1
|
Lail SS, Arnold CR, de Almeida LGN, McKenna N, Chiriboga JA, Dufour A, Warren AL, Yates RM. Hox-driven conditional immortalization of myeloid and lymphoid progenitors: Uses, advantages, and future potential. Traffic 2022; 23:538-553. [PMID: 36117140 DOI: 10.1111/tra.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 01/20/2023]
Abstract
Those who study macrophage biology struggle with the decision whether to utilize primary macrophages derived directly from mice or opt for the convenience and genetic tractability of immortalized macrophage-like cell lines in in vitro studies. Particularly when it comes to studying phagocytosis and phagosomal maturation-a signature cellular process of the macrophage-many commonly used cell lines are not representative of what occurs in primary macrophages. A system developed by Mark Kamps' group, that utilizes conditionally constitutive activity of Hox transcription factors (Hoxb8 and Hoxa9) to immortalize differentiation-competent myeloid cell progenitors of mice, offers an alternative to the macrophage/macrophage-like dichotomy. In this resource, we will review the use of Hoxb8 and Hoxa9 as hematopoietic regulators to conditionally immortalize murine hematopoietic progenitor cells which retain their ability to differentiate into many functional immune cell types including macrophages, neutrophils, basophils, osteoclasts, eosinophils, dendritic cells, as well as limited potential for the generation of lymphocytes. We further demonstrate that the use of macrophages derived from Hoxb8/Hoxa9 immortalized progenitors and their similarities to bone marrow-derived macrophages. To supplement the existing data, mass spectrometry-based proteomics, flow cytometry, cytology, and in vitro phagosomal assays were conducted on macrophages derived from Hoxb8 immortalized progenitors and compared to bone marrow-derived macrophages and the macrophage-like cell line J774. We additionally propose the use of a standardized nomenclature to describe cells derived from the Hoxb8/Hoxa9 system in anticipation of their expanded use in the study of leukocyte cell biology.
Collapse
Affiliation(s)
- Shranjit S Lail
- Department of Medical Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Corey R Arnold
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luiz G N de Almeida
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil McKenna
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jose A Chiriboga
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy L Warren
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin Michael Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Gavory G, Baril C, Laberge G, Bidla G, Koonpaew S, Sonea T, Sauvageau G, Therrien M. A genetic screen in Drosophila uncovers the multifaceted properties of the NUP98-HOXA9 oncogene. PLoS Genet 2021; 17:e1009730. [PMID: 34383740 PMCID: PMC8384169 DOI: 10.1371/journal.pgen.1009730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/24/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) underlies the uncontrolled accumulation of immature myeloid blasts. Several cytogenetic abnormalities have been associated with AML. Among these is the NUP98-HOXA9 (NA9) translocation that fuses the Phe-Gly repeats of nucleoporin NUP98 to the homeodomain of the transcription factor HOXA9. The mechanisms enabling NA9-induced leukemia are poorly understood. Here, we conducted a genetic screen in Drosophila for modifiers of NA9. The screen uncovered 29 complementation groups, including genes with mammalian homologs known to impinge on NA9 activity. Markedly, the modifiers encompassed a diversity of functional categories, suggesting that NA9 perturbs multiple intracellular events. Unexpectedly, we discovered that NA9 promotes cell fate transdetermination and that this phenomenon is greatly influenced by NA9 modifiers involved in epigenetic regulation. Together, our work reveals a network of genes functionally connected to NA9 that not only provides insights into its mechanism of action, but also represents potential therapeutic targets. Acute myeloid leukemia or AML is a cancer of blood cells. Despite significant progress in recent years, a majority of afflicted individuals still succumbs to the disease. A variety of genetic defects have been associated to AML. Among these are chromosomal translocations, which entail the fusion of two genes, leading to the production of cancer-inducing chimeric proteins. A representative example is the NUP98-HOXA9 oncoprotein, which results from the fusion of the NUP98 and HOXA9 genes. The mechanism of action of NUP98-HOXA9 remains poorly understood. Given the evolutionarily conservation of NUP98 and HOXA9 as well as basic cellular processes across multicellular organisms, we took advantage of Drosophila fruit flies as a genetic tool to identify genes that impinge on the activity of human NUP98-HOXA9. Surprisingly, this approach identified a relatively large spectrum of conserved genes that engaged in functional interplay with NUP98-HOXA9, which indicated the pervasive effects that this oncogene has on basic cellular events. While some genes have been previously linked to NUP98-HOXA9, thus validating our experimental approach, several others are novel and as such represent potentially new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gino Laberge
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Surapong Koonpaew
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thomas Sonea
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de médecine, Université de Montréal, Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.,Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
3
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Lin CH, Wang Z, Duque-Afonso J, Wong SHK, Demeter J, Loktev AV, Somervaille TCP, Jackson PK, Cleary ML. Oligomeric self-association contributes to E2A-PBX1-mediated oncogenesis. Sci Rep 2019; 9:4915. [PMID: 30894657 PMCID: PMC6426973 DOI: 10.1038/s41598-019-41393-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
The PBX1 homeodomain transcription factor is converted by t(1;19) chromosomal translocations in acute leukemia into the chimeric E2A-PBX1 oncoprotein. Fusion with E2A confers potent transcriptional activation and constitutive nuclear localization, bypassing the need for dimerization with protein partners that normally stabilize and regulate import of PBX1 into the nucleus, but the mechanisms underlying its oncogenic activation are incompletely defined. We demonstrate here that E2A-PBX1 self-associates through the PBX1 PBC-B domain of the chimeric protein to form higher-order oligomers in t(1;19) human leukemia cells, and that this property is required for oncogenic activity. Structural and functional studies indicate that self-association facilitates the binding of E2A-PBX1 to DNA. Mutants unable to self-associate are transformation defective, however their oncogenic activity is rescued by the synthetic oligomerization domain of FKBP, which confers conditional transformation properties on E2A-PBX1. In contrast to self-association, PBX1 protein domains that mediate interactions with HOX DNA-binding partners are dispensable. These studies suggest that oligomeric self-association may compensate for the inability of monomeric E2A-PBX1 to stably bind DNA and circumvents protein interactions that otherwise modulate PBX1 stability, nuclear localization, DNA binding, and transcriptional activity. The unique dependence on self-association for E2A-PBX1 oncogenic activity suggests potential approaches for mechanism-based targeted therapies.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinogenesis/genetics
- Cell Line, Tumor
- Chromosomes, Human, Pair 1/chemistry
- Chromosomes, Human, Pair 19/chemistry
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Pre-B-Cell Leukemia Transcription Factor 1/genetics
- Pre-B-Cell Leukemia Transcription Factor 1/metabolism
- Protein Binding
- Protein Multimerization
- Protein Stability
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- Chiou-Hong Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, 510006, China
| | - Jesús Duque-Afonso
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - Stephen Hon-Kit Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Janos Demeter
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander V Loktev
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tim C P Somervaille
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4GJ, UK
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Shestakova EA, Boutin M, Bourassa S, Bonneil E, Bijl JJ. Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification. Mol Biol 2017. [DOI: 10.1134/s002689331703013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Duque-Afonso J, Feng J, Scherer F, Lin CH, Wong SHK, Wang Z, Iwasaki M, Cleary ML. Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic leukemia. J Clin Invest 2015; 125:3667-80. [PMID: 26301816 DOI: 10.1172/jci81158] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer; however, its genetic diversity limits investigation into the molecular pathogenesis of disease and development of therapeutic strategies. Here, we engineered mice that conditionally express the E2A-PBX1 fusion oncogene, which results from chromosomal translocation t(1;19) and is present in 5% to 7% of pediatric ALL cases. The incidence of leukemia in these mice varied from 5% to 50%, dependent on the Cre-driving promoter (Cd19, Mb1, or Mx1) used to induce E2A-PBX1 expression. Two distinct but highly similar subtypes of B cell precursor ALLs that differed by their pre-B cell receptor (pre-BCR) status were induced and displayed maturation arrest at the pro-B/large pre-B II stages of differentiation, similar to human E2A-PBX1 ALL. Somatic activation of E2A-PBX1 in B cell progenitors enhanced self-renewal and led to acquisition of multiple secondary genomic aberrations, including prominent spontaneous loss of Pax5. In preleukemic mice, conditional Pax5 deletion cooperated with E2A-PBX1 to expand progenitor B cell subpopulations, increasing penetrance and shortening leukemia latency. Recurrent secondary activating mutations were detected in key signaling pathways, most notably JAK/STAT, that leukemia cells require for proliferation. These data support conditional E2A-PBX1 mice as a model of human ALL and suggest targeting pre-BCR signaling and JAK kinases as potential therapeutic strategies.
