1
|
Salauddin M, Bhattacharyya D, Samanta I, Saha S, Xue M, Hossain MG, Zheng C. Role of TLRs as signaling cascades to combat infectious diseases: a review. Cell Mol Life Sci 2025; 82:122. [PMID: 40105962 PMCID: PMC11923325 DOI: 10.1007/s00018-025-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Investigating innate immunity and its signaling transduction is essential to understand inflammation and host defence mechanisms. Toll-like receptors (TLRs), an evolutionarily ancient group of pattern recognition receptors, are crucial for detecting microbial components and initiating immune responses. This review summarizes the mechanisms and outcomes of TLR-mediated signaling, focusing on motifs shared with other immunological pathways, which enhances our understanding of the innate immune system. TLRs recognize molecular patterns in microbial invaders, activate innate immunity and promote antigen-specific adaptive immunity, and each of them triggers unique downstream signaling patterns. Recent advances have highlighted the importance of supramolecular organizing centers (SMOCs) in TLR signaling, ensuring precise cellular responses and pathogen detection. Furthermore, this review illuminates how TLR pathways coordinate metabolism and gene regulation, contributing to adaptive immunity and providing novel insights for next-generation therapeutic strategies. Ongoing studies hold promise for novel treatments against infectious diseases, autoimmune conditions, and cancers.
Collapse
Affiliation(s)
- Md Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna, 9202, Bangladesh
| | - Debaraj Bhattacharyya
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata, West Bengal, 700037, India
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Kim KM, Hwang NH, Hyun JS, Shin D. Recent Advances in IRAK1: Pharmacological and Therapeutic Aspects. Molecules 2024; 29:2226. [PMID: 38792088 PMCID: PMC11123835 DOI: 10.3390/molecules29102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin receptor-associated kinase (IRAK) proteins are pivotal in interleukin-1 and Toll-like receptor-mediated signaling pathways. They play essential roles in innate immunity and inflammation. This review analyzes and discusses the physiological functions of IRAK1 and its associated diseases. IRAK1 is involved in a wide range of diseases such as dry eye, which highlights its potential as a therapeutic target under various conditions. Various IRAK1 inhibitors, including Pacritinib and Rosoxacin, show therapeutic potential against malignancies and inflammatory diseases. The covalent IRAK1 inhibitor JH-X-119-01 shows promise in B-cell lymphomas, emphasizing the significance of covalent bonds in its activity. Additionally, the emergence of selective IRAK1 degraders, such as JNJ-101, provides a novel strategy by targeting the scaffolding function of IRAK1. Thus, the evolving landscape of IRAK1-targeted approaches provides promising avenues for increasingly safe and effective therapeutic interventions for various diseases.
Collapse
Affiliation(s)
| | | | - Ja-Shil Hyun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon 21935, Republic of Korea
| |
Collapse
|
4
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu H, Stanley Z, Rahman M, Shao Z, Silva JM, Zha S, Sidi S. A noncanonical IRAK4-IRAK1 pathway counters DNA damage-induced apoptosis independently of TLR/IL-1R signaling. Sci Signal 2023; 16:eadh3449. [PMID: 38113335 PMCID: PMC11111193 DOI: 10.1126/scisignal.adh3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B. Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samanta Sarti
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alicia L. Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian J. Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrej Gorbatenko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francesca Nemati
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Stanley
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahbuba Rahman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose M. Silva
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu I, Stanley Z, Shao Z, Silva JM, Zha S, Sidi S. A Non-Canonical IRAK Signaling Pathway Triggered by DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527716. [PMID: 36798275 PMCID: PMC9934671 DOI: 10.1101/2023.02.08.527716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.
Collapse
|
6
|
Schagdarsurengin U, Breiding V, Loose M, Wagenlehner F, Dansranjav T. Interleukin-1 receptor associated kinase 1 (IRAK1) is epigenetically activated in luminal epithelial cells in prostate cancer. Front Oncol 2022; 12:991368. [PMID: 36226067 PMCID: PMC9549294 DOI: 10.3389/fonc.2022.991368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
The use of immune adjuvants such as toll-like receptor (TLR) agonists reflects a novel strategy in prostate cancer (PCa) therapy. However, interleukin-1 receptor associated kinase 1 (IRAK1), a central effector of TLR signaling, has been shown to be responsible for resistance to radiation-induced tumor cell death. In order to better understand the function and epigenetic regulation of IRAK1 in PCa, we performed in vitro cell culture experiments together with integrative bioinformatic studies using the latest single-cell RNA-sequencing data of human PCa and normal prostate (NOR), and data from The Cancer Genome Atlas. We focused on key effectors of TLR signaling, the Myddosome-complex components IRAK1, IRAK4 and MYD88 (myeloid differentiation primary response 88), and TRAF6 (tumor-necrosis-factor receptor associated factor 6). In PCa, IRAK1-mRNA was specifically enriched in luminal epithelial cells, representing 57% of all cells, whereas IRAK4 and MYD88 were predominantly expressed in leukocytes, and TRAF6, in endothelial cells. Compared to NOR, only IRAK1 was significantly overexpressed in PCa (Benjamini-Hochberg adjusted p<2x10-8), whereas the expression of IRAK4, MYD88, and TRAF6 was unchanged in PCa, and IRAK1-expression was inversely correlated with a specific differentially methylated region (IRAK1-DMR) within a predicted promoter region enriched for H3K27ac (Spearman correlation r<-0.36; Fisher’s test, p<10-10). Transcription factors with high binding affinities in IRAK1-DMR were significantly enriched for canonical pathways associated with viral infection and carcinogenic transformation in the Kyoto Encyclopedia of Gene and Genomes analysis. DU145 cells, exhibiting hypermethylated IRAK1-DMR and low IRAK1-expression, reacted with 4-fold increased IRAK1-expression upon combined treatment with 5-aza-2-deoxycytidine and trichostatin A, and were unresponsive to infection with the uropathogenic Escherichia coli strain UTI89. In contrast, PC3 and LNCaP cells, exhibiting hypomethylated IRAK1-DMR and high endogenous IRAK1-mRNA levels, responded with strong activation of IRAK1-expression to UTI89 infection. In summary, exclusive overexpression of IRAK1 was observed in luminal epithelial cells in PCa, suggesting it has a role in addition to Myddosome-dependent TLR signaling. Our data show that the endogenous epigenetic status of PCa cells within IRAK1-DMR is decisive for IRAK1 expression and should be considered as a predictive marker when selective IRAK1-targeting therapies are considered.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
- Working group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Vanessa Breiding
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Maria Loose
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
- Working group Urological Infectiology, Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Temuujin Dansranjav
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Temuujin Dansranjav,
| |
Collapse
|
7
|
Minimal structure of IRAK-1 to induce degradation of TRAF6. Immunobiology 2022; 227:152256. [DOI: 10.1016/j.imbio.2022.152256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
8
|
Pustelny K, Kuska K, Gorecki A, Musielak B, Dobosz E, Wladyka B, Koziel J, Czarna A, Holak T, Dubin G. Mechanism of MyD88S mediated signal termination. Cell Commun Signal 2022; 20:10. [PMID: 35057808 PMCID: PMC8772076 DOI: 10.1186/s12964-021-00811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background A universal adaptor protein, MyD88, orchestrates the innate immune response by propagating signals from toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R). Receptor activation seeds MyD88 dependent formation of a signal amplifying supramolecular organizing center (SMOC)—the myddosome. Alternatively spliced variant MyD88S, lacking the intermediate domain (ID), exhibits a dominant negative effect silencing the immune response, but the mechanistic understanding is limited. Methods Luciferase reporter assay was used to evaluate functionality of MyD88 variants and mutants. The dimerization potential of MyD88 variants and myddosome nucleation process were monitored by co-immunoprecipitation and confocal microscopy. The ID secondary structure was characterized in silico employing I-TASSER server and in vitro using nuclear magnetic resonance (NMR) and circular dichroism (CD). Results We show that MyD88S is recruited to the nucleating SMOC and inhibits its maturation by interfering with incorporation of additional components. Biophysical analysis suggests that important functional role of ID is not supported by a well-defined secondary structure. Mutagenesis identifies Tyr116 as the only essential residue within ID required for myddosome nucleation and signal propagation (NF-κB activation). Conclusions Our results argue that the largely unstructured ID of MyD88 is not only a linker separating toll-interleukin-1 receptor (TIR) homology domain and death domain (DD), but contributes intermolecular interactions pivotal in MyD88-dependent signaling. The dominant negative effect of MyD88S relies on quenching the myddosome nucleation and associated signal transduction. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00811-1.
