1
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Haga CL, Booker CN, Carvalho A, Boregowda SV, Phinney DG. Transcriptional Targets of TWIST1 in Human Mesenchymal Stem/Stromal Cells Mechanistically Link Stem/Progenitor and Paracrine Functions. Stem Cells 2023; 41:1185-1200. [PMID: 37665974 PMCID: PMC10723815 DOI: 10.1093/stmcls/sxad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.
Collapse
Affiliation(s)
- Christopher L Haga
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Cori N Booker
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Ana Carvalho
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Siddaraju V Boregowda
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Donald G Phinney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| |
Collapse
|
3
|
Zhong J, Jin Z, Jiang L, Zhang L, Hu Z, Zhang Y, Liu Y, Ma J, Huang Y. Structural basis of the bHLH domains of MyoD-E47 heterodimer. Biochem Biophys Res Commun 2022; 621:88-93. [PMID: 35810596 DOI: 10.1016/j.bbrc.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most conserved transcription factor families that plays an important role in regulating cell growth, differentiation and tissue development. Typically, members of this family form homo- or heterodimers to recognize specific motifs and activate transcription. MyoD is a vital transcription factor that regulates muscle cell differentiation. However, it is necessary for MyoD to form a heterodimer with E-proteins to activate transcription. Even though the crystal structure of the MyoD homodimer has been determined, the structure of the MyoD heterodimer in complex with the E-box protein remains unclear. In this study, we determined the crystal structure of the bHLH domain of the MyoD-E47 heterodimer at 2.05 Å. Our structural analysis revealed that MyoD interacts with E47 through a hydrophobic interface. Moreover, we confirmed that heterodimerization could enhance the binding affinity of MyoD to E-box sequences. Our results provide new structural insights into the heterodimer of MyoD and E-box protein, suggesting the molecular mechanism of transcription activation of MyoD upon binding to E-box protein.
Collapse
Affiliation(s)
- Jiayun Zhong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Zhaohui Jin
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Lin Jiang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Lingxiao Zhang
- Department of Biliary-Pancreatic Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University, 200120, Shanghai, China
| | - Zetao Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University, 200120, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, 200092, Shanghai, China.
| |
Collapse
|
4
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
5
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
6
|
Soleimani VD, Nguyen D, Ramachandran P, Palidwor GA, Porter CJ, Yin H, Perkins TJ, Rudnicki MA. Cis-regulatory determinants of MyoD function. Nucleic Acids Res 2019; 46:7221-7235. [PMID: 30016497 PMCID: PMC6101602 DOI: 10.1093/nar/gky388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Muscle-specific transcription factor MyoD orchestrates the myogenic gene expression program by binding to short DNA motifs called E-boxes within myogenic cis-regulatory elements (CREs). Genome-wide analyses of MyoD cistrome by chromatin immnunoprecipitation sequencing shows that MyoD-bound CREs contain multiple E-boxes of various sequences. However, how E-box numbers, sequences and their spatial arrangement within CREs collectively regulate the binding affinity and transcriptional activity of MyoD remain largely unknown. Here, by an integrative analysis of MyoD cistrome combined with genome-wide analysis of key regulatory histones and gene expression data we show that the affinity landscape of MyoD is driven by multiple E-boxes, and that the overall binding affinity—and associated nucleosome positioning and epigenetic features of the CREs—crucially depend on the variant sequences and positioning of the E-boxes within the CREs. By comparative genomic analysis of single nucleotide polymorphism (SNPs) across publicly available data from 17 strains of laboratory mice, we show that variant sequences within the MyoD-bound motifs, but not their genome-wide counterparts, are under selection. At last, we show that the quantitative regulatory effect of MyoD binding on the nearby genes can, in part, be predicted by the motif composition of the CREs to which it binds. Taken together, our data suggest that motif numbers, sequences and their spatial arrangement within the myogenic CREs are important determinants of the cis-regulatory code of myogenic CREs.