Collapse
|
8
|
Abstract
The molecular determinants regulating the specification of human embryonic stem cells (hESCs) into hematopoietic cells remain elusive. HOXA9 plays a relevant role in leukemogenesis and hematopoiesis. It is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and is downregulated upon differentiation. Hoxa9-deficient mice display impaired hematopoietic development, and deregulation of HOXA9 expression is frequently associated with acute leukemia. Analysis of the genes differentially expressed in cord blood HSPCs vs hESC-derived HSPCs identified HOXA9 as the most downregulated gene in hESC-derived HSPCs, suggesting that expression levels of HOXA9 may be crucial for hematopoietic differentiation of hESC. Here we show that during hematopoietic differentiation of hESCs, HOXA9 expression parallels hematopoietic development, but is restricted to the hemogenic precursors (HEP) (CD31(+)CD34(+)CD45(-)), and diminishes as HEPs differentiate into blood cells (CD45(+)). Different gain-of-function and loss-of-function studies reveal that HOXA9 enhances hematopoietic differentiation of hESCs by specifically promoting the commitment of HEPs into primitive and total CD45(+) blood cells. Gene expression analysis suggests that nuclear factor-κB signaling could be collaborating with HOXA9 to increase hematopoietic commitment. However, HOXA9 on its own is not sufficient to confer in vivo long-term engraftment potential to hESC-hematopoietic derivatives, reinforcing the idea that additional molecular regulators are needed for the generation of definitive in vivo functional HSPCs from hESC.
Collapse
|
9
|
Diakos C, Xiao Y, Zheng S, Kager L, Dworzak M, Wiemels JL. Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein. PLoS One 2014; 9:e87602. [PMID: 24503810 PMCID: PMC3913655 DOI: 10.1371/journal.pone.0087602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/20/2013] [Indexed: 01/04/2023] Open
Abstract
E2A-PBX1 is expressed as a result of the t(1;19) chromosomal translocation in nearly 5% of cases of childhood acute lymphoblastic leukemia. The E2A-PBX1 chimeric transcription factor contains the N-terminal transactivation domain of E2A (TCF3) fused to the C-terminal DNA-binding homeodomain of PBX1. While there is no doubt of its oncogenic potential, the mechanisms of E2A-PBX1-mediated pre-B cell transformation and the nature of direct E2A-PBX1 target genes and pathways remain largely unknown. Herein we used chromatin immunoprecipitation assays (ChIP-chip) to identify direct targets of E2A-PBX1, and we used gene expression arrays of siRNA E2A-PBX1-silenced cells to evaluate changes in expression induced by the fusion protein. Combined ChIP-chip and expression data analysis gave rise to direct and functional targets of E2A-PBX1. Further we observe that the set of ChIP-chip identified E2A-PBX1 targets show a collective down-regulation trend in the E2A-PBX1 silenced samples compared to controls suggesting an activating role of this fusion transcription factor. Our data suggest that the expression of the E2A-PBX1 fusion gene interferes with key regulatory pathways and functions of hematopoietic biology. Among these are members of the WNT and apoptosis/cell cycle control pathways, and thus may comprise an essential driving force for the propagation and maintenance of the leukemic phenotype. These findings may also provide evidence of potentially attractive therapeutic targets.
Collapse
Affiliation(s)
- Christofer Diakos
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, St Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Yuanyuan Xiao
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Shichun Zheng
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, United States of America
| | - Leo Kager
- Department of Pediatrics, St Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael Dworzak
- Department of Pediatrics, St Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Children’s Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Joseph L. Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Fournier M, Savoie-Rondeau I, Larochelle F, Hassawi M, Shestakova EA, Roy DC, Bijl JJ. Inability of HOXB4 to enhance self-renewal of malignant B cells: favorable profile for the expansion of autologous hematopoietic stem cells. Exp Hematol 2014; 42:526-35.e4. [PMID: 24503485 DOI: 10.1016/j.exphem.2014.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 12/04/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Abstract
Leukemic stem cells share self-renewal properties and slow proliferation with hematopoietic stem cells. Based on expression signatures, it has been suggested that these cells use the same molecular pathways for these processes. However, it is not clear whether leukemic stem cells also respond to factors known to enhance the self-renewal activity of hematopoietic stem cells. The transcription factor homeobox B4 (HOXB4) is known to induce expansion of mouse hematopoietic stem cells. The recombinant TAT-HOXB4 protein also expands human CD34+ cells. In this study we investigated whether overexpression of HOXB4 could increase leukemic initiating cell numbers, an issue that is crucial to its clinical usage. A transgenic mouse model for E2A-PBX1 induced pre-B acute lymphoblastic leukemia was used in combination with HOXB4 transgenic mice to test oncogenic interactions between HOXB4 and E2A-PBX1. The frequency of leukemic initiating cells retrovirally overexpressing HOXB4 was measured by transplantation at limiting dilution and evaluation of leukemia development in recipient mice. Moreover, human B cell lines were evaluated for their colony forming cell potential upon exposure to TAT-HOXB4 protein. Our data with the mouse models show that HOXB4 neither accelerates the generation of E2A-PBX1 B cell leukemia nor expands the number of leukemia initiating cells. Additionally, the growth or colony forming cell proportions of human B cell lines was not changed by HOXB4, suggesting that human B leukemic initiating cells are not affected by HOXB4.
Collapse
Affiliation(s)
- Marilaine Fournier
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | | | - Fannie Larochelle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Mona Hassawi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Elena A Shestakova
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Denis Claude Roy
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Départment de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Janetta J Bijl
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Départment de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
11
|
Hassawi M, Shestakova EA, Fournier M, Lebert-Ghali CÉ, Vaisson G, Frison H, Sinnett D, Vidal R, Thompson A, Bijl JJ. Hoxa9 collaborates with E2A-PBX1 in mouse B cell leukemia in association with Flt3 activation and decrease of B cell gene expression. Dev Dyn 2013; 243:145-58. [PMID: 23996689 DOI: 10.1002/dvdy.24056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The fusion protein E2A-PBX1 induces pediatric B cell leukemia in human. Previously, we reported oncogenic interactions between homeobox (Hox) genes and E2A-PBX1 in murine T cell leukemia. A proviral insertional mutagenesis screen with our E2A-PBX1 B cell leukemia mouse model identified Hoxa genes as potential collaborators to E2A-PBX1. Here we studied whether Hoxa9 could enhance E2A-PBX1 leukemogenesis. RESULTS We show that Hoxa9 confers a proliferative advantage to E2A-PBX1 B cells. Transplantation experiments with E2A-PBX1 transgenic B cells overexpressing Hoxa9 isolated from bone marrow chimeras showed that Hoxa9 accelerates the generation of E2A-PBX1 B cell leukemia, but Hoxa9 is unable to transform B cells alone. Quantitative-reverse transcriptase polymerase chain reaction analysis demonstrated a strong repression of B cell specific genes in these E2A-PBX1/Hoxa9 leukemias in addition to Flt3 activation, indicating inhibition of B cell differentiation in combination with enhanced proliferation. Overexpression of Hoxa9 in established E2A-PBX1 mouse leukemic B cells resulted in a growth advantage in vitro, which was also characterized by an enhanced expression of Flt3. CONCLUSIONS we show for the first time that Hoxa9 collaborates with E2A-PBX1 in the oncogenic transformation of B cells in a mouse model that involves Flt3 signaling, which is potentially relevant to human disease.
Collapse
Affiliation(s)
- Mona Hassawi
- Hospital Maisonneuve-Rosemont Research Center, Montreal, QC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
There is growing research interest in the mammalian Tribbles (Trib) family of serine/threonine pseudokinases and their oncogenic association with acute leukemias. This review is to understand the role of Trib genes in hematopoietic malignancies and their potential as targets for novel therapeutic strategies in acute myeloid leukemia and acute lymphoblastic leukemia. We discuss the role of Tribs as central signaling mediators in different subtypes of acute leukemia and propose that inhibition of dysregulated Trib signaling may be therapeutically beneficial.
Collapse
|
13
|
Beachy SH, Onozawa M, Silverman D, Chung YJ, Rivera MM, Aplan PD. Isolated Hoxa9 overexpression predisposes to the development of lymphoid but not myeloid leukemia. Exp Hematol 2013; 41:518-529.e5. [PMID: 23435313 DOI: 10.1016/j.exphem.2013.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 01/07/2023]
Abstract
Hoxa9 is expressed in hematopoietic stem and progenitor cells, although this expression is usually diminished as these cells undergo differentiation. In addition, aberrant expression of Hoxa9 is strongly associated with both T cell and myeloid leukemia in mice and humans. Despite this strong association, enforced expression of Hoxa9 in murine bone marrow or thymus has only shown a modest ability to transform cells. To investigate this question, we used Vav regulatory elements to generate a transgenic mouse that targets Hoxa9 overexpression to all hematopoietic tissues. High-level expression of the Hoxa9 transgene in the hematopoietic compartment was associated with embryonic lethality, as no pups from founders that expressed high levels of the transgene were born live. However, offspring of an additional founder line, which expressed lower levels of Hoxa9, developed a precursor T cell lymphoblastic leukemia/lymphoma, accompanied by spontaneous Notch1 mutations. In contrast to most murine models of leukemia associated with Hoxa9 overexpression, the Vav-Hoxa9 mice did not overexpress other Hoxa cluster genes, mir196b (a microRNA that is embedded in the Hoxa locus), Meis1, or Pbx3. The Hoxa9 transgenic mouse reported in this study provides a suitable system for the study of Hoxa9 collaborators that drive myeloid and lymphoid malignant transformation.