Collapse
|
9
|
Cardona Gloria Y, Bernhart SH, Fillinger S, Wolz OO, Dickhöfer S, Admard J, Ossowski S, Nahnsen S, Siebert R, Weber ANR. Absence of Non-Canonical, Inhibitory MYD88 Splice Variants in B Cell Lymphomas Correlates With Sustained NF-κB Signaling. Front Immunol 2021; 12:616451. [PMID: 34163463 PMCID: PMC8215704 DOI: 10.3389/fimmu.2021.616451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Gain-of-function mutations of the TLR adaptor and oncoprotein MyD88 drive B cell lymphomagenesis via sustained NF-κB activation. In myeloid cells, both short and sustained TLR activation and NF-κB activation lead to the induction of inhibitory MYD88 splice variants that restrain prolonged NF-κB activation. We therefore sought to investigate whether such a negative feedback loop exists in B cells. Analyzing MYD88 splice variants in normal B cells and different primary B cell malignancies, we observed that MYD88 splice variants in transformed B cells are dominated by the canonical, strongly NF-κB-activating isoform of MYD88 and contain at least three novel, so far uncharacterized signaling-competent splice isoforms. Sustained TLR stimulation in B cells unexpectedly reinforces splicing of NF-κB-promoting, canonical isoforms rather than the 'MyD88s', a negative regulatory isoform reported to be typically induced by TLRs in myeloid cells. This suggests that an essential negative feedback loop restricting TLR signaling in myeloid cells at the level of alternative splicing, is missing in B cells when they undergo proliferation, rendering B cells vulnerable to sustained NF-κB activation and eventual lymphomagenesis. Our results uncover MYD88 alternative splicing as an unappreciated promoter of B cell lymphomagenesis and provide a rationale why oncogenic MYD88 mutations are exclusively found in B cells.
Collapse
Affiliation(s)
- Yamel Cardona Gloria
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Stephan H. Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
- Transcriptome Bioinformatics, Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Sven Fillinger
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Olaf-Oliver Wolz
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sabine Dickhöfer
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Alexander N. R. Weber
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK; German Cancer Consortium), Partner Site Tübingen, Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Han X, Gao F, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. Molecular characterization, expression and functional analysis of IRAK1 and IRAK4 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 97:135-145. [PMID: 31846774 DOI: 10.1016/j.fsi.2019.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 are critical signalling mediators and play pivotal roles in the innate immune and inflammatory responses mediated by TLR/IL-1R. In the present study, two IRAK family members, OnIRAK1 and OnIRAK4, were identified in the Nile tilapia Oreochromis niloticus with a conserved N-terminal death domain and a protein kinase domain, similar to those of other fishes and mammals. The gene structures of OnIRAK1 and OnIRAK4 are organized into fifteen exons split by fourteen introns and ten exons split by nine introns. OnIRAK1 and OnIRAK4 were broadly expressed in all of the tissues tested, with the highest expression levels being observed in the blood and the lowest expression levels being observed in the liver. Both genes could be detected from 2 d post-fertilization (dpf) to 8 dpf during embryonic development. Moreover, the expression levels of OnIRAK1 and OnIRAK4 were clearly altered in all five tissues after Streptococcus agalactiae infection in vivo and could be induced by LPS, Poly I: C, S. agalactiae WC1535 and △CPS in Nile tilapia macrophages. The overexpression of OnIRAK1 and OnIRAK4 in 293T cells showed that they were both distributed in the cytoplasm and could significantly increase NF-κB activation. Interestingly, after transfection, OnIRAK1 significantly upregulated OnMyd88-induced NF-κB activation, while OnIRAK4 had no effect on OnMyd88-induced NF-κB activation. Co-immunoprecipitation (Co-IP) assays showed that OnMyd88 did not interact with either OnIRAK1 or OnIRAK4 and that OnIRAK1 did not interact with OnIRAK4. Taken together, these findings suggest that OnIRAK1 and OnIRAK4 could play important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Xueqing Han
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Mengmeng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
11
|
Liu PH, Sidi S. Targeting the Innate Immune Kinase IRAK1 in Radioresistant Cancer: Double-Edged Sword or One-Two Punch? Front Oncol 2019; 9:1174. [PMID: 31799178 PMCID: PMC6866135 DOI: 10.3389/fonc.2019.01174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023] Open
Abstract
Antitumor immunity has emerged as a favorable byproduct of radiation therapy (RT), whereby tumor-associated antigens released from irradiated cells unleash innate and adaptive attacks on tumors located both within and outside the radiation field. RT-induced immune responses further provide actionable targets for overcoming tumor resistance to RT (R-RT); immunotherapy (IT) with checkpoint inhibitors or Toll-like receptor (TLR) agonists can markedly improve, if not synergize with, RT in preclinical models, and several of these drugs are currently investigated as radiosensitizers in patients. In an unbiased chemical-genetic screen in a zebrafish model of tumor R-RT, we unexpectedly found that Interleukin 1 Receptor-Associated Kinase 1 (IRAK1), a core effector of TLR-mediated innate immunity, also functions in live fish and human cancer models to counter RT-induced cell death mediated by the PIDDosome complex (PIDD-RAIDD-caspase-2). IRAK1 acting both as a driver of intrinsic tumor R-RT and as an effector of RT-induced antitumor immunity would, at first glance, pose obvious therapeutic conundrums. IRAK1 inhibitors would be expected to sensitize the irradiated tumor to RT but simultaneously thwart RT-induced antitumor immunity as initiated by stromal dendritic cells. Conversely, TLR agonist-based immunotherapy would be expected to intensify RT-induced antitumor immunity but at the expense of fueling IRAK1-mediated cell survival in the irradiated tumor. We discuss how IRAK1's differential reliance on catalytic activity in the radiation vs. TLR responses might help overcome these hurdles, as well as the crucial importance of developing IRAK1 inhibitors that lack activity against IRAK4, the kinase activity of which is essential for IRAK1 activation in both pathways.
Collapse
Affiliation(s)
- Peter H Liu
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel Sidi
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States.,Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
12
|
Yin D, Chen Y, Li Y, Lu R, Wang B, Zhu S, Fan B, Xu Z. Interleukin-1 Receptor Associated Kinase 1 Mediates the Maintenance of Neuropathic Pain after Chronic Constriction Injury in Rats. Neurochem Res 2019; 44:1214-1227. [PMID: 30859436 DOI: 10.1007/s11064-019-02767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Neuropathic pain (NP) has complicated pathogenesis as it mainly involves a lesion or dysfunction of the somatosensory nervous system and its clinical treatment remains challenging. Chronic constriction injury (CCI) model is a widely used neuropathic pain model and involved in mechanisms including both nerve inflammatory and injury. Cytokines and their receptors play essential roles in the occurrence and persistence of neuropathic pain, but the underlying mechanisms have not well been understood. Therefore, Interleukin-1 receptor-associated kinase 1 (IRAK1) is chosen to explore the possible mechanisms of NP. In the present study, IRAK1 was found to persistently increase in the dorsal root ganglion (DRG) and spinal cord (SC) during CCI detected by western blot. The staining further confirmed that IRAK1 was mainly co-located in the DRG astrocytes or SC neurons, but less in the DRG microglia or SC astrocytes. Moreover, the region of increased IRAK1 expression was observed in superficial laminae of the spinal dorsal horn, which was the nociceptive neuronal expression domain, suggesting that IRAK1 may mediated CCI-induced pain by nociceptive primary afferent. In addition, intrathecal injection of Toll-like receptor 4 (TLR4) inhibitor or IRAK1 siRNA decreased the expression of IRAK1 accompanied with the alleviation of CCI-induced neuropathic pain. The upregulation of p-NF-κB expression was reversed by IRAK1 siRNA in SC, and intrathecal injection of p-NF-κB inhibitor relieved neuropathic pain. Taking together, targeting IRAK1 may be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, 224400, Jiangsu, China
| | - Yonglin Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yao Li
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxiang Lu
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Binbin Wang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Bingbing Fan
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O. Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
Samba-Mondonga M, Calvé A, Mallette FA, Santos MM. MyD88 Regulates the Expression of SMAD4 and the Iron Regulatory Hormone Hepcidin. Front Cell Dev Biol 2018; 6:105. [PMID: 30234111 PMCID: PMC6127602 DOI: 10.3389/fcell.2018.00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
The myeloid differentiation primary response gene 88 (MyD88) is an adaptive protein that is essential for the induction of inflammatory cytokines through almost all the Toll-like receptors (TLRs). TLRs recognize molecular patterns present in microorganisms called pathogen-associated molecular patterns. Therefore, MyD88 plays an important role in innate immunity since its activation triggers the first line of defense against microorganisms. Herein, we describe the first reported role of MyD88 in an interconnection between innate immunity and the iron-sensing pathway (BMP/SMAD4). We found that direct interaction of MyD88 with SMAD4 protein activated hepcidin expression. The iron regulatory hormone hepcidin is indispensable for the intestinal regulation of iron absorption and iron recycling by macrophages. We show that MyD88 induces hepcidin expression in a manner dependent on the proximal BMP responsive element on the hepcidin gene (HAMP) promoter. We identified the Toll/interleukin-1 receptor (TIR) domain of MyD88 as the domain of interaction with SMAD4. Furthermore, we show that BMP6 stimulation, which activates SMAD6 expression, also induces MyD88 proteosomal degradation as a negative feedback mechanism to limit hepcidin induction. Finally, we report that the MyD88 gain-of-function L265P mutation, frequently encountered in B-cell lymphomas such as Waldenström’s macroglobulinemia, enhances hepcidin expression and iron accumulation in B cell lines. Our results reveal a new potential role for MyD88 in the SMAD signaling pathway and iron homeostasis regulation.
