24:103100. [PMID: 34622155 PMCID: PMC8479700 DOI: 10.1016/j.isci.2021.103100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Small immunoglobulin superfamily (sIGSF) adhesion complexes form a corolla of microdomains around an integrin ring and secretory core during immunological synapse (IS) formation. The corolla recruits and retains major costimulatory/checkpoint complexes, such as CD28, making forces that govern corolla formation of particular interest. Here, we investigated the mechanisms underlying molecular reorganization of CD2, an adhesion and costimulatory molecule of the sIGSF family during IS formation. Computer simulations showed passive distal exclusion of CD2 complexes under weak interactions with the ramified F-actin transport network. Attractive forces between CD2 and CD28 complexes relocate CD28 from the IS center to the corolla. Size-based sorting interactions with large glycocalyx components, such as CD45, or short-range CD2 self-attraction successfully explain the corolla 'petals.' This establishes a general simulation framework for complex pattern formation observed in cell-bilayer and cell-cell interfaces, and the suggestion of new therapeutic targets, where boosting or impairing characteristic pattern formation can be pivotal.
Collapse
Affiliation(s)
- Anastasios Siokis
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | - Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | - Philippos Demetriou
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
4
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Abstract
After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands.
Collapse
Affiliation(s)
- Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Jonathan Sprent
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea.,Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
6
|
Dobbins J, Gagnon E, Godec J, Pyrdol J, Vignali DAA, Sharpe AH, Wucherpfennig KW. Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci Signal 2016; 9:ra75. [PMID: 27460989 DOI: 10.1126/scisignal.aaf0626] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The T cell costimulatory receptor CD28 is required for the full activation of naïve T cells and for the development and maintenance of Foxp3(+) regulatory T (Treg) cells. We showed that the cytoplasmic domain of CD28 was bound to the plasma membrane in resting cells and that ligand binding to CD28 resulted in its release. Membrane binding by the CD28 cytoplasmic domain required two clusters of basic amino acid residues, which interacted with the negatively charged inner leaflet of the plasma membrane. These same clusters of basic residues also served as interaction sites for Lck, a Src family kinase critical for CD28 function. This signaling complex was further stabilized by the Lck-mediated phosphorylation of CD28 Tyr(207) and the subsequent binding of the Src homology 2 (SH2) domain of Lck to this phosphorylated tyrosine. Mutation of the basic clusters in the CD28 cytoplasmic domain reduced the recruitment to the CD28-Lck complex of protein kinase Cθ (PKCθ), which serves as a key effector kinase in the CD28 signaling pathway. Consequently, mutation of either a basic cluster or Tyr(207) impaired CD28 function in mice as shown by the reduced thymic differentiation of FoxP3(+) Treg cells. On the basis of these results, we propose a previously undescribed model for the initiation of CD28 signaling.
Collapse
Affiliation(s)
- Jessica Dobbins
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Gagnon
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jernej Godec
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Arlene H Sharpe
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Program in Immunology, Harvard Medical School, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
8
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.
Collapse
|
9
|
Nakahira K, Morita A, Kim NS, Yanagihara I. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS One 2013; 8:e77099. [PMID: 24155921 PMCID: PMC3796550 DOI: 10.1371/journal.pone.0077099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Forkhead Box P3 (FOXP3) is a member of the forkhead/winged helix family of the transcription factors and plays an important role not only as a master gene in T-regulatory cells, but also as a tumor suppressor. In this study, we identified lymphocyte-specific protein tyrosine kinase (LCK), which correlates with cancer malignancy, as a binding partner of FOXP3. FOXP3 downregulated LCK-induced MMP9, SKP2, and VEGF-A expression. We observed that LCK phosphorylated Tyr-342 of FOXP3 by immunoprecipitation and in vitro kinase assay, and the replacement of Tyr-342 with phenylalanine (Y342F) abolished the ability to suppress MMP9 expression. Although FOXP3 decreased the invasive ability induced by LCK in MCF-7 cells, Y342F mutation in FOXP3 diminished this suppressive effect. Thus we demonstrate for the first time that LCK upregulates FOXP3 by tyrosine phosphorylation, resulting in decreased MMP9, SKP2, and VEGF-A expression, and suppressed cellular invasion. We consider that further clarification of transcriptional mechanism of FOXP3 may facilitate the development of novel therapeutic approaches to suppress cancer malignancy.
Collapse
Affiliation(s)
- Kumiko Nakahira
- Department of Developmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Osaka, Japan
| | - Akihiro Morita
- Department of Developmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Osaka, Japan
| | - Nam-Soon Kim
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Osaka, Japan
- * E-mail:
| |
Collapse
|
10
|
Tan YX, Zikherman J, Weiss A. Novel tools to dissect the dynamic regulation of TCR signaling by the kinase Csk and the phosphatase CD45. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:131-139. [PMID: 24100586 DOI: 10.1101/sqb.2013.78.020347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although the biochemical events induced by T-cell receptor (TCR) triggering have been well studied, both the mediators and function of basal signaling in T cells remain poorly understood. Furthermore, the precise mechanisms by which MHC-peptide interaction with the TCR disrupt the basal equilibrium to induce downstream signaling are also unclear. Here we describe novel approaches to understand the basal state of T cells and the mechanisms of TCR triggering by perturbing regulation of the Src family kinases (SFKs). The SFKs are critical proximal mediators of TCR signaling that are in turn tightly regulated by the tyrosine kinase Csk and the receptor-like tyrosine phosphatase CD45. We have developed a small-molecule analog-sensitive allele of Csk and an allelic series of mice in which expression of CD45 is varied across a broad range. Our studies have unmasked contributions of Csk and CD45 to maintain the basal state of T cells and also suggest that dynamic regulation of Csk may be involved in TCR triggering.