Collapse
Affiliation(s)
- Sarah H Beachy
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
Jang SH, Chung HY. MYC and PIM2 co-expression in mouse bone marrow cells readily establishes permanent myeloid cell lines that can induce lethal myeloid sarcoma in vivo. Mol Cells 2012; 34:201-8. [PMID: 22843119 PMCID: PMC3887814 DOI: 10.1007/s10059-012-0142-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/30/2023] Open
Abstract
The hematopoietic cell malignancy is one of the most prevalent type of cancer and the disease has multiple pathologic molecular signatures. Research on the origin of hematopoietic cancer stem cells and the mode of subsequent maintenance and differentiation needs robust animal models that can reproduce the transformation and differentiation event in vivo. Here, we show that co-transduction of MYC and PIM2 proto-oncogenes into mouse bone marrow cells readily establishes permanent cell lines that can induce lethal myeloid sarcoma in vivo. Unlike the previous doubly transgenic mouse model in which coexpression of MYC and PIM2 transgenes exclusively induced B cell lymphoma, we were able to show that the same combination of genes can also transform primary bone marrow myeloid cells in vitro resulting in permanent cell lines which induce myeloid sarcoma upon in vivo transplantation. By inducing cancerous transformation of fresh bone marrow cells in a controlled environment, the model we established will be useful for detailed study of the molecular events involved in initial transformation process of primary myeloid bone marrow cells and provides a model that can give insight to the molecular pathologic characteristics of human myeloid sarcoma, a rare presentation of solid tumors of undifferentiated myeloid blast cells associated with various types of myeloid leukemia.
Collapse
Affiliation(s)
- Su Hwa Jang
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Hee Yong Chung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|
15
|
Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood 2012; 120:e17-27. [PMID: 22802335 DOI: 10.1182/blood-2011-12-397844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We recently generated 2 phenotypically similar Hoxa9+Meis1 overexpressing acute myeloid leukemias that differ by their in vivo biologic behavior. The first leukemia, named FLA2, shows a high frequency of leukemia stem cells (LSCs; 1 in 1.4 cells), whereas the second, FLB1, is more typical with a frequency of LSCs in the range of 1 per several hundred cells. To gain insights into possible mechanisms that determine LSC self-renewal, we profiled and compared the abundance of nuclear and cytoplasmic proteins and phosphoproteins from these leukemias using quantitative proteomics. These analyses revealed differences in proteins associated with stem cell fate, including a hyperactive p38 MAP kinase in FLB1 and a differentially localized Polycomb group protein Ezh2, which is mostly nuclear in FLA2 and predominantly cytoplasmic in FLB1. Together, these newly documented proteomes and phosphoproteomes represent a unique resource with more than 440 differentially expressed proteins and 11 543 unique phosphopeptides, of which 80% are novel and 7% preferentially phosphorylated in the stem cell-enriched leukemia.
Collapse
|
16
|
Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood 2011; 117:5918-30. [PMID: 21471525 DOI: 10.1182/blood-2010-08-301879] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We studied leukemic stem cells (LSCs) in a Smad4(-/-) mouse model of acute myelogenous leukemia (AML) induced either by the HOXA9 gene or by the fusion oncogene NUP98-HOXA9. Although Hoxa9-Smad4 complexes accumulate in the cytoplasm of normal hematopoietic stem cells and progenitor cells (HSPCs) transduced with these oncogenes, there is no cytoplasmic stabilization of HOXA9 in Smad4(-/-) HSPCs, and as a consequence increased levels of Hoxa9 is observed in the nucleus leading to increased immortalization in vitro. Loss of Smad4 accelerates the development of leukemia in vivo because of an increase in transformation of HSPCs. Therefore, the cytoplasmic binding of Hoxa9 by Smad4 is a mechanism to protect Hoxa9-induced transformation of normal HSPCs. Because Smad4 is a potent tumor suppressor involved in growth control, we developed a strategy to modify the subcellular distribution of Smad4. We successfully disrupted the interaction between Hoxa9 and Smad4 to activate the TGF-β pathway and apoptosis, leading to a loss of LSCs. Together, these findings reveal a major role for Smad4 in the negative regulation of leukemia initiation and maintenance induced by HOXA9/NUP98-HOXA9 and provide strong evidence that antagonizing Smad4 stabilization by these oncoproteins might be a promising novel therapeutic approach in leukemia.
Collapse
|
17
|
Keeshan K, Bailis W, Dedhia PH, Vega ME, Shestova O, Xu L, Toscano K, Uljon SN, Blacklow SC, Pear WS. Transformation by Tribbles homolog 2 (Trib2) requires both the Trib2 kinase domain and COP1 binding. Blood 2010; 116:4948-57. [PMID: 20805362 PMCID: PMC3012589 DOI: 10.1182/blood-2009-10-247361] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 08/07/2010] [Indexed: 01/20/2023] Open
Abstract
Tribbles homolog 2 (Trib2) is a pseudokinase that induces acute myelogenous leukemia (AML) in mice and is highly expressed in a subset of human AML. Trib2 has 3 distinct regions, a proline-rich N-terminus, a serine/threonine kinase homology domain, and a C-terminal constitutive photomorphogenesis 1 (COP1)-binding domain. We performed a structure-function analysis of Trib2 using in vitro and in vivo assays. The N-terminus was not required for Trib2-induced AML. Deletion or mutation of the COP1-binding site abrogated the ability of Trib2 to degrade CCAAT/enhancer-binding protein-α (C/EBP-α), block granulocytic differentiation, and to induce AML in vivo. Furthermore, COP1 knockdown inhibited the ability of Trib2 to degrade C/EBP-α, showing that it is important for mediating Trib2 activity. We also show that the Trib2 kinase domain is essential for its function. Trib2 contains variant catalytic loop sequences, compared with conventional kinases, that we show are necessary for Trib2 activity. The kinase domain mutants bind, but cannot efficiently degrade, C/EBP-α. Together, our data demonstrate that Trib2 can bind both COP1 and C/EBP-α, leading to degradation of C/EBP-α. Identification of the functional regions of Trib2 that are essential to its oncogenic role provides the basis for developing inhibitors that will block Trib functions in cancer.
Collapse
Affiliation(s)
- Karen Keeshan
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Quéré R, Andradottir S, Brun ACM, Zubarev RA, Karlsson G, Olsson K, Magnusson M, Cammenga J, Karlsson S. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia 2010; 25:515-26. [PMID: 21116281 PMCID: PMC3072510 DOI: 10.1038/leu.2010.281] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple genetic hits are detected in patients with acute myeloid leukemia (AML). To investigate this further, we developed a tetracycline-inducible mouse model of AML, in which the initial transforming event, overexpression of HOXA10, can be eliminated. Continuous overexpression of HOXA10 is required to generate AML in primary recipient mice, but is not essential for maintenance of the leukemia. Transplantation of AML to secondary recipients showed that in established leukemias, ∼80% of the leukemia-initiating cells (LICs) in bone marrow stopped proliferating upon withdrawal of HOXA10 overexpression. However, the population of LICs in primary recipients is heterogeneous, as ∼20% of the LICs induce leukemia in secondary recipients despite elimination of HOXA10-induced overexpression. Intrinsic genetic activation of several proto-oncogenes was observed in leukemic cells resistant to inactivation of the initial transformation event. Interestingly, high levels of the adhesion molecule CD44 on leukemic cells are essential to generate leukemia after removal of the primary event. This suggests that extrinsic niche-dependent factors are also involved in the host-dependent outgrowth of leukemias after withdrawal of HOXA10 overexpression event that initiates the leukemia.
