1
|
Harada N, Asada S, Jiang L, Nguyen H, Moreau L, Marina RJ, Adelman K, Iyer DR, D'Andrea AD. The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway. Mol Cell 2024; 84:2618-2633.e10. [PMID: 39025073 PMCID: PMC11321822 DOI: 10.1016/j.molcel.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.
Collapse
Affiliation(s)
- Naoya Harada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shuhei Asada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lige Jiang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa Moreau
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Divya R Iyer
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Shah R, van den Berk PCM, Pritchard CEJ, Song JY, Kreft M, Pilzecker B, Jacobs H. A C57BL/6J Fancg-KO Mouse Model Generated by CRISPR/Cas9 Partially Captures the Human Phenotype. Int J Mol Sci 2023; 24:11129. [PMID: 37446306 DOI: 10.3390/ijms241311129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype. We created a Fancg-KO (KO) mouse model using CRISPR/Cas9 to exclude these confounders. The entire Fancg locus was targeted and maintained on the immunological well-characterized C57BL/6J background. The intercrossing of heterozygous mice resulted in sub-Mendelian numbers of homozygous mice, suggesting the loss of FANCG can be embryonically lethal. KO mice displayed infertility and hypogonadism, but no other developmental problems. Bone marrow analysis revealed a defect in various hematopoietic stem and progenitor subsets with a bias towards myelopoiesis. Cell lines derived from Fancg-KO mice were hypersensitive to the crosslinking agents cisplatin and Mitomycin C, and Fancg-KO mouse embryonic fibroblasts (MEFs) displayed increased γ-H2AX upon cisplatin treatment. The reconstitution of these MEFs with Fancg cDNA corrected for the ICL hypersensitivity. This project provides a new, genetically, and immunologically well-defined Fancg-KO mouse model for further in vivo and in vitro studies on FANCG and ICL repair.
Collapse
Affiliation(s)
- Ronak Shah
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Maaike Kreft
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bas Pilzecker
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
3
|
Shahid M, Azfaralariff A, Zubair M, Abdulkareem Najm A, Khalili N, Law D, Firasat S, Fazry S. In silico study of missense variants of FANCA, FANCC and FANCG genes reveals high risk deleterious alleles predisposing to Fanconi anemia pathogenesis. Gene 2021; 812:146104. [PMID: 34864095 DOI: 10.1016/j.gene.2021.146104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Among the 22 Fanconi anemia (FA) reported genes, 90% of mutational spectra were found in three genes, namely FANCA (64%), FANCC (12%) and FANCG (8%). Therefore, this study aimed to identify the high-risk deleterious variants in three selected genes (FANCA, FANCC, and FANCG) through various computational approaches. The missense variant datasets retrieved from the UCSC genome browser were analyzed for their pathogenicity, stability, and phylogenetic conservancy. A total of 23 alterations, of which 16 in FANCA, 6 in FANCC and one variant in FANCG, were found to be highly deleterious. The native and mutant structures were generated, which demonstrated a profound impact on the respective proteins. Besides, their pathway analysis predicted many other pathways in addition to the Fanconi anemia pathway, homologous recombination, and mismatch repair pathways. Hence, this is the first comprehensive study that can be useful for understanding the genetic signatures in the development of FA.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad Zubair
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Pattoki Campus, Pakistan
| | - Ahmed Abdulkareem Najm
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nahid Khalili
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320 Islamabad, Pakistan
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; ZACH Biotech Depot Private Limited, Cheras, 43300, Selangor, Malaysia; Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Chan KK, Abdul-Sater Z, Sheth A, Mitchell DK, Sharma R, Edwards DM, He Y, Nalepa G, Rhodes SD, Clapp DW, Sierra Potchanant EA. SIK2 kinase synthetic lethality is driven by spindle assembly defects in FANCA-deficient cells. Mol Oncol 2021; 16:860-884. [PMID: 34058059 PMCID: PMC8847993 DOI: 10.1002/1878-0261.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
The Fanconi anemia (FA) pathway safeguards genomic stability through cell cycle regulation and DNA damage repair. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established, but their function in mitosis is incompletely understood. Here, we performed a kinome-wide synthetic lethality screen in FANCA-/- fibroblasts, which revealed multiple mitotic kinases as necessary for survival of FANCA-deficient cells. Among these kinases, we identified the depletion of the centrosome kinase SIK2 as synthetic lethal upon loss of FANCA. We found that FANCA colocalizes with SIK2 at multiple mitotic structures and regulates the activity of SIK2 at centrosomes. Furthermore, we found that loss of FANCA exacerbates cell cycle defects induced by pharmacological inhibition of SIK2, including impaired G2-M transition, delayed mitotic progression, and cytokinesis failure. In addition, we showed that inhibition of SIK2 abrogates nocodazole-induced prometaphase arrest, suggesting a novel role for SIK2 in the spindle assembly checkpoint. Together, these findings demonstrate that FANCA-deficient cells are dependent upon SIK2 for survival, supporting a preclinical rationale for targeting of SIK2 in FA-disrupted cancers.
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zahi Abdul-Sater
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditya Sheth
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K Mitchell
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richa Sharma
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donna M Edwards
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying He
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grzegorz Nalepa
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven D Rhodes
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
5
|
Savage SA, Walsh MF. Myelodysplastic Syndrome, Acute Myeloid Leukemia, and Cancer Surveillance in Fanconi Anemia. Hematol Oncol Clin North Am 2019; 32:657-668. [PMID: 30047418 DOI: 10.1016/j.hoc.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fanconi anemia (FA) is a DNA repair disorder associated with a high risk of cancer and bone marrow failure. Patients with FA may present with certain dysmorphic features, such as radial ray abnormalities, short stature, typical facies, bone marrow failure, or certain solid malignancies. Some patients may be recognized due to exquisite sensitivity after exposure to cancer therapy. FA is diagnosed by increased chromosomal breakage after exposure to clastogenic agents. It follows autosomal recessive and X-linked inheritance depending on the underlying genomic alterations. Recognizing patients with FA is important for therapeutic decisions, genetic counseling, and optimal clinical management.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Room 6E456, MSC 9772, Bethesda, MD 20892-9772, USA
| | - Michael F Walsh
- Department of Medicine, Division of Solid Tumor, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA; Department of Medicine, Division of Clinical Cancer Genetics, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA.