Collapse
Affiliation(s)
- Ying Xim Tan
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA, 94143, USA.,Howard Hughes Medical Institute, UCSF, San Francisco, CA, 94143, USA
| |
Collapse
|
11
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
12
|
Marozzi C, Bertoni F, Randelli E, Buonocore F, Timperio AM, Scapigliati G. A monoclonal antibody for the CD45 receptor in the teleost fish Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:342-353. [PMID: 22504161 DOI: 10.1016/j.dci.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation in vertebrate species. In this study we describe some molecular and functional features of the CD45 receptor molecule from the European sea bass Dicentrarchus labrax. Following immunization with fixed sea bass thymocytes, we obtained a murine monoclonal antibody (mAb) able to stain fish leucocytes both alive, by immunofluorescence of thymus and mucosal tissues, and fixed, by in situ immunohistochemistry of tissue sections. The selected IgG(2) mAb (DLT22) was able to recognise by western blots polypeptides mainly at 180 kDa and 130 kDa in thymus, spleen, intestine and gill leucocyte. Accordingly, a 130 kDa polypeptide immunoprecipitated with DLT22 from thymocytes and analysed by nano-RP-HPLC-ESI-MS/MS, gave peptide sequences homologous to Fugu CD45, that were employed for the homology cloning of a partial sea bass CD45 cDNA sequence. This cDNA sequence was employed to measure by quantitative PCR the transcription of the CD45 gene both in unstimulated and in in vitro stimulated leucocytes, showing that the gene transcription was specifically modulated by LPS, ConA, PHA, IL-1, and poly I:C. When splenocytes were stimulated in vitro with ConA and PHA, a cell proliferation paralleled by an increase of DLT22-positive leucocytes was also observed. These data indicate that the DLT22 mAb recognizes a putative CD45 molecule in sea bass, documenting the presence of CD45-like developing lymphocytes in thymus and CD45-associated functional stages of lymphocytes in this species, thus dating back to teleost fish the functional activities of these cell populations in vertebrates.
Collapse
Affiliation(s)
- Catia Marozzi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
14
|
Pike KA, Tremblay ML. Regulating naïve and memory CD8 T cell homeostasis - a role for protein tyrosine phosphatases. FEBS J 2012; 280:432-44. [DOI: 10.1111/j.1742-4658.2012.08587.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Rhee I, Veillette A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 2012; 13:439-47. [PMID: 22513334 DOI: 10.1038/ni.2246] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lymphocyte activation must be tightly regulated to ensure sufficient immunity to pathogens and prevent autoimmunity. Protein tyrosine phosphatases (PTPs) serve critical roles in this regulation by controlling the functions of key receptors and intracellular signaling molecules in lymphocytes. In some cases, PTPs inhibit lymphocyte activation, whereas in others they promote it. Here we discuss recent progress in elucidating the roles and mechanisms of action of PTPs in lymphocyte activation. We also review the accumulating evidence that genetic alterations in PTPs are involved in human autoimmunity.
Collapse
Affiliation(s)
- Inmoo Rhee
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
16
|
Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J Virol 2011; 85:2803-12. [PMID: 21228233 DOI: 10.1128/jvi.01877-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously showed that the herpes simplex virus 1 (HSV-1) tegument protein VP11/12 activates the lymphocyte-specific Src family kinase (SFK) Lck and is tyrosine phosphorylated in an Lck-dependent manner during T cell infection. We now extend these findings to show that ectopic expression of Lck induces robust tyrosine phosphorylation of VP11/12 in Vero cells, strongly suggesting that VP11/12 participates in an Lck-mediated signaling pathway as a substrate of Lck or a kinase activated by Lck. We sought to elucidate signaling events downstream of VP11/12-SFK interactions. SFKs lie upstream of the canonical phosphoinositide 3-kinase (PI3K)-Akt pathway in signaling emanating from immune receptors, growth factor receptors, and polyomavirus middle T antigen. Here, we show that VP11/12 is required for virus-induced activation of PI3K-Akt signaling in HSV-infected Jurkat T cells and primary fibroblasts. VP11/12 interacts with PI3K or PI3K signaling complexes during infection, suggesting that VP11/12 activates PI3K directly. SFK activity is required for tyrosine phosphorylation of VP11/12, VP11/12-PI3K interactions, and Akt activation in infected fibroblasts, suggesting that SFK-dependent phosphorylation of VP11/12 is required for interactions with downstream signaling effectors. Akt controls many biological functions, including cell survival, cell motility, and translation, but it is currently unclear which Akt targets are modulated by VP11/12 during infection. Although the Akt target mTORC1 is activated during HSV-1 infection, VP11/12 is not required for this effect, implying that one or more additional viral proteins regulate this pathway. Further studies are therefore required to determine which Akt targets and associated biological functions are uniquely modulated by VP11/12.