Collapse
Affiliation(s)
- R Quéré
- Molecular Medicine and Gene Therapy, Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen AH, Tsau YW, Lin CH. Novel methods to identify biologically relevant genes for leukemia and prostate cancer from gene expression profiles. BMC Genomics 2010; 11:274. [PMID: 20433712 PMCID: PMC2873479 DOI: 10.1186/1471-2164-11-274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 04/30/2010] [Indexed: 11/24/2022] Open
Abstract
Background High-throughput microarray experiments now permit researchers to screen thousands of genes simultaneously and determine the different expression levels of genes in normal or cancerous tissues. In this paper, we address the challenge of selecting a relevant and manageable subset of genes from a large microarray dataset. Currently, most gene selection methods focus on identifying a set of genes that can further improve classification accuracy. Few or none of these small sets of genes, however, are biologically relevant (i.e. supported by medical evidence). To deal with this critical issue, we propose two novel methods that can identify biologically relevant genes concerning cancers. Results In this paper, we propose two novel techniques, entitled random forest gene selection (RFGS) and support vector sampling technique (SVST). Compared with results from six other methods developed in this paper, we demonstrate experimentally that RFGS and SVST can identify more biologically relevant genes in patients with leukemia or prostate cancer. Among the top 25 genes selected using SVST method, 15 genes were biologically relevant genes in patients with leukemia and 13 genes were biologically relevant genes in patients with prostate cancer. Meanwhile, the RFGS method, while less effective than SVST, still identified an average of 9 biologically relevant genes in both leukemia and prostate cancers. In contrast to traditional statistical methods, which only identify less than 8 genes in patients with leukemia and less than 8 genes in patients with prostate cancer, our methods yield significantly better results. Conclusions Our proposed SVST and RFGS methods are novel approaches that can identify a greater number of biologically relevant genes. These methods have been successfully applied to both leukemia and prostate cancers. Research in the fields of biology and medicine should benefit from the identification of biologically relevant genes by confirming recent discoveries in cancer research or suggesting new avenues for exploration.
Collapse
Affiliation(s)
- Austin H Chen
- Department of Medical Informatics, Tzu Chi University, Hualien City, Hualien County, Taiwan.
| | | | | |
Collapse
|
20
|
Milech N, Gottardo NG, Ford J, D'Souza D, Greene WK, Kees UR, Watt PM. MEIS proteins as partners of the TLX1/HOX11 oncoprotein. Leuk Res 2009; 34:358-63. [PMID: 19559479 DOI: 10.1016/j.leukres.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/03/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Aberrant expression of the TLX1/HOX11 proto-oncogene is associated with a significant subset of T-cell acute lymphoblastic leukemias (T-ALL). Yet the manner in which TLX1 contributes to oncogenesis is not fully understood. Since, typically, interactions of HOX and TALE homeodomain proteins are determinant of HOX function, and HOX/MEIS co-expression has been shown to accelerate some leukemias, we systematically examined whether TLX1 interacts with MEIS and PBX proteins. Here, we report that TLX1 and MEIS proteins both interact and are co-expressed in T-ALL, and suggest that co-operation between TLX1 and MEIS proteins may have a significant role in T-cell leukemogenesis.
Collapse
Affiliation(s)
- Nadia Milech
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, Perth, WA 6008, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In patients with severe congenital neutropenia (SCN) and mice with growth factor independent-1 (Gfi1) loss of function, arrested myeloid progenitors accumulate, whereas terminal granulopoiesis is blocked. One might assume that Gfi-null progenitors accumulate because they lack the ability to differentiate. Instead, our data indicate that Gfi1 loss of function deregulates 2 separable transcriptional programs, one of which controls the accumulation and lineage specification of myeloid progenitors, but not terminal granulopoiesis. We demonstrate that Gfi1 directly represses HoxA9, Pbx1, and Meis1 during normal myelopoiesis. Gfi1-/- progenitors exhibit elevated levels of HoxA9, Pbx1 and Meis1, exaggerated HoxA9-Pbx1-Meis1 activity, and progenitor transformation in collaboration with oncogenic K-Ras. Limiting HoxA9 alleles corrects, in a dose-dependent manner, in vivo and in vitro phenotypes observed with loss of Gfi1 in myeloid progenitor cells but did not rescue Gfi1-/- blocked granulopoiesis. Thus, Gfi1 integrates 2 events during normal myeloid differentiation; the suppression of a HoxA9-Pbx1-Meis1 progenitor program and the induction of a granulopoietic transcription program.
Collapse
|
22
|
|
23
|
McCormack E, Bruserud O, Gjertsen BT. Review: genetic models of acute myeloid leukaemia. Oncogene 2008; 27:3765-79. [PMID: 18264136 DOI: 10.1038/onc.2008.16] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of genetically engineered mice (GEM) have been critical in understanding disease states such as cancer, and none more so than acute myelogenous leukaemia (AML), a disease characterized by over 100 distinct chromosomal translocations. A substantial proportion of cases exhibiting recurrent reciprocal translocations at diagnosis, such as t(8;21) or t(15;17) have been exhaustively studied and are currently employed in clinical diagnosis. However, a definitive conclusion regarding the leukaemogenic potential of defined transgenes for this disease remains elusive. While it is increasingly apparent that a number of cooperating mutations are necessary to develop a leukaemic phenotype, the number of models reflecting these synergisms remains few. Furthermore, little emphasis has been paid to the effect of chromosomal translocations other than recurrent genetic abnormalities, with no models reflecting the multiple abnormalities observed in high-risk cases of AML accounting for 8-10% of adult AML. Here we review the differing technologies employed in generation of GEM of AML. We discuss the relevance of GEM AML from embryonic stem cell-mediated (for example retinoic acid receptor-alpha fusions and AML1/ETO) models; through to the valuable retroviral-mediated gene transfer models. The latter have been used to great effect in defining the transforming properties of chromosomal translocation products such as MLL (found in 5-6% of all AML cases) and NUP98 (denoting poor prognosis in therapy-related disease) and particularly when co-transduced with bad prognostic factors such as Flt3 mutations. Finally, we comment on the emergence of newer transduction technologies, which can regulate the level of expression to defined cell lineages in both primary murine and human xenografts, and discuss how combining multiple genetic modalities, more relevant models of this complex disease are being generated.
Collapse
Affiliation(s)
- E McCormack
- Institute of Medicine, Haematology Section, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
24
|
Keeshan K, Shestova O, Ussin L, Pear WS. Tribbles homolog 2 (Trib2) and HoxA9 cooperate to accelerate acute myelogenous leukemia. Blood Cells Mol Dis 2007; 40:119-21. [PMID: 17988908 DOI: 10.1016/j.bcmd.2007.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 01/26/2023]
Abstract
Trib2 is a member of the Trib family of serine/threonine kinase-like proteins (Trib1, Trib2, Trib3). Mice reconstituted with hematopoietic stem cells (HSC) retrovirally expressing Trib2 uniformly developed fatal transplantable acute myelogenous leukemia (AML). Trib2-induced AML was clonal and we sought to identify cooperating genes in Trib2-induced AML. Using Splinkerette PCR techniques, we identified proviral insertion near HoxA9 in a Trib2 monoclonal tumor, which resulted in greatly elevated HoxA9 expression. Mice reconstituted with HSC cotransduced with HoxA9 and Trib2 had accelerated onset of AML compared to either gene alone. These data identify Trib2 and HoxA9 as cooperating genes in AML.
Collapse
Affiliation(s)
- Karen Keeshan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
25
|
Strathdee G, Holyoake TL, Sim A, Parker A, Oscier DG, Melo JV, Meyer S, Eden T, Dickinson AM, Mountford JC, Jorgensen HG, Soutar R, Brown R. Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin Cancer Res 2007; 13:5048-55. [PMID: 17785556 DOI: 10.1158/1078-0432.ccr-07-0919] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The HOX genes comprise a large family of homeodomain-containing transcription factors, present in four separate clusters, which are key regulators of embryonic development, hematopoietic differentiation, and leukemogenesis. We aimed to study the role of DNA methylation as an inducer of HOX gene silencing in leukemia. EXPERIMENTAL DESIGN Three hundred and seventy-eight samples of myeloid and lymphoid leukemia were quantitatively analyzed (by COBRA analysis and pyrosequencing of bisulfite-modified DNA) for methylation of eight HOXA and HOXB cluster genes. The biological significance of the methylation identified was studied by expression analysis and through re-expression of HOXA5 in a chronic myeloid leukemia (CML) blast crisis cell line model. RESULTS Here, we identify frequent hypermethylation and gene inactivation of HOXA and HOXB cluster genes in leukemia. In particular, hypermethylation of HOXA4 and HOXA5 was frequently observed (26-79%) in all types of leukemias studied. HOXA6 hypermethylation was predominantly restricted to lymphoid malignancies, whereas hypermethylation of other HOXA and HOXB genes was only observed in childhood leukemia. HOX gene methylation exhibited clear correlations with important clinical variables, most notably in CML, in which hypermethylation of both HOXA5 (P = 0.00002) and HOXA4 (P = 0.006) was strongly correlated with progression to blast crisis. Furthermore, re-expression of HOXA5 in CML blast crisis cells resulted in the induction of markers of granulocytic differentiation. CONCLUSION We propose that in addition to the oncogenic role of some HOX family members, other HOX genes are frequent targets for gene inactivation and normally play suppressor roles in leukemia development.