| |
Collapse
|
6
|
Wang J, Jo U, Joo SY, Kim H. FBW7 regulates DNA interstrand cross-link repair by modulating FAAP20 degradation. Oncotarget 2018; 7:35724-35740. [PMID: 27232758 PMCID: PMC5094957 DOI: 10.18632/oncotarget.9595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations that deregulate protein degradation lead to human malignancies. The SCF ubiquitin E3 ligase complex degrades key oncogenic regulators, thereby limiting their oncogenic potential. FBW7 is a substrate recognition subunit of SCFFBW7 and is among the most commonly mutated ubiquitin-proteasome system proteins in cancer. FBW7-mutated cancer cells display increased genome instability, but the molecular mechanism by which FBW7 preserves genome integrity remains elusive. Here, we demonstrate that SCFFBW7 regulates the stability of FAAP20, a critical component of the Fanconi anemia (FA) DNA interstrand cross-link (ICL) repair pathway. Phosphorylation of the FAAP20 degron motif by GSK3β provides a platform for recognition and polyubiquitination of FAAP20 by FBW7, and its subsequent degradation by the proteasome. Accordingly, enhanced GSK3β-FBW7 signaling disrupts the FA pathway. In cells expressing non-phosphorylatable FAAP20 mutant, the turnover of its binding partner, FANCA, is deregulated in the chromatin during DNA ICL repair, and the FA pathway is compromised. We propose that FAAP20 degradation, which is prompted by its phosphorylation, controls the dynamics of the FA core complex required for completing DNA ICL repair. Together, this study provides insights into how FBW7-mediated proteolysis regulates genome stability and how its deregulation is associated with tumorigenesis.
Collapse
Affiliation(s)
- Jingming Wang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - So Young Joo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Moghadam AAS, Mahjoubi F, Reisi N, Vosough P. Investigation of FANCA gene in Fanconi anaemia patients in Iran. Indian J Med Res 2017; 143:184-96. [PMID: 27121516 PMCID: PMC4859127 DOI: 10.4103/0971-5916.180206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND & OBJECTIVES Fanconi anaemia (FA) is a syndrome with a predisposition to bone marrow failure, congenital anomalies and malignancies. It is characterized by cellular hypersensitivity to cross-linking agents such as mitomycin C (MMC). In the present study, a new approach was selected to investigate FANCA (Fanconi anaemia complementation group A) gene in patients clinically diagnosed with cellular hypersensitivity to DNA cross-linking agent MMC. METHODS Chromosomal breakage analysis was performed to prove the diagnosis of Fanconi anaemia in 318 families. Of these, 70 families had a positive result. Forty families agreed to molecular genetic testing. In total, there were 27 patients with unknown complementary types. Genomic DNA was extracted and total RNA was isolated from fresh whole blood of the patients. The first-strand cDNA was synthesized and the cDNA of each patient was then tested with 21 pairs of overlapping primers. High resolution melting curve analysis was used to screen FANCA, and LinReg software version 1.7 was utilized for analysis of expression. RESULTS In total, six sequence alterations were identified, which included two stop codons, two frames-shift mutations, one large deletion and one amino acid exchange. FANCA expression was downregulated in patients who had sequence alterations. INTERPRETATION & CONCLUSIONS The results of the present study show that high resolution melting (HRM) curve analysis may be useful in the detection of sequence alteration. It is simpler and more cost-effective than the multiplex ligation-dependent probe amplification (MLPA) procedure.
Collapse
Affiliation(s)
| | - Frouzandeh Mahjoubi
- Medical Biotechnology Institute, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | | | | |
Collapse
|
8
|
A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001487. [PMID: 28864460 PMCID: PMC5593159 DOI: 10.1101/mcs.a001487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations.
Collapse
|
9
|
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) are involved in a wide range of cellular functions and they often facilitate interactions with RNAs, DNAs, and proteins. Although many computational methods can predict IDPs and IDRs in protein sequences, only a few methods predict their functions and these functions primarily concern protein binding. We describe how to use the first computational method DisoRDPbind for high-throughput prediction of multiple functions of disordered regions. Our method predicts the RNA-, DNA-, and protein-binding residues located in IDRs in the input protein sequences. DisoRDPbind provides accurate predictions and is sufficiently fast to make predictions for full genomes. Our method is implemented as a user-friendly webserver that is freely available at http://biomine.ece.ualberta.ca/DisoRDPbind/ . We overview our predictor, discuss how to run the webserver, and show how to interpret the corresponding results. We also demonstrate the utility of our method based on two case studies, human BRCA1 protein that binds various proteins and DNA, and yeast 60S ribosomal protein L4 that interacts with proteins and RNA.
Collapse
|
10
|
Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 2016; 128:2774-2784. [PMID: 27756748 DOI: 10.1182/blood-2015-11-683490] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2-/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2-/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2-/-Trp53+/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells.
Collapse
|
11
|
Kim BY, Jeong S, Lee SY, Lee SM, Gweon EJ, Ahn H, Kim J, Chung SK. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC. Exp Mol Med 2016; 48:e237. [PMID: 27256111 PMCID: PMC4929693 DOI: 10.1038/emm.2016.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 01/17/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G>A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, South Korea
| | - SangKyun Jeong
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, South Korea
| | - Seo-Young Lee
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, South Korea
| | - So Min Lee
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, South Korea
| | - Eun Jeong Gweon
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, South Korea
| | - Hyunjun Ahn
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea.,Korea University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea.,Korea University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Sun-Ku Chung
- Medical Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
12
|
Castella M, Jacquemont C, Thompson EL, Yeo JE, Cheung RS, Huang JW, Sobeck A, Hendrickson EA, Taniguchi T. FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2. PLoS Genet 2015; 11:e1005563. [PMID: 26430909 PMCID: PMC4592014 DOI: 10.1371/journal.pgen.1005563] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway. Fanconi anemia is a genetic disease characterized by bone marrow failure, congenital malformations and cancer predisposition. Cells derived from Fanconi anemia patients have a dysfunctional FA-BRCA pathway and are deficient in the repair of a specific form of DNA damage, DNA interstrand-crosslinks, that are induced by certain chemotherapeutic drugs. Therefore, the study of FA-BRCA pathway regulation is essential for developing new treatments for Fanconi anemia patients and cancer patients in general. One of the first steps in the pathway is the detection of DNA lesions by the FA core complex. We have optimized a method to visualize the recruitment of the FA core complex to sites of DNA damage and, for the first time, explored how this process occurs. We have uncovered several factors that are required for this recruitment. Among them is a FA core complex substrate, FANCI. We report that non-phosphorylated FANCI, previously believed to be an inactive form, has an important role in the recruitment of the FA core complex and DNA interstrand-crosslink repair. Our findings change the current view of the FA-BRCA pathway and have implications for potential clinical strategies aimed at activating or inhibiting the FA-BRCA pathway.
