1
|
Galanti L, Peritore M, Gnügge R, Cannavo E, Heipke J, Palumbieri MD, Steigenberger B, Symington LS, Cejka P, Pfander B. Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nat Commun 2024; 15:2890. [PMID: 38570537 PMCID: PMC10991553 DOI: 10.1038/s41467-024-46951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.
Collapse
Affiliation(s)
- Lorenzo Galanti
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Johannes Heipke
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Maria Dilia Palumbieri
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Boris Pfander
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany.
| |
Collapse
|
2
|
Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med 2024; 56:319-328. [PMID: 38355825 PMCID: PMC10907590 DOI: 10.1038/s12276-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
DNA damage is a critical threat that poses significant challenges to all cells. To address this issue, cells have evolved a sophisticated molecular and cellular process known as the DNA damage response (DDR). Among the various cell types, mammalian oocytes, which remain dormant in the ovary for extended periods, are particularly susceptible to DNA damage. The occurrence of DNA damage in oocytes can result in genetic abnormalities, potentially leading to infertility, birth defects, and even abortion. Therefore, understanding how oocytes detect and repair DNA damage is of paramount importance in maintaining oocyte quality and preserving fertility. Although the fundamental concept of the DDR is conserved across various cell types, an emerging body of evidence reveals striking distinctions in the DDR between mammalian oocytes and somatic cells. In this review, we highlight the distinctive characteristics of the DDR in oocytes and discuss the clinical implications of DNA damage in oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Crystal Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Da Yi Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
3
|
Reusswig KU, Bittmann J, Peritore M, Courtes M, Pardo B, Wierer M, Mann M, Pfander B. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat Commun 2022; 13:7014. [PMID: 36400763 PMCID: PMC9674678 DOI: 10.1038/s41467-022-34379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineer genetic systems in budding yeast to induce unscheduled replication in a G1-like cell cycle state. Unscheduled G1 replication initiates at canonical S-phase origins. We quantifiy the composition of replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se does not trigger cellular checkpoints. Subsequent replication during S-phase, however, results in over-replication and leads to chromosome breaks and chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA, indicating head-to-tail replication collisions as a key mechanism generating genome instability upon G1 replication. Low-level, sporadic induction of G1 replication induces an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation.
Collapse
Affiliation(s)
- Karl-Uwe Reusswig
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Present Address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Julia Bittmann
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martina Peritore
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mathilde Courtes
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Benjamin Pardo
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Michael Wierer
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.5254.60000 0001 0674 042XPresent Address: Proteomics Research Infrastructure, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany ,grid.6190.e0000 0000 8580 3777Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
4
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
5
|
The yeast Dbf4 Zn 2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins. Curr Genet 2022; 68:253-265. [PMID: 35147742 PMCID: PMC8976809 DOI: 10.1007/s00294-022-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant, dbf4-zn, lacking the Zn2+ finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in pri1-m4 mutants defective for the catalytic subunit of DNA primase and rad53 mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn2+ finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively, dbf4-zn may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress.
Collapse
|
6
|
Coordinating DNA Replication and Mitosis through Ubiquitin/SUMO and CDK1. Int J Mol Sci 2021; 22:ijms22168796. [PMID: 34445496 PMCID: PMC8395760 DOI: 10.3390/ijms22168796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin–CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.
Collapse
|
7
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
8
|
Psakhye I, Castellucci F, Branzei D. SUMO-Chain-Regulated Proteasomal Degradation Timing Exemplified in DNA Replication Initiation. Mol Cell 2019; 76:632-645.e6. [PMID: 31519521 PMCID: PMC6891891 DOI: 10.1016/j.molcel.2019.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
Similar to ubiquitin, SUMO forms chains, but the identity of SUMO-chain-modified factors and the purpose of this modification remain largely unknown. Here, we identify the budding yeast SUMO protease Ulp2, able to disassemble SUMO chains, as a DDK interactor enriched at replication origins that promotes DNA replication initiation. Replication-engaged DDK is SUMOylated on chromatin, becoming a degradation-prone substrate when Ulp2 no longer protects it against SUMO chain assembly. Specifically, SUMO chains channel DDK for SUMO-targeted ubiquitin ligase Slx5/Slx8-mediated and Cdc48 segregase-assisted proteasomal degradation. Importantly, the SUMOylation-defective ddk-KR mutant rescues inefficient replication onset and MCM activation in cells lacking Ulp2, suggesting that SUMO chains time DDK degradation. Using two unbiased proteomic approaches, we further identify subunits of the MCM helicase and other factors as SUMO-chain-modified degradation-prone substrates of Ulp2 and Slx5/Slx8. We thus propose SUMO-chain/Ulp2-protease-regulated proteasomal degradation as a mechanism that times the availability of functionally engaged SUMO-modified protein pools during replication and beyond.
Collapse
Affiliation(s)
- Ivan Psakhye
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | - Dana Branzei
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
10
|
Torres-Zelada EF, Stephenson RE, Alpsoy A, Anderson BD, Swanson SK, Florens L, Dykhuizen EC, Washburn MP, Weake VM. The Drosophila Dbf4 ortholog Chiffon forms a complex with Gcn5 that is necessary for histone acetylation and viability. J Cell Sci 2019; 132:jcs.214072. [PMID: 30559249 DOI: 10.1242/jcs.214072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate formation of the ATAC and SAGA complexes, respectively. In Drosophila melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here, we show that only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, Sgf29 and Chiffon, forming the Chiffon histone acetyltransferase (CHAT) complex. Chiffon is the Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene amplification, a specialized form of DNA re-replication. Although chiffon was previously reported to be dispensable for viability, here, we find that Chiffon is required for both histone acetylation and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not required for viability in flies, the CHAT-binding domain is essential for viability, but is not required for gene amplification, arguing against a role in DNA replication.