Collapse
Affiliation(s)
- Gordon Strathdee
- Centre for Oncology and Applied Pharmacology, Cancer Research UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bayly R, Murase T, Hyndman BD, Savage R, Nurmohamed S, Munro K, Casselman R, Smith SP, LeBrun DP. Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol Cell Biol 2006; 26:6442-52. [PMID: 16914730 PMCID: PMC1592826 DOI: 10.1128/mcb.02025-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In roughly 5% of cases of acute lymphoblastic leukemia, a chromosomal translocation leads to expression of the oncogenic protein E2A-PBX1. The N-terminal portion of E2A-PBX1, encoded by the E2A gene, is identical in sequence to the corresponding portion of the E proteins E12/E47 and includes transcriptional activation domains. The C terminus consists of most of the HOX interacting transcription factor PBX1, including its DNA-binding homeodomain. Structure-function correlative experiments have suggested that oncogenesis by E2A-PBX1 requires an activation domain, called AD1, at the extreme N terminus. We recently demonstrated that a potentially helical portion of AD1 interacts directly with the transcriptional coactivator protein cyclic AMP response element-binding protein (CBP) and that this interaction is essential in the immortalization of primary bone marrow cells in tissue culture. Here we show that a conserved LXXLL motif within AD1 is required in the interaction between E2A-PBX1 and the KIX domain of CBP. We show by circular dichroism spectroscopy that the LXXLL-containing portion of AD1 undergoes a helical transition upon interacting with the KIX domain and that amino acid substitutions that prevent helix formation prevent both the KIX interaction and cell immortalization by E2A-PBX1. Perhaps most strikingly, substitution of a single, conserved leucine residue (L20) within the LXXLL motif impairs leukemia induction in mice after transplantation with E2A-PBX1-expressing bone marrow. The KIX domain of CBP mediates well-characterized interactions with several transcription factors of relevance to leukemia induction. Circumstantial evidence suggests that the side chain of L20 might interact with a deep hydrophobic pocket in the KIX domain. Therefore, our results serve to identify a potential new drug target.
Collapse
Affiliation(s)
- Richard Bayly
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu T, Branch DR, Jin T. Pbx1 is a co-factor for Cdx-2 in regulating proglucagon gene expression in pancreatic A cells. Mol Cell Endocrinol 2006; 249:140-9. [PMID: 16574312 DOI: 10.1016/j.mce.2006.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 01/06/2023]
Abstract
A number of Hox and Hox-like homeodomain (HD) proteins have been previously shown to utilize members of the TALE HD protein family as co-factors in regulating gene expression. The caudal HD protein Cdx-2 is a transactivator for the proglucagon gene, expressed in pancreatic A cells and intestinal endocrine L cells. We demonstrate here that co-transfection of the TALE homeobox gene Pbx1 enhanced the activation of Cdx-2 on the proglucagon promoter in either the pancreatic A cell line InR1-G9 or BHK fibroblasts. The activation was observed for proglucagon promoter constructs with or without the binding motifs for Pbx1. Furthermore, mutating the penta-peptide motif (binding motif for TALE HD proteins) on Cdx-2 substantially attenuated its activation on proglucagon promoter, but not on the sucrase-isomaltase gene (SI) promoter, or its own (Cdx-2) promoter; suggesting that Cdx-2 utilizes Pbx1 as a co-factor for regulating the expression of selected target genes. Physical interaction between Cdx-2 and Pbx1 was demonstrated by co-immunoprecipitation as well as GST fusion protein pull-down. We suggest that this study reveals a novel function for Pbx1 in pancreatic islet physiology: regulating proglucagon expression by serving as a co-factor for Cdx-2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicine and Institute of Medical Science, University of Toronto, Rm. 410, 67 College Street, Toronto, Ont., Canada M5G 2M1
| | | | | |
Collapse
|
28
|
Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193-206. [PMID: 16515781 DOI: 10.1016/j.ydbio.2005.10.032] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022]
Abstract
Hox genes encode homeodomain-containing transcription factors that pattern the body axes of animal embryos. It is well established that the exquisite DNA-binding specificity that allows different Hox proteins to specify distinct structures along the body axis is frequently dependent on interactions with other DNA-binding proteins which act as Hox cofactors. These include the PBC and MEIS classes of TALE (Three Amino acid Loop Extension) homeodomain proteins. The PBC class comprises fly Extradenticle (Exd) and vertebrate Pbx homeoproteins, whereas the MEIS class includes fly Homothorax (Hth) and vertebrate Meis and Prep homeoproteins. Exd was first implicated as a Hox cofactor based on mutant phenotypes in the fly. In vertebrates, PBC and MEIS homeobox proteins play important roles in development and disease. In this review, we describe the evidence that these functions reflect a requirement for Pbx and Meis/Prep proteins as Hox cofactors. However, there is mounting evidence that, like in the fly, Pbx and Meis/Prep proteins function more broadly, and we also discuss how "Hox cofactors" function as partners for other, non-Hox transcription factors during development. Conversely, we review the evidence that Hox proteins have functions that are independent of Pbx and Meis/Prep cofactors and discuss the possibility that other proteins may participate in the DNA-bound Hox complex, contributing to DNA-binding specificity in the absence of, or in addition to, Pbx and Meis/Prep.
Collapse
Affiliation(s)
- Cecilia B Moens
- Division of Basic Science and HHMI, Fred Hutchinson Cancer Research Center, Seattle, WA 98115, USA.
| | | |
Collapse
|
29
|
Martin NL, Saba-El-Leil MK, Sadekova S, Meloche S, Sauvageau G. EN2 is a candidate oncogene in human breast cancer. Oncogene 2006; 24:6890-901. [PMID: 16007149 DOI: 10.1038/sj.onc.1208840] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Only a few critical oncogenes have been identified in the more commonly occurring cases of sporadic breast cancer. We provide evidence that EN2 is ectopically expressed in a subset of human breast cancer and may have a causal role in mammary tumorigenesis. Nontumorigenic mammary cell lines engineered to ectopically express En-2 have a marked reduction in their cycling time, lose cell contact inhibition, become sensitive to 17-AAG treatment, fail to differentiate when exposed to lactogenic hormones and induce mammary tumors when transplanted into cleared mammary glands of syngeneic hosts. RNA interference studies suggest that EN2 expression is required for the maintenance of the transformed phenotype of a human breast tumor cell line.
Collapse
Affiliation(s)
- Nicole L Martin
- Laboratory of Molecular Genetics of Hematopoietic Stem Cells, Institut de Recherche en Immunologie et Cancérologie, CP 6128, succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
30
|
Abramovich C, Pineault N, Ohta H, Humphries RK. HoxGenes: From Leukemia to Hematopoietic Stem Cell Expansion. Ann N Y Acad Sci 2006; 1044:109-16. [PMID: 15958703 DOI: 10.1196/annals.1349.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hox genes are clearly implicated in leukemia; however, neither the specificity of the leukemogenic potential among Hox genes of different paralog groups nor the role of the homeodomain is clear. We tested the leukemogenic potential of various NUP98-Hox fusion genes alone and with MEIS1. All genes tested had a significant overlapping effect in bone marrow cells in vitro. However, not all formed strong leukemogenic NUP98 fusion genes; but together with overexpression of MEIS1, all induced myeloid leukemia. This phenomenon was also seen with NUP98 fusions containing only the homeodomain of the corresponding Hox protein. We then exploited the strong transforming potential of NUP98-HOXD13 and NUP98-HOXA10 to establish preleukemic myeloid lines composed of early myeloid progenitors with extensive in vitro self-renewal capacity, short-term myeloid repopulating activity, and low propensity for spontaneous leukemic conversion. We also showed that MEIS1 can efficiently induce their conversion to leukemic stem cells, thus providing a novel model for the study of leukemic progression. In contrast to the leukemogenic effect of most of the Hox genes tested, HOXB4 has the ability to increase the self-renewal of hematopoietic stem cells without disrupting normal differentiation. On the basis of the discovery that the leukemogenic gene HOXA9 can also expand hematopoietic stem cells, we compared the ability of NUP98-Hox fusions to that of HOXB4 to trigger HSC expansion in vitro. Our preliminary results indicate that the expanding potential of HOXB4 is retained and even augmented by fusion to NUP98. Moreover, even greater expansion may be possible using Abd-B-like Hox fusions genes.