Collapse
Affiliation(s)
- Maria Castella
- Howard Hughes Medical Institute, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Celine Jacquemont
- Howard Hughes Medical Institute, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Elizabeth L. Thompson
- Biochemistry, Molecular Biology, and Biophysics Department, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jung Eun Yeo
- Biochemistry, Molecular Biology, and Biophysics Department, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Ronald S. Cheung
- Howard Hughes Medical Institute, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jen-Wei Huang
- Howard Hughes Medical Institute, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alexandra Sobeck
- Biochemistry, Molecular Biology, and Biophysics Department, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Biochemistry, Molecular Biology, and Biophysics Department, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Toshiyasu Taniguchi
- Howard Hughes Medical Institute, Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.
Collapse
Key Words
- AML , acute myeloid leukemia
- APC/C, anaphase-promoting complex/cyclosome
- APH, aphidicolin
- ARM, armadillo repeat domain
- AT, ataxia-telangiectasia
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BAC, bacterial-artificial-chromosome
- BS, Bloom syndrome
- CUE, coupling of ubiquitin conjugation to endoplasmic reticulum degradation
- ChIP-seq, CHIP sequencing
- CtBP, C-terminal binding protein
- CtIP, CtBP-interacting protein
- DNA interstrand crosslink repair
- DNA repair
- EPS15, epidermal growth factor receptor pathway substrate 15
- FA, Fanconi anemia
- FAN1, FANCD2-associated nuclease1
- FANCD2
- FANCI
- FISH, fluorescence in situ hybridization
- Fanconi anemia
- HECT, homologous to E6-AP Carboxy Terminus
- HJ, Holliday junction
- HR, homologous recombination
- MCM2-MCM7, minichromosome maintenance 2–7
- MEFs, mouse embryonic fibroblasts
- MMC, mitomycin C
- MRN, MRE11/RAD50/NBS1
- NLS, nuclear localization signal
- PCNA, proliferating cell nuclear antigen
- PIKK, phosphatidylinositol-3-OH-kinase-like family of protein kinases
- PIP-box, PCNA-interacting protein motif
- POL κ, DNA polymerase κ
- RACE, rapid amplification of cDNA ends
- RING, really interesting new gene
- RTK, receptor tyrosine kinase
- SCF, Skp1/Cullin/F-box protein complex
- SCKL1, seckel syndrome
- SILAC, stable isotope labeling with amino acids in cell culture
- SLD1/SLD2, SUMO-like domains
- SLIM, SUMO-like domain interacting motif
- TIP60, 60 kDa Tat-interactive protein
- TLS, Translesion DNA synthesis
- UAF1, USP1-associated factor 1
- UBD, ubiquitin-binding domain
- UBZ, ubiquitin-binding zinc finger
- UFB, ultra-fine DNA bridges
- UIM, ubiquitin-interacting motif
- ULD, ubiquitin-like domain
- USP1, ubiquitin-specific protease 1
- VRR-nuc, virus-type replication repair nuclease
- iPOND, isolation of proteins on nascent DNA
- ubiquitin
Collapse
Affiliation(s)
- Rebecca A Boisvert
- a Department of Cell and Molecular Biology ; University of Rhode Island ; Kingston , RI USA
| | | |
Collapse
|
14
|
Solomon PJ, Margaret P, Rajendran R, Ramalingam R, Menezes GA, Shirley AS, Lee SJ, Seong MW, Park SS, Seol D, Seo SH. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing. Ital J Pediatr 2015; 41:38. [PMID: 25953249 PMCID: PMC4438458 DOI: 10.1186/s13052-015-0142-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt’s son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.
Collapse
Affiliation(s)
- Ponnumony John Solomon
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Priya Margaret
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Ramya Rajendran
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Revathy Ramalingam
- Department of Physiology/Central research laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Godfred A Menezes
- College of Applied Medical Sciences and Molecular Diagnostics and Personalised Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia (KSA). .,Worked previously as in-charge and scientist in Central Research Laboratory (CRL), Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Alph S Shirley
- Department of Paediatrics, Sree Balaji Medical College and Hospital, Chennai, 600 044, India.
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Dodam Seol
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
15
|
Takahashi D, Sato K, Hirayama E, Takata M, Kurumizaka H. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA. J Biochem 2015; 158:263-70. [PMID: 25922199 DOI: 10.1093/jb/mvv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Emiko Hirayama
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| |
Collapse
|
16
|
Xie J, Kim H, Moreau LA, Puhalla S, Garber J, Al Abo M, Takeda S, D'Andrea AD. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway. J Clin Invest 2015; 125:1523-32. [PMID: 25751062 DOI: 10.1172/jci79325] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/20/2015] [Indexed: 12/13/2022] Open
Abstract
The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.
Collapse
|
17
|
Sato K, Ishiai M, Takata M, Kurumizaka H. Defective FANCI binding by a fanconi anemia-related FANCD2 mutant. PLoS One 2014; 9:e114752. [PMID: 25489943 PMCID: PMC4260917 DOI: 10.1371/journal.pone.0114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022] Open
Abstract
FANCD2 is a product of one of the genes associated with Fanconi anemia (FA), a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex) and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL) repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2) mutant harboring the Leu234 to Arg (L234R) substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2−/− DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Chen X, Wilson JB, McChesney P, Williams SA, Kwon Y, Longerich S, Marriott AS, Sung P, Jones NJ, Kupfer GM. The Fanconi anemia proteins FANCD2 and FANCJ interact and regulate each other's chromatin localization. J Biol Chem 2014; 289:25774-82. [PMID: 25070891 DOI: 10.1074/jbc.m114.552570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia is a genetic disease resulting in bone marrow failure, birth defects, and cancer that is thought to encompass a defect in maintenance of genomic stability. Mutations in 16 genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, and Q) have been identified in patients, with the Fanconi anemia subtype J (FA-J) resulting from homozygous mutations in the FANCJ gene. Here, we describe the direct interaction of FANCD2 with FANCJ. We demonstrate the interaction of FANCD2 and FANCJ in vivo and in vitro by immunoprecipitation in crude cell lysates and from fractions after gel filtration and with baculovirally expressed proteins. Mutation of the monoubiquitination site of FANCD2 (K561R) preserves interaction with FANCJ constitutively in a manner that impedes proper chromatin localization of FANCJ. FANCJ is necessary for FANCD2 chromatin loading and focus formation in response to mitomycin C treatment. Our results suggest not only that FANCD2 regulates FANCJ chromatin localization but also that FANCJ is necessary for efficient loading of FANCD2 onto chromatin following DNA damage caused by mitomycin C treatment.