Collapse
Affiliation(s)
- Macha Samba-Mondonga
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Frédérick A Mallette
- Département de Médecine, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J 2017; 474:2027-2038. [PMID: 28512203 PMCID: PMC5460469 DOI: 10.1042/bcj20170097] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
We have developed the first assays that measure the protein kinase activities of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 reliably in human cell extracts, by employing Pellino1 as a substrate in conjunction with specific pharmacological inhibitors of IRAK1 and IRAK4. We exploited these assays to show that IRAK4 was constitutively active and that its intrinsic activity towards Pellino1 was not increased significantly by stimulation with interleukin-1 (IL-1) in IL-1R-expressing HEK293 cells, Pam3CSK4-stimulated human THP1 monocytes or primary human macrophages. Our results, in conjunction with those of other investigators, suggest that the IL-1-stimulated trans-autophosphorylation of IRAK4 is initiated by the myeloid differentiation primary response gene 88-induced dimerization of IRAK4 and is not caused by an increase in the intrinsic catalytic activity of IRAK4. In contrast with IRAK4, we found that IRAK1 was inactive in unstimulated cells and converted into an active protein kinase in response to IL-1 or Pam3CSK4 in human cells. Surprisingly, the IL-1-stimulated activation of IRAK1 was not affected by pharmacological inhibition of IRAK4 and not reversed by dephosphorylation and/or deubiquitylation, suggesting that IRAK1 catalytic activity is not triggered by a covalent modification but by an allosteric mechanism induced by its interaction with IRAK4.
Collapse
|
16
|
Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A 2017; 114:E3481-E3489. [PMID: 28404732 DOI: 10.1073/pnas.1702367114] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is widely accepted that the essential role of TRAF6 in vivo is to generate the Lys63-linked ubiquitin (K63-Ub) chains needed to activate the "master" protein kinase TAK1. Here, we report that TRAF6 E3 ligase activity contributes to but is not essential for the IL-1-dependent formation of K63-Ub chains, TAK1 activation, or IL-8 production in human cells, because Pellino1 and Pellino2 generate the K63-Ub chains required for signaling in cells expressing E3 ligase-inactive TRAF6 mutants. The IL-1-induced formation of K63-Ub chains and ubiquitylation of IRAK1, IRAK4, and MyD88 was abolished in TRAF6/Pellino1/Pellino2 triple-knockout (KO) cells, but not in TRAF6 KO or Pellino1/2 double-KO cells. The reexpression of E3 ligase-inactive TRAF6 mutants partially restored IL-1 signaling in TRAF6 KO cells, but not in TRAF6/Pellino1/Pellino2 triple-KO cells. Pellino1-generated K63-Ub chains activated the TAK1 complex in vitro with similar efficiently to TRAF6-generated K63-Ub chains. The early phase of TLR signaling and the TLR-dependent secretion of IL-10 (controlled by IRAKs 1 and 2) was only reduced modestly in primary macrophages from knockin mice expressing the E3 ligase-inactive TRAF6[L74H] mutant, but the late-phase production of IL-6, IL-12, and TNFα (controlled only by the pseudokinase IRAK2) was abolished. RANKL-induced signaling in macrophages and the differentiation of bone marrow to osteoclasts was similar in TRAF6[L74H] and wild-type cells, explaining why the bone structure and teeth of the TRAF6[L74H] mice was normal, unlike TRAF6 KO mice. We identify two essential roles of TRAF6 that are independent of its E3 ligase activity.
Collapse
|
17
|
Kalantari P, Harandi OF, Agarwal S, Rus F, Kurt-Jones EA, Fitzgerald KA, Caffrey DR, Golenbock DT. miR-718 represses proinflammatory cytokine production through targeting phosphatase and tensin homolog (PTEN). J Biol Chem 2017; 292:5634-5644. [PMID: 28209713 DOI: 10.1074/jbc.m116.749325] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/10/2017] [Indexed: 01/04/2023] Open
Abstract
Bacterial sepsis involves a complex interaction between the host immune response and bacterial LPS. LPS binds Toll-like receptor (TLR) 4, which leads to the release of proinflammatory cytokines that are essential for a potent innate immune response against pathogens. The innate immune system is tightly regulated, as excessive inflammation can lead to organ failure and death. MicroRNAs have recently emerged as important regulators of the innate immune system. Here we determined the function of miR-718, which is conserved across mammals and overlaps with the 5' UTR of the interleukin 1 receptor-associated kinase (IRAK1) gene. As IRAK1 is a key component of innate immune signaling pathways that are downstream of most TLRs, we hypothesized that miR-718 helps regulate the innate immune response. Activation of TLR4, but not TLR3, induced the expression of miR-718 in macrophages. miR-718 expression was also induced in the spleens of mice upon LPS injection. miR-718 modulates PI3K/Akt signaling by directly down-regulating phosphatase and tensin homolog (PTEN), thereby promoting phosphorylation of Akt, which leads to a decrease in proinflammatory cytokine production. Phosphorylated Akt induces let-7e expression, which, in turn, down-regulates TLR4 and further diminishes TLR4-mediated proinflammatory signals. Decreased miR-718 expression is associated with bacterial burden during Neisseria gonorrhoeae infection and alters the infection dynamics of N. gonorrhoeae in vitro Furthermore, miR-718 regulates the induction of LPS tolerance in macrophages. We propose a role for miR-718 in controlling TLR4 signaling and inflammatory cytokine signaling through a negative feedback regulation loop involving down-regulation of TLR4, IRAK1, and NF-κB.
Collapse
Affiliation(s)
- Parisa Kalantari
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Omid F Harandi
- the Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Sarika Agarwal
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Florentina Rus
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Evelyn A Kurt-Jones
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Katherine A Fitzgerald
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Daniel R Caffrey
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Douglas T Golenbock
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| |
Collapse
|
18
|
New insights into the post-translational modification of Toll-like receptor signaling molecules. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110060701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Deregulation of Toll-like receptor (TLR) mediated responses can have devastating effects on the host if left unchecked. It is, therefore, critical that control is exerted at several levels. In this review, we discuss post-translational modification of TLRs and their associated signaling molecules as one such means of control. In particular, we focus on the phosphorylation, ubiquitination and de-ubiquitination of various components of TLR signaling pathways.
Collapse
|
19
|
Li YW, Zhao F, Mo ZQ, Luo XC, Li AX, Dan XM. Characterization, expression, and functional study of IRAK-1 from grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 56:374-381. [PMID: 27346155 DOI: 10.1016/j.fsi.2016.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
As crucial components of the toll-like receptor (TLR) and interleukin-1 (IL-1) receptor (IL-1R) signaling pathways, interleukin-1 receptor associated kinase (IRAK) family members play essential roles in an animal's immune response. In this study, an IRAK family member, designated EcIRAK-1, was identified in the orange-spotted grouper Epinephelus coioides, and its role in signal transduction investigated. The full-length EcIRAK-1 gene is 2822 bp, encoding a 760-amino-acid protein that has the typical characteristics of mammalian IRAK-1, including an N-terminal death domain, a ProST domain, a central kinase domain, and C-terminal C1 and C2 domains. EcIRAK-1 shares 42%-79% sequence identity with other fish IRAK-1 proteins, and the death and kinase domains are more conserved than the other domains. Several important amino acids and motifs of mammalian IRAK-1 are also conserved in the grouper and other piscine IRAK-1s. In healthy grouper, EcIRAK-1 was broadly expressed in all the tissues tested, with the highest expression in the gill and skin. After infection with Cryptocaryon irritans, EcIRAK-1 expression increased in the gill and spleen. After its exogenous expression in HEK293T cells, EcIRAK-1 significantly activated nuclear factor kappaB (NF-κB). The death domain, ProST domain, and some conserved amino acids, such as T58, T207, K237, and T387, in EcIRAK-1 are required for its signaling function. These data demonstrate that piscine IRAK-1 has the same structural characteristics as its mammalian counterpart and that its function is conserved among vertebrates.
Collapse
Affiliation(s)
- Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, Guangdong Province, PR China
| | - Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
20
|
McGuire VA, Ruiz-Zorrilla Diez T, Emmerich CH, Strickson S, Ritorto MS, Sutavani RV, Weiβ A, Houslay KF, Knebel A, Meakin PJ, Phair IR, Ashford MLJ, Trost M, Arthur JSC. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation. Sci Rep 2016; 6:31159. [PMID: 27498693 PMCID: PMC4976367 DOI: 10.1038/srep31159] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/15/2016] [Indexed: 12/24/2022] Open
Abstract
Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Tamara Ruiz-Zorrilla Diez
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, CEU San Pablo University, Urbanización Montepríncipe, 28668 Madrid, Spain
| | - Christoph H Emmerich
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Sam Strickson
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Maria Stella Ritorto
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Ruhcha V Sutavani
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Anne Weiβ
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Kirsty F Houslay
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Paul J Meakin
- Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Iain R Phair
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Michael L J Ashford
- Cardiovascular and Diabetes Medicine, Medical Research Institute, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signaling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
21
|
Talreja J, Talwar H, Ahmad N, Rastogi R, Samavati L. Dual Inhibition of Rip2 and IRAK1/4 Regulates IL-1β and IL-6 in Sarcoidosis Alveolar Macrophages and Peripheral Blood Mononuclear Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1368-78. [PMID: 27402699 DOI: 10.4049/jimmunol.1600258] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Sarcoidosis is a multisystem granulomatous disease of unknown etiology that primarily affects the lungs. Our previous work indicates that activation of p38 plays a pivotal role in sarcoidosis inflammatory response. Therefore, we investigated the upstream kinase responsible for activation of p38 in sarcoidosis alveolar macrophages (AMs) and PBMCs. We identified that sustained p38 phosphorylation in sarcoidosis AMs and PBMCs is associated with active MAPK kinase 4 but not with MAPK kinase 3/6. Additionally, we found that sarcoidosis AMs exhibit a higher expression of IRAK1, IRAK-M, and receptor interacting protein 2 (Rip2). Surprisingly, ex vivo treatment of sarcoidosis AMs or PBMCs with IRAK1/4 inhibitor led to a significant increase in IL-1β mRNA expression both spontaneously and in response to TLR2 ligand. However, a combination of Rip2 and IRAK-1/4 inhibitors significantly decreased both IL-1β and IL-6 production in sarcoidosis PBMCs and moderately in AMs. Importantly, a combination of Rip2 and IRAK-1/4 inhibitors led to decreased IFN-γ and IL-6 and decreased percentage of activated CD4(+)CD25(+) cells in PBMCs. These data suggest that in sarcoidosis, both pathways, namely IRAK and Rip2, are deregulated. Targeted modulation of Rip2 and IRAK pathways may prove to be a novel treatment for sarcoidosis.