Collapse
Affiliation(s)
- Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Duy Nguyen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Parameswaran Ramachandran
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Gareth A Palidwor
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Christopher J Porter
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, GA 30602, USA
| | - Theodore J Perkins
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Shao T, Song P, Hua H, Zhang H, Sun X, Kong Q, Wang J, Luo T, Jiang Y. Gamma synuclein is a novel Twist1 target that promotes TGF-β-induced cancer cell migration and invasion. Cell Death Dis 2018; 9:625. [PMID: 29795373 PMCID: PMC5967338 DOI: 10.1038/s41419-018-0657-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023]
Abstract
Transforming growth factor β (TGF-β) is critical for embryonic development, adult tissue homeostasis, and tumor progression. TGF-β suppresses tumors at early stage, but promotes metastasis at later stage through oncogenes such as Twist1. Gamma-synuclein (SNCG) is overexpressed in a variety of invasive and metastatic cancer. Here, we show that TGF-β induces SNCG expression by Smad-Twist1 axis, thus promoting TGF-β- and Twist1-induced cancer cell migration and invasion. We identify multiple Twist1-binding sites (E-boxes) in SNCG promoter. Chromatin immunoprecipitation and luciferase assays confirm the binding of Twist1 to the E-boxes of SNCG promoter sequence (−129/−1026 bp). Importantly, the Twist1-binding site close to the transcription initiation site is critical for the upregulation of SNCG expression by TGF-β and Twist1. Mutations of Twist1 motif on the SNCG promoter constructs markedly reduces the promoter activity. We further show that TGF-β induces Twist1 expression through Smad thereby enhancing the binding of Twist1 to SNCG promoter, upregulating SNCG promoter activity and increasing SNCG expression. SNCG knockdown abrogates TGF-β- or Twist1-induced cancer cell migration and invasion. Finally, SNCG knockdown inhibits the promotion of cancer metastasis by Twist1. Together, our data demonstrate that SNCG is a novel target of TGF-β-Smad-Twist1 axis and a mediator of Twist1-induced cancer metastasis.
Collapse
Affiliation(s)
- Ting Shao
- State Key Laboratory of Biotherapy, Section of Oncogene, Cancer Center, West China Hospital, Sichuan University and Collaboratory Inovation Center for Biotherapy, Chengdu, China
| | - Peiying Song
- State Key Laboratory of Biotherapy, Section of Oncogene, Cancer Center, West China Hospital, Sichuan University and Collaboratory Inovation Center for Biotherapy, Chengdu, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Section of Oncogene, Cancer Center, West China Hospital, Sichuan University and Collaboratory Inovation Center for Biotherapy, Chengdu, China
| | - Xiangmin Sun
- State Key Laboratory of Biotherapy, Section of Oncogene, Cancer Center, West China Hospital, Sichuan University and Collaboratory Inovation Center for Biotherapy, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Section of Oncogene, Cancer Center, West China Hospital, Sichuan University and Collaboratory Inovation Center for Biotherapy, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Section of Oncogene, Cancer Center, West China Hospital, Sichuan University and Collaboratory Inovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
8
|
Shi J, Bi P, Pei J, Li H, Grishin NV, Bassel-Duby R, Chen EH, Olson EN. Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proc Natl Acad Sci U S A 2017; 114:11950-11955. [PMID: 29078404 PMCID: PMC5692600 DOI: 10.1073/pnas.1715229114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle formation requires fusion of mononucleated myoblasts to form multinucleated myofibers. The muscle-specific membrane proteins myomaker and myomixer cooperate to drive mammalian myoblast fusion. Whereas myomaker is highly conserved across diverse vertebrate species, myomixer is a micropeptide that shows relatively weak cross-species conservation. To explore the functional conservation of myomixer, we investigated the expression and function of the zebrafish myomixer ortholog. Here we show that myomixer expression during zebrafish embryogenesis coincides with myoblast fusion, and genetic deletion of myomixer using CRISPR/Cas9 mutagenesis abolishes myoblast fusion in vivo. We also identify myomixer orthologs in other species of fish and reptiles, which can cooperate with myomaker and substitute for the fusogenic activity of mammalian myomixer. Sequence comparison of these diverse myomixer orthologs reveals key amino acid residues and a minimal fusogenic peptide motif that is necessary for promoting cell-cell fusion with myomaker. Our findings highlight the evolutionary conservation of the myomaker-myomixer partnership and provide insights into the molecular basis of myoblast fusion.