Collapse
Affiliation(s)
| | - James B Wilson
- the Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, United Kingdom
| | | | | | - Youngho Kwon
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, Section of Hematology/Oncology, New Haven, Connecticut 06520
| | - Simonne Longerich
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, Section of Hematology/Oncology, New Haven, Connecticut 06520
| | - Andrew S Marriott
- the Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom, and
| | - Patrick Sung
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, Section of Hematology/Oncology, New Haven, Connecticut 06520
| | - Nigel J Jones
- the Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom, and
| | | |
Collapse
|
19
|
Huang Y, Leung JWC, Lowery M, Matsushita N, Wang Y, Shen X, Huong D, Takata M, Chen J, Li L. Modularized functions of the Fanconi anemia core complex. Cell Rep 2014; 7:1849-57. [PMID: 24910428 DOI: 10.1016/j.celrep.2014.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022] Open
Abstract
The Fanconi anemia (FA) core complex provides the essential E3 ligase function for spatially defined FANCD2 ubiquitination and FA pathway activation. Of the seven FA gene products forming the core complex, FANCL possesses a RING domain with demonstrated E3 ligase activity. The other six components do not have clearly defined roles. Through epistasis analyses, we identify three functional modules in the FA core complex: a catalytic module consisting of FANCL, FANCB, and FAAP100 is absolutely required for the E3 ligase function, and the FANCA-FANCG-FAAP20 and the FANCC-FANCE-FANCF modules provide nonredundant and ancillary functions that help the catalytic module bind chromatin or sites of DNA damage. Disruption of the catalytic module causes complete loss of the core complex function, whereas loss of any ancillary module component does not. Our work reveals the roles of several FA gene products with previously undefined functions and a modularized assembly of the FA core complex.
Collapse
Affiliation(s)
- Yaling Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin W C Leung
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Lowery
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nobuko Matsushita
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Yucai Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Do Huong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
21
|
Rezazadeh S. On BLM helicase in recombination-mediated telomere maintenance. Mol Biol Rep 2012; 40:3049-64. [DOI: 10.1007/s11033-012-2379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
22
|
Towards a molecular understanding of the fanconi anemia core complex. Anemia 2012; 2012:926787. [PMID: 22675617 PMCID: PMC3364535 DOI: 10.1155/2012/926787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/21/2012] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.
Collapse
|
23
|
Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012; 2012:425814. [PMID: 22737580 PMCID: PMC3378961 DOI: 10.1155/2012/425814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 11/17/2022] Open
Abstract
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle.
Collapse
|
24
|
Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc Natl Acad Sci U S A 2012; 109:4491-6. [PMID: 22396592 DOI: 10.1073/pnas.1118720109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway.
Collapse
|
25
|
FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 2012; 119:3285-94. [PMID: 22343915 DOI: 10.1182/blood-2011-10-385963] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63-linked ubiquitin chains in vitro. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage-induced chromatin loading of FANCA and the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance.
Collapse
|
26
|
Yuan F, Qian L, Zhao X, Liu JY, Song L, D'Urso G, Jain C, Zhang Y. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms. J Biol Chem 2011; 287:4800-7. [PMID: 22194614 DOI: 10.1074/jbc.m111.315366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Crossan GP, Patel KJ. The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. J Pathol 2011; 226:326-37. [PMID: 21956823 DOI: 10.1002/path.3002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 12/18/2022]
Abstract
Fanconi anaemia (FA) is a rare, autosomal recessive, genetically complex, DNA repair deficiency syndrome in man. Patients with FA exhibit a heterogeneous spectrum of clinical features. The most significant and consistent phenotypic characteristics are stem cell loss, causing progressive bone marrow failure and sterility, diverse developmental abnormalities and a profound predisposition to neoplasia. To date, 15 genes have been identified, biallelic disruption of any one of which results in this clinically defined syndrome. It is now apparent that all 15 gene products act in a common process to maintain genome stability. At the molecular level, a fundamental defect in DNA repair underlies this complex phenotype. Cells derived from FA patients spontaneously accumulate broken chromosomes and exhibit a marked sensitivity to DNA-damaging chemotherapeutic agents. Despite complementation analysis defining many components of the FA DNA repair pathway, no direct link to DNA metabolism was established until recently. First, it is now evident that the FA pathway is required to make incisions at the site of damaged DNA. Second, a specific component of the FA pathway has been identified that regulates nucleases previously implicated in DNA interstrand crosslink repair. Taken together, these data provide genetic and biochemical evidence that the FA pathway is a bona fide DNA repair pathway that directly mediates DNA repair transactions, thereby elucidating the specific molecular defect in human Fanconi anaemia.
Collapse
Affiliation(s)
- Gerry P Crossan
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, UK.
| | | |
Collapse
|
28
|
Bernard ME, Kim H, Berhane H, Epperly MW, Franicola D, Zhang X, Houghton F, Shields D, Wang H, Bakkenist CJ, Frantz MC, Forbeck EM, Goff JP, Wipf P, Greenberger JS. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines. Radiat Res 2011; 176:603-12. [PMID: 21939290 DOI: 10.1667/rr2624.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients.
Collapse
Affiliation(s)
- Mark E Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsai YS, Lin CS, Chiang SL, Lee CH, Lee KW, Ko YC. Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol Sci 2011; 123:480-90. [PMID: 21750350 DOI: 10.1093/toxsci/kfr182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous investigations have shown that areca nut extracts (ANE) or arecoline (ARE) causes DNA damage, which in turn contributes to oral cell carcinogenesis. To understand the role of microRNA (miRNA) in ANE-associated carcinogenesis, miRNA expression profile was examined in ANE-treated normal human oral fibroblasts. Among the miRNAs changed by ANE exposure, we found that ANE-induced miR-23a overexpression was correlated with an increase of γ-H2AX, a DNA damage marker. In addition, DNA double-strand breaks (DSB) repair that was determined by an in vivo plasmid-based assay was reduced in ANE-treated or miR-23a-overexpressed cells, suggesting the role of miR-23a in DSB repair. FANCG is one of Fanconi anemia susceptibility genes that participate in DSB repair pathway to prevent chromosomal aberrations. FANCG was predicted as a candidate target of miR-23a by TargetScan algorithm. This was confirmed by ectopic overexpression or knockdown of miR-23a. The correlation between miR-23a overexpression and areca nut-chewing habit could also be found in oral cancer patients. Finally, we showed that ANE-induced/ARE-induced miRNAs were significantly associated with the functional categories of "genetic disorders" and "cancer" using network-based analyses. In conclusion, our data showed for the first time that ANE-induced miR-23a was correlated with a reduced FANCG expression and DSB repair, which might contribute to ANE-associated human malignancies.