Collapse
Affiliation(s)
- Jaya Talreja
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Harvinder Talwar
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Nisar Ahmad
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Ruchi Rastogi
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and
| | - Lobelia Samavati
- Division of Pulmonary & Critical Care and Sleep Medicine, Department of Internal Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201; and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
22
|
Singh AK, Umar S, Riegsecker S, Chourasia M, Ahmed S. Regulation of Transforming Growth Factor β-Activated Kinase Activation by Epigallocatechin-3-Gallate in Rheumatoid Arthritis Synovial Fibroblasts: Suppression of K(63) -Linked Autoubiquitination of Tumor Necrosis Factor Receptor-Associated Factor 6. Arthritis Rheumatol 2016; 68:347-58. [PMID: 26473505 DOI: 10.1002/art.39447] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Transforming growth factor β-activated kinase 1 (TAK1) is a key MAPKKK family protein in interleukin-1β (IL-1β), tumor necrosis factor (TNF), and Toll-like receptor signaling. This study was undertaken to examine the posttranslational modification of TAK1 and its therapeutic regulation in rheumatoid arthritis (RA). METHODS The effect of TAK1, IL-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6) inhibition was evaluated in IL-1β-stimulated human RA synovial fibroblasts (RASFs). Western blotting, immunoprecipitation, and 20S proteasome assay were used to study the ubiquitination process in RASFs. The efficacy of epigallocatechin-3-gallate (EGCG), a potent antiinflammatory molecule, in regulating these processes in RASFs was evaluated. Molecular docking was performed to examine the interaction of EGCG with human TAK1, IRAK-1, and TRAF6. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA). RESULTS Inhibition of TAK1, but not IRAK-1 or TRAF6, completely abrogated IL-1β-induced IL-6 and IL-8 synthesis in RASFs. EGCG inhibited TAK1 phosphorylation at Thr(184/187) and occupied the C(174) position, an ATP-binding site, to inhibit its kinase activity. EGCG pretreatment also inhibited K(63) -linked autoubiquitination of TRAF6, a posttranslational modification essential for TAK1 autophosphorylation, by forming a stable H bond at the K(124) position on TRAF6. Furthermore, EGCG enhanced proteasome-associated deubiquitinase expression to rescue proteins from proteasomal degradation. Western blot analyses of joint homogenates from rats with AIA showed a significant increase in K(48) -linked polyubiquitination, TAK1 phosphorylation, and TRAF6 expression when compared to naive rats. Administration of EGCG (50 mg/kg/day) for 10 days ameliorated AIA in rats by reducing TAK1 phosphorylation and K(48) -linked polyubiquitination. CONCLUSION Our findings provide a rationale for targeting TAK1 for the treatment of RA with EGCG.
Collapse
Affiliation(s)
- Anil K Singh
- Washington State University College of Pharmacy, Spokane
| | - Sadiq Umar
- Washington State University College of Pharmacy, Spokane
| | - Sharayah Riegsecker
- University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio
| | - Mukesh Chourasia
- National Institute of Pharmaceutical Education and Research, Hajipur, India
| | | |
Collapse
|
23
|
MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade. Oncotarget 2016; 6:17097-106. [PMID: 26020802 PMCID: PMC4627294 DOI: 10.18632/oncotarget.4005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
Abstract
It is increasingly clear that the biological functions of a transcription factor cannot be fully understood solely on the basis of protein-coding genes that fall under its control. Many transcription factors regulate expression of miRNAs, which affect the cell by modulating translation and stability of mRNAs. The identities and the roles of NF-κB-regulated miRNAs have been attracting research interest for a long time. We revisited this issue in a system with controlled expression of one of the key regulators of NF-κB, RIPK1. Several regulated miRNAs were identified, including miR-146a, miR-215 and miR-497. The miRNAs were also inducible by IL-1β, but not when NF-κB activity was repressed by mutant IκBα. The presence of a miR-497 site was predicted in the 3′-UTR of IKBKB gene, which encodes IKKβ. Using appropriately engineered reporters, we confirmed that this site can be a target of suppressive action of miR-497. Our findings suggest that NF-κB controls expression of a miRNA, which may reduce production of IKKβ. Considering the role of IKKβ in the canonical pathway of NF-κB activation, our observations may indicate a new mechanism that modulates the magnitude of such activation, as well as the propensity of a cell to engage canonical vs. non-canonical pathways.
Collapse
|
24
|
Tegge AN, Sharp N, Murali TM. Xtalk: a path-based approach for identifying crosstalk between signaling pathways. Bioinformatics 2015; 32:242-51. [PMID: 26400040 DOI: 10.1093/bioinformatics/btv549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. RESULTS We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. AVAILABILITY AND IMPLEMENTATION The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. CONTACT ategge@vt.edu, murali@cs.vt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Department of Statistics and
| | | | - T M Murali
- Department of Computer Science, ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
Gao L, Tang W, Ding Z, Wang D, Qi X, Wu H, Guo J. Protein-Binding Function of RNA-Dependent Protein Kinase Promotes Proliferation through TRAF2/RIP1/NF-κB/c-Myc Pathway in Pancreatic β cells. Mol Med 2015; 21:154-66. [PMID: 25715336 DOI: 10.2119/molmed.2014.00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Double-stranded RNA-dependent protein kinase (PKR), an intracellular pathogen recognition receptor, is involved both in insulin resistance in peripheral tissues and in downregulation of pancreatic β-cell function in a kinase-dependent manner, indicating PKR as a core component in the progression of type 2 diabetes. PKR also acts as an adaptor protein via its protein-binding domain. Here, the PKR protein-binding function promoted β-cell proliferation without its kinase activity, which is associated with enhanced physical interaction with tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. In addition, the transcription of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent survival gene c-Myc was upregulated significantly and is necessary for proliferation. Upregulation of the PKR protein-binding function induced the NF-κB pathway, as observed by dose-dependent degradation of IκBα, induced nuclear translocation of p65 and elevated NF-κB-dependent reporter gene expression. NF-κB-dependent reporter activity and β-cell proliferation both were suppressed by TRAF2-siRNA, but not by TRAF6-siRNA. TRAF2-siRNA blocked the ubiquitination of receptor-interacting serine/threonine-protein kinase 1 (RIP1) induced by PKR protein binding. Furthermore, RIP1-siRNA inhibited β-cell proliferation. Proinflammatory cytokines (TNFα) and glucolipitoxicity also promoted the physical interaction of PKR with TRAF2. Collectively, these data indicate a pivotal role for PKR's protein-binding function on the proliferation of pancreatic β cells through TRAF2/RIP1/NF-κB/c-Myc pathways. Therapeutic opportunities for type 2 diabetes may arise when its kinase catalytic function, but not its protein-binding function, is downregulated.
Collapse
Affiliation(s)
- Lili Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - ZhengZheng Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - DingYu Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - XiaoQiang Qi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - HuiWen Wu
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. Blood 2014; 124:3896-904. [PMID: 25359991 DOI: 10.1182/blood-2014-05-573188] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myeloid differentiation 88 (MyD88) is the key signaling adapter of Toll-like and interleukin-1 receptors. Recurrent lymphoma-associated mutations, particularly Leu265Pro (L265P), within the MyD88 Toll/interleukin-1 receptor (TIR) domain sustain lymphoma cell survival due to constitutive nuclear factor κB signaling. We found that mutated TIR domains displayed an intrinsic propensity for augmented oligomerization and spontaneous formation of cytosolic Myddosome aggregates in lymphoma cell lines, mimicking the effect of dimerized TIR domains. Blocking of MyD88 oligomerization induced apoptosis. The L265P TIR domain can recruit the endogenous wild-type MyD88 for oligomer formation and hyperactivity. Molecular dynamics simulations and analysis of additional mutations suggest that constitutive activity is caused by allosteric oligomerization.
Collapse
|
27
|
Huoh YS, Ferguson KM. The pellino e3 ubiquitin ligases recognize specific phosphothreonine motifs and have distinct substrate specificities. Biochemistry 2014; 53:4946-55. [PMID: 25027698 PMCID: PMC4201300 DOI: 10.1021/bi5005156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
four mammalian Pellinos (Pellinos 1, 2, 3a, and 3b) are E3
ubiquitin ligases that are emerging as critical mediators for a variety
of immune signaling pathways, including those activated by Toll-like
receptors, the T-cell receptor, and NOD2. It is becoming increasingly
clear that each Pellino has a distinct role in facilitating immune
receptor signaling. However, the underlying mechanisms by which these
highly homologous proteins act selectively in these signaling pathways
are not clear. In this study, we investigate whether Pellino substrate
recognition contributes to the divergent functions of Pellinos. Substrate
recognition of each Pellino is mediated by its noncanonical forkhead-associated
(FHA) domain, a well-characterized phosphothreonine-binding module.