Collapse
Affiliation(s)
- Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Pengpeng Bi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
9
|
Slabáková E, Kharaishvili G, Smějová M, Pernicová Z, Suchánková T, Remšík J, Lerch S, Straková N, Bouchal J, Král M, Culig Z, Kozubík A, Souček K. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells. Oncotarget 2016; 6:36156-71. [PMID: 26416355 PMCID: PMC4742168 DOI: 10.18632/oncotarget.5392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 01/14/2023] Open
Abstract
Plasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory. Here, we show that the EMT phenotype in multiple cellular models and in clinical prostate and breast cancer samples is associated with a decrease in MDM2 and increase in MDMX expression. Modulation of EMT-accompanying changes in MDM2 expression in benign and transformed prostate epithelial cells influences their migration capacity and sensitivity to docetaxel. Analysis of putative mechanisms of MDM2 expression control demonstrates that in the context of defective p53 function, MDM2 expression is regulated by EMT-inducing transcription factors Slug and Twist. These results provide an alternative context-specific role of MDM2 in EMT, cell migration, metastasis, and therapy resistance.
Collapse
Affiliation(s)
- Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Smějová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Pernicová
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic
| | - Ján Remšík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stanislav Lerch
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Milan Král
- Department of Urology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zoran Culig
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of The Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Werner P, Latney B, Deardorff MA, Goldmuntz E. MESP1 Mutations in Patients with Congenital Heart Defects. Hum Mutat 2016; 37:308-14. [PMID: 26694203 DOI: 10.1002/humu.22947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022]
Abstract
Identifying the genetic etiology of congenital heart disease (CHD) has been challenging despite being one of the most common congenital malformations in humans. We previously identified a microdeletion in a patient with a ventricular septal defect containing over 40 genes including MESP1 (mesoderm posterior basic helix-loop-helix transcription factor 1). Because of the importance of MESP1 as an early regulator of cardiac development in both in vivo and in vitro studies, we tested for MESP1 mutations in 647 patients with congenital conotruncal and related heart defects. We identified six rare, nonsynonymous variants not seen in ethnically matched controls and one likely race-specific nonsynonymous variant. Functional analyses revealed that three of these variants altered activation of transcription by MESP1. Two of the deleterious variants are located within the conserved HLH domain and thus impair the protein-protein interaction of MESP1 and E47. The third deleterious variant was a loss-of-function frameshift mutation. Our results suggest that pathologic variants in MESP1 may contribute to the development of CHD and that additional protein partners and downstream targets could likewise contribute to the wide range of causes for CHD.
Collapse
Affiliation(s)
- Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Brande Latney
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104
| | - Matthew A Deardorff
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
11
|
A Clinical Indications Prediction Scale Based on TWIST1 for Human Mesenchymal Stem Cells. EBioMedicine 2015; 4:62-73. [PMID: 26981553 PMCID: PMC4776067 DOI: 10.1016/j.ebiom.2015.12.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs) also exhibit potent effector (angiogenic, antiinflammatory, immuno-modulatory) functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties. Here we demonstrate that stem/progenitor and effector functions are coordinately regulated at the cellular level by the transcription factor Twist1 and specified within populations according to a hierarchical model. We further show that manipulation of Twist1 levels by genetic approaches or by exposure to widely used culture supplements including fibroblast growth factor 2 (Ffg2) and interferon gamma (IFN-gamma) alters MSC efficacy in cell-based and in vivo assays in a predictable manner. Thus, by mechanistically linking stem/progenitor and effector functions our studies provide a unifying framework in the form of an MSC hierarchy that models the functional complexity of populations. Using this framework, we developed a CLinical Indications Prediction (CLIP) scale that predicts how donor-to-donor heterogeneity and culture conditions impact the therapeutic efficacy of MSC populations for different disease indications. Mesenchymal stem cells exhibit stem/progenitor and effector (angiogenic, anti-inflammatory, immuno-modulatory) functions. Twist1 coordinately regulates stem/progenitor and effector functions, which are specified hierarchically in populations. Twist1 levels predict inter-population differences in therapeutic efficacy of mesenchymal stem cells for different disease indications.