Collapse
Affiliation(s)
- Yi-Shan Tsai
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, No. 100, Shi-Chuan 1stRoad, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Stimulation of homology-directed repair at I-SceI-induced DNA breaks during the permissive life cycle of human cytomegalovirus. J Virol 2011; 85:6049-54. [PMID: 21490102 DOI: 10.1128/jvi.02514-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) selectively relocalizes many DNA repair proteins, thereby avoiding a potentially detrimental damage response. In the present study, we evaluated interactions between HCMV and the homology-directed repair (HDR) pathway. In permissive human foreskin fibroblasts, a fluorescence-based double-stranded break repair assay was used to determine that HCMV stimulated HDR. Repair of both stably integrated and extrachromosomal reporter substrates was observed to increase. HDR was also stimulated through individual expression of the viral immediate-early protein IE1-72, mimicking full virus infection. These experiments further demonstrate HCMV's role in modulating critical cellular processes during a permissive infection.
Collapse
|
31
|
Mehta PA, Harris RE, Davies SM, Kim MO, Mueller R, Lampkin B, Mo J, Myers K, Smolarek TA. Numerical chromosomal changes and risk of development of myelodysplastic syndrome--acute myeloid leukemia in patients with Fanconi anemia. ACTA ACUST UNITED AC 2011; 203:180-6. [PMID: 21156231 DOI: 10.1016/j.cancergencyto.2010.07.127] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/22/2010] [Accepted: 07/11/2010] [Indexed: 11/15/2022]
Abstract
Fanconi Anemia (FA) is an inherited bone marrow failure syndrome characterized by congenital abnormalities, progressive marrow failure and predisposition to myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. The most common acquired chromosomal aberrations in FA patients are trisomy of 1q and monosomy of chromosome 7; the latter is known to be associated with poor prognosis. A few reports also suggest that gains of 3q are associated with progression to MDS-AML and overall poor prognosis. It is not uncommon for patients with Fanconi anemia to have easily detectable (oligoclonal) chromosomal alterations in their still normal (nonmalignant) marrow, which makes it even more challenging to determine the import of such alterations. We conducted a retrospective longitudinal analysis of fluorescent in situ hybridization (FISH) analysis for gains in 1q and 3q and for monosomy 7 and 7q deletions on 212 bone marrow samples from 77 children with FA treated at our institution between 1987 and 2007. Given the baseline increased chromosomal instability and defective DNA repair in patients with FA, which leads to unbalanced chromosomal aberrations such as deletions, insertions, and translocations, for the purpose of this analysis an abnormal clone was defined as ≥10% abnormal cells. Chromosome 3 and 7 aberrations were associated with increased risk of developing MDS-AML (P = 0.019 and P < 0.001 respectively), although the significance of chromosome 3 aberrations disappeared when different observation times were accounted for. Gain of 1q alone did not predict development of MDS-AML. In conclusion, children with FA should be followed closely with FISH analyses, because some of the clonal chromosomal abnormalities may be early indicators of progression toward MDS-AML and thus also of the need for hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Patient-derived C-terminal mutation of FANCI causes protein mislocalization and reveals putative EDGE motif function in DNA repair. Blood 2010; 117:2247-56. [PMID: 20971953 DOI: 10.1182/blood-2010-07-295758] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fanconi anemia (FA) is a rare familial genome instability syndrome caused by mutations in FA genes that results in defective DNA crosslink repair. Activation of the FA pathway requires the FA core ubiquitin ligase complex-dependent monoubiquitination of 2 interacting FA proteins, FANCI and FANCD2. Although loss of either FANCI or FANCD2 is known to prevent monoubiquitination of its respective partner, it is unclear whether FANCI has any additional domains that may be important in promoting DNA repair, independent of its monoubiquitination. Here, we focus on an FA-I patient-derived FANCI mutant protein, R1299X (deletion of 30 residues from its C-terminus), to characterize important structural region(s) in FANCI that is required to activate the FA pathway. We show that, within this short 30 amino acid stretch contains 2 separable functional signatures, a nuclear localization signal and a putative EDGE motif, that is critical for the ability of FANCI to properly monoubiquitinate FANCD2 and promote DNA crosslink resistance. Our study enable us to conclude that, although proper nuclear localization of FANCI is crucial for robust FANCD2 monoubiquitination, the putative FANCI EDGE motif is important for DNA crosslink repair.
Collapse
|
33
|
Wang C, Lambert MW. The Fanconi anemia protein, FANCG, binds to the ERCC1-XPF endonuclease via its tetratricopeptide repeats and the central domain of ERCC1. Biochemistry 2010; 49:5560-9. [PMID: 20518486 DOI: 10.1021/bi100584c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is evidence that Fanconi anemia (FA) proteins play an important role in the repair of DNA interstrand cross-links (ICLs), but the precise mechanism by which this occurs is not clear. One of the critical steps in the ICL repair process involves unhooking of the cross-link from DNA by incisions on one strand on either side of the ICL and its subsequent removal. The ERCC1-XPF endonuclease is involved in this unhooking step and in the removal of the cross-link. We have previously shown that several of the FA proteins are needed to produce incisions created by ERCC1-XPF at sites of ICLs. To more clearly establish a link between FA proteins and the incision step(s) mediated by ERCC1-XPF, we undertook yeast two-hybrid analysis to determine whether FANCA, FANCC, FANCF, and FANCG directly interact with ERCC1 and XPF and, if so, to determine the sites of interaction. One of these FA proteins, FANCG, was found to have a strong affinity for ERCC1 and a moderate affinity for XPF. FANCG has been shown to contain seven tetratricopeptide repeat (TPR) motifs, which are motifs that mediate protein-protein interactions. Mapping the sites of interaction of FANCG with ERCC1, using site-directed mutagenesis, demonstrated that TPRs 1, 3, 5, and 6 are needed for binding of FANCG to ERCC1. ERCC1, in turn, was shown to interact with FANCG via its central domain, which is different from the region of ERCC1 that binds to XPF. This binding between FANCG and the ERCC1-XPF endonuclease, combined with our previous studies which show that FANCG is involved in the incision step mediated by ERCC1-XPF, establishes a link between an FA protein and the critical unhooking step of the ICL repair process.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | |
Collapse
|
34
|
Cole AR, Lewis LPC, Walden H. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat Struct Mol Biol 2010; 17:294-8. [PMID: 20154706 PMCID: PMC2929457 DOI: 10.1038/nsmb.1759] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/07/2009] [Indexed: 02/07/2023]
Abstract
The Fanconi Anemia pathway is activated in response to DNA damage, leading to monoubiquitination of the substrates FANCI and FANCD2 by the Fanconi Anemia core complex. Here we report the crystal structure of FANCL, the catalytic subunit of the Fanconi Anemia core complex at 3.2 Å. The structure reveals an architecture that is fundamentally different from previous sequence-based predictions. The molecule is composed of an N-terminal E2-like fold, which we term the ELF domain, a novel double-RWD (DRWD) domain, and a C-terminal RING domain predicted to facilitate E2 binding. Binding assays demonstrate that the DRWD domain, but not the ELF domain, is responsible for substrate binding.