Pellino FHA domains share very high sequence identity, so a molecular
basis for differences in substrate recognition is not immediately
apparent. To explore Pellino substrate specificity, we first identify
a high-affinity Pellino2 FHA domain-binding motif in the Pellino substrate,
interleukin-1 receptor-associated kinase 1 (IRAK1). Analysis of binding
of the different Pellinos to a panel of phosphothreonine-containing
peptides derived from the IRAK1-binding motif reveals that each Pellino
has a distinct phosphothreonine peptide binding preference. We observe
a similar binding specificity in the interaction of Pellinos with
a number of known Pellino substrates. These results argue that the
nonredundant roles that Pellinos play in immune signaling are in part
due to their divergent substrate specificities. This new insight into
Pellino substrate recognition could be exploited for pharmacological
advantage in treating inflammatory diseases that have been linked
to the aberrant regulation of Pellinos.
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Physiology and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
28
|
Abstract
Toll-like receptors (TLRs) and the receptors for interleukin (IL)-1, IL-18 and IL-33 are required for defence against microbial pathogens but, if hyper-activated or not switched off efficiently, can cause tissue damage and inflammatory and autoimmune diseases. Understanding how the checks and balances in the system are integrated to fight infection without the network operating out of control will be crucial for the development of improved drugs to treat these diseases in the future. In this Cell Science at a Glance article and the accompanying poster, I provide a brief overview of how one of these intricate networks is controlled by the interplay of protein phosphorylation and protein ubiquitylation events, and the mechanisms in myeloid cells that restrict and terminate its activation to prevent inflammatory and autoimmune diseases. Finally, I suggest a few protein kinases that have been neglected as drug targets, but whose therapeutic potential should be explored in the light of recent advances in our understanding of their roles in the innate immune system.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
29
|
Tarantino N, Tinevez JY, Crowell EF, Boisson B, Henriques R, Mhlanga M, Agou F, Israël A, Laplantine E. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J Cell Biol 2014; 204:231-45. [PMID: 24446482 PMCID: PMC3897181 DOI: 10.1083/jcb.201307172] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor κB (NF-κB) essential modulator (NEMO), a regulatory component of the IκB kinase (IKK) complex, controls NF-κB activation through its interaction with ubiquitin chains. We show here that stimulation with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO into punctate structures that are anchored at the cell periphery. These structures are enriched in activated IKK kinases and ubiquitinated NEMO molecules, which suggests that they serve as organizing centers for the activation of NF-κB. These NEMO-containing structures colocalize with activated TNF receptors but not with activated IL-1 receptors. We investigated the involvement of nondegradative ubiquitination in the formation of these structures, using cells deficient in K63 ubiquitin chains or linear ubiquitin chain assembly complex (LUBAC)-mediated linear ubiquitination. Our results indicate that, unlike TNF, IL-1 requires K63-linked and linear ubiquitin chains to recruit NEMO into higher-order complexes. Thus, different mechanisms are involved in the recruitment of NEMO into supramolecular complexes, which appear to be essential for NF-κB activation.
Collapse
Affiliation(s)
- Nadine Tarantino
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Jean-Yves Tinevez
- Plateforme d’Imagerie Dynamique and Computational Imaging and Modeling Group, Institut Pasteur, Paris 75015, France
| | - Elizabeth Faris Crowell
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Ricardo Henriques
- Plateforme d’Imagerie Dynamique and Computational Imaging and Modeling Group, Institut Pasteur, Paris 75015, France
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, 1649-028 Portugal
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK
| | - Musa Mhlanga
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, 1649-028 Portugal
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Biosciences Unit, Council for Scientific and Industrial Research, Pretoria, Gauteng 0001, South Africa
| | - Fabrice Agou
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Alain Israël
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Emmanuel Laplantine
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| |
Collapse
|
30
|
Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A 2013; 110:15247-52. [PMID: 23986494 DOI: 10.1073/pnas.1314715110] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyubiquitin (pUb) chains formed between the C terminus of ubiquitin and lysine 63 (K63) or methionine 1 (M1) of another ubiquitin have been implicated in the activation of the canonical IκB kinase (IKK) complex. Here, we demonstrate that nearly all of the M1-pUb chains formed in response to interleukin-1, or the Toll-Like Receptors 1/2 agonist Pam3CSK4, are covalently attached to K63-pUb chains either directly as K63-pUb/M1-pUb hybrids or indirectly by attachment to the same protein. Interleukin-1 receptor (IL-1R)-associated kinase (IRAK) 1 is modified first by K63-pUb chains to which M1-pUb linkages are added subsequently, and myeloid differentiation primary response gene 88 (MyD88) and IRAK4 are also modified by both K63-pUb and M1-pUb chains. We show that the heme-oxidized IRP2 ubiquitin ligase 1 interacting protein (HOIP) component of the linear ubiquitin assembly complex catalyzes the formation of M1-pUb chains in response to interleukin-1, that the formation of K63-pUb chains is a prerequisite for the formation of M1-pUb chains, and that HOIP interacts with K63-pUb but not M1-pUb linkages. These findings identify K63-Ub oligomers as a major substrate of HOIP in cells where the MyD88-dependent signaling network is activated. The TGF-beta-activated kinase 1 (TAK1)-binding protein (TAB) 2 and TAB3 components of the TAK1 complex and the NFκB Essential Modifier (NEMO) component of the canonical IKK complex bind to K63-pUb chains and M1-pUb chains, respectively. The formation of K63/M1-pUb hybrids may therefore provide an elegant mechanism for colocalizing both complexes to the same pUb chain, facilitating the TAK1-catalyzed activation of IKKα and IKKβ. Our study may help to resolve the debate about the relative importance of K63-pUb and M1-pUb chains in activating the canonical IKK complex.
Collapse
|
31
|
Pauls E, Nanda SK, Smith H, Toth R, Arthur JSC, Cohen P. Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2717-30. [PMID: 23918981 DOI: 10.4049/jimmunol.1203268] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The roles of IL-1R-associated kinase (IRAK)2 and IRAK1 in cytokine production were investigated using immune cells from knock-in mice expressing the TNFR-associated factor 6 (TRAF6) binding-defective mutant IRAK2[E525A] or the catalytically inactive IRAK1[D359A] mutant. In bone marrow-derived macrophages (BMDMs), the IRAK2-TRAF6 interaction was required for the late (2-8 h) but not the early phase (0-2 h) of il6 and tnfa mRNA production, and hence for IL-6 and TNF-α secretion by TLR agonists that signal via MyD88. Loss of the IRAK2-TRAF6 interaction had little effect on the MyD88-dependent production of anti-inflammatory molecules produced during the early phase, such as Dual Specificity Phosphatase 1, and a modest effect on IL-10 secretion. The LPS/TLR4-stimulated production of il6 and tnfa mRNA and IL-6 and TNF-α secretion was hardly affected, because the Toll/IL-1R domain-containing adapter-inducing IFN-β (TRIF) signaling pathway was used instead of the IRAK2-TRAF6 interaction to sustain late-phase mRNA production. IRAK1 catalytic activity was not rate limiting for il6, tnfa, or il10 mRNA production or the secretion of these cytokines by BMDMs, but IFN-β mRNA induction by TLR7 and TLR9 agonists was greatly delayed in plasmacytoid dendritic cells (pDCs) from IRAK1[D359A] mice. In contrast, IFN-β mRNA production was little affected in pDCs from IRAK2[E525A] mice, but subsequent IFN-α mRNA production and IFN-α secretion were reduced. IFN-β and IFN-α production were abolished in pDCs from IRAK1[D359A] × IRAK2[E525A] double knock-in mice. Our results establish that the IRAK2-TRAF6 interaction is rate limiting for the late, but not the early phase of cytokine production in BMDM and pDCs, and that the IRAK2-TRAF6 interaction is needed to sustain IκB-inducing kinase β activity during prolonged activation of the MyD88 signaling network. [corrected]
Collapse
Affiliation(s)
- Eduardo Pauls
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom.,IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona 08916, Spain
| | - Sambit K Nanda
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hilary Smith
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Rachel Toth
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J Simon C Arthur
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology Unit, Sir James Black Centre, University of Dundee, DD1 5EH, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
32
|
Virtue A, Wang H, Yang XF. MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 2012; 5:66. [PMID: 23078795 PMCID: PMC3529674 DOI: 10.1186/1756-8722-5-66] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023] Open
Abstract
The discovery of miRNAs has revolutionized the way we examine the genome, RNA products, and the regulation of transcription and translation. Their ability to modulate protein expression through mRNA degradation and translation repression resulted in avid scientific interest in miRNAs over the past decade. This research has led to findings that indicate miRNAs can regulate an array of cellular functions such as cellular apoptosis, proliferation, differentiation, and metabolism. Specifically, the capability of miRNAs to finely-tune gene expression naturally lends itself to immune system regulation which requires precise control for proper activity. In fact, abnormal miRNAs expression is often seen with inflammatory disorders like rheumatoid arthritis, systemic lupus erthematosus, experimental autoimmune encephalomyelitis, and inflammatory cancers. As a result, research investigating miRNAs modulation of immune cell proliferation, differentiation, and cellular signaling has yielded fruitful results. Specifically, in this review, we will examine the impact of miRNAs on toll-like receptor (TLRs) and interleukin-1β (IL-1β) signaling, which are integral in the proper functioning of the innate immune system. These signaling pathways share several key downstream signaling adaptors and therefore produce similar downstream effects such as the production of pro-inflammatory cytokines, chemokines, and interferons. This review will examine in depth the specific interactions of miRNAs with receptors, adaptor molecules, and regulator molecules within these cellular pathways. In addition, we will discuss the modulation of miRNAs’ expression by TLR and IL-1R signaling through positive and negative feedback loops.