Collapse
Affiliation(s)
| | - Robert E Stephenson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Benjamin D Anderson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Hernández-Carralero E, Cabrera E, Alonso-de Vega I, Hernández-Pérez S, Smits VAJ, Freire R. Control of DNA Replication Initiation by Ubiquitin. Cells 2018; 7:E146. [PMID: 30241373 PMCID: PMC6211026 DOI: 10.3390/cells7100146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells divide by accomplishing a program of events in which the replication of the genome is a fundamental part. To ensure all cells have an accurate copy of the genome, DNA replication occurs only once per cell cycle and is controlled by numerous pathways. A key step in this process is the initiation of DNA replication in which certain regions of DNA are marked as competent to replicate. Moreover, initiation of DNA replication needs to be coordinated with other cell cycle processes. At the molecular level, initiation of DNA replication relies, among other mechanisms, upon post-translational modifications, including the conjugation and hydrolysis of ubiquitin. An example is the precise control of the levels of the DNA replication initiation protein Cdt1 and its inhibitor Geminin by ubiquitin-mediated proteasomal degradation. This control ensures that DNA replication occurs with the right timing during the cell cycle, thereby avoiding re-replication events. Here, we review the events that involve ubiquitin signalling during DNA replication initiation, and how they are linked to human disease.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Ignacio Alonso-de Vega
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Santiago Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| |
Collapse
|
12
|
Localization of Cdc7 Protein Kinase During DNA Replication in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3757-3774. [PMID: 28924058 PMCID: PMC5677158 DOI: 10.1534/g3.117.300223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DDK, a conserved serine-threonine protein kinase composed of a regulatory subunit, Dbf4, and a catalytic subunit, Cdc7, is essential for DNA replication initiation during S phase of the cell cycle through MCM2-7 helicase phosphorylation. The biological significance of DDK is well characterized, but the full mechanism of how DDK associates with substrates remains unclear. Cdc7 is bound to chromatin in the Saccharomyces cerevisiae genome throughout the cell cycle, but there is little empirical evidence as to specific Cdc7 binding locations. Using biochemical and genetic techniques, this study investigated the specific localization of Cdc7 on chromatin. The Calling Cards method, using Ty5 retrotransposons as a marker for DNA–protein binding, suggests Cdc7 kinase is preferentially bound to genomic DNA known to replicate early in S phase, including centromeres and origins of replication. We also discovered Cdc7 binding throughout the genome, which may be necessary to initiate other cellular processes, including meiotic recombination and translesion synthesis. A kinase dead Cdc7 point mutation increases the Ty5 retrotransposon integration efficiency and a 55-amino acid C-terminal truncation of Cdc7, unable to bind Dbf4, reduces Cdc7 binding suggesting a requirement for Dbf4 to stabilize Cdc7 on chromatin during S phase. Chromatin immunoprecipitation demonstrates that Cdc7 binding near specific origins changes during S phase. Our results suggest a model where Cdc7 is loosely bound to chromatin during G1. At the G1/S transition, Cdc7 binding to chromatin is increased and stabilized, preferentially at sites that may become origins, in order to carry out a variety of cellular processes.
Collapse
|
13
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
14
|
Princz LN, Wild P, Bittmann J, Aguado FJ, Blanco MG, Matos J, Pfander B. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. EMBO J 2017; 36:664-678. [PMID: 28096179 PMCID: PMC5331752 DOI: 10.15252/embj.201694831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81‐Mms4, this cell cycle stage‐specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7‐Dbf4 (DDK), targets Mus81‐Mms4 in conjunction with Cdc5—both kinases bind to as well as phosphorylate Mus81‐Mms4 in an interdependent manner. Moreover, DDK‐mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81‐Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution.
Collapse
Affiliation(s)
- Lissa N Princz
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Philipp Wild
- Institute of Biochemistry, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Julia Bittmann
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, Center for Research in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| |
Collapse
|
15
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
16
|
Duncker BP. Mechanisms Governing DDK Regulation of the Initiation of DNA Replication. Genes (Basel) 2016; 8:genes8010003. [PMID: 28025497 PMCID: PMC5294998 DOI: 10.3390/genes8010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
The budding yeast Dbf4-dependent kinase (DDK) complex—comprised of cell division cycle (Cdc7) kinase and its regulatory subunit dumbbell former 4 (Dbf4)—is required to trigger the initiation of DNA replication through the phosphorylation of multiple minichromosome maintenance complex subunits 2-7 (Mcm2-7). DDK is also a target of the radiation sensitive 53 (Rad53) checkpoint kinase in response to replication stress. Numerous investigations have determined mechanistic details, including the regions of Mcm2, Mcm4, and Mcm6 phosphorylated by DDK, and a number of DDK docking sites. Similarly, the way in which the Rad53 forkhead-associated 1 (FHA1) domain binds to DDK—involving both canonical and non-canonical interactions—has been elucidated. Recent work has revealed mutual promotion of DDK and synthetic lethal with dpb11-1 3 (Sld3) roles. While DDK phosphorylation of Mcm2-7 subunits facilitates their interaction with Sld3 at origins, Sld3 in turn stimulates DDK phosphorylation of Mcm2. Details of a mutually antagonistic relationship between DDK and Rap1-interacting factor 1 (Rif1) have also recently come to light. While Rif1 is able to reverse DDK-mediated Mcm2-7 complex phosphorylation by targeting the protein phosphatase glycogen 7 (Glc7) to origins, there is evidence to suggest that DDK can counteract this activity by binding to and phosphorylating Rif1.
Collapse
Affiliation(s)
- Bernard P Duncker
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
17
|
Kylie K, Romero J, Lindamulage IK, Knockleby J, Lee H. Dynamic regulation of histone H3K9 is linked to the switch between replication and transcription at the Dbf4 origin-promoter locus. Cell Cycle 2016; 15:2321-35. [PMID: 27341472 PMCID: PMC5004705 DOI: 10.1080/15384101.2016.1201254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The co-regulation of DNA replication and gene transcription is still poorly understood. To gain a better understanding of this important control mechanism, we examined the DNA replication and transcription using the Dbf4 origin-promoter and Dbf4 pseudogene models. We found that origin firing and Dbf4 transcription activity were inversely regulated in a cell cycle-dependent manner. We also found that proteins critical for the regulation of replication (ORC, MCM), transcription (SP1, TFIIB), and cohesin (Smc1, Smc3) and Mediator functions (Med1, Med12) interact with specific sites within and the surrounding regions of the Dbf4 locus in a cell cycle-dependent manner. As expected, replication initiation occurred within a nucleosome-depleted region, and nucleosomes flanked the 2 replication initiation zones. Further, the histone H3 in this region was distinctly acetylated or trimethylated on lysine 9 in a cell cycle-dependent fluctuation pattern: H3K9ac was most prevalent when the Dbf4 transcription level was highest whereas the H3K9me3 level was greatest during and just after replication. The KDM4A histone demethylase, which is responsible for the H3K9me3 modification, was enriched at the Dbf4 origin in a manner coinciding with H3K9me3. Finally, HP1γ, a protein known to interact with H3K9me3 in the heterochromatin was also found enriched at the origin during DNA replication, indicating that H3K9me3 may be required for the regulation of replication at both heterochromatin and euchromatin regions. Taken together, our data show that mammalian cells employ an extremely sophisticated and multilayered co-regulation mechanism for replication and transcription in a highly coordinated manner.