Collapse
Affiliation(s)
- Ambrose R Cole
- Protein Structure and Function Laboratory, Lincoln's Inn Fields Laboratories of the London Research Institute, Cancer Research UK, London Research Institute, London, UK
| | | | | |
Collapse
|
35
|
Mehta P, Locatelli F, Stary J, Smith FO. Bone marrow transplantation for inherited bone marrow failure syndromes. Pediatr Clin North Am 2010; 57:147-70. [PMID: 20307716 DOI: 10.1016/j.pcl.2010.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The inherited bone marrow failure (BMF) syndromes are characterized by impaired hematopoiesis and cancer predisposition. Most inherited BMF syndromes are also associated with a range of congenital anomalies. Progress in improving the outcomes for children with inherited BMF syndromes has been limited by the rarity of these disorders, as well as disease-specific genetic, molecular, cellular, and clinical characteristics that increase the risks of complications associated with hematopoietic stem cell transplantation (HSCT). As a result, the ability to develop innovative transplant approaches to circumvent these problems has been limited. Recent progress has been made, as best evidenced in studies adding fludarabine to the preparative regimen for children undergoing unrelated donor HSCT for Fanconi anemia. The rarity of these diseases coupled with the far more likely incremental improvements that will result from ongoing research will require prospective international clinical trials to improve the outcome for these children.
Collapse
Affiliation(s)
- Parinda Mehta
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
36
|
Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, D'Andrea A, Niedernhofer LJ, McHugh PJ. XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol Cell Biol 2009; 29:6427-37. [PMID: 19805513 PMCID: PMC2786876 DOI: 10.1128/mcb.00086-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/28/2009] [Accepted: 09/26/2009] [Indexed: 11/20/2022] Open
Abstract
Interstrand cross-links (ICLs) prevent DNA strand separation and, therefore, transcription and replication, making them extremely cytotoxic. The precise mechanism by which ICLs are removed from mammalian genomes largely remains elusive. Genetic evidence implicates ATR, the Fanconi anemia proteins, proteins required for homologous recombination, translesion synthesis, and at least two endonucleases, MUS81-EME1 and XPF-ERCC1. ICLs cause replication-dependent DNA double-strand breaks (DSBs), and MUS81-EME1 facilitates DSB formation. The subsequent repair of these DSBs occurs via homologous recombination after the ICL is unhooked by XPF-ERCC1. Here, we examined the effect of the loss of either nuclease on FANCD2 monoubiquitination to determine if the nucleolytic processing of ICLs is required for the activation of the Fanconi anemia pathway. FANCD2 was monoubiquitinated in Mus81(-/-), Ercc1(-/-), and XPF-deficient human, mouse, and hamster cells exposed to cross-linking agents. However, the monoubiquitinated form of FANCD2 persisted longer in XPF-ERCC1-deficient cells than in wild-type cells. Moreover, the levels of chromatin-bound FANCD2 were dramatically reduced and the number of ICL-induced FANCD2 foci significantly lower in XPF-ERCC1-deficient cells. These data demonstrate that the unhooking of an ICL by XPF-ERCC1 is necessary for the stable localization of FANCD2 to the chromatin and subsequent homologous recombination-mediated DSB repair.
Collapse
Affiliation(s)
- Nikhil Bhagwat
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Anna L. Olsen
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Anderson T. Wang
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Katsuhiro Hanada
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Patricia Stuckert
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Roland Kanaar
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Alan D'Andrea
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Laura J. Niedernhofer
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Peter J. McHugh
- Department of Human Genetics, University of Pittsburgh School of Public Health, A300 Crabtree Hall, 130 Desoto St., Pittsburgh, Pennsylvania 15261, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion 2.6, 5117 Centre Ave., Pittsburgh, Pennsylvania 15213-1863, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, Department of Cell Biology & Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, Massachusetts 02115, Department of Radiation Oncology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, E1240 BSTWR, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| |
Collapse
|
37
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
38
|
de Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009; 668:11-19. [PMID: 19061902 DOI: 10.1016/j.mrfmmm.2008.11.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/28/2008] [Accepted: 11/06/2008] [Indexed: 05/27/2023]
Abstract
The capacity to maintain genomic integrity is shared by all living organisms. Multiple pathways are distinguished that safeguard genomic stability, most of which have originated in primitive life forms. In human individuals, defects in these pathways are typically associated with cancer proneness. The Fanconi anemia pathway, one of these pathways, has evolved relatively late during evolution and exists - in its fully developed form - only in vertebrates. This pathway, in which thus far 13 distinct proteins have been shown to participate, appears essential for error-free DNA replication. Inactivating mutations in the corresponding genes underlie the recessive disease Fanconi anemia (FA). In the last decade the genetic basis of this disorder has been uncovered by a variety of approaches, including complementation cloning, genetic linkage analysis and protein association studies. Here we review these approaches, introduce the encoded proteins, and discuss their possible role in ensuring genomic integrity.
Collapse
Affiliation(s)
- Johan P de Winter
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Van der Boechorststraat 7, Amsterdam 1081 BT, The Netherlands.