Collapse
|
31
|
Morgan R, Begum R, Theti D, Chansa M, Pettengell R, Sohal J. HOXA9 expression increases with age in human haemopoietic cells. Leuk Res 2005; 29:1221-2. [PMID: 16111538 DOI: 10.1016/j.leukres.2005.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Indexed: 11/13/2022]
Abstract
HOXA9 is a transcription factor with a central role in both haemopoiesis and leukaemia, and has been extensively studied over the past decade. Most notably, high levels of HOXA9 expression in haemopoietic cells is a characteristic feature of acute myeloid leukaemia (AML), and indeed may be sufficient in its own right to cause this disease. Here, we show that HOXA9 expression changes dramatically with age, whereby a uniformly low level of expression during early adulthood is replaced by a frequently very high expression in adults over sixty.
Collapse
Affiliation(s)
- Richard Morgan
- Department of Basic Medical Sciences (Anatomy), St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | | | | | |
Collapse
|
32
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
33
|
Bijl J, Sauvageau M, Thompson A, Sauvageau G. High incidence of proviral integrations in the Hoxa locus in a new model of E2a-PBX1-induced B-cell leukemia. Genes Dev 2005; 19:224-33. [PMID: 15655112 PMCID: PMC545883 DOI: 10.1101/gad.1268505] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Relevant mouse models of E2a-PBX1-induced pre-B cell leukemia are still elusive. We now report the generation of a pre-B leukemia model using E2a-PBX1 transgenic mice, which lack mature and precursor T-cells as a result of engineered loss of CD3epsilon expression (CD3epsilon(-/-)). Using insertional mutagenesis and inverse-PCR, we show that B-cell leukemia development in the E2a-PBX1 x CD3epsilon(-/-) compound transgenic animals is significantly accelerated when compared to control littermates, and document several known and novel integrations in these tumors. Of all common integration sites, a small region of 19 kb in the Hoxa gene locus, mostly between Hoxa6 and Hoxa10, represented 18% of all integrations in the E2a-PBX1 B-cell leukemia and was targeted in 86% of these leukemias compared to 17% in control tumors. Q-PCR assessment of expression levels for most Hoxa cluster genes in these tumors revealed an unprecedented impact of the proviral integrations on Hoxa gene expression, with tumors having one to seven different Hoxa genes overexpressed at levels up to 6600-fold above control values. Together our studies set the stage for modeling E2a-PBX1-induced B-cell leukemia and shed new light on the complexity pertaining to Hox gene regulation. In addition, our results show that the Hoxa gene cluster is preferentially targeted in E2a-PBX1-induced tumors, thus suggesting functional collaboration between these oncogenes in pre-B-cell tumors.
Collapse
Affiliation(s)
- Janet Bijl
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
34
|
Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M. MEIS C Termini Harbor Transcriptional Activation Domains That Respond to Cell Signaling. J Biol Chem 2005; 280:10119-27. [PMID: 15654074 DOI: 10.1074/jbc.m413963200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX.HOX heterodimers. We have shown previously that transcriptional activation by PBX.HOX is augmented by either protein kinase A (PKA) or the histone deacetylase inhibitor trichostatin A (TSA). To examine the contribution of MEIS proteins to this response, we used the chromatin immunoprecipitation assay to show that MEIS1 in addition to PBX1, HOXA1, and HOXB1 was recruited to a known PBX.HOX target, the Hoxb1 autoregulatory element following Hoxb1 transcriptional activation in P19 cells. Subsequent to TSA treatment, MEIS1 recruitment lagged behind that of HOX and PBX partners. MEIS1A also enhanced the transcriptional activation of a reporter construct bearing the Hoxb1 autoregulatory element after treatment with TSA. The MEIS1 homeodomain and protein-protein interaction with PBX contributed to this activity. We further mapped TSA-responsive and CREB-binding protein-dependent PKA-responsive transactivation domains to the MEIS1A and MEIS1B C termini. Fine mutation of the 56-residue MEIS1A C terminus revealed four discrete regions required for transcriptional activation function. All of the mutations impairing the response to TSA likewise reduced activation by PKA, implying a common mechanistic basis. C-terminal deletion of MEIS1 impaired transactivation without disrupting DNA binding or complex formation with HOX and PBX. Despite sequence similarity to MEIS and a shared ability to form heteromeric complexes with PBX and HOX partners, the PREP1 C terminus does not respond to TSA or PKA. Thus, MEIS C termini possess transcriptional regulatory domains that respond to cell signaling and confer functional differences between MEIS and PREP proteins.
Collapse
Affiliation(s)
- He Huang
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D, Kogan SC, Radhakrishnan A, Le Beau MM, Largman C, Lawrence HJ. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 2004; 105:1456-66. [PMID: 15522959 DOI: 10.1182/blood-2004-04-1583] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HOX family of homeobox genes plays an important role in normal and malignant hematopoiesis. Dysregulated HOX gene expression profoundly effects the proliferation and differentiation of hematopoietic stem cells (HSCs) and committed progenitors, and aberrant activation of HOX genes is a common event in human myeloid leukemia. HOXB6 is frequently overexpressed in human acute myeloid leukemia (AML). To gain further insight into the role of HOXB6 in hematopoiesis, we overexpressed HOXB6 in murine bone marrow using retrovirus-mediated gene transfer. We also explored structure-function relationships using mutant HOXB6 proteins unable to bind to DNA or a key HOX-binding partner, pre-B-cell leukemia transcription factor-1 (PBX1). Additionally, we investigated the potential cooperative interaction with myeloid ecotropic viral integration site 1 homolog (MEIS1). In vivo, HOXB6 expanded HSCs and myeloid precursors while inhibiting erythropoiesis and lymphopoiesis. Overexpression of HOXB6 resulted in AML with a median latency of 223 days. Coexpression of MEIS1 dramatically shortened the onset of AML. Cytogenetic analysis of a subset of HOXB6-induced AMLs revealed recurrent deletions of chromosome bands 2D-E4, a region frequently deleted in HOXA9-induced AMLs. In vitro, HOXB6 immortalized a factor-dependent myelomonocytic precursor capable of granulocytic and monocytic differentiation. These biologic effects of HOXB6 were largely dependent on DNA binding but independent of direct interaction with PBX1.
Collapse
Affiliation(s)
- Neal A Fischbach
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vijapurkar U, Fischbach N, Shen W, Brandts C, Stokoe D, Lawrence HJ, Largman C. Protein kinase C-mediated phosphorylation of the leukemia-associated HOXA9 protein impairs its DNA binding ability and induces myeloid differentiation. Mol Cell Biol 2004; 24:3827-37. [PMID: 15082777 PMCID: PMC387750 DOI: 10.1128/mcb.24.9.3827-3837.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HOXA9 expression is a common feature of acute myeloid leukemia, and high-level expression is correlated with poor prognosis. Moreover, HOXA9 overexpression immortalizes murine marrow progenitors that are arrested at a promyelocytic stage of differentiation when cultured and causes leukemia in recipient mice following transplantation of HOXA9 expressing bone marrow. The molecular mechanisms underlying the physiologic functions and transforming properties of HOXA9 are poorly understood. This study demonstrates that HOXA9 is phosphorylated by protein kinase C (PKC) and casein kinase II and that PKC mediates phosphorylation of purified HOXA9 on S204 as well as on T205, within a highly conserved consensus sequence, in the N-terminal region of the homeodomain. S204 in the endogenous HOXA9 protein was phosphorylated in PLB985 myeloid cells, as well as in HOXA9-immortalized murine marrow cells. This phosphorylation was enhanced by phorbol ester, a known inducer of PKC, and was inhibited by a specific PKC inhibitor. PKC-mediated phosphorylation of S204 decreased HOXA9 DNA binding affinity in vitro and the ability of the endogenous HOXA9 to form cooperative DNA binding complexes with PBX. PKC inhibition significantly reduced the phorbol-ester induced differentiation of the PLB985 hematopoietic cell line as well as HOXA9-immortalized murine bone marrow cells. These data suggest that phorbol ester-induced myeloid differentiation is in part due to PKC-mediated phosphorylation of HOXA9, which decreases the DNA binding of the homeoprotein.
Collapse
Affiliation(s)
- Ulka Vijapurkar
- Department of Medicine, University of California VA Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Pineault N, Abramovich C, Ohta H, Humphries RK. Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1. Mol Cell Biol 2004; 24:1907-17. [PMID: 14966272 PMCID: PMC350554 DOI: 10.1128/mcb.24.5.1907-1917.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NUP98-Hox fusion genes are newly identified oncogenes isolated in myeloid leukemias. Intriguingly, only Abd-B Hox genes have been reported as fusion partners, indicating that they may have unique overlapping leukemogenic properties. To address this hypothesis, we engineered novel NUP98 fusions with Hox genes not previously identified as fusion partners: the Abd-B-like gene HOXA10 and two Antennepedia-like genes, HOXB3 and HOXB4. Notably, NUP98-HOXA10 and NUP98-HOXB3 but not NUP98-HOXB4 induced leukemia in a murine transplant model, which is consistent with the reported leukemogenic potential ability of HOXA10 and HOXB3 but not HOXB4. Thus, the ability of Hox genes to induce leukemia as NUP98 fusion partners, although apparently redundant for Abd-B-like activity, is not restricted to this group, but rather is determined by the intrinsic leukemogenic potential of the Hox partner. We also show that the potent leukemogenic activity of Abd-B-like Hox genes is correlated with their strong ability to block hematopoietic differentiation. Conversely, coexpression of the Hox cofactor Meis1 alleviated the requirement of a strong intrinsic Hox-transforming potential to induce leukemia. Our results support a model in which many if not all Hox genes can be leukemogenic and point to striking functional overlap not previously appreciated, presumably reflecting common regulated pathways.