Collapse
Affiliation(s)
- Kathleen Kylie
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Julia Romero
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | | | - James Knockleby
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Knockleby J, Kim BJ, Mehta A, Lee H. Cdk1-mediated phosphorylation of Cdc7 suppresses DNA re-replication. Cell Cycle 2016; 15:1494-505. [PMID: 27105124 PMCID: PMC4934051 DOI: 10.1080/15384101.2016.1176658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
To maintain genetic stability, the entire mammalian genome must replicate only once per cell cycle. This is largely achieved by strictly regulating the stepwise formation of the pre-replication complex (pre-RC), followed by the activation of individual origins of DNA replication by Cdc7/Dbf4 kinase. However, the mechanism how Cdc7 itself is regulated in the context of cell cycle progression is poorly understood. Here we report that Cdc7 is phosphorylated by a Cdk1-dependent manner during prometaphase on multiple sites, resulting in its dissociation from origins. In contrast, Dbf4 is not removed from origins in prometaphase, nor is it degraded as cells exit mitosis. Our data thus demonstrates that constitutive phosphorylation of Cdc7 at Cdk1 recognition sites, but not the regulation of Dbf4, prevents the initiation of DNA replication in normally cycling cells and under conditions that promote re-replication in G2/M. As cells exit mitosis, PP1α associates with and dephosphorylates Cdc7. Together, our data support a model where Cdc7 (de)phosphorylation is the molecular switch for the activation and inactivation of DNA replication in mitosis, directly connecting Cdc7 and PP1α/Cdk1 to the regulation of once-per-cell cycle DNA replication in mammalian cells.
Collapse
Affiliation(s)
- James Knockleby
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Byung Ju Kim
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Avani Mehta
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
- Departments of Medicine, the Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
19
|
Stephenson R, Hosler MR, Gavande NS, Ghosh AK, Weake VM. Characterization of a Drosophila ortholog of the Cdc7 kinase: a role for Cdc7 in endoreplication independent of Chiffon. J Biol Chem 2014; 290:1332-47. [PMID: 25451925 DOI: 10.1074/jbc.m114.597948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila.
Collapse
Affiliation(s)
| | | | | | - Arun K Ghosh
- Chemistry and Medicinal Chemistry, and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Vikki M Weake
- From the Departments of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
20
|
Ma KL, Song LK, Yuan YH, Zhang Y, Han N, Gao K, Chen NH. The nuclear accumulation of alpha-synuclein is mediated by importin alpha and promotes neurotoxicity by accelerating the cell cycle. Neuropharmacology 2014; 82:132-142. [PMID: 23973294 DOI: 10.1016/j.neuropharm.2013.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 01/29/2023]
Abstract
α-Synuclein (α-syn), a 14 kDa pre-synaptic protein, is widely involved in the Parkinson's disease (PD) pathogenesis. Recent studies have shown that the nuclear accumulation of α-syn might have a toxic effect. The main purpose of the present study was to explore which amino acid residues in α-syn are associated with its nuclear accumulation, the molecule(s) mediated the nuclear import of α-syn, and the role of α-syn accumulated in the nucleus. It has been noted that the nuclear import of α-syn may be mediated by importin α and that both the amino acid residues 1-60 and 103-140 of α-syn were indispensable for its nuclear import. After imported into the nucleus, the accumulated α-syn played a toxic role in both the PC12 cells and the C57 mice. Furthermore, α-syn-nuclear localization signal-injected mice showed behavioral symptoms associated with PD. Further studies performed in vitro showed that the toxicity of α-syn in the nucleus might be due to an interference of the cell cycle. Thus, it can be concluded that α-syn can accumulate in nucleus, which is mediated by importin α, and promote neurotoxicity by accelerating the cell cycle.
Collapse
Affiliation(s)
- Kai-Li Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, PR China
| | - Lian-Kun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, PR China
| | - Ning Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Kai Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
21
|
Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:a010371. [PMID: 23881938 DOI: 10.1101/cshperspect.a010371] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2-7 in the pre-RC to an active DNA helicase, the Cdc45-Mcm-GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
22
|
Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae. Genetics 2013; 194:389-401. [PMID: 23564203 PMCID: PMC3664849 DOI: 10.1534/genetics.113.149740] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022] Open
Abstract
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
- Michigan State University, Genetics Program, East Lansing, Michigan 48824
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Carrie Gabrielse
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Christine Hänni
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Philip Zegerman
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
23
|
Matthews LA, Guarné A. Dbf4: the whole is greater than the sum of its parts. Cell Cycle 2013; 12:1180-8. [PMID: 23549174 PMCID: PMC3674083 DOI: 10.4161/cc.24416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022] Open
Abstract
Together with cyclin-dependent kinases, the Dbf4-dependent kinase (DDK) is essential to activate the Mcm2-7 helicase and, hence, initiate DNA replication in eukaryotes. Beyond its role as the regulatory subunit of the DDK complex, the Dbf4 protein also regulates the activity of other cell cycle kinases to mediate the checkpoint response and prevent premature mitotic exit under stress. Two features that are unusual in DNA replication proteins characterize Dbf4. The first is its evolutionary divergence; the second is how its conserved motifs are combined to form distinct functional units. This structural plasticity appears to be at odds with the conserved functions of Dbf4. In this review, we summarize recent genetic, biochemical and structural work delineating the multiple interactions mediated by Dbf4 and its various functions during the cell cycle. We also discuss how the limited sequence conservation of Dbf4 may be an advantage to regulate the activities of multiple cell cycle kinases.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
24
|
Hua H, Namdar M, Ganier O, Gregan J, Méchali M, Kearsey SE. Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis. Mol Biol Cell 2013; 24:578-87. [PMID: 23303250 PMCID: PMC3583662 DOI: 10.1091/mbc.e12-11-0825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduction in ploidy in meiosis is assumed to be due to a block to the licensing step (Mcm helicase association with replication origins). When the licensing block is subverted, replication is still only partial due to inefficient elongation replication forks. This might constitute an additional level of replication regulation. Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I–II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.