| | | |
Collapse
|
39
|
Tremblay CS, Huard CC, Huang FF, Habi O, Bourdages V, Lévesque G, Carreau M. The fanconi anemia core complex acts as a transcriptional co-regulator in hairy enhancer of split 1 signaling. J Biol Chem 2009; 284:13384-13395. [PMID: 19321451 DOI: 10.1074/jbc.m807921200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in one of the 13 Fanconi anemia (FA) genes cause a progressive bone marrow failure disorder associated with developmental abnormalities and a predisposition to cancer. Although FA has been defined as a DNA repair disease based on the hypersensitivity of patient cells to DNA cross-linking agents, FA patients develop various developmental defects such as skeletal abnormalities, microphthalmia, and endocrine abnormalities that may be linked to transcriptional defects. Recently, we reported that the FA core complex interacts with the transcriptional repressor Hairy Enhancer of Split 1 (HES1) suggesting that the core complex plays a role in transcription. Here we show that the FA core complex contributes to transcriptional regulation of HES1-responsive genes, including HES1 and the cyclin-dependent kinase inhibitor p21(cip1/waf1). Chromatin immunoprecipitation studies show that the FA core complex interacts with the HES1 promoter but not the p21(cip1/waf1) promoter. Furthermore, we show that the FA core complex interferes with HES1 binding to the co-repressor transducin-like-Enhancer of Split, suggesting that the core complex affects transcription both directly and indirectly. Taken together these data suggest a novel function of the FA core complex in transcriptional regulation.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Caroline C Huard
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Feng-Fei Huang
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Ouassila Habi
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Valérie Bourdages
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Georges Lévesque
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada; Medical Biology and Université Laval, Québec GIV 4G2, Canada
| | - Madeleine Carreau
- Medical Biology and Université Laval, Québec GIV 4G2, Canada; Departments of Pediatrics Université Laval, Québec GIV 4G2, Canada.
| |
Collapse
|
40
|
Martinez A, Hinz JM, Gómez L, Molina B, Acuña H, Jones IM, Frias S, Coleman MA. Differential expression of TP53 associated genes in Fanconi anemia cells after mitomycin C and hydroxyurea treatment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 656:1-7. [DOI: 10.1016/j.mrgentox.2008.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 06/13/2008] [Accepted: 06/17/2008] [Indexed: 12/15/2022]
|
41
|
Xie Y, De Winter JP, Waisfisz Q, Nieuwint AWM, Scheper RJ, Arwert F, Hoatlin ME, Ossenkoppele GJ, Schuurhuis GJ, Joenje H. Aberrant Fanconi anaemia protein profiles in acute myeloid leukaemia cells. Br J Haematol 2008. [DOI: 10.1111/j.1365-2141.2000.02450.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Li J, Sejas DP, Zhang X, Qiu Y, Nattamai KJ, Rani R, Rathbun KR, Geiger H, Williams DA, Bagby GC, Pang Q. TNF-alpha induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest 2008; 117:3283-95. [PMID: 17960249 DOI: 10.1172/jci31772] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023] Open
Abstract
The molecular pathogenesis of the myeloid leukemias that frequently occur in patients with Fanconi anemia (FA) is not well defined. Hematopoietic stem cells bearing inactivating mutations of FA complementation group C (FANCC) are genetically unstable and hypersensitive to apoptotic cytokine cues including IFN-gamma and TNF-alpha, but neoplastic stem cell clones that arise frequently in vivo are resistant to these cytokines. Reasoning that the combination of genetic instability and cytokine hypersensitivity might create an environment supporting the emergence of leukemic stem cells, we tested the leukemia-promoting effects of TNF-alpha in murine stem cells. TNF-alpha exposure initially profoundly inhibited the growth of Fancc-/- stem cells. However, longer-term exposure of these cells promoted the outgrowth of cytogenetically abnormal clones that, upon transplantation into congenic WT mice, led to acute myelogenous leukemia. TNF-alpha induced ROS-dependent genetic instability in Fancc-/- but not in WT cells. The leukemic clones were TNF-alpha resistant but retained their characteristic hypersensitivity to mitomycin C and exhibited high levels of chromosomal instability. Expression of FANCC cDNA in Fancc-/- stem cells protected them from TNF-alpha-induced clonal evolution. We conclude that TNF-alpha exposure creates an environment in which somatically mutated preleukemic stem cell clones are selected and from which unaltered TNF-alpha-hypersensitive Fancc-/- stem cells are purged.
Collapse
Affiliation(s)
- June Li
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene 2008; 27:3641-52. [PMID: 18212739 DOI: 10.1038/sj.onc.1211034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.
Collapse
|
44
|
Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007; 8:735-48. [PMID: 17768402 DOI: 10.1038/nrg2159] [Citation(s) in RCA: 516] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fanconi anaemia (FA) has recently become an attractive model to study breast cancer susceptibility (BRCA) genes, as three FA genes, FANCD1, FANCN and FANCJ, are identical to the BRCA genes BRCA2, PALB2 and BRIP1. Increasing evidence shows that FA proteins function as signal transducers and DNA-processing molecules in a DNA-damage response network. This network consists of many proteins that maintain genome integrity, including ataxia telangiectasia and Rad3 related protein (ATR), Bloom syndrome protein (BLM), and BRCA1. Now that the gene that is defective in the thirteenth and last assigned FA complementation group (FANCI) has been identified, I discuss what is known about FA proteins and their interactive network, and what remains to be discovered.
Collapse
Affiliation(s)
- Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 333 Cassell drive, Baltimore, Maryland 21093, USA.
| |
Collapse
|
45
|
Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D'Andrea AD. Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 2007; 117:1440-9. [PMID: 17431503 PMCID: PMC1847538 DOI: 10.1172/jci31245] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/13/2007] [Indexed: 12/16/2022] Open
Abstract
The Fanconi anemia (FA) pathway maintains genomic stability in replicating cells. Some sporadic breast, ovarian, pancreatic, and hematological tumors are deficient in FA pathway function, resulting in sensitivity to DNA-damaging agents. FA pathway dysfunction in these tumors may result in hyperdependence on alternative DNA repair pathways that could be targeted as a treatment strategy. We used a high-throughput siRNA screening approach that identified ataxia telangiectasia mutated (ATM) as a critical kinase for FA pathway-deficient human fibroblasts. Human fibroblasts and murine embryonic fibroblasts deficient for the FA pathway were observed to have constitutive ATM activation and Fancg(-/-)Atm(-/-) mice were found to be nonviable. Abrogation of ATM function in FA pathway-deficient cells resulted in DNA breakage, cell cycle arrest, and apoptotic cell death. Moreover, Fanconi anemia complementation group G- (FANCG-) and FANCC-deficient pancreatic tumor lines were more sensitive to the ATM inhibitor KU-55933 than isogenic corrected lines. These data suggest that ATM and FA genes function in parallel and compensatory roles to maintain genomic integrity and cell viability. Pharmaceutical inhibition of ATM may have a role in the treatment of FA pathway-deficient human cancers.