Collapse
Affiliation(s)
- Anthony Virtue
- Cardiovascular Research Center and Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, MERB 1059, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
33
|
Kim YI, Park JE, Kwon KH, Hong CY, Yi AK. Interleukin-1 receptor-associated kinase 2- and protein kinase D1-dependent regulation of IRAK-monocyte expression by CpG DNA. PLoS One 2012; 7:e43970. [PMID: 22928050 PMCID: PMC3426515 DOI: 10.1371/journal.pone.0043970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
As a part of the negative feedback mechanism, CpG DNA induces IRAK-M expression in monocytic cells. In the present study we investigated a biochemical signaling pathway and the transcription factors responsible for CpG DNA-mediated Irak-m gene expression. CpG DNA-induced Irak-m expression did not require new protein synthesis and was regulated at the transcriptional level through an endosomal pH-sensitive TLR9/MyD88 signaling pathway. Over-expression of the dominant negative (DN) form of or gene-specific knockdown of signaling modulators in the TLR9 pathway demonstrated that IRAK4, IRAK1, IRAK2, and PKD1 are required for Irak-m transcription induced by CpG DNA. Over-expression of DN-IRAK1 only partially, but significantly, inhibited CpG DNA-induced Irak-m promoter activity. While IRAK1 was critical for the initial phase, IRAK2 was required for the late phase of TLR9 signaling by sustaining activation of PKD1 that leads to activation of NF-κB and MAPKs. Irak-m promoter-luciferase reporters with alterations in the predicted cis-acting transcriptional regulatory elements revealed that the NF-κB consensus site in the Irak-m promoter region is absolutely required for Irak-m gene expression. AP-1 and CREB binding sites also contributed to the optimal Irak-m expression by CpG DNA. Collectively, our results demonstrate that IRAK2 plays a key role in the TLR9-mediated transcriptional regulation of Irak-m expression by sustaining activation of PKD1 and NF-κB.
Collapse
Affiliation(s)
- Young-In Kim
- Children's Foundation Research Institute at Le Bonheur Children's Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jeoung-Eun Park
- Children's Foundation Research Institute at Le Bonheur Children's Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ki Han Kwon
- Children's Foundation Research Institute at Le Bonheur Children's Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Cheol Yi Hong
- Specialized Research Center for Cancer Immunotherapy, Chonnam National University, Jeonnam, Korea
| | - Ae-Kyung Yi
- Children's Foundation Research Institute at Le Bonheur Children's Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
34
|
The E3 ubiquitin ligase MARCH8 negatively regulates IL-1β-induced NF-κB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci U S A 2012; 109:14128-33. [PMID: 22904187 DOI: 10.1073/pnas.1205246109] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proinflammatory cytokine interleukin-1 (IL-1) signals via type I IL-1 receptor (IL-1RI) and IL-1 receptor accessory protein (IL1RAP), which leads to activation of the transcription factor NF-κB and induction of a range of downstream proteins involved in inflammatory and immune responses. Here, we identified the E3 ubiquitin ligase membrane-associated RING-CH (MARCH8) as a suppressor of IL-1β-induced NF-κB- and MAPK-activation pathways. Overexpression of MARCH8 inhibits IL-1β-induced NF-κB and MAPK activation, whereas knockdown of MARCH8 has the opposite effect. Mechanistically, MARCH8 interacts with IL1RAP and targets its Lys512 for K48-linked polyubiquitination and degradation. Our findings suggest that MARCH8-mediated polyubiquitination and degradation of IL1RAP is an important mechanism for negative regulation of IL-1β-induced signaling pathways.
Collapse
|
35
|
Kim TW, Yu M, Zhou H, Cui W, Wang J, DiCorleto P, Fox P, Xiao H, Li X. Pellino 2 is critical for Toll-like receptor/interleukin-1 receptor (TLR/IL-1R)-mediated post-transcriptional control. J Biol Chem 2012; 287:25686-95. [PMID: 22669975 PMCID: PMC3408172 DOI: 10.1074/jbc.m112.352625] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Interleukin 1 receptor-associated kinase 1(IRAK1), a key molecule in TLR/IL-1R-mediated signaling, is phosphorylated, ubiquitinated, and degraded upon ligand stimulation. We and others have recently identified Pellino proteins as novel RING E3 ubiquitin ligases involved in IRAK1 polyubiquitination and degradation. However, it remains unclear how each Pellino member distinctly regulates TLR/IL-1R signaling by modulating IRAK1 ubiquitination. In this study we examined the role of Pellino 2 in IL-1- and LPS-mediated signaling and gene expression by knocking down Pellino 2 in human 293-IL-1R cells and primary bone marrow macrophages. Pellino 2 (but not Pellino 1) knockdown abolished IL-1- and LPS-induced Lys-63-linked IRAK1 ubiquitination with reduced Lys-48-linked IRAK1 ubiquitination. Furthermore, Pellino 2 is required for TAK1-dependent NFκB activation. However, because of the retained TAK1-independent NFκB activation, the levels of IL-1- and LPS-induced NFκB activation were not substantially affected in Pellino 2 knockdown 293-IL-1R cells and primary macrophages, respectively. On the other hand, Pellino 2 knockdown reduced the IL-1- and LPS-induced inflammatory gene expression at late time points, which was accompanied by increased decay rates of the mRNAs of the inflammatory genes. Importantly, IL-1- and LPS-mediated JNK and ERK activation were substantially attenuated in Pellino 2 knock-down cells, implicating MAPK activation in TLR/IL-1R-induced mRNA stabilization. Taken together, this study demonstrated that Pellino 2 plays a critical role for TLR/IL-1R-mediated post-transcriptional control.
Collapse
Affiliation(s)
| | - Minjia Yu
- From the Department of Immunology and
- the Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, China
| | - Hao Zhou
- From the Department of Immunology and
| | - Wei Cui
- From the Department of Immunology and
| | - Jianan Wang
- the Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, China
| | - Paul DiCorleto
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Paul Fox
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Hui Xiao
- From the Department of Immunology and
| | | |
Collapse
|
36
|
Differential usage of NF-κB activating signals by IL-1β and TNF-α in pancreatic beta cells. FEBS Lett 2012; 586:984-9. [DOI: 10.1016/j.febslet.2012.02.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 01/06/2023]
|
37
|
Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochem J 2012; 441:339-46. [PMID: 22007846 DOI: 10.1042/bj20111415] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The E3 ubiquitin ligase Pellino 1 can be interconverted between inactive and active forms by a reversible phosphorylation mechanism. In vitro, phosphorylation and activation can be catalysed by either the IRAKs [IL (interleukin)-1-receptor-associated kinases] IRAK1 and IRAK4, or the IKK {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase}-related kinases [IKKϵ and TBK1 (TANK {TRAF [TNF (tumour-necrosis-factor)-receptor-associated factor]-associated NF-κB activator}-binding kinase 1)]. In the present study we establish that IRAK1 is the major protein kinase that mediates the IL-1-stimulated activation of Pellino 1 in MEFs (mouse embryonic fibroblasts) or HEK (human embryonic kidney)-293 cells, whereas the IKK-related kinases activate Pellino 1 in TNFα-stimulated MEFs. The IKK-related kinases are also the major protein kinases that activate Pellino 1 in response to TLR (Toll-like receptor) ligands that signal via the adaptors MyD88 (myeloid differentiation primary response gene 88) and/or TRIF [TIR (Toll/IL-1 receptor) domain-containing adaptor protein inducing interferon β]. The present studies demonstrate that, surprisingly, the ligands that signal via MyD88 do not always employ the same protein kinase to activate Pellino 1. Our results also establish that neither the catalytic activity of IRAK1 nor the activation of Pellino 1 is required for the initial transient activation of NF-κB and MAPKs (mitogen-activated protein kinases) that is triggered by IL-1 or TNFα in MEFs, or by TLR ligands in macrophages. The activation of Pellino 1 provides the first direct readout for IRAK1 catalytic activity in cells.