Mesenchymal stem cells are being evaluated in human clinical trials for treating ischemic, inflammatory, and immunological diseases. However, most completed trials have yielded suboptimal outcomes due to the inability to predict the potency of different donor populations, which are functionally heterogeneous. We demonstrate that clinically relevant biological activities of MSCs are coordinately regulated by the transcription factor Twist1. Furthermore, we showed that TWIST1 levels reliably predict differences in the angiogenic, anti-inflammatory, and immuno-modulatory activity of populations and as such used it to develop a Clinical Indications Prediction (CLIP) scale. By predicting potency of MSC populations for different disease indications the CLIP scale is expected to dramatically improve MSC-based clinical trial outcomes.
Collapse
|
12
|
Srinivasan S, Romagnoli M, Bohm A, Sonenshein GE. N-glycosylation regulates ADAM8 processing and activation. J Biol Chem 2014; 289:33676-88. [PMID: 25336660 DOI: 10.1074/jbc.m114.594242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The transmembrane ADAM8 (A Disintegrin And Metalloproteinase 8) protein is abundantly expressed in human breast tumors and derived metastases compared with normal breast tissue, and plays critical roles in aggressive Triple-Negative breast cancers (TNBCs). During ADAM8 maturation, the inactive proform dimerizes or multimerizes and autocatalytically removes the prodomain leading to the formation of the active, processed form. ADAM8 is a glycoprotein; however, little was known about the structure or functional role of these sugar moieties. Here, we report that in estrogen receptor (ER)α-negative, but not -positive, breast cancer cells ADAM8 contains N-glycosylation, which is required for its correct processing and activation. Consistently ADAM8 dimers were detected on the surface of ERα-negative breast cancer cells but not on ERα-positive ones. Site-directed mutagenesis confirmed four N-glycosylazhytion sites (Asn-67, Asn-91, Asn-436, and Asn-612) in human ADAM8. The Asn-67 and Asn-91 prodomain sites contained high mannose, whereas complex type N-glycosylation was observed on Asn-436 and Asn-612 in the active and remnant forms. The Asn-91 and Asn-612 sites were essential for its correct processing and cell surface localization, in particular its exit from the Golgi and endoplasmic reticulum, respectively. The N436Q mutation led to decreased ADAM8 stability due to enhanced lysosomal degradation. In contrast, mutation of the Asn-67 site had only modest effects on enzyme stability and processing. Thus, N-glycosylation is essential for processing, localization, stability, and activity of ADAM8.
Collapse
Affiliation(s)
- Srimathi Srinivasan
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mathilde Romagnoli
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Andrew Bohm
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Gail E Sonenshein
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
13
|
Wong MC, Dobi KC, Baylies MK. Discrete levels of Twist activity are required to direct distinct cell functions during gastrulation and somatic myogenesis. PLoS One 2014; 9:e99553. [PMID: 24915423 PMCID: PMC4051702 DOI: 10.1371/journal.pone.0099553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/16/2014] [Indexed: 01/27/2023] Open
Abstract
Twist (Twi), a conserved basic helix-loop-helix transcriptional regulator, directs the epithelial-to-mesenchymal transition (EMT), and regulates changes in cell fate, cell polarity, cell division and cell migration in organisms from flies to humans. Analogous to its role in EMT, Twist has been implicated in metastasis in numerous cancer types, including breast, pancreatic and prostate. In the Drosophila embryo, Twist is essential for discrete events in gastrulation and mesodermal patterning. In this study, we derive a twi allelic series by examining the various cellular events required for gastrulation in Drosophila. By genetically manipulating the levels of Twi activity during gastrulation, we find that coordination of cell division is the most sensitive cellular event, whereas changes in cell shape are the least sensitive. Strikingly, we show that by increasing levels of Snail expression in a severe twi hypomorphic allelic background, but not a twi null background, we can reconstitute gastrulation and produce viable adult flies. Our results demonstrate that the level of Twi activity determines whether the cellular events of ventral furrow formation, EMT, cell division and mesodermal migration occur.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Program in Developmental Biology, Sloan-Kettering Institute, New York, New York, United States of America
- Weill Graduate School at Cornell Medical School, New York, New York, United States of America
| | - Krista C. Dobi
- Program in Developmental Biology, Sloan-Kettering Institute, New York, New York, United States of America
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan-Kettering Institute, New York, New York, United States of America