Collapse
Affiliation(s)
- Richard D Kennedy
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K, Kalb R, Yan Z, Xue Y, Oostra AB, Auerbach AD, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Takata M, Meetei AR, Wang W. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J 2007; 26:2104-14. [PMID: 17396147 PMCID: PMC1852792 DOI: 10.1038/sj.emboj.7601666] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/06/2007] [Indexed: 01/17/2023] Open
Abstract
The Fanconi anemia (FA) core complex plays a central role in the DNA damage response network involving breast cancer susceptibility gene products, BRCA1 and BRCA2. The complex consists of eight FA proteins, including a ubiquitin ligase (FANCL) and a DNA translocase (FANCM), and is essential for monoubiquitination of FANCD2 in response to DNA damage. Here, we report a novel component of this complex, termed FAAP100, which is essential for the stability of the core complex and directly interacts with FANCB and FANCL to form a stable subcomplex. Formation of this subcomplex protects each component from proteolytic degradation and also allows their coregulation by FANCA and FANCM during nuclear localization. Using siRNA depletion and gene knockout techniques, we show that FAAP100-deficient cells display hallmark features of FA cells, including defective FANCD2 monoubiquitination, hypersensitivity to DNA crosslinking agents, and genomic instability. Our study identifies FAAP100 as a new critical component of the FA-BRCA DNA damage response network.
Collapse
Affiliation(s)
- Chen Ling
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Masamichi Ishiai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Abdullah Mahmood Ali
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Annette L Medhurst
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Reinhard Kalb
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Zhijiang Yan
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anneke B Oostra
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Arleen D Auerbach
- Laboratory of Human Genetics and Hematology, The Rockefeller University, New York, NY, USA
| | - Maureen E Hoatlin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - Detlev Schindler
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Hans Joenje
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Johan P de Winter
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Minoru Takata
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Amom Ruhikanta Meetei
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. Tel.: +1 513 636 1768; Fax: +1 513 636 3768; E-mail:
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Genetics, National Institute on Aging, NIH, 333 Cassell Drive, TRIAD Center Room 3000, Baltimore, MD 21224, USA. Tel.: +1 410 558 8334; Fax: +1 410 558 8331; E-mail:
| |
Collapse
|
47
|
Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T. Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood 2007; 109:5016-26. [PMID: 17327415 DOI: 10.1182/blood-2006-08-038638] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 90 (Hsp90) regulates diverse signaling pathways. Emerging evidence suggests that Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), enhance DNA damage-induced cell death, suggesting that Hsp90 may regulate cellular responses to genotoxic stress. However, the underlying mechanisms are poorly understood. Here, we show that the Fanconi anemia (FA) pathway is involved in the Hsp90-mediated regulation of genotoxic stress response. In the FA pathway, assembly of 8 FA proteins including FANCA into a nuclear multiprotein complex, and the complex-dependent activation of FANCD2 are critical events for cellular tolerance against DNA cross-linkers. Hsp90 associates with FANCA, in vivo and in vitro, in a 17-AAG-sensitive manner. Disruption of the FANCA/Hsp90 association by cellular treatment with 17-AAG induces rapid proteasomal degradation and cytoplasmic relocalization of FANCA, leading to impaired activation of FANCD2. Furthermore, 17-AAG promotes DNA cross-linker-induced cytotoxicity, but this effect is much less pronounced in FA pathway-defective cells. Notably, 17-AAG enhances DNA cross-linker-induced chromosome aberrations. In conclusion, our results identify FANCA as a novel client of Hsp90, suggesting that Hsp90 promotes activation of the FA pathway through regulation of intracellular turnover and trafficking of FANCA, which is critical for cellular tolerance against genotoxic stress.
Collapse
Affiliation(s)
- Tsukasa Oda
- Laboratory of Molecular Genetics, Department of Molecular and Cellular Biology, Institute of Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | |
Collapse
|
48
|
Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J Biol Chem 2006; 282:2047-55. [PMID: 17082180 DOI: 10.1074/jbc.m608356200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fanconi anemia (FA) is a rare autosomal recessive and X-linked chromosomal instability disorder. At least eight FA proteins (FANCA, B, C, E, F, G, L, and M) form a nuclear core complex required for monoubiquitination of a downstream protein, FANCD2. The human FANCF protein reportedly functions as a molecular adaptor within the FA nuclear complex, bridging between the subcomplexes A:G and C:E. Our x-ray crystallographic studies of the C-terminal domain of FANCF reveal a helical repeat structure similar to the Cand1 regulator of the Cul1-Rbx1-Skp1-Fbox(Skp2) ubiquitin ligase complex. Two C-terminal loops of FANCF are essential for monoubiquitination of FANCD2 and normal cellular resistance to the DNA cross-linking agent mitomycin C. FANCF mutants bearing amino acid substitutions in this C-terminal surface fail to interact with other components of the FA complex, indicating that this surface is critical for the proper assembly of the FA core complex.
Collapse
Affiliation(s)
- Przemyslaw Kowal
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
49
|
Vilcheck SK, Ceryak S, O'Brien TJ, Patierno SR. FANCD2 monoubiquitination and activation by hexavalent chromium [Cr(VI)] exposure: activation is not required for repair of Cr(VI)-induced DSBs. Mutat Res 2006; 610:21-30. [PMID: 16893675 PMCID: PMC2080350 DOI: 10.1016/j.mrgentox.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 12/29/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by gamma-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.
Collapse
Affiliation(s)
- Susan K Vilcheck
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 Eye Street, NW, Washington, DC 20037, United States
| | | | | | | |
Collapse
|
50
|
Marek LR, Bale AE. Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair (Amst) 2006; 5:1317-26. [PMID: 16860002 DOI: 10.1016/j.dnarep.2006.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 12/29/2022]
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disease characterized by developmental defects, progressive bone marrow failure and cancer susceptibility. Cells derived from patients with FA show spontaneous chromosomal aberrations and hypersensitivity to cross-linking agents, indicating a cellular defect in DNA repair. Among the 12 FA genes, only FANCD2, FANCL and FANCM have Drosophila homologs. Given this difference between the human and Drosophila FA pathways, it is unknown whether the fly homologs function in DNA repair. Here, we report that knockdown of Drosophila FANCD2 or FANCL leads to specific hypersensitivity to cross-linking agents. Further analysis revealed that FANCD2 and FANCL function in a linear pathway with FANCL being necessary for the monoubiquitination of FANCD2. FANCD2 mutants also exhibited the same defect in the ionizing radiation-inducible S-phase checkpoint that is seen in mammalian cells deficient for this gene. Finally, in an assay for inactivating mutations, FANCD2 mutants have an elevated mutation rate in response to nitrogen mustard, indicating that these flies are hypermutable. Taken together, these data demonstrate that Drosophila FANCD2 and FANCL play a critical role in DNA repair. Because of the lack of other FA genes, further studies will determine whether the conserved FA genes function as the minimal machinery or whether additional genes are involved in the Drosophila FA pathway.
Collapse
Affiliation(s)
- Lorri R Marek
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8005, USA
| | | |
Collapse
|