Collapse
|
17
|
Zikherman J, Jenne C, Watson S, Doan K, Raschke W, Goodnow CC, Weiss A. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity 2010; 32:342-54. [PMID: 20346773 DOI: 10.1016/j.immuni.2010.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 11/23/2009] [Accepted: 12/29/2009] [Indexed: 12/18/2022]
Abstract
The kinase-phosphatase pair Csk and CD45 reciprocally regulate phosphorylation of the inhibitory tyrosine of the Src family kinases Lck and Fyn. T cell receptor (TCR) signaling and thymic development require CD45 expression but proceed constitutively in the absence of Csk. Here, we show that relative titration of CD45 and Csk expression reveals distinct regulation of basal and inducible TCR signaling during thymic development. Low CD45 expression is sufficient to rescue inducible TCR signaling and positive selection, whereas high expression is required to reconstitute basal TCR signaling and beta selection. CD45 has a dual positive and negative regulatory role during inducible but not basal TCR signaling. By contrast, Csk titration regulates basal but not inducible signaling. High physiologic expression of CD45 is thus required for two reasons-to downmodulate inducible TCR signaling during positive selection and to counteract Csk during basal TCR signaling.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Otsuyama KI, Zheng X, Kawano MM. Interleukin-6, CD45 and the Src-Kinases in Myeloma Cell Proliferation. Leuk Lymphoma 2010; 44:1477-81. [PMID: 14565647 DOI: 10.3109/10428190309178767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple myeloma (MM) is a proliferative disorder of monoclonal plasma cells which accumulate in human bone marrow, and myeloma cells proliferate in response to a cytokine, interleukin-6 (IL-6). We recently found that MPC-1- CD49e- immature myeloma cells expressing CD45 form a proliferating population in MM. IL-6 activates at least two intracellular pathways including signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (ERK1/2) following the activation of Janus kinases (JAKs) via its receptor complexes composed of the IL-6 receptor alpha chain and gp130. Although the roles of CD45 have been extensively studied for antigen receptors in B and T cells, its physiological consequences in other hematopoietic cells remain largely unknown. Myeloma cells expressing CD45 antigens which contain the activation of src family protein-tyrosine kinases (PTKs) independent of IL-6 stimulation proliferate in response to IL-6, whereas the proliferation of CD45- cells which lack a considerable activity of the src family PTKs is not promoted by IL-6. The STAT3 and ERK1/2 pathways are similarly activated by IL-6 in both cells either expressing or not expressing CD45. In this review, we argue a novel mechanism of proliferation of myeloma cells, in that the activation of both STAT3 and ERK1/2 is not sufficient for IL-6-induced proliferation which further requires IL-6-independent activation of the src family kinases associated with CD45 phosphatase. We propose that the cellular context, such as CD45 expression and src family kinase activation, is crucial for myeloma cells to proliferate in response to IL-6.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dupéré-Minier G, Desharnais P, Bernier J. Involvement of tyrosine phosphatase CD45 in apoptosis. Apoptosis 2010; 15:1-13. [PMID: 19856105 DOI: 10.1007/s10495-009-0413-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.
Collapse
|
20
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
21
|
Grochowy G, Hermiston ML, Kuhny M, Weiss A, Huber M. Requirement for CD45 in fine-tuning mast cell responses mediated by different ligand–receptor systems. Cell Signal 2009; 21:1277-86. [DOI: 10.1016/j.cellsig.2009.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
|
22
|
Hermiston ML, Zikherman J, Zhu JW. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228:288-311. [PMID: 19290935 PMCID: PMC2739744 DOI: 10.1111/j.1600-065x.2008.00752.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is central to normal immune cell function. Disruption of the equilibrium between PTK and PTP activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases (SFKs) play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B-cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of SFKs activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple PTPs are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of SFKs in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease.
Collapse
Affiliation(s)
- Michelle L. Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-2413, Fax: 415-502-5127,
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| | - Jing W. Zhu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| |
Collapse
|
23
|
Falahati R, Leitenberg D. Selective regulation of TCR signaling pathways by the CD45 protein tyrosine phosphatase during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2009; 181:6082-91. [PMID: 18941197 DOI: 10.4049/jimmunol.181.9.6082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.
Collapse
Affiliation(s)
- Rustom Falahati
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
24
|
Guiet R, Poincloux R, Castandet J, Marois L, Labrousse A, Le Cabec V, Maridonneau-Parini I. Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. Eur J Cell Biol 2008; 87:527-42. [DOI: 10.1016/j.ejcb.2008.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023] Open
|
25
|
Falahati R, Leitenberg D. Changes in the Role of the CD45 Protein Tyrosine Phosphatase in Regulating Lck Tyrosine Phosphorylation during Thymic Development. THE JOURNAL OF IMMUNOLOGY 2007; 178:2056-64. [PMID: 17277109 DOI: 10.4049/jimmunol.178.4.2056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CD45-dependent dephosphorylation of the negative regulatory C-terminal tyrosine of the Src family kinase Lck, promotes efficient TCR signal transduction. However, despite the role of CD45 in positively regulating Lck activity, the distinct phenotypes of CD45 and Lck/Fyn-deficient mice suggest that the role of CD45 in promoting Lck activity may be differentially regulated during thymocyte development. In this study, we have found that the C-terminal tyrosine of Lck (Y505) is markedly hyperphosphorylated in total thymocytes from CD45-deficient mice compared with control animals. In contrast, regulation of the Lck Y505 phosphorylation in purified, double-negative thymocytes is relatively unaffected in CD45-deficient cells. These changes in the role of CD45 in regulating Lck phosphorylation during thymocyte development correlate with changes in coreceptor expression and the presence of coreceptor-associated Lck. Biochemical analysis of coreceptor-associated and nonassociated Lck in thymocytes, and in cell lines varying in CD4 and CD45 expression, indicate that CD45-dependent regulation of Lck Y505 phosphorylation is most evident within the fraction of Lck that is coreceptor associated. In contrast, Lck Y505 phosphorylation that is not coreceptor associated is less affected by the absence of CD45. These data define distinct pools of Lck that are differentially regulated by CD45 during T cell development.