Collapse
Affiliation(s)
- Hui Hua
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Gidvani RD, Sudmant P, Li G, DaSilva LF, McConkey BJ, Duncker BP, Ingalls BP. A quantitative model of the initiation of DNA replication in Saccharomyces cerevisiae predicts the effects of system perturbations. BMC SYSTEMS BIOLOGY 2012; 6:78. [PMID: 22738223 PMCID: PMC3439281 DOI: 10.1186/1752-0509-6-78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/05/2012] [Indexed: 11/17/2022]
Abstract
Background Eukaryotic cell proliferation involves DNA replication, a tightly regulated process mediated by a multitude of protein factors. In budding yeast, the initiation of replication is facilitated by the heterohexameric origin recognition complex (ORC). ORC binds to specific origins of replication and then serves as a scaffold for the recruitment of other factors such as Cdt1, Cdc6, the Mcm2-7 complex, Cdc45 and the Dbf4-Cdc7 kinase complex. While many of the mechanisms controlling these associations are well documented, mathematical models are needed to explore the network’s dynamic behaviour. We have developed an ordinary differential equation-based model of the protein-protein interaction network describing replication initiation. Results The model was validated against quantified levels of protein factors over a range of cell cycle timepoints. Using chromatin extracts from synchronized Saccharomyces cerevisiae cell cultures, we were able to monitor the in vivo fluctuations of several of the aforementioned proteins, with additional data obtained from the literature. The model behaviour conforms to perturbation trials previously reported in the literature, and accurately predicts the results of our own knockdown experiments. Furthermore, we successfully incorporated our replication initiation model into an established model of the entire yeast cell cycle, thus providing a comprehensive description of these processes. Conclusions This study establishes a robust model of the processes driving DNA replication initiation. The model was validated against observed cell concentrations of the driving factors, and characterizes the interactions between factors implicated in eukaryotic DNA replication. Finally, this model can serve as a guide in efforts to generate a comprehensive model of the mammalian cell cycle in order to explore cancer-related phenotypes.
Collapse
Affiliation(s)
- Rohan D Gidvani
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Matthews LA, Jones DR, Prasad AA, Duncker BP, Guarné A. Saccharomyces cerevisiae Dbf4 has unique fold necessary for interaction with Rad53 kinase. J Biol Chem 2011; 287:2378-87. [PMID: 22130670 DOI: 10.1074/jbc.m111.233973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dbf4 is a conserved eukaryotic protein that functions as the regulatory subunit of the Dbf4-dependent kinase (DDK) complex. DDK plays essential roles in DNA replication initiation and checkpoint activation. During the replication checkpoint, Saccharomyces cerevisiae Dbf4 is phosphorylated in a Rad53-dependent manner, and this, in turn, inhibits initiation of replication at late origins. We have determined the minimal region of Dbf4 required for the interaction with the checkpoint kinase Rad53 and solved its crystal structure. The core of this fragment of Dbf4 folds as a BRCT domain, but it includes an additional N-terminal helix unique to Dbf4. Mutation of the residues that anchor this helix to the domain core abolish the interaction between Dbf4 and Rad53, indicating that this helix is an integral element of the domain. The structure also reveals that previously characterized Dbf4 mutants with checkpoint phenotypes destabilize the domain, indicating that its structural integrity is essential for the interaction with Rad53. Collectively, these results allow us to propose a model for the association between Dbf4 and Rad53.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
27
|
Lee AYL, Chiba T, Truong LN, Cheng AN, Do J, Cho MJ, Chen L, Wu X. Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J Biol Chem 2011; 287:2531-43. [PMID: 22123827 DOI: 10.1074/jbc.m111.291104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Alan Yueh-Luen Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tanaka S, Araki H. Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance. PLoS Genet 2011; 7:e1002136. [PMID: 21698130 PMCID: PMC3116906 DOI: 10.1371/journal.pgen.1002136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 05/01/2011] [Indexed: 12/28/2022] Open
Abstract
Genomic instability is a hallmark of human cancer cells. To prevent genomic instability, chromosomal DNA is faithfully duplicated in every cell division cycle, and eukaryotic cells have complex regulatory mechanisms to achieve this goal. Here, we show that untimely activation of replication origins during the G1 phase is genotoxic and induces genomic instability in the budding yeast Saccharomyces cerevisiae. Our data indicate that cells preserve a low level of the initiation factor Sld2 to prevent untimely initiation during the normal cell cycle in addition to controlling the phosphorylation of Sld2 and Sld3 by cyclin-dependent kinase. Although untimely activation of origin is inhibited on multiple levels, we show that deregulation of a single pathway can cause genomic instability, such as gross chromosome rearrangements (GCRs). Furthermore, simultaneous deregulation of multiple pathways causes an even more severe phenotype. These findings highlight the importance of having multiple inhibitory mechanisms to prevent the untimely initiation of chromosome replication to preserve stable genome maintenance over generations in eukaryotes. Chromosomal DNA replication occurs as a two-step reaction in eukaryotes. In the first reaction, called licensing, the replicative helicase is loaded onto replication origin in an inactive form during the G1 phase of the cell cycle. In the second reaction, called initiation, the replicative helicase is activated, and replication forks are established. Because of this two-step mechanism, licensing and initiation must occur at different times in the cell cycle. Failure of this two-step regulation will cause heterogeneous re-replication of chromosomal DNA, and genome integrity will be lost. Although previous works have established that multiple regulatory pathways regulate licensing, much less is known about how untimely (premature) initiation is prevented during the G1 phase. In this paper, we show that untimely activation of replication origins during the G1 phase is inhibited on multiple levels. Notably, deregulation of a single pathway can cause genomic instability; simultaneous deregulation of multiple pathways causes a more severe phenotype, such as aneuploidy. Therefore, these findings not only indicate the importance of having multiple inhibitory mechanisms to prevent untimely initiation of chromosome replication but also should help us understand how replication might be deregulated in human cancer cells, in which the genome is frequently destabilized.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Japan.