Collapse
|
38
|
Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol 2011; 91:377-83. [PMID: 22167720 DOI: 10.1189/jlb.0811404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL-17, which extends the half-life of TNF-induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3'UTRs, which involve that action of different mRNA-binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Collapse
Affiliation(s)
- Thomas Hamilton
- Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:255-63. [PMID: 22033459 DOI: 10.1016/j.bbamcr.2011.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/21/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022]
Abstract
TRAF6 plays a crucial role in signal transduction of the Toll-like receptor (TLR). It has been reported that TRAF6 catalyzes the formation of unique Lys63-linked polyubiquitin chains, which do not lead to proteasome-mediated degradation. Here we found that stimulation of J774.1 cells with various TLR ligands led to decreases in TRAF6 protein levels that occurred at a slower rate than IκBα degradation. The decrease in TRAF6 was inhibited by proteasome inhibitors MG-132, lactacystin and N-acetyl-leucyl-leucyl-norleucinal. Among intracellular TLR signaling molecules MyD88, IRAK-4, IRAK-1, TRAF6, and IKKβ, only IRAK-1 expression downregulated TRAF6 in HEK293 cells. The amount of TRAF6 expressed either transiently or stably was also reduced by co-expression of IRAK-1 and no TRAF6 cleavage products were detected. The levels of either a TRAF6 N-terminal deletion mutant or a ubiquitin ligase-defective mutant were not affected by IRAK-1 expression. Downregulation of TRAF6 required the TRAF6-binding site (Glu544, Glu587, Glu706) of IRAK-1 but not its catalytic site (Asp340). Upon IRAK-1 transfection, no significant TRAF6 ubiquitination was detected. Instead, TRAF6-associated IRAK-1 was ubiquitinated with both Lys48- and Lys63-linked polyubiquitin chains. TRAF6 downregulation was inhibited by co-expression of the E3 ubiquitin ligase Pellino 3, whose Lys63-linked polyubiquitination on IRAK-1 is reported to compete with Lys48-linked IRAK-1 polyubiquitination. Expression of IRAK-1 inhibited IκBα phosphorylation in response to TLR2 stimulation. These results indicate that stimulation of TLRs induces proteasome-dependent downregulation of TRAF6. We conclude that TRAF6 associated with ubiquitinated IRAK-1 is degraded together by the proteasome and that IRAK-1 possesses a negative regulatory role on TLR signaling.
Collapse
|
40
|
Tun-Kyi A, Finn G, Greenwood A, Nowak M, Lee TH, Asara JM, Tsokos GC, Fitzgerald K, Israel E, Li X, Exley M, Nicholson LK, Lu KP. Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat Immunol 2011; 12:733-41. [PMID: 21743479 PMCID: PMC3298750 DOI: 10.1038/ni.2069] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/09/2011] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) shape innate and adaptive immunity to microorganisms. The enzyme IRAK1 transduces signals from TLRs, but mechanisms for its activation and regulation remain unknown. We found here that TLR7 and TLR9 activated the isomerase Pin1, which then bound to IRAK1; this resulted in activation of IRAK1 and facilitated its release from the receptor complex to activate the transcription factor IRF7 and induce type I interferons. Consequently, Pin1-deficient cells and mice failed to mount TLR-mediated, interferon-dependent innate and adaptive immune responses. Given the critical role of aberrant activation of IRAK1 and type I interferons in various immune diseases, controlling IRAK1 activation via inhibition of Pin1 may represent a useful therapeutic approach.
Collapse
Affiliation(s)
- Adrian Tun-Kyi
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - Greg Finn
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - Alex Greenwood
- Department of Molecular Biology and Genetics Cornell University Ithaca, NY 14853, USA
| | - Michael Nowak
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - Tae Ho Lee
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - John M. Asara
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - George C. Tsokos
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - Kate Fitzgerald
- Division of Infectious Diseases and Immunology University of Massachusetts Medical School Worcester, Massachusetts 01605, USA
| | - Elliot Israel
- Department of Medicine Brigham and Women's Hospital Boston, MA 02115, USA
| | - Xiaoxia Li
- Departments of Immunology Cleveland Clinic Foundation Cleveland, Ohio 44195, USA
| | - Mark Exley
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| | - Linda K. Nicholson
- Department of Molecular Biology and Genetics Cornell University Ithaca, NY 14853, USA
| | - Kun Ping Lu
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
41
|
Toll-like receptor signaling pathways and the evidence linking toll-like receptor signaling to cardiac ischemia/reperfusion injury. Shock 2011; 34:548-57. [PMID: 20458266 DOI: 10.1097/shk.0b013e3181e686f5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) play a key role in innate immune defenses. After activation by foreign pathogens or host-derived molecules, TLRs signal via overlapping or distinct signaling cascades and eventually induce numerous genes involved in a variety of cellular responses. A growing body of evidence suggests that TLR signaling also plays an important role in cardiac ischemia/reperfusion injury. We review our current understanding of the TLR signaling pathways and their roles in the pathophysiology of cardiac ischemia/reperfusion injury, as well as discuss several mechanisms for TLR activation and regulation.
Collapse
|
42
|
George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AVS, Gay NJ, Weber ANR. Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 2011; 286:1341-53. [PMID: 20966070 PMCID: PMC3020742 DOI: 10.1074/jbc.m110.159996] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/18/2010] [Indexed: 12/02/2022] Open
Abstract
Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threatening infections. Here we analyzed the functional properties of six reported non-synonymous single nucleotide polymorphisms of MYD88 in an in vitro cellular system. Two variants found in the MyD88 death domain, S34Y and R98C, showed severely reduced NF-κB activation due to reduced homo-oligomerization and IRAK4 interaction. Structural modeling highlights Ser-34 and Arg-98 as residues important for the assembly of the Myddosome, a death domain (DD) post-receptor complex involving the DD of MyD88, IRAK4, and IRAK2 or IRAK1. Using S34Y and R98C as functional probes, our data show that MyD88 homo-oligomerization and IRAK4 interaction is modulated by the MyD88 TIR and IRAK4 kinase domain, demonstrating the functional importance of non-DD regions not observed in a recent Myddosome crystal structure. The differential interference of S34Y and R98C with some (IL-1 receptor, TLR2, TLR4, TLR5, and TLR7) but not all (TLR9) MyD88-dependent signaling pathways also suggests that receptor specificities exist at the level of the Myddosome. Given their detrimental effect on signaling, it is not surprising that our epidemiological analysis in several case-control studies confirms that S34Y and R98C are rare variants that may drastically contribute to susceptibility to infection in only few individuals.
Collapse
Affiliation(s)
- Julie George
- From the German Cancer Research Centre (DKFZ), Division Toll-like receptors and Cancer, Heidelberg, 69120 Germany
| | - Precious G. Motshwene
- the Department of Biochemistry, University of Cambridge, Cambridge CB2 1SG, United Kingdom, and
| | - Hui Wang
- From the German Cancer Research Centre (DKFZ), Division Toll-like receptors and Cancer, Heidelberg, 69120 Germany
| | - Andriy V. Kubarenko
- From the German Cancer Research Centre (DKFZ), Division Toll-like receptors and Cancer, Heidelberg, 69120 Germany
| | - Anna Rautanen
- the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tara C. Mills
- the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Adrian V. S. Hill
- the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nicholas J. Gay
- the Department of Biochemistry, University of Cambridge, Cambridge CB2 1SG, United Kingdom, and
| | - Alexander N. R. Weber
- From the German Cancer Research Centre (DKFZ), Division Toll-like receptors and Cancer, Heidelberg, 69120 Germany
| |
Collapse
|
43
|
Chiou WF, Chen CC, Lin IH, Chiu JH, Chen YJ. 1,3,5-trihydroxy-4-prenylxanthone represses lipopolysaccharide-induced iNOS expression via impeding posttranslational modification of IRAK-1. Biochem Pharmacol 2011; 81:752-60. [PMID: 21232528 DOI: 10.1016/j.bcp.2010.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/30/2022]
Abstract
Both high level of nitric oxide (NO) and its generating enzyme, inducible NO synthase (iNOS), play important roles in pathophysiological conditions such as inflammatory processes. We previously found that 1,3,5-trihydroxy-4-prenylxanthone (TH-4-PX) isolated from Cudrania cochinchinensis repressed lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Here we further examined the underlying mechanisms using RT-PCR and Western blot analyses. Consistent with NO inhibition, suppression of LPS-induced iNOS expression by TH-4-PX through abolishing IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor-κB (NF-κB) nuclear translocation was observed. After LPS stimulation, the increased nuclear level of c-Fos and c-Jun (major components of activator protein-1, AP-1) and the phosphorylated level of upstream signal molecules, such as c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase, (ERK) were all significantly suppressed by TH-4-PX, while p38 remained unaffected. A further experiment revealed that TH-4-PX inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Stimulation with LPS also triggered the modification (phosphorylation and ubiquitination) and eventually the proteasomal degradation of membrane-associated interleukin (IL)-1 receptor-associated serine/threonine kinase 1 (IRAK-1), an essential signaling component to toll-like receptor (TLR)-mediated TAK-1 activation. Interestingly, the modified pattern of IRAK-1 in the presence LPS was significantly attenuated by TH-4-PX treatment. In conclusion, TH-4-PX inhibited LPS-induced NF-κB and AP-1 activations by interfering with the posttranslational modification (phosphorylation and/or ubiquitinylation) of IRAK-1 in the cell membrane to impede TAK1-mediated activation of IKK and MAPKs signal transduction.