Collapse
Affiliation(s)
- Nicolas Pineault
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, Canada
| | | | | | | |
Collapse
|
38
|
Li Z, Schwieger M, Lange C, Kraunus J, Sun H, van den Akker E, Modlich U, Serinsöz E, Will E, von Laer D, Stocking C, Fehse B, Schiedlmeier B, Baum C. Predictable and efficient retroviral gene transfer into murine bone marrow repopulating cells using a defined vector dose. Exp Hematol 2004; 31:1206-14. [PMID: 14662326 DOI: 10.1016/j.exphem.2003.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Current protocols of retroviral gene transfer into murine hematopoietic stem cells (HSC) result in variable gene transfer efficiency and involve various procedures that are not clinically applicable. We developed and evaluated a reliable transduction protocol that is more related to clinical methods. MATERIALS AND METHODS HSC were enriched from steady-state bone marrow by magnetic cell sorting (lineage depletion) and cultured in defined serum-free medium containing an improved growth factor cocktail (Flt3-ligand, stem cell factor, interleukin-3, interleukin-11). Cell-free ecotropic retroviral vector particles, generated by transient transfection of human 293T-based packaging cells, were preloaded at defined titers on CH296-coated tissue culture plates, thus largely avoiding serum contamination. These conditions were evaluated in 17 experiments involving 29 transduction cultures and 185 recipient mice. RESULTS After two rounds of infection, the gene marking rates in cultured mononuclear cells and stem/progenitor cells (Lin(-)c-Kit(+)) were 15 to 85% (53.7%+/-21.7%, n=23) and 30 to 95% (69.8%+/-20.4%, n=17), respectively. Even after one round of infection, gene transfer was efficient (31.2%+/-15.1%, n=12). Using identical conditions, gene transfer rates were highly reproducible. Average transgene expression in reconstituted animals correlated well with pretransplant data. Using a moderate multiplicity of infection, the majority of transduced cells carried less than three transgene copies. In addition, coinfection was possible to establish two different vectors in single cells. CONCLUSION The protocol described here achieves efficient retroviral transduction of murine bone marrow repopulating cells with a defined gene dosage, largely avoiding procedures that decrease stem cell output and repopulating capacity. This protocol may help to improve the predictive value of preclinical efficiency/toxicity studies for gene therapeutic interventions and basic research.
Collapse
Affiliation(s)
- Zhixiong Li
- Experimental Cell Therapy, Department of Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9:1428-32. [PMID: 14578881 DOI: 10.1038/nm951] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 09/22/2003] [Indexed: 12/21/2022]
Abstract
Hematopoietic stem cells (HSCs) can self-renew extensively after transplantation. The conditions supporting their in vitro expansion are still being defined. Retroviral overexpression of the human homeobox B4 (HOXB4) gene in mouse bone marrow cells enables over 40-fold expansion of HSCs in vitro. To circumvent the requirement for retroviral infection, we used recombinant human TAT-HOXB4 protein carrying the protein transduction domain of the HIV transactivating protein (TAT) as a potential growth factor for stem cells. HSCs exposed to TAT-HOXB4 for 4 d expanded by about four- to sixfold and were 8-20 times more numerous than HSCs in control cultures, indicating that HSC expansion induced by TAT-HOXB4 was comparable to that induced by the human HOXB4 retrovirus during a similar period of observation. Our results also show that TAT-HOXB4-expanded HSC populations retain their normal in vivo potential for differentiation and long-term repopulation. It is thus feasible to exploit recombinant HOXB4 protein for rapid and significant ex vivo expansion of normal HSCs.
Collapse
Affiliation(s)
- Jana Krosl
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montreal, Montreal, Quebec, Canada, H2W 1R7
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Many of the developmental mechanisms and molecular pathways that underlie fundamental features of body patterning are shared by all vertebrates, and some have even been conserved across evolution from invertebrates to vertebrates. Defects in such processes are a common cause of congenital malformation syndromes, and rapid progress is being made in elucidating their embryological and genetic basis. Here, I focus on three examples, each of which has been the subject of recent advances, and which together illustrate many of the most interesting and important aspects of these disorders. The first example is the development of the pharyngeal apparatus and its perturbation in DiGeorge's syndrome; the second is the induction and differentiation of the forebrain and its perturbation in holoprosencephaly; and the third is the role played by the human HOX genes in congenital malformations.
Collapse
Affiliation(s)
- Frances R Goodman
- Molecular Medicine Unit, Institute of Child Health, WC1N 1EH, London, UK.
| |
Collapse
|
41
|
Abstract
Dysregulation of homeobox (HB)-containing genes is becoming increasingly recognized as the underlying basis of many hematologic malignancies. Expression of clustered HB (HOX) genes within the hematopoietic system, and enforced overexpression and knockout studies have provided support for the concept that these homeodomain-containing transcription factors play a significant role in the developmental biology of hematopoietic cells. Diverged HB (non-HOX) genes have recently been identified as either cofactors and/or accelerators of leukemic disease mediated by HOX genes or as bona fide oncogenes. In this review, we examine the evidence that supports a central role for HB genes in normal and malignant hematopoiesis, paying particular attention to the non-HOX class and the possible mechanisms through which they contribute to leukemic transformation.
Collapse
Affiliation(s)
- Bronwyn M Owens
- Hematopoiesis Department, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA.
| | | |
Collapse
|
42
|
Mayotte N, Roy DC, Yao J, Kroon E, Sauvageau G. Oncogenic interaction between BCR-ABL and NUP98-HOXA9 demonstrated by the use of an in vitro purging culture system. Blood 2002; 100:4177-84. [PMID: 12393433 DOI: 10.1182/blood-2002-04-1244] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic myelogenous leukemia (CML) is a clonal stem cell disease caused by the BCR-ABL oncoprotein and is characterized, in its early phase, by excessive accumulation of mature myeloid cells, which eventually leads to acute leukemia. The genetic events involved in CML's progression to acute leukemia remain largely unknown. Recent studies have detected the presence of the NUP98-HOXA9 fusion oncogene in acute leukemia derived from CML patients, which suggests that these 2 oncoproteins may interact and influence CML disease progression. Using in vitro purging of BCR-ABL-transduced mouse bone marrow cells, we can now report that recipients of bone marrow cells engineered to coexpress BCR-ABL with NUP98-HOXA9 develop acute leukemia within 7 to 10 days after transplantation. However, no disease is detected for more than 2 months in mice receiving bone marrow cells expressing either BCR-ABL or NUP98-HOXA9. We also provide evidence of high levels of HOXA9 expressed in leukemic blasts from acute-phase CML patients and that it interacts significantly on a genetic level with BCR-ABL in our in vivo CML model. Together, these studies support a causative, as opposed to a consequential, role for NUP98-HOXA9 (and possibly HOXA9) in CML disease progression.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Purging/methods
- Bone Marrow Transplantation
- Cell Culture Techniques/methods
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Fusion Proteins, bcr-abl/genetics
- Homeodomain Proteins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mice
- Mice, Inbred C57BL
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Nadine Mayotte
- Laboratory of Molecular Genetics of Stem Cells, Clinical Research Institute of Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
43
|
Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K, Li S, Van Etten RA, Borrow J, Housman D, Druker B, Gilliland DG. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci U S A 2002; 99:7622-7. [PMID: 12032333 PMCID: PMC124303 DOI: 10.1073/pnas.102583199] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutive activation of tyrosine kinases, such as the BCR/ABL fusion associated with t(9;22)(q34;q22), is a hallmark of chronic myeloid leukemia (CML) syndromes in humans. Expression of BCR/ABL is both necessary and sufficient to cause a chronic myeloproliferative syndrome in murine bone marrow transplantation models, and absolutely depends on kinase activity. Progression of CML to acute leukemia (blast crisis) in humans has been associated with acquisition of secondary chromosomal translocations, including the t(7;11)(p15;p15) resulting in the NUP98/HOXA9 fusion protein. We demonstrate that BCR/ABL cooperates with NUP98/HOXA9 to cause blast crisis in a murine model. The phenotype depends both on expression of BCR/ABL and NUP98/HOXA9, but tumors retain sensitivity to the ABL inhibitor STI571 in vitro and in vivo. This paradigm is applicable to other constitutively activated tyrosine kinases such as TEL/PDGFbetaR. These experiments document cooperative effects between constitutively activated tyrosine kinases, which confer proliferative and survival properties to hematopoietic cells, with mutations that impair differentiation, such as the NUP98/HOXA9, giving rise to the acute myeloid leukemia (AML) phenotype. Furthermore, these data indicate that despite acquisition of additional mutations, CML blast crisis cells retain their dependence on BCR/ABL for proliferation and survival.