| | | |
Collapse
|
29
|
Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 2010; 119:565-74. [DOI: 10.1007/s00412-010-0291-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 12/20/2022]
|
30
|
Budding yeast Dbf4 sequences required for Cdc7 kinase activation and identification of a functional relationship between the Dbf4 and Rev1 BRCT domains. Genetics 2009; 183:1269-82. [PMID: 19822727 DOI: 10.1534/genetics.109.110155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cdc7-Dbf4 is a two-subunit kinase required for initiating DNA replication. The Dbf4 regulatory subunit is required for Cdc7 kinase activity. Previous studies have shown that the C termini of Dbf4 orthologs encode a single (putative) C(2)H(2) zinc (Zn) finger, referred to as "motif C." By mutational analysis we show that the Zn finger is not required for the essential function of Dbf4. However, deletion and point mutants altering conserved Zn-finger residues exhibit a substantially slowed S-phase, DNA damage sensitivity, and a hypo-mutagenic phenotype following UV irradiation. Using two-hybrid and biochemical assays, we show that the Dbf4 Zn finger interacts with Cdc7 and stimulates its kinase activity. However, a separable Dbf4 region also mediates an interaction with Cdc7 such that only the loss of both Cdc7-interacting regions results in lethality. In contrast, an N-terminal BRCT-like domain is not required for induced mutagenesis nor does it interact with Cdc7. By making chimeric Dbf4 proteins that contain known BRCT domains in Saccharomyces cerevisiae, we show that the BRCT domain from Rev1, a translesion DNA polymerase, can uniquely substitute for the Dbf4 BRCT domain. Thus, we have mapped regions on budding yeast Dbf4 required for binding and activating Cdc7 kinase. Our data also suggest that the Dbf4 and Rev1 BRCT domains interact with a common protein or structure, although the precise function of both domains and their binding partners remains elusive.
Collapse
|
31
|
Bivi N, Romanello M, Harrison R, Clarke I, Hoyle DC, Moro L, Ortolani F, Bonetti A, Quadrifoglio F, Tell G, Delneri D. Identification of secondary targets of N-containing bisphosphonates in mammalian cells via parallel competition analysis of the barcoded yeast deletion collection. Genome Biol 2009; 10:R93. [PMID: 19744312 PMCID: PMC2768982 DOI: 10.1186/gb-2009-10-9-r93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/16/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
Growth competition assays using barcoded yeast deletion-mutants reveal the molecular targets of nitrogen containing bisphosphonates used for the treatment of bone cancers and osteoporosis. Background Nitrogen-containing bisphosphonates are the elected drugs for the treatment of diseases in which excessive bone resorption occurs, for example, osteoporosis and cancer-induced bone diseases. The only known target of nitrogen-containing bisphosphonates is farnesyl pyrophosphate synthase, which ensures prenylation of prosurvival proteins, such as Ras. However, it is likely that the action of nitrogen-containing bisphosphonates involves additional unknown mechanisms. To identify novel targets of nitrogen-containing bisphosphonates, we used a genome-wide high-throughput screening in which 5,936 Saccharomyces cerevisiae heterozygote barcoded mutants were grown competitively in the presence of sub-lethal doses of three nitrogen-containing bisphosphonates (risedronate, alendronate and ibandronate). Strains carrying deletions in genes encoding potential drug targets show a variation of the intensity of their corresponding barcodes on the hybridization array over the time. Results With this approach, we identified novel targets of nitrogen-containing bisphosphonates, such as tubulin cofactor B and ASK/DBF4 (Activator of S-phase kinase). The up-regulation of tubulin cofactor B may explain some previously unknown effects of nitrogen-containing bisphosphonates on microtubule dynamics and organization. As nitrogen-containing bisphosphonates induce extensive DNA damage, we also document the role of DBF4 as a key player in nitrogen-containing bisphosphonate-induced cytotoxicity, thus explaining the effects on the cell-cycle. Conclusions The dataset obtained from the yeast screen was validated in a mammalian system, allowing the discovery of new biological processes involved in the cellular response to nitrogen-containing bisphosphonates and opening up opportunities for development of new anticancer drugs.
Collapse
Affiliation(s)
- Nicoletta Bivi
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe, 33100, Udine, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Putnam CD, Jaehnig EJ, Kolodner RD. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst) 2009; 8:974-82. [PMID: 19477695 PMCID: PMC2725198 DOI: 10.1016/j.dnarep.2009.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA damage and replication checkpoints are believed to primarily slow the progression of the cell cycle to allow DNA repair to occur. Here we summarize known aspects of the Saccharomyces cerevisiae checkpoints including how these responses are integrated into downstream effects on the cell cycle, chromatin, DNA repair, and cytoplasmic targets. Analysis of the transcriptional response demonstrates that it is far more complex and less relevant to the repair of DNA damage than the bacterial SOS response. We also address more speculative questions regarding potential roles of the checkpoint during the normal S-phase and how current evidence hints at a checkpoint activation mechanism mediated by positive feedback that amplifies initial damage signals above a minimum threshold.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, United States.
| | | | | |
Collapse
|
33
|
Miller CT, Gabrielse C, Chen YC, Weinreich M. Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet 2009; 5:e1000498. [PMID: 19478884 PMCID: PMC2682205 DOI: 10.1371/journal.pgen.1000498] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/29/2009] [Indexed: 01/14/2023] Open
Abstract
Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint. Cdc7p-Dbf4p is a two-subunit enzyme required to copy the genetic material present on every chromosome in a process termed DNA replication. Dbf4p is an essential regulatory subunit of this enzyme that likely directs the Cdc7p subunit to its targets within the cell. We found that Dbf4p physically interacts with another protein called Polo that acts during mitosis, a later step in the cell cycle when the newly copied chromosomes are equally divided to mother and daughter cells. Polo is a master regulator of mitosis and impacts many other proteins required for cell division. We determined that Cdc7p-Dbf4p is a Polo inhibitor and, further, that Cdc7p-Dbf4p delayed or prevented chromosome segregation when errors occurred during the cell division process. Interestingly, Dbf4p may bind the Polo substrate-binding domain using a type of interaction not previously described. Thus, we have uncovered a new activity for Cdc7p-Dbf4p in the cell cycle to inhibit chromosome segregation, and these findings impact multiple fields that investigate how cells accurately copy and segregate their chromosomes.