Collapse
Affiliation(s)
- Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Background Most common systems of genetic engineering of mammalian cells are associated with insertional mutagenesis of the modified cells. Insertional mutagenesis is also a popular approach to generate random alterations for gene discovery projects. A better understanding of the interaction of the structural elements within an insertional mutagen and the ability of such elements to influence host genes at various distances away from the insertion site is a matter of considerable practical importance. Methodology/Principal Findings We observed that, in the context of a lentiviral construct, a transcript, which is initiated at an internal CMV promoter/enhancer region and incorporates a splice donor site, is able to extend past a collinear viral LTR and trap exons of host genes, while the polyadenylation signal, which is naturally present in the LTR, is spliced out. Unexpectedly, when a vector, which utilizes this phenomenon, was used to produce mutants with elevated activity of NF-κB, we found mutants, which owed their phenotype to the effect of the insert on a gene located tens or even hundreds of kilobases away from the insertion site. This effect did not result from a CMV-driven transcript, but was sensitive to functional suppression of the insert. Interestingly, despite the long-distance effect, expression of loci most closely positioned to the insert appeared unaffected. Conclusions/Significance We concluded that a polyadenylation signal in a retroviral LTR, when occurring within an intron, is an inefficient barrier against the formation of a hybrid transcript, and that a vector containing a strong enhancer may selectively affect the function of genes far away from its insertion site. These phenomena have to be considered when experimental or therapeutic transduction is performed. In particular, the long-distance effects of insertional mutagenesis bring into question the relevance of the lists of disease-associated retroviral integration targets, which did not undergo functional validation.
Collapse
|
45
|
Ostuni R, Zanoni I, Granucci F. Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci 2010; 67:4109-34. [PMID: 20680392 PMCID: PMC11115668 DOI: 10.1007/s00018-010-0464-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) are essential players in the innate immune response to invading pathogens. Although extensive research efforts have provided a considerable wealth of information on how TLRs function, substantial gaps in our knowledge still prevent the definition of a complete picture of TLR signaling. However, several recent studies describe additional layers of complexity in the regulation of TLR ligand recognition, adaptor recruitment, posttranslational modifications of signaling proteins, and the newly described, autonomous role of the TLR4 co-receptor CD14. In this review, by using it as model system for the whole TLR family, we attempt to provide a complete description of the signal transduction pathways triggered by TLR4, with a particular emphasis on the molecular and cell biological aspects regulating its function. Finally, we discuss a recently reported model of CD14-dependent signaling and highlight its biological implications.
Collapse
Affiliation(s)
- Renato Ostuni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
46
|
The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol 2010; 80:1981-91. [PMID: 20599782 DOI: 10.1016/j.bcp.2010.06.020] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/31/2023]
Abstract
The interleukin receptor-associated kinase (IRAK) family are involved in regulating Toll-like receptor (TLR) and interleukin-1 (IL-1) signalling pathways. TLRs are pattern recognition receptors of the innate immune response that are responsible for sensing pathogens and initiating immunity, while IL-1 is one of the key cytokines that mediates inflammation. As such, IL-1/TLR signalling pathways and the IRAK family are critical in anti-pathogen responses, inflammation and autoimmunity. The family comprises of four members, IRAK-1, IRAK-2, IRAK-M (IRAK-3) and IRAK-4, and has a role in both positive and negative regulation of signal transduction. While it was once thought that the family displayed some redundancy, each member of the family is emerging as a distinct and vital contributor to IL-1/TLR signalling mechanisms. Knockout mouse studies have explored the relative contribution of each of the IRAKs in IL-1/TLR signalling, while the recent generation of kinase-inactive knock-in IRAK-4 mice have revealed which of IRAK-4 functions require its kinase activity. IRAK-2, previously thought of as a pseudokinase, has recently been proposed to have kinase activity that is essential for TLR signalling. Not surprisingly given their critical role in IL-1/TLR signalling, the IRAK family members have been implicated in certain disease models including human immunodeficiencies. Thus the potential targeting of these essential protein kinases therapeutically is also discussed.
Collapse
|
47
|
Yang SK, Wang YC, Chao CC, Chuang YJ, Lan CY, Chen BS. Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNFalpha-induced inflammatory responses. BMC Med Genomics 2010; 3:19. [PMID: 20497537 PMCID: PMC2889840 DOI: 10.1186/1755-8794-3-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 05/24/2010] [Indexed: 12/16/2022] Open
Abstract
Background Development in systems biology research has accelerated in recent years, and the reconstructions for molecular networks can provide a global view to enable in-depth investigation on numerous system properties in biology. However, we still lack a systematic approach to reconstruct the dynamic protein-protein association networks at different time stages from high-throughput data to further analyze the possible cross-talks among different signaling/regulatory pathways. Methods In this study we integrated protein-protein interactions from different databases to construct the rough protein-protein association networks (PPANs) during TNFα-induced inflammation. Next, the gene expression profiles of TNFα-induced HUVEC and a stochastic dynamic model were used to rebuild the significant PPANs at different time stages, reflecting the development and progression of endothelium inflammatory responses. A new cross-talk ranking method was used to evaluate the potential core elements in the related signaling pathways of toll-like receptor 4 (TLR-4) as well as receptors for tumor necrosis factor (TNF-R) and interleukin-1 (IL-1R). Results The highly ranked cross-talks which are functionally relevant to the TNFα pathway were identified. A bow-tie structure was extracted from these cross-talk pathways, suggesting the robustness of network structure, the coordination of signal transduction and feedback control for efficient inflammatory responses to different stimuli. Further, several characteristics of signal transduction and feedback control were analyzed. Conclusions A systematic approach based on a stochastic dynamic model is proposed to generate insight into the underlying defense mechanisms of inflammation via the construction of corresponding signaling networks upon specific stimuli. In addition, this systematic approach can be applied to other signaling networks under different conditions in different species. The algorithm and method proposed in this study could expedite prospective systems biology research when better experimental techniques for protein expression detection and microarray data with multiple sampling points become available in the future.
Collapse
Affiliation(s)
- Shih-Kuang Yang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Hamilton T, Novotny M, Pavicic PJ, Herjan T, Hartupee J, Sun D, Zhao C, Datta S. Diversity in post-transcriptional control of neutrophil chemoattractant cytokine gene expression. Cytokine 2010; 52:116-22. [PMID: 20430641 DOI: 10.1016/j.cyto.2010.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 12/11/2022]
Abstract
Regulation of neutrophil chemokine gene expression represents an important feature in tissue inflammation. While chemokine gene transcription through the action of NFkappaB is recognized as an essential component of this process, it is now clear that post-transcriptional mechanisms, particularly the rates of decay of mature cytoplasmic mRNA, provides an essential component of this control. Chemokine and other cytokine mRNA half life is known to be controlled via adenine-uridine rich sequence motifs localized within 3' untranslated regions (UTRs), the most common of which contains one or more copies of the pentameric AUUUA sequence. In myeloid cells AUUUA sequences confer instability through the action of RNA binding proteins such as tristetraprolin (TTP). The resulting instability can be regulated in response to extra-cellular stimuli including Toll like receptor ligands that signal to control the function of TTP through pathways involving the activation of p38 MAP kinases. Recent findings indicate that substantial mechanistic diversity is operative in non-myeloid cells in response to alternate pro-inflammatory stimuli such as IL-17. These pathways target distinct instability sequences that do not contain the AUUUA pentamer motif, do not signal through p38 MAPK, and function independently of TTP.
Collapse
Affiliation(s)
- Thomas Hamilton
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
George J, Kubarenko AV, Rautanen A, Mills TC, Colak E, Kempf T, Hill AVS, Nieters A, Weber ANR. MyD88 adaptor-like D96N is a naturally occurring loss-of-function variant of TIRAP. THE JOURNAL OF IMMUNOLOGY 2010; 184:3025-32. [PMID: 20164415 DOI: 10.4049/jimmunol.0901156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signals elicited by TLRs following the detection of microbes are integrated and diversified by a group of four cytoplasmic adaptor molecules featuring an evolutionarily conserved Toll/IL-1R signaling domain. Single nucleotide polymorphisms (SNPs) in TLRs and their adaptor molecules have been shown to influence susceptibility to a range of infectious and other diseases. The adaptor MyD88 adaptor-like (Mal)/Toll/IL-1R-containing adaptor protein is involved in TLR2 and 4 signal transduction by recruiting another adaptor molecule, MyD88, to the plasma membrane. In this study, we used naturally occurring variants of Mal as tools to study the molecular biology of Mal in more detail in cellular model systems and to thereby identify functionally interesting variants whose corresponding nonsynonymous SNPs might be of further epidemiological interest. Of seven reported variants for Mal, we found Mal D96N associated with reduced NF-kappaB signaling and cytokine production after overexpression in HEK293 and Huh-7 cells. The D96N mutation prevented Mal from recruiting its signaling partner MyD88 to the plasma membrane and altered posttranslational modification of Mal. These findings led us to investigate the frequency of heterozygosity for the corresponding SNP rs8177400 in a Caucasian case-control study on the etiology of lymphoma, a disease in which TLRs have been implicated. Although rs8177400 did not modify lymphoma risk in general, its frequency of heterozygosity was accurately determined to 0.97%. Our data add rs8177400 (D96N) to the list of functionally important variants of Mal and warrant further research into its immunological, epidemiological, and diagnostic relevance.
Collapse
Affiliation(s)
- Julie George
- Toll-Like Receptors and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Regulation of Toll-like receptor signaling in the innate immunity. SCIENCE CHINA-LIFE SCIENCES 2010; 53:34-43. [PMID: 20596954 DOI: 10.1007/s11427-010-0011-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/10/2009] [Indexed: 12/12/2022]
Abstract
Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns (PAMPs). The members of TLR family selectively utilize adaptor proteins MyD88, TRIF, TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon. These mediators not only control innate immunity but also direct subsequently developed adaptive immunity. TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.
Collapse
|