Collapse
Affiliation(s)
- Ajeeta B Dash
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jordan CT. Unique molecular and cellular features of acute myelogenous leukemia stem cells. Leukemia 2002; 16:559-62. [PMID: 11960332 DOI: 10.1038/sj.leu.2402446] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 12/10/2001] [Indexed: 12/22/2022]
Abstract
It is well known in the field of acute myelogenous leukemia (AML) that many different translocations and genetic aberrancies are found with the various forms of the disease. Indeed, specific translocations are often associated with disease subtypes that manifest themselves through the accumulation of immature myeloid cells at varying stages of differentiation. Moreover, the differentiation state of myeloid blast populations has been utilized as a means of categorizing different AML subtypes (French, American, British, or FAB classification system). Thus, the notion that AML is a family of related but distinct diseases is a common view. Interestingly, however, studies in recent years that have formalized the concept of a leukemic stem cell (LSC) have also begun to define shared developmental, cellular and molecular features amongst the malignant stem cells that give rise to different AML subtypes. Moreover, some of these conserved features appear to be unique to the leukemia stem/progenitor cell population, and are not found in normal hematopoietic stem cells (HSCs). This article will summarize data emerging from the study of LSCs and suggest how distinct molecular and cellular characteristics of the LSC population may provide new opportunities for AML therapy.
Collapse
Affiliation(s)
- C T Jordan
- Division of Hematology/Oncology, Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| |
Collapse
|
45
|
Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, Humphries K, Sauvageau G. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99:121-9. [PMID: 11756161 DOI: 10.1182/blood.v99.1.121] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytogenetic, genetic, and functional studies have demonstrated a direct link between deregulated Hoxa9 expression and acute myeloid leukemia (AML). Hoxa9 overexpression in mouse bone marrow cells invariably leads to AML within 3 to 10 months, suggesting the requirement for additional genetic events prior to AML. To gain further insight into how Hoxa9 affects hematopoietic development at the preleukemic stage, we have engineered its overexpression (1) in hematopoietic stem cells using retrovirus-mediated gene transfer and generated bone marrow transplantation chimeras and (2) in lymphoid cells using transgenic mice. Compared with controls, recipients of Hoxa9-transduced cells had an about 15-fold increase in transplantable lymphomyeloid long-term repopulating cells, indicating the capacity for this oncogene to confer a growth advantage to hematopoietic stem cells. In addition, overexpression of Hoxa9 in more mature cells enhanced granulopoiesis and partially blocked B lymphopoiesis at the pre-B-cell stage but had no detectable effect on T lymphoid development. Interestingly, despite specifically directing high expression of Hoxa9 in T and B lymphoid lineages, none of the Hoxa9 transgenic mice developed lymphoid malignancies for the observation period of more than 18 months.
Collapse
Affiliation(s)
- Unnur Thorsteinsdottir
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Björnsson JM, Andersson E, Lundström P, Larsson N, Xu X, Repetowska E, Humphries RK, Karlsson S. Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 2001; 98:3301-8. [PMID: 11719367 DOI: 10.1182/blood.v98.12.3301] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies show that several Hox transcription factors are important for regulation of proliferation and differentiation in hematopoiesis. Among these is H0XA10, which is selectively expressed at high levels in the most primitive subpopulation of human CD34(+) bone marrow cells. When overexpressed, H0XA10 increases the proliferation of early progenitor cells and can lead to the development of myeloid leukemia. To study the effects of H0XA10 on primitive hematopoietic progenitors in more detail, transgenic mice were generated with regulatable H0XA10 expression. The transgenic mouse model, referred to as tetO-HOXA10, contains the H0XA10 gene controlled by a tetracycline-responsive element and a minimal promoter. Thus, the expression of H0XA10 is inducible and reversible depending on the absence or presence of tetracycline or its analog, doxycycline. A retroviral vector containing the tetracycline transactivator gene (tTA) was used to induce expression of the H0XA10 gene in bone marrow cells from the transgenic mice. Reverse transcription-polymerase chain reaction analysis confirmed regulatable H0XA10 expression in several transgenic lines. H0XA10 induction led to the formation of hematopoietic colonies containing blastlike cells and megakaryocytes. Moreover, the induction of H0XA10 resulted in significant proliferative advantage of primitive hematopoietic progenitors (spleen colony-forming units [CFU-S(12)]), which was reversible on withdrawal of induction. Activation of H0XA10 expression in tet0-H0XA10 mice will therefore govern proliferation of primitive myeloid progenitors in a regulated fashion. This novel animal model can be used to identify the target genes of HOXA10 and better clarify the specific role of HOXA10 in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- J M Björnsson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Brambillasca F, Mosna G, Ballabio E, Biondi A, Boulukos KE, Privitera E. Promoter analysis of TFPT (FB1), a molecular partner of TCF3 (E2A) in childhood acute lymphoblastic leukemia. Biochem Biophys Res Commun 2001; 288:1250-7. [PMID: 11700047 DOI: 10.1006/bbrc.2001.5906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously identified the TFPT (FB1) gene as a molecular partner of TCF3 (E2A) in childhood pre-B cell acute lymphoblastic leukemia (ALL). TFPT (FB1) alignment in man, mouse and rat displays a very high degree of identity, indicating that it may play a basic role in mammalian cells. To get insights into this role, we have identified and studied the TFPT (FB1) promoter and its responsiveness to hematopoietic transcriptional factors. We found that the TFPT (FB1) 5' flanking sequence displays the features of a TATA-less promoter with weak homology to Inr (Initiator) elements. Starvation experiments suggested that TFPT (FB1) expression might be constitutive. Nevertheless, the TFPT (FB1) promoter, tested by transactivation assays, was found to be responsive to Ikaros 2 and, mainly, to PU.1, a transcription factor belonging to the Ets family. Thus, these hematopoietic factors, known to play critical roles during the early stages of B cell differentiation and to be involved in leukemia, might modulate TFPT (FB1) expression during hematopoiesis and/or leukemia development.
Collapse
Affiliation(s)
- F Brambillasca
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- S E Aspland
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093-0366, USA
| | | | | |
Collapse
|
49
|
Abstract
Chromosomal translocations involving transcription factors and aberrant expression of transcription factors are frequently associated with leukemogenesis. Transcription factors are essential in maintaining the regulation of cell growth, development, and differentiation in the hematopoietic system. Alterations in the mechanisms that normally control these functions can lead to hematological malignancies. Further characterization of the molecular biology of leukemia will enhance our ability to develop disease-specific treatment strategies, and to develop effective methods of diagnosis and prognosis.
Collapse
Affiliation(s)
- H N Crans
- Department of Pediatrics, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | |
Collapse
|
50
|
Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol 2001; 21:224-34. [PMID: 11113197 PMCID: PMC88796 DOI: 10.1128/mcb.21.1.224-234.2001] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Accepted: 10/12/2000] [Indexed: 11/20/2022] Open
Abstract
Complex genetic and biochemical interactions between HOX proteins and members of the TALE (i.e., PBX and MEIS) family have been identified in embryonic development, and some of these interactions also appear to be important for leukemic transformation. We have previously shown that HOXA9 collaborates with MEIS1 in the induction of acute myeloid leukemia (AML). In this report, we demonstrate that HOXB3, which is highly divergent from HOXA9, also genetically interacts with MEIS1, but not with PBX1, in generating AML. In addition, we show that the HOXA9 and HOXB3 genes play key roles in establishing all the main characteristics of the leukemias, while MEIS1 functions only to accelerate the onset of the leukemic transformation. Contrasting the reported functional similarities between PREP1 and MEIS1, such as PBX nuclear retention, we also show that PREP1 overexpression is incapable of accelerating the HOXA9-induced AML, suggesting that MEIS1 function in transformation must entail more than PBX nuclear localization. Collectively, these data demonstrate that MEIS1 is a common leukemic collaborator with two structurally and functionally divergent HOX genes and that, in this collaboration, the HOX gene defines the identity of the leukemia.
Collapse
Affiliation(s)
- U Thorsteinsdottir
- Laboratory of Molecular Genetics of Hemopoietic Stem Cells, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|