Collapse
Affiliation(s)
- Charles T. Miller
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Carrie Gabrielse
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Ying-Chou Chen
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Graduate Program in Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Nambiar S, Mirmohammadsadegh A, Hassan M, Mota R, Marini A, Alaoui A, Tannapfel A, Hegemann JH, Hengge UR. Identification and functional characterization of ASK/Dbf4, a novel cell survival gene in cutaneous melanoma with prognostic relevance. Carcinogenesis 2007; 28:2501-10. [PMID: 17768177 DOI: 10.1093/carcin/bgm197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malignant melanoma is one of the most aggressive and invasive metastatic tumors derived from melanocytes that have undergone malignant transformation by acquisition of genetic and epigenetic alterations. Oligonucleotide microarray-based screening of distinct stages in the tumor progression model of cutaneous melanoma identified ASK/Dbf4, as a novel determinant for melanoma development. Quantitative real-time polymerase chain reaction-based confirmation of ASK/Dbf4 on a series of benign nevi, dysplastic nevi, primary cutaneous melanomas and cutaneous melanoma metastases; and a number of other controls using normal human melanocytes as calibrator not only revealed a melanoma-specific over-expression but also revealed that higher ASK/Dbf4-expressing melanomas were associated with lower relapse-free survival. Additionally, we also confirmed the observed over-expression of ASK/Dbf4 in melanoma using western blot analysis and immunohistochemistry. As ASK/Dbf4 is known to be a cyclin-like regulatory subunit of mammalian Cdc7 from the studies in yeast, the present study investigated its role in melanoma cells. In keeping with its expected role, our data suggest that up-regulated ASK/Dbf4 is localized in the nucleus and binds to human Cdc7 to form Cdc7-ASK/Dbf4 complexes in several analyzed melanoma cell lines. Further, we demonstrate that small interfering RNA-mediated depletion of ASK/Dbf4 retarded melanoma cell survival and proliferation. In summary, we report the differential regulation of a novel gene, namely ASK/Dbf4, in melanoma and suggest that up-regulation of ASK/Dbf4 is a novel molecular determinant with prognostic relevance that confers a proliferative advantage in cutaneous melanoma.
Collapse
Affiliation(s)
- Sandeep Nambiar
- Department of Dermatology, Heinrich-Heine-University, Moorenstrasse 5, Duesseldorf D-40225, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zegerman P, Diffley JFX. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 2006; 445:281-5. [PMID: 17167417 DOI: 10.1038/nature05432] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 11/10/2006] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinases (CDKs) drive major cell cycle events including the initiation of chromosomal DNA replication. We identified two S phase CDK (S-CDK) phosphorylation sites in the budding yeast Sld3 protein that, together, are essential for DNA replication. Here we show that, when phosphorylated, these sites bind to the amino-terminal BRCT repeats of Dpb11. An Sld3-Dpb11 fusion construct bypasses the requirement for both Sld3 phosphorylation and the N-terminal BRCT repeats of Dpb11. Co-expression of this fusion with a phospho-mimicking mutant in a second essential CDK substrate, Sld2, promotes DNA replication in the absence of S-CDK. Therefore, Sld2 and Sld3 are the minimal set of S-CDK targets required for DNA replication. DNA replication in cells lacking G1 phase CDK (G1-CDK) required expression of the Cdc7 kinase regulatory subunit, Dbf4, as well as Sld2 and Sld3 bypass. Our results help to explain how G1- and S-CDKs promote DNA replication in yeast.
Collapse
Affiliation(s)
- Philip Zegerman
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
36
|
Osterhage JL, Talley JM, Friedman KL. Proteasome-dependent degradation of Est1p regulates the cell cycle–restricted assembly of telomerase in Saccharomyces cerevisiae. Nat Struct Mol Biol 2006; 13:720-8. [PMID: 16862158 DOI: 10.1038/nsmb1125] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 06/29/2006] [Indexed: 11/09/2022]
Abstract
Telomerase counteracts loss of terminal sequences incurred during DNA replication. In S. cerevisiae, telomerase contains an RNA template (TLC1), a reverse transcriptase (Est2p) and at least two regulatory proteins (Est1p and Est3p). Whereas Est2p is constitutively telomere bound, Est1p associates in late S phase, coincident with telomere lengthening. Here we directly demonstrate by coimmunoprecipitation that the composition of telomerase varies during the cell cycle. The absence of Est1p and Est3p from the complex during G1 phase can be attributed to proteasome-dependent degradation of Est1p. Stabilization of Est1p during G1 phase promotes telomerase assembly, revealing a previously uncharacterized role for Est1p in the recruitment of Est3p to the telomerase complex. Though catalytically active, complexes assembled during G1 cannot lengthen telomeres. We conclude that telomerase assembly during G1 phase is regulated by Est1p stability, but assembly is insufficient to activate telomerase at telomeres.
Collapse
Affiliation(s)
- Jennifer L Osterhage
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
37
|
Varrin AE, Prasad AA, Scholz RP, Ramer MD, Duncker BP. A mutation in Dbf4 motif M impairs interactions with DNA replication factors and confers increased resistance to genotoxic agents. Mol Cell Biol 2005; 25:7494-504. [PMID: 16107698 PMCID: PMC1190303 DOI: 10.1128/mcb.25.17.7494-7504.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dbf4/Cdc7 is required for DNA replication in Saccharomyces cerevisiae and appears to be a target in the S-phase checkpoint. Previously, a 186-amino-acid Dbf4 region that mediates interactions with both the origin recognition complex and Rad53 was identified. We now show this domain also mediates the association between Dbf4 and Mcm2, a key Dbf4/Cdc7 phosphorylation target. Two conserved sequences, the N and M motifs, have been identified within this Dbf4 region. Removing motif M (Dbf4DeltaM) impairs the ability of Dbf4 to support normal cell cycle progression and abrogates the Dbf4-Mcm2 association but has no effect on the Dbf4-Rad53 interaction. In contrast, deleting motif N (Dbf4DeltaN) does not affect the essential function of Dbf4, disrupts the Dbf4-Rad53 interaction, largely preserves the Dbf4-Mcm2 association, and renders the cells hypersensitive to genotoxic agents. Surprisingly, Dbf4DeltaM interacts strongly with Orc2, while Dbf4DeltaN does not. The DBF4 allele dna52-1 was cloned and sequenced, revealing a single point mutation within the M motif. This mutant is unable to maintain interactions with either Mcm2 or Orc2 at the semipermissive temperature of 30 degrees C, while the interaction with Rad53 is preserved. Furthermore, this mutation confers increased resistance to genotoxic agents, which we propose is more likely due to a role for Dbf4 in the resumption of fork progression following checkpoint-induced arrest than prevention of late origin firing. Thus, the alteration of the M motif may facilitate the role of Dbf4 as a checkpoint target.