Collapse
Affiliation(s)
- Rustom Falahati
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| | | |
Collapse
|
26
|
Maksumova L, Le HT, Muratkhodjaev F, Davidson D, Veillette A, Pallen CJ. Protein Tyrosine Phosphatase α Regulates Fyn Activity and Cbp/PAG Phosphorylation in Thymocyte Lipid Rafts. THE JOURNAL OF IMMUNOLOGY 2005; 175:7947-56. [PMID: 16339530 DOI: 10.4049/jimmunol.175.12.7947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A role for the receptor protein tyrosine phosphatase alpha (PTPalpha) in immune cell function and regulation of Src family kinases was investigated using thymocytes from PTPalpha-deficient mice. PTPalpha-null thymocytes develop normally, but unstimulated PTPalpha-/- cells exhibit increased tyrosine phosphorylation of specific proteins, increased Fyn activity, and hyperphosphorylation of Cbp/PAG that promotes its association with C-terminal Src kinase. Elevated Fyn activity in the absence of PTPalpha is due to enhanced phosphorylation of Fyn tyrosines 528 and 417. Some PTPalpha is localized in lipid rafts of thymocytes, and raft-associated Fyn is specifically activated in PTPalpha-/- cells. PTPalpha is not a Cbp/PAG phosphatase, because it is not required for Cbp/PAG dephosphorylation in unstimulated or anti-CD3-stimulated thymocytes. Together, our results indicate that PTPalpha, likely located in lipid rafts, regulates the activity of raft Fyn. In the absence of PTPalpha this population of Fyn is activated and phosphorylates Cbp/PAG to enhance association with C-terminal Src kinase. Although TCR-mediated tyrosine phosphorylation was apparently unaffected by the absence of PTPalpha, the long-term proliferative response of PTPalpha-/- thymocytes was reduced. These findings indicate that PTPalpha is a component of the complex Src family tyrosine kinase regulatory network in thymocytes and is required to suppress Fyn activity in unstimulated cells in a manner that is not compensated for by the major T cell PTP and SFK regulator, CD45.
Collapse
Affiliation(s)
- Lola Maksumova
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Johnson P. Expression of CD45 Lacking the Catalytic Protein Tyrosine Phosphatase Domain Modulates Lck Phosphorylation and T Cell Activation. J Biol Chem 2005; 280:14318-24. [PMID: 15687496 DOI: 10.1074/jbc.m413265200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
28
|
Huntington ND, Tarlinton DM. CD45: direct and indirect government of immune regulation. Immunol Lett 2005; 94:167-74. [PMID: 15275963 DOI: 10.1016/j.imlet.2004.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 05/17/2004] [Accepted: 05/18/2004] [Indexed: 12/24/2022]
Abstract
The protein tyrosine phosphatase (PTP) CD45 is abundantly expressed on all nucleated hematopoietic cells and is critical for classical antigen receptor signalling indicated by the arrested development of B and T cells in mice deficient for CD45. Despite its clear role in positive regulation of signalling through the activation of the Src family of tyrosine kinases, many reports have shown CD45 to also negatively regulate this process. Given such a dichotomy in CD45 function and a poor understanding of the mechanism underlying the phenotype of CD45(-/-) lymphocytes, we considered it timely to review the existing data and attempt to determine whether aspects of the CD45(-/-) phenotype result from excessive positive or negative kinase activity and the target molecules that may mediate such effects.
Collapse
Affiliation(s)
- Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic. 3050, Australia.
| | | |
Collapse
|
29
|
Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 2005; 5:43-57. [PMID: 15630428 DOI: 10.1038/nri1530] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism for numerous important aspects of eukaryotic physiology and is catalysed by kinases and phosphatases. Together, cells of the immune system express at least half of the 107 protein tyrosine phosphatase (PTP) genes in the human genome, most of which encode multidomain proteins that contain protein- and phospholipid-interaction domains. Here, we discuss the diverse but specific, and important, roles that PTPs have in immune cells, focusing mainly on T and B cells, and we highlight recent evidence that even subtle alterations in PTPs can cause immune dysfunction and human disease.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
30
|
Mustelin T, Alonso A, Bottini N, Huynh H, Rahmouni S, Nika K, Louis-dit-Sully C, Tautz L, Togo SH, Bruckner S, Mena-Duran AV, al-Khouri AM. Protein tyrosine phosphatases in T cell physiology. Mol Immunol 2004; 41:687-700. [PMID: 15220004 DOI: 10.1016/j.molimm.2004.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms of signal transduction have been the focus of intense research during the last decade. In T cells, much of the work has centered on protein tyrosine kinase-mediated signaling from the TCR and cytokine receptors, while the study of protein tyrosine phosphatases has lagged behind. Nevertheless, it has now become clear that many protein tyrosine phosphatases play equally important roles in T cell physiology and that no kinase-regulated system would work without the counterbalancing participation of phosphatases. In fact, we have learned that many processes are regulated primarily on the phosphatase side. This minireview summarizes the current state-of-the art in our understanding of the regulation and biology of protein tyrosine phosphatases in T lymphocyte physiology.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shrivastava P, Katagiri T, Ogimoto M, Mizuno K, Yakura H. Dynamic regulation of Src-family kinases by CD45 in B cells. Blood 2004; 103:1425-32. [PMID: 14563648 DOI: 10.1182/blood-2003-03-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractCD45 is a key protein tyrosine phosphatase regulating Src-family protein tyrosine kinases (Src-PTKs) in lymphocytes; precisely how it exerts its effect remains controversial, however. We previously demonstrated that CD45 negatively regulates Lyn in the WEHI-231 B-cell line. Here we show that negative regulation by CD45 is physiologically significant in B cells and that some CD45 is constitutively associated with glycolipid-enriched microdomains (GEMs), where it inhibits Src-PTKs by dephosphorylating both the negative and the positive regulatory sites. Upon B-cell receptor (BCR) ligation, however, CD45 dissociates from GEMs within 30 seconds, inducing phosphorylation of 2 regulatory sites and activation of Src-PTKs, but subsequently reassociates with the GEMs within 15 minutes. Disruption of GEMs with methyl-β-cyclodextrin results in abrogation of BCR-induced apoptosis in WEHI-231 cells, suggesting GEMs are critical to signals leading to the fate determination. We propose that the primary function of CD45 is inhibition of Src-PTKs and that the level of Src-PTK activation and the B-cell fate are determined in part by dynamic behavior of CD45 with respect to GEMs.
Collapse
Affiliation(s)
- Punya Shrivastava
- Department of Immunology and Signal Transduction, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Regulation of tyrosine phosphorylation is a critical control point for integration of environmental signals into cellular responses. This regulation is mediated by the reciprocal actions of protein tyrosine kinases and phosphatases. CD45, the first and prototypic receptor-like protein tyrosine phosphatase, is expressed on all nucleated hematopoietic cells and plays a central role in this process. Studies of CD45 mutant cell lines, CD45-deficient mice, and CD45-deficient humans initially demonstrated the essential role of CD45 in antigen receptor signal transduction and lymphocyte development. It is now known that CD45 also modulates signals emanating from integrin and cytokine receptors. Recent work has focused on regulation of CD45 expression and alternative splicing, isoform-specific differences in signal transduction, and regulation of phosphatase activity. From these studies, a model is emerging in which CD45 affects cellular responses by controlling the relative threshold of sensitivity to external stimuli. Perturbation of this function may contribute to autoimmunity, immunodeficiency, and malignancy. Moreover, recent advances suggest that modulation of CD45 function can have therapeutic benefit in many disease states.
Collapse
|
33
|
Lefebvre DC, Felberg J, Cross JL, Johnson P. The noncatalytic domains of Lck regulate its dephosphorylation by CD45. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1650:40-9. [PMID: 12922168 DOI: 10.1016/s1570-9639(03)00190-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Src-family tyrosine kinase, Lck, contains two key regulatory phosphotyrosine residues, tyrosine 394 (Tyr-394) and tyrosine 505 (Tyr-505), both of which can be dephosphorylated by CD45. Here, the interaction of CD45 with its substrate, Lck, was determined to be complex, involving multiple interactions with both the catalytic and noncatalytic regions of Lck. CD45 preferentially dephosphorylated Tyr-394 over Tyr-505 in Lck. This was not due to sequence specificity surrounding the phosphotyrosine, but was due to the noncatalytic domains of Lck. The interactions with the noncatalytic domains of Lck and CD45 enhanced the dephosphorylation of Tyr-394 whereas intramolecular interactions within Lck reduced, but did not abolish, the dephosphorylation of Tyr-505. This demonstrates that the noncatalytic domains of Lck regulate the dephosphorylation of both Tyr-394 and Tyr-505 by CD45.
Collapse
Affiliation(s)
- Dennis C Lefebvre
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
34
|
Ishikawa H, Tsuyama N, Kawano MM. Interleukin-6-induced proliferation of human myeloma cells associated with CD45 molecules. Int J Hematol 2003; 78:95-105. [PMID: 12953802 DOI: 10.1007/bf02983376] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytokines exert multiple biological functions through binding to their specific receptors that triggers activation of intracellular signaling cascades. The cytokine-mediated signals may produce variable and even opposing effects on different cell types, depending on cellular context, which also are dictated by the differentiation stage of the cell. Multiple myeloma is a monoclonal proliferative disorder of human plasma cells. Despite their clonal origin, myeloma cells appear to include mixed subpopulations in accordance with expression of their surface antigens, such as CD45, CD49e, and MPC-1. Although interleukin-6 (IL-6) is widely accepted as the most relevant growth factor for myeloma cells in vitro and in vivo, only a few subpopulations of tumor cells, such as CD45(+)MPC-1(-)CD49e- immature cells, proliferate in response to IL-6. We recently showed that IL-6 efficiently activated both signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (ERK1/2) in CD45- myeloma cell lines, although CD45- cells failed to proliferate in response to IL-6. In contrast, src family protein-tyrosine kinases (PTKs), the most important substrates for CD45 protein-tyrosine phosphatase (PTP) are found activated independently of STAT3 and ERK1/2 activation in CD45+ but not in CD45- myeloma cell lines. Therefore activation of both STAT3 and ERK1/2 is not sufficient for IL-6-induced proliferation of myeloma cells, which requires the src family kinase activation associated with CD45 expression. We propose a mechanism for IL-6-induced cell proliferation that is strictly dependent on the cellular context in myelomas.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan.
| | | | | |
Collapse
|
35
|
Abstract
The last decade has seen an exponentially increasing interest in the molecular mechanisms of signal transduction. In T cells, much of the focus has been on protein tyrosine kinase (PTK)-mediated signaling from the T cell receptor (TCR) and cytokine receptors, while the study of protein tyrosine phosphatases (PTPases) has lagged behind. However, recent discoveries have revealed that several PTPases play important roles in many different aspects of T cell physiology. We predict that the phosphatases will become a 'hot topic' in the field within the next few years. This review summarizes the current understanding of the regulation and biology of PTPases in T lymphocyte activation.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
36
|
Fortin M, Steff AM, Felberg J, Ding I, Schraven B, Johnson P, Hugo P. Apoptosis mediated through CD45 is independent of its phosphatase activity and association with leukocyte phosphatase-associated phosphoprotein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6084-9. [PMID: 12055218 DOI: 10.4049/jimmunol.168.12.6084] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Besides the well-recognized role of CD45 as a major player in TCR signaling, we and others have demonstrated that cross-linking of CD45 with mAbs can induce cell death in T lymphocytes. To investigate the role of CD45 phosphatase activity in apoptosis induction, we expressed either wild-type or phosphatase-dead CD45 molecules in a CD45-deficient BW5147 T cell line. We show here that the phosphatase activity of CD45 was not required for apoptosis triggering after cross-linking of the molecule. It is noteworthy that a revertant of the CD45-negative BW5147 cell line, expressing a truncated form of CD45 lacking most of the cytoplasmic domain, was also susceptible to CD45-mediated death. Moreover, we also demonstrate that leukocyte phosphatase-associated phosphoprotein expression is totally dispensable for CD45-mediated apoptosis to occur. Taken together, these results strongly suggest a role for the extracellular and/or the transmembrane portion of CD45 in apoptosis signaling, which contrasts with the previously reported functions for CD45 in T lymphocytes.
Collapse
Affiliation(s)
- Marylène Fortin
- Division of Research and Development, PROCREA BioSciences, Inc., Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O, Kawano MM. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 2002; 99:2172-8. [PMID: 11877294 DOI: 10.1182/blood.v99.6.2172] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific intracellular signals mediated by interleukin-6 (IL-6) receptor complexes, such as signal transducer and activator of transcription 3 (STAT 3) and extracellular signal-regulated kinase (ERK) 1/2, are considered to be responsible for inducing a variety of cellular responses. In multiple myeloma, IL-6 only enhanced the proliferation of CD45+ tumor cells that harbored the IL-6-independent activation of src family kinases even though STAT3 and ERK1/2 could be activated in response to IL-6 in both CD45+ and CD45(minus sign) cells. Furthermore, the IL-6-induced proliferation of CD45+ U266 myeloma cells was significantly suppressed by Lyn-specific antisense oligodeoxynucleotides or a selective src kinase inhibitor. These results indicate that the activation of both STAT3 and ERK1/2 is not enough for IL-6-induced proliferation of myeloma cell lines that require src family kinase activation independent of IL-6 stimulation. Thus, the activation of the src family kinases associated with CD45 expression is a prerequisite for the proliferation of myeloma cell lines by IL-6. We propose a mechanism for IL-6-induced cell proliferation that is strictly dependent upon the cellular context in myelomas.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Dornan S, Sebestyen Z, Gamble J, Nagy P, Bodnar A, Alldridge L, Doe S, Holmes N, Goff LK, Beverley P, Szollosi J, Alexander DR. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem 2002; 277:1912-8. [PMID: 11694532 DOI: 10.1074/jbc.m108386200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An investigation into the role of CD45 isoforms in T cell antigen receptor signal transduction was carried out by transfecting CD45-negative CD4(+)CD8(+) HPB-ALL T cells with the CD45R0, CD45RBC, and CD45RABC isoforms. Fluorescence resonance energy transfer analysis showed that the CD45R0 isoform, but not the CD45RBC or CD45RABC isoforms, was found as homodimers and also preferentially associated with CD4 and CD8 at the cell-surface. A comparison was therefore made of T cell antigen receptor signaling between sub-clones expressing either CD45R0 or CD45RBC. Under basal conditions CD4-associated p56(lck) tyrosine kinase activity and cellular protein tyrosine phosphorylation levels were higher in the CD45R0(+) than in the CD45RBC(+) sub-clones. Upon CD3-CD4 ligation, TCR-zeta phosphorylation, ZAP-70 recruitment to the p21/p23 TCR-zeta phosphoisomers, ZAP-70 phosphorylation, as well as p56(lck), c-Cbl and Slp-76 phosphorylation, were all markedly increased in CD45R0(+) compared with CD45RBC(+) cells. T cell antigen receptor (TCR) stimulation alone also promoted c-Cbl phosphorylation in CD45R0(+) but not in CD45RBC(+) cells. Our results are consistent with a model in which association of CD45R0 with CD4 generates a more active pool of CD4-associated p56(lck) kinase molecules. Upon CD3-CD4 co-ligation, the active p56(lck) increases the intensity of T cell antigen receptor signal transduction coupling by promoting TCR-zeta chain phosphorylation and ZAP-70 recruitment.
Collapse
Affiliation(s)
- Saffron Dornan
- Laboratory of Lymphocyte Signalling and Development, Programme of Molecular Immunology, The Babraham Institute, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hermiston ML, Xu Z, Majeti R, Weiss A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest 2002. [DOI: 10.1172/jci0214794] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Hermiston ML, Xu Z, Majeti R, Weiss A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest 2002; 109:9-14. [PMID: 11781344 PMCID: PMC150828 DOI: 10.1172/jci14794] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michelle L Hermiston
- Department of Pediatrics, The Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0795, USA
| | | | | | | |
Collapse
|
41
|
Abstract
This review examines the value of transgenic studies in mice for the genetic dissection of signal-transduction pathways relevant to thymus development. T-cell development in the thymus is controlled by an ordered sequence of differentiation and proliferation checkpoints that culminate in the production of correctly selected, non-autoreactive, peripheral T lymphocytes. Work in transgenic mice has been fundamental for the preparation of genetic maps of signal-transduction pathways that control T-cell development. This review discusses how tyrosine kinases, guanine-nucleotide-binding proteins and transcription factors converge to control T-cell differentiation and proliferation in the immune system.
Collapse
Affiliation(s)
- Doreen A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK.
| |
Collapse
|
42
|
Sasaki T, Sasaki-Irie J, Penninger JM. New insights into the transmembrane protein tyrosine phosphatase CD45. Int J Biochem Cell Biol 2001; 33:1041-6. [PMID: 11551820 DOI: 10.1016/s1357-2725(01)00075-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD45 is expressed on all nucleated haematopoietic cells and was originally identified as the first and prototypic transmembrane protein tyrosine phosphatase. In CD45 mutant cell lines, CD45-deficient mice and CD45-deficient human SCID patients, CD45 is required for signal transduction through antigen receptors. CD45 can operate as a positive as well as a negative regulator of Src-family kinases. Moreover, CD45 was identified as the elusive JAK tyrosine phosphatase that negatively regulates cytokine receptor activation involved in the differentiation, proliferation and antiviral immunity of haematopoietic cells. Modulation of CD45 splice variants provides a unique opportunity to design drugs that turn off or turn on antigen and cytokine receptor signaling in cancer, transplantation or autoimmunity
Collapse
Affiliation(s)
- T Sasaki
- Department of Pharmacology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, 113-8613, Tokyo, Japan.
| | | | | |
Collapse
|
43
|
Brooks WP, Lynes MA. Effects of hemizygous CD45 expression in the autoimmune Fasl(gld/gld) syndrome. Cell Immunol 2001; 212:24-34. [PMID: 11716526 DOI: 10.1006/cimm.2001.1845] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice homozygous for the Fasl(gld/gld) mutation cannot initiate apoptosis via the Fas/Fasl pathway and develop an autoimmune disease characterized by the accumulation of CD4(-)/CD8(-) (DN) T cells and a progressive T cell anergy. These DN T cells express a high-molecular-weight isoform of the membrane PTPase CD45 (B220). We have produced a Fasl(gld/gld) mouse strain with only one functional CD45 allele (CD45(+/-), Fasl(gld/gld)) in order to explore the role that CD45 plays in the lymphoaccumulation and proliferative capacity of the DN T cells. In contrast to CD45(+/+), Fasl(gld/gld) mice, CD45(+/-), Fasl(gld/gld) mice display a 10-fold reduction in the DN T cell population and have decreased levels of anti-DNA antibodies and total serum Ig. However, enriched DN T cell populations remain unresponsive to mitogenic stimulation, but do display altered patterns of tyrosine phosphorylation. These data indicate that CD45 is essential to the accumulation of DN T cells in Fasl(gld/gld) mice and implicate CD45 as a component of the process of deletion that normally governs the composition of the T cell population.
Collapse
Affiliation(s)
- W P Brooks
- Department of Molecular and Cell Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- T Harder
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| |
Collapse
|
45
|
Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse. Annu Rev Immunol 2001; 19:375-96. [PMID: 11244041 DOI: 10.1146/annurev.immunol.19.1.375] [Citation(s) in RCA: 661] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adaptive immune response is initiated by the interaction of T cell antigen receptors with major histocompatibility complex molecule-peptide complexes in the nanometer scale gap between a T cell and an antigen-presenting cell, referred to as an immunological synapse. In this review we focus on the concept of immunological synapse formation as it relates to membrane structure, T cell polarity, signaling pathways, and the antigen-presenting cell. Membrane domains provide an organizational principle for compartmentalization within the immunological synapse. T cell polarization by chemokines increases T cell sensitivity to antigen. The current model is that signaling and formation of the immunological synapse are tightly interwoven in mature T cells. We also extend this model to natural killer cell activation, where the inhibitory NK synapse provides a striking example in which inhibition of signaling leaves the synapse in its nascent, inverted state. The APC may also play an active role in immunological synapse formation, particularly for activation of naïve T cells.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Cell Adhesion
- Cell Adhesion Molecules/physiology
- Cell Communication
- Cell Membrane/ultrastructure
- Cell Polarity
- Chemokines/physiology
- Cholera Toxin/pharmacology
- Immunologic Capping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/ultrastructure
- Lymphocyte Activation/immunology
- Membrane Microdomains/physiology
- Membrane Microdomains/ultrastructure
- Mice
- Models, Immunological
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/ultrastructure
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/ultrastructure
- Receptors, Chemokine/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Immunologic/ultrastructure
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/ultrastructure
Collapse
Affiliation(s)
- S K Bromley
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ. CD45: new jobs for an old acquaintance. Nat Immunol 2001; 2:389-96. [PMID: 11323691 DOI: 10.1038/87687] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identified as the first and prototypic transmembrane protein tyrosine phosphatase (PTPase), CD45 has been extensively studied for over two decades and is thought to be important for positively regulating antigen-receptor signaling via the dephosphorylation of Src kinases. However, new evidence indicates that CD45 can function as a Janus kinase PTPase that negatively controls cytokine-receptor signaling. A point mutation in CD45, which appears to affect CD45 dimerization, and a genetic polymorphism that affects alternative CD45 splicing are implicated in autoimmunity in mice and multiple sclerosis in humans. CD45 is expressed in multiple isoforms and the modulation of specific CD45 splice variants with antibodies can prevent transplant rejections. In addition, loss of CD45 can affect microglia activation in a mouse model for Alzheimer's disease. Thus, CD45 is moving rapidly back into the spotlight as a drug target and central regulator involved in differentiation of multiple hematopoietic cell lineages, autoimmunity and antiviral immunity.
Collapse
Affiliation(s)
- J M Penninger
- Amgen Research Institute and Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Toronto, ON M5G 2C1, Canada.
| | | | | | | |
Collapse
|
47
|
Majeti R, Xu Z, Parslow TG, Olson JL, Daikh DI, Killeen N, Weiss A. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 2000; 103:1059-70. [PMID: 11163182 DOI: 10.1016/s0092-8674(00)00209-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A model has been proposed for the regulation of CD45, and by homology other RPTPs, in which dimerization inhibits phosphatase activity through symmetrical interactions between an inhibitory structural wedge and the catalytic site. Here, we report the phenotype of mice with a single point mutation, glutamate 613 to arginine, that inactivates the inhibitory wedge of CD45. The CD45 E613R mutation causes polyclonal lymphocyte activation leading to lymphoproliferation and severe autoimmune nephritis with autoantibody production, resulting in death. Both homozygotes and heterozygotes develop pathology, indicating genetic dominance of CD45 E613R. The dramatic phenotype of CD45 E613R mice demonstrates the in vivo importance of negative regulation of CD45 by dimerization, supporting the model for regulation of CD45, and RPTPs in general.
Collapse
Affiliation(s)
- R Majeti
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Waddleton D, Ramachandran C, Wang Q. Development of a method for evaluating protein tyrosine phosphatase CD45 inhibitors using Jurkat cell membrane. Anal Biochem 2000; 285:58-63. [PMID: 10998263 DOI: 10.1006/abio.2000.4732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple, high-throughput fluorescent assay was developed to measure the inhibition of membrane-bound CD45 from Jurkat cells. This assay is based on the fact that approximately 64% of PTP activity from Jurkat cell membrane is contributed by CD45. This has been proven by comparing the activity in membrane protein from wild-type Jurkat cells and CD45-negative mutant cells, and also by measuring the residual activity after depleting CD45 from Jurkat cell membrane. We have demonstrated that fluorescein diphosphate can be used as a substrate to monitor CD45 activity from Jurkat cell membrane, which allows us to easily follow CD45 activity in both fluorescent and absorbance modes in a 96-well format. Some common protein tyrosine phosphatase inhibitors have been evaluated with this assay.
Collapse
Affiliation(s)
- D Waddleton
- Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, Pointe-Claire, Dorval, Quebec, H9R 4P8, Canada
| | | | | |
Collapse
|
49
|
Baldari CT, Telford JL, Acuto O. EMBO WORKSHOP REPORT: lymphocyte antigen receptor and coreceptor signaling Siena, Italy, November 6-10, 1999. EMBO J 2000; 19:4857-65. [PMID: 10990449 PMCID: PMC314226 DOI: 10.1093/emboj/19.18.4857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- C T Baldari
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | |
Collapse
|
50
|
Trop S, Charron J, Arguin C, Lesage S, Hugo P. Thymic selection generates T cells expressing self-reactive TCRs in the absence of CD45. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3073-9. [PMID: 10975818 DOI: 10.4049/jimmunol.165.6.3073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The CD45 protein tyrosine phosphatase regulates Ag receptor signaling in T and B cells. In the absence of CD45, TCR coupling to downstream signaling cascades is profoundly reduced. Moreover, in CD45-null mice, the maturation of CD4+CD8+ thymocytes into CD4+CD8- or CD4-CD8+ thymocytes is severely impaired. These findings suggest that thymic selection may not proceed normally in CD45-null mice, and may be biased in favor of thymocytes expressing TCRs with strong reactivity toward self-MHC-peptide ligands to compensate for debilitated TCR signaling. To test this possibility, we purified peripheral T cells from CD45-null mice and fused them with the BWalpha-beta- thymoma to generate hybridomas expressing normal levels of TCR and CD45. The reactivity of these hybridomas to self or foreign MHC-peptide complexes was assessed by measuring the amount of IL-2 secreted upon stimulation with syngeneic or allogeneic splenocytes. A very high proportion (55%) of the hybridomas tested reacted against syngeneic APCs, indicating that the majority of T cells in CD45-null mice express TCRs with high avidity for self-MHC-peptide ligands, and are thus potentially autoreactive. Furthermore, a large proportion of TCRs selected in CD45-null mice (H-2b) were also shown to display reactivity toward closely related MHC-peptide complexes, such as H-2bm12. These results support the notion that modulating the strength of TCR-mediated signals can alter the outcome of thymic selection, and demonstrate that CD45, by molding the window of affinity/avidity for positive and negative selection, directly participates in the shaping of the T cell repertoire.
Collapse
Affiliation(s)
- S Trop
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|