- Weill Graduate School at Cornell Medical School, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Himeda CL, Debarnot C, Homma S, Beermann ML, Miller JB, Jones PL, Jones TI. Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Mol Cell Biol 2014; 34:1942-55. [PMID: 24636994 PMCID: PMC4019064 DOI: 10.1128/mcb.00149-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/12/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of an alternative full-length mRNA splice form of DUX4 (DUX4-fl) from the D4Z4 array in skeletal muscle. Here, we describe the identification of two enhancers, DUX4 myogenic enhancer 1 (DME1) and DME2 which activate DUX4-fl expression in skeletal myocytes but not fibroblasts. Analysis of the chromatin revealed histone modifications and RNA polymerase II occupancy consistent with DME1 and DME2 being functional enhancers. Chromosome conformation capture analysis confirmed association of DME1 and DME2 with the DUX4 promoter in vivo. The strong interaction between DME2 and the DUX4 promoter in both FSHD and unaffected primary myocytes was greatly reduced in fibroblasts, suggesting a muscle-specific interaction. Nucleosome occupancy and methylome sequencing analysis indicated that in most FSHD myocytes, both enhancers are associated with nucleosomes but have hypomethylated DNA, consistent with a permissive transcriptional state, sporadic occupancy, and the observed DUX4 expression in rare myonuclei. Our data support a model in which these myogenic enhancers associate with the DUX4 promoter in skeletal myocytes and activate transcription when epigenetically derepressed in FSHD, resulting in the pathological misexpression of DUX4-fl.
Collapse
Affiliation(s)
- Charis L. Himeda
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Céline Debarnot
- Ecole Supérieure de Biotechnologie Strasbourg, Illkirch, France
| | - Sachiko Homma
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mary Lou Beermann
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey B. Miller
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter L. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Takako I. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
15
|
Rahme GJ, Israel MA. Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function. Oncogene 2014; 34:53-62. [DOI: 10.1038/onc.2013.531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
|
16
|
Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. J Mol Recognit 2012; 25:414-26. [PMID: 22733550 DOI: 10.1002/jmr.2203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
c-Myc must heterodimerize with Max to accomplish its functions as a transcription factor. This specific heterodimerization occurs through the b-HLH-LZ (basic region, helix 1-loop-helix 2-leucine zipper) domains. In fact, many studies have shown that the c-Myc b-HLH-LZ (c-Myc'SH) preferentially forms a heterodimer with the Max b-HLH-LZ (Max'SH). The primary mechanism underlying the specific heterodimerization lies on the destabilization of both homodimers and the formation of a more stable heterodimer. In this regard, it has been widely reported that c-Myc'SH has low solubility and homodimerizes poorly and that repulsions within the LZ domain account for the homodimer instability. Here, we show that replacing one residue in the basic region and one residue in Helix 1 (H(1)) of c-Myc'SH with corresponding residues conserved in b-HLH proteins confers to c-Myc'SH a higher propensity to form a stable homodimer in solution. In stark contrast to the wild-type protein, this double mutant (L362R, R367L) of the c-Myc b-HLH-LZ (c-Myc'RL) shows limited heterodimerization with Max'SH in vitro. In addition, c-Myc'RL forms highly stable and soluble complexes with canonical as well as non-canonical E-box probes. Altogether, our results demonstrate for the first time that structural determinants driving the specific heterodimerization of c-Myc and Max are embedded in the basic region and H(1) of c-Myc and that these can be exploited to engineer a novel homodimeric c-Myc b-HLH-LZ with the ability of binding the E-box sequence autonomously and with high affinity.
Collapse
Affiliation(s)
- Marie-Eve Beaulieu
- Département de Pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Spivakov M, Akhtar J, Kheradpour P, Beal K, Girardot C, Koscielny G, Herrero J, Kellis M, Furlong EEM, Birney E. Analysis of variation at transcription factor binding sites in Drosophila and humans. Genome Biol 2012; 13:R49. [PMID: 22950968 PMCID: PMC3491393 DOI: 10.1186/gb-2012-13-9-r49] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/23/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Advances in sequencing technology have boosted population genomics and made it possible to map the positions of transcription factor binding sites (TFBSs) with high precision. Here we investigate TFBS variability by combining transcription factor binding maps generated by ENCODE, modENCODE, our previously published data and other sources with genomic variation data for human individuals and Drosophila isogenic lines. RESULTS We introduce a metric of TFBS variability that takes into account changes in motif match associated with mutation and makes it possible to investigate TFBS functional constraints instance-by-instance as well as in sets that share common biological properties. We also take advantage of the emerging per-individual transcription factor binding data to show evidence that TFBS mutations, particularly at evolutionarily conserved sites, can be efficiently buffered to ensure coherent levels of transcription factor binding. CONCLUSIONS Our analyses provide insights into the relationship between individual and interspecies variation and show evidence for the functional buffering of TFBS mutations in both humans and flies. In a broad perspective, these results demonstrate the potential of combining functional genomics and population genetics approaches for understanding gene regulation.
Collapse
Affiliation(s)
- Mikhail Spivakov
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maia AM, da Silva JHM, Mencalha AL, Caffarena ER, Abdelhay E. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants. BMC Bioinformatics 2012; 13:184. [PMID: 22839202 PMCID: PMC3507644 DOI: 10.1186/1471-2105-13-184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/17/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. RESULTS The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. CONCLUSIONS Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances.
Collapse
Affiliation(s)
- Amanda M Maia
- Laboratório de Célula-tronco – CEMO/INCA, Praça da Cruz Vermelha 23 6 andar, Centro, Rio de Janeiro/RJ, Brasil
| | - João HM da Silva
- Laboratório de Biofísica Computacional e Modelagem Molecular – PROCC/ FIOCRUZ, Av Brasil, 4365, Manguinhos, Rio de Janeiro/RJ, Brasil
| | - André L Mencalha
- Laboratório de Célula-tronco – CEMO/INCA, Praça da Cruz Vermelha 23 6 andar, Centro, Rio de Janeiro/RJ, Brasil
| | - Ernesto R Caffarena
- Laboratório de Biofísica Computacional e Modelagem Molecular – PROCC/ FIOCRUZ, Av Brasil, 4365, Manguinhos, Rio de Janeiro/RJ, Brasil
| | - Eliana Abdelhay
- Laboratório de Célula-tronco – CEMO/INCA, Praça da Cruz Vermelha 23 6 andar, Centro, Rio de Janeiro/RJ, Brasil
| |
Collapse
|
19
|
Das A, Crump JG. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012; 8:e1002710. [PMID: 22589745 PMCID: PMC3349740 DOI: 10.1371/journal.pgen.1002710] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
Cranial neural crest cells (CNCCs) have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.
Collapse
Affiliation(s)
| | - J. Gage Crump
- Broad CIRM Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Distefano GM, Gangemi AJ, Khandelwal PJ, Saunders AJ, Marenda DR. Drosophila lilliputian is required for proneural gene expression in retinal development. Dev Dyn 2012; 241:553-62. [PMID: 22275119 DOI: 10.1002/dvdy.23738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Proper neurogenesis in the developing Drosophila retina requires the regulated expression of the basic helix-loop-helix (bHLH) proneural transcription factors Atonal (Ato) and Daughterless (Da). Factors that control the timing and spatial expression of these bHLH proneural genes in the retina are required for the proper formation and function of the adult eye and nervous system. RESULTS Here we report that lilliputian (lilli), the Drosophila homolog of the FMR2/AF4 family of proteins, regulates the transcription of ato and da in the developing fly retina. We find that lilli controls ato expression at multiple enhancer elements. We also find that lilli contributes to ato auto-regulation in the morphogenetic furrow by first regulating the expression of da prior to ato. We show that FMR2 regulates the ato and da homologs MATH5 and TCF12 in human cells, suggesting a conservation of this regulation from flies to humans. CONCLUSIONS We conclude that lilliputian is part of the genetic program that regulates the expression of proneural genes in the developing retina.
Collapse
Affiliation(s)
- Ginnene M Distefano
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Computational modeling on the recognition of the HRE motif by HIF-1: molecular docking and molecular dynamics studies. J Mol Model 2011; 18:1691-700. [PMID: 21814878 DOI: 10.1007/s00894-011-1150-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/09/2011] [Indexed: 10/17/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is a bHLH-family transcription factor that controls genes involved in glycolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia responsive element (HRE) present in the promoter regions of hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). Neither the structure of free HIF-1 nor that of its complex with HRE is available. Computational modeling of the transcription factor-DNA complex has always been challenging due to their inherent flexibility and large conformational space. The present study aims to model the interaction between the DNA-binding domain of HIF-1 and HRE. Experiments showed that rigid macromolecular docking programs (HEX and GRAMM-X) failed to predict the optimal dimerization of individually modeled HIF-1 subunits. Hence, the HIF-1 heterodimer was modeled based on the phosphate system positive regulatory protein (PHO4) homodimer. The duplex VEGF-DNA segment containing HRE with flanking nucleotides was modeled in the B form and equilibrated via molecular dynamics (MD) simulation. A rigid docking approach was used to predict the crude binding mode of HIF-1 dimer with HRE, in which the putative contacts were found to be present. An MD simulation (5 ns) of the HIF-1-HRE complex in explicit water was performed to account for its flexibility and to optimize its interactions. All of the conserved amino acid residues were found to play roles in the recognition of HRE. The present work, which sheds light on the recognition of HRE by HIF-1, could be beneficial in the design of peptide or small molecule therapeutics that can mimic HIF-1 and bind with the HRE sequence.
Collapse
|
22
|
Tang N, Xie Q, Wang X, Li X, Chen Y, Lin X, Lin J. Inhibition of invasion and metastasis of MHCC97H cells by expression of snake venom cystatin through reduction of proteinases activity and epithelial-mesenchymal transition. Arch Pharm Res 2011; 34:781-9. [PMID: 21656364 DOI: 10.1007/s12272-011-0512-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 12/18/2022]
Abstract
Snake venom cystatin (sv-cystatin) is a member of the cystatin family of cysteine protease inhibitors. To further evaluate the possibility of sv-cystatin in cancer therapy, this study examined the effects of sv-cystatin on the invasion and metastasis of liver cancer cells (MHCC97H) in vitro and in vivo as well as the underlying mechanism. sv-cystatin cDNA was transfected into MHCC97H cells and the anti-invasion and antimetastasis effects of sv-cystatin were determined using migration and matrigel invasion assays and a lung-metastasis mice model. The results suggest that sv-cyst clone (sv-cystatin expression in MHCC97H cells) delayed the invasion and metastasis in vitro and in vivo compared to the parental, mock and si-sv-cyst clone cells (inhibited sv-cystatin expression by siRNA). The decreased activities of cathepsin B, MMP-2 and MMP-9 and EMT change index including higher E-cadherin, lower N-cadherin and decreased Twist activity were observed in the sv-cyst clone, which contributes to the change in invasion and metastasis ability of MHCC97H cells. This study provides evidence that expression of the sv-cystatin gene in MHCC97H cells inhibits tumor cell invasion and metastasis through the reduction of the proteinases activity and Epithelial-Mesenchymal Transition (EMT), which might contribute to the anticancer research of the sv-cystatin protein.
Collapse
Affiliation(s)
- Nanhong Tang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou 350004, China
| | | | | | | | | | | | | |
Collapse
|
23
|
De Masi F, Grove CA, Vedenko A, Alibés A, Gisselbrecht SS, Serrano L, Bulyk ML, Walhout AJM. Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. Nucleic Acids Res 2011; 39:4553-63. [PMID: 21335608 PMCID: PMC3113581 DOI: 10.1093/nar/gkr070] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Numerous efforts are underway to determine gene regulatory networks that describe physical relationships between transcription factors (TFs) and their target DNA sequences. Members of paralogous TF families typically recognize similar DNA sequences. Knowledge of the molecular determinants of protein–DNA recognition by paralogous TFs is of central importance for understanding how small differences in DNA specificities can dictate target gene selection. Previously, we determined the in vitro DNA binding specificities of 19 Caenorhabditis elegans basic helix-loop-helix (bHLH) dimers using protein binding microarrays. These TFs bind E-box (CANNTG) and E-box-like sequences. Here, we combine these data with logics, bHLH–DNA co-crystal structures and computational modeling to infer which bHLH monomer can interact with which CAN E-box half-site and we identify a critical residue in the protein that dictates this specificity. Validation experiments using mutant bHLH proteins provide support for our inferences. Our study provides insights into the mechanisms of DNA recognition by bHLH dimers as well as a blueprint for system-level studies of the DNA binding determinants of other TF families in different model organisms and humans.
Collapse
Affiliation(s)
- Federico De Masi
- Department of Medicine, Division of Genetics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lei H, Fukushige T, Niu W, Sarov M, Reinke V, Krause M. A widespread distribution of genomic CeMyoD binding sites revealed and cross validated by ChIP-Chip and ChIP-Seq techniques. PLoS One 2010; 5:e15898. [PMID: 21209968 PMCID: PMC3012110 DOI: 10.1371/journal.pone.0015898] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/30/2010] [Indexed: 01/10/2023] Open
Abstract
Identifying transcription factor binding sites genome-wide using chromatin immunoprecipitation (ChIP)-based technology is becoming an increasingly important tool in addressing developmental questions. However, technical problems associated with factor abundance and suitable ChIP reagents are common obstacles to these studies in many biological systems. We have used two completely different, widely applicable methods to determine by ChIP the genome-wide binding sites of the master myogenic regulatory transcription factor HLH-1 (CeMyoD) in C. elegans embryos. The two approaches, ChIP-seq and ChIP-chip, yield strongly overlapping results revealing that HLH-1 preferentially binds to promoter regions of genes enriched for E-box sequences (CANNTG), known binding sites for this well-studied class of transcription factors. HLH-1 binding sites were enriched upstream of genes known to be expressed in muscle, consistent with its role as a direct transcriptional regulator. HLH-1 binding was also detected at numerous sites unassociated with muscle gene expression, as has been previously described for its mouse homolog MyoD. These binding sites may reflect several additional functions for HLH-1, including its interactions with one or more co-factors to activate (or repress) gene expression or a role in chromatin organization distinct from direct transcriptional regulation of target genes. Our results also provide a comparison of ChIP methodologies that can overcome limitations commonly encountered in these types of studies while highlighting the complications of assigning in vivo functions to identified target sites.
Collapse
Affiliation(s)
- Haiyan Lei
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tetsunari Fukushige
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Niu
- Department of Molecular, Cellular Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Mihail Sarov
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Krause
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2:a002915. [PMID: 20182623 DOI: 10.1101/cshperspect.a002915] [Citation(s) in RCA: 480] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development.
Collapse
Affiliation(s)
- Julian Heuberger
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
26
|
Sengupta PK, Bouchie MP, Kukuruzinska MA. N-glycosylation gene DPAGT1 is a target of the Wnt/beta-catenin signaling pathway. J Biol Chem 2010; 285:31164-73. [PMID: 20693288 DOI: 10.1074/jbc.m110.149195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein N-glycosylation and the Wnt/β-catenin signaling pathways play critical roles in development and cancer. Although N-glycosylation has been shown to influence Wnt signaling through its effects on Wnt ligands, it is unclear whether the Wnt/β-catenin pathway impacts protein N-glycosylation. In this study, we show that promoters of the first N-glycosylation gene, DPAGT1, from Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human epidermoid carcinoma (A253) cells contain the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) consensus sequence. Treatment of cells with a Wnt activator, lithium chloride, up-regulated DPAGT1 transcript levels that correlated with an increase in the β-catenin abundance. Furthermore, exposure of cells to a Wnt receptor ligand, Wnt3a, resulted in an increase in the DPAGT1 transcript levels that was abrogated by the Wnt inhibitor, Dickkopf-1. DNA mobility shift assays revealed specific protein complexes at the DPAGT1 TCF/LEF binding region that were competed off with antibodies to either Tcf3/4 or β-catenin. Chromatin immunoprecipitation analysis confirmed the presence of β-catenin at the DPAGT1 promoter in vivo. In addition, the DPAGT1 TCF/LEF sequence drove the expression of the luciferase reporter gene. Furthermore, up-regulation of DPAGT1 transcripts by Wnt3a led to altered N-glycosylation of E-cadherin. Interestingly, the DPAGT1 TCF/LEF sequence also interacted with γ-catenin, a close homologue of β-catenin, although not in a lithium chloride-dependent manner. Our results provide the first evidence that the Wnt/β-catenin signaling pathway regulates the metabolic pathway of protein N-glycosylation by targeting DPAGT1 expression. Moreover, they suggest the existence of another regulatory mechanism involving the interaction of Tcf with γ-catenin at the DPAGT1 promoter.
Collapse
Affiliation(s)
- Pritam K Sengupta
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
27
|
Yang Z, MacQuarrie KL, Analau E, Tyler AE, Dilworth