Collapse
Affiliation(s)
- Angela E Varrin
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
38
|
Masai H, You Z, Arai KI. Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life 2005; 57:323-35. [PMID: 16036617 DOI: 10.1080/15216540500092419] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a key event of cell proliferation and the final target of signal transduction induced by growth factor stimulation. It is also strictly regulated during the ongoing cell cycle so that it occurs only once during S phase and that all the genetic materials are faithfully duplicated. DNA replication may be arrested or temporally inhibited due to a varieties of internal and external causes. Cells have developed intricate mechanisms to cope with the arrested replication forks to minimize the adversary effect on the stable maintenance of genetic materials. Helicases play a central role in DNA replication. In eukaryotes, MCM (minichromosome maintenance) protein complex plays essential roles as a replicative helicase. MCM4-6-7 complex possesses intrinsic DNA helicase activity which translocates on single-stranded DNA form 3' to 5'. Mammalian MCM4-6-7 helicase and ATPase activities are specifically stimulated by the presence of thymine-rich single-stranded DNA sequences onto which it is loaded. The activation appears to depend on the thymine content of this single-strand, and sequences derived from human replication origins can serve as potent activators of the MCM helicase. MCM is a prime target of Cdc7 kinase, known to be essential for activation of replication origins. We will discuss how the MCM may be activated at the replication origins by template DNA, phosphorylation, and interaction with other replicative proteins, and will present a model of how activation of MCM helicase by specific sequences may contribute to selection of replication initiation sites in higher eukaryotes.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
39
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Abstract
Eukaryotic genomes are replicated from large numbers of replication origins distributed on multiple chromosomes. The activity of these origins must be coordinated so that the entire genome is efficiently and accurately replicated yet no region of the genome is ever replicated more than once. The past decade has seen significant advances in understanding how the initiation of DNA replication is regulated by key cell-cycle regulators, including the cyclin dependent kinases (CDKs) and the anaphase promoting complex/cyclosome (APC/C). The assembly of essential prereplicative complexes (pre-RCs) at origins only occurs when CDK activity is low and APC/C activity is high. Origin firing, however, can only occur when the APC/C is inactivated and CDKs become active. This two step mechanism ensures that no origin can fire more than once in a cell cycle. In all eukaryotes tested, CDKs can contribute to the inhibition of pre-RC assembly. This inhibition is characterised both by high degrees of redundancy and evolutionary plasticity. Geminin plays a crucial role in inhibiting licensing in metazoans and, like cyclins, is inactivated by the APC/C. Strategies involved in preventing re-replication in different organisms will be discussed.
Collapse
Affiliation(s)
- John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
41
|
Jares P, Luciani MG, Blow JJ. A Xenopus Dbf4 homolog is required for Cdc7 chromatin binding and DNA replication. BMC Mol Biol 2004; 5:5. [PMID: 15222894 PMCID: PMC446192 DOI: 10.1186/1471-2199-5-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 06/28/2004] [Indexed: 11/10/2022] Open
Abstract
Background Early in the cell cycle a pre-replicative complex (pre-RC) is assembled at each replication origin. This process involves the sequential assembly of the Origin Recognition Complex (ORC), Cdc6, Cdt1 and the MiniChromosome Maintenance (Mcm2-7) proteins onto chromatin to license the origin for use in the subsequent S phase. Licensed origins must then be activated by S phase-inducing cyclin-dependent kinases (S-CDKs) and the Dbf4/Cdc7 kinase. Results We have cloned a Xenopus homologue of Dbf4 (XDbf4), the sequence of which confirms the results of Furukhori et al. We have analysed the role of XDbf4 in DNA replication using cell-free extracts of Xenopus eggs. Our results indicate that XDbf4 is the regulatory subunit of XCdc7 required for DNA replication. We show that XDbf4 binds to chromatin during interphase, but unlike XCdc7, its chromatin association is independent of pre-RC formation, occurring in the absence of licensing, XCdc6 and XORC. Moreover, we show that the binding of XCdc7 to chromatin is dependent on the presence of XDbf4, whilst under certain circumstances XDbf4 can bind to chromatin in the absence of XCdc7. We provide evidence that the chromatin binding of XDbf4 that occurs in the absence of licensing depends on checkpoint activation. Conclusions We have identified XDbf4 as a functional activator of XCdc7, and show that it is required to recruit XCdc7 to chromatin. Our results also suggest that XCdc7 and XDbf4 are differentially regulated, potentially responding to different cell cycle signals.
Collapse
Affiliation(s)
- Pedro Jares
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
- Genomics Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - M Gloria Luciani
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
42
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
43
|
Lee SS, Kim YM, Junn E, Lee G, Park KH, Tanaka M, Ronchetti RD, Quezado MM, Mouradian MM. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging 2003; 24:687-96. [PMID: 12885576 DOI: 10.1016/s0197-4580(02)00196-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alpha-Synuclein is a presynaptic protein that accumulates abnormally in Lewy bodies of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Its physiological function and role in neuronal death remain poorly understood. Recent immunohistochemical studies suggest that cell cycle-related phenomena may play a role in the pathogenesis of Alzheimer's disease and perhaps other neurodegenerative disorders. In this investigation, we examined the effects of alpha-synuclein expression levels on cell cycle indices in PC12 cells engineered to conditionally induce alpha-synuclein expression upon withdrawal of doxycycline. Over-expression of alpha-synuclein resulted in enhanced proliferation rate and enrichment of cells in the S phase of the cell cycle. This was associated with increased accumulation of the mitotic factor cyclin B and down-regulation of the tumor suppressor retinoblastoma 2. Additionally, ERK1/2, key molecules in proliferation signaling, were highly phosphorylated. Immunohistochemical studies on postmortem brains revealed intense cyclin B immunoreactivity in Lewy bodies in cases with DLB and to a lesser extent in PD. We propose that elevated expression of alpha-synuclein causes changes in cell cycle regulators through ERK activation leading to apoptosis of postmitotic neurons. These changes in cell cycle proteins are also associated with ectopic expression of cyclin B in Lewy bodies.
Collapse
Affiliation(s)
- S S Lee
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, NINDS, National Institutes of Health, 10 Center Drive, MSC 1406, Bethesda, MD 20892-1406, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sato N, Sato M, Nakayama M, Saitoh R, Arai KI, Masai H. Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex. Genes Cells 2003; 8:451-63. [PMID: 12694534 DOI: 10.1046/j.1365-2443.2003.00647.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND During the course of DNA replication, regulation of cellular localization and chromatin binding of involved factors plays critical roles. Cdc7 kinase is required for DNA replication and its kinase activity is cell cycle-regulated by its activation subunit Dbf4/ASK. In mammals, it is not known at which time point during the cell cycle Cdc7 and Dbf4/ASK proteins are imported into nuclei and loaded on to chromatin. RESULTS We have constructed a series of truncation and deletion derivatives of ASK and expressed them as fusion proteins with GFP in mammalian cells. Both Dbf4-motif-M and -C conserved in Dbf4/ASK protein family are required for huCdc7 kinase activation. Two stretches of amino acid sequences, NLS1 (P346KKKRIK) and NLS2 (K201RVGSGAQKTRTGRLKK), are important for ASK nuclear localization. In stable transformants expressing GFP-fused full-length ASK under the tetracycline inducible promoter, GFP-ASK protein accumulates in nuclei at the telophase, but its binding to chromatin does not reach a maximum until late G1, whereas huCdc7 is imported into nuclei and binds to chromatin at early G1. An important substrate of Cdc7-ASK at the G1/S transition is likely to be MCM. Indeed, over-expression of both huCdc7 and ASK results in the elevated phosphorylation of endogenous MCM2 protein, as manifested by appearance of the mobility-shifted form on SDS-PAGE, but does not cause any significant effects on cell cycle progression. CONCLUSIONS Nuclear localization and chromatin binding of endogenous huCdc7 and GFP-ASK expressed during the post-mitotic phase are independently regulated. Although GFP-ASK is presumably imported into nuclei through its two nuclear localization signals at telophase, it may require additional signals for chromatin binding, the level of which increases at late G1 phase.
Collapse
Affiliation(s)
- Noriko Sato
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Bachewich C, Thomas DY, Whiteway M. Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Mol Biol Cell 2003; 14:2163-80. [PMID: 12802083 PMCID: PMC165105 DOI: 10.1091/mbc.02-05-0076] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Morphogenesis in the fungal pathogen Candida albicans is an important virulence-determining factor, as a dimorphic switch between yeast and hyphal growth forms can increase pathogenesis. We identified CaCDC5, a cell cycle regulatory polo-like kinase (PLK) in C. albicans and demonstrate that shutting off its expression induced cell cycle defects and dramatic changes in morphology. Cells lacking CaCdc5p were blocked early in nuclear division with very short spindles and unseparated chromatin. GFP-tagged CaCdc5p localized to unseparated spindle pole bodies, the spindle, and chromatin, consistent with a role in spindle elongation at an earlier point in the cell cycle than that described for the homologue Cdc5p in yeast. Strikingly, the cell cycle defects were accompanied by the formation of hyphal-like filaments under yeast growth conditions. Filament growth was determinate, as the filaments started to die after 24 h. The filaments resembled serum-induced hyphae with respect to morphology, organization of cytoplasmic microtubules, localization of nuclei, and expression of hyphal-specific components. Filament formation required CaCDC35, but not EFG1 or CPH1. Similar defects in spindle elongation and a corresponding induction of filaments occurred when yeast cells were exposed to hydroxyurea. Because CaCdc5p does not appear to act as a direct repressor of hyphal growth, the data suggest that a target of CaCdc5p function is associated with hyphal-like development. Thus, an internal, cell cycle-related cue can activate hyphal regulatory networks in Candida.
Collapse
Affiliation(s)
- Catherine Bachewich
- Health Sector, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, H4P 2R2, Canada.
| | | | | |
Collapse
|
46
|
Abstract
The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Collapse
Affiliation(s)
- Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | | |
Collapse
|
47
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
48
|
Ulrich HD. Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr Top Microbiol Immunol 2002; 268:137-74. [PMID: 12083004 DOI: 10.1007/978-3-642-59414-4_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multitude of natural substrates of the 26S proteasome demonstrates convincingly the diversity and flexibility of the ubiquitin/proteasome system: at the same time, the number of pathways in which ubiquitin-dependent degradation is involved highlights the importance of regulated proteolysis for cellular metabolism. This review has addressed recent advances in our understanding of the principles that govern the recognition and targeting of potential substrates. While the mechanism of ubiquitin activation and conjugation is largely understood, the determination of substrate specificity by ubiquitin protein ligases remains a field of active research. Several conserved degradation signals within substrate proteins have been identified, and it is becoming increasingly clear that these serve as docking sites for specific sets of E3s, which in turn adhere to a number of well-defined strategies for the recognition of these motifs. In particular, RING finger proteins are now emerging as a new and apparently widespread class of ubiquitin ligases. The discovery of more and more E3s will undoubtedly reveal even better the common principles in architecture and mechanisms of this class of enzymes. In contrast to substrate recognition by the ubiquitin conjugation system, the way in which a ubiquitylated protein is delivered to the 26S proteasome is poorly understood. There is no doubt that multiubiquitin chains serve as the principal determinant for recognition by the proteasome, and a number of receptors and candidate targeting factors are known, some of which are associated with the proteasome itself; however, unresolved issues are the significance of the different geometries that alternatively linked multiubiquitin chains can adopt, the role of transport between subcellular compartments, as well as the participation of chaperones in the delivery step. Finally, the analysis of ubiquitin-independent, substrate-specific targeting mechanisms, such as the AZ-dependent degradation of ODC, may provide unexpected answers to questions about protein recognition by the 26S proteasome.
Collapse
Affiliation(s)
- H D Ulrich
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, 35043 Marburg/Lahn, Germany
| |
Collapse
|
49
|
Fung AD, Ou J, Bueler S, Brown GW. A conserved domain of Schizosaccharomyces pombe dfp1(+) is uniquely required for chromosome stability following alkylation damage during S phase. Mol Cell Biol 2002; 22:4477-90. [PMID: 12052858 PMCID: PMC133926 DOI: 10.1128/mcb.22.13.4477-4490.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 01/31/2002] [Accepted: 03/25/2002] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.
Collapse
Affiliation(s)
- Amy D Fung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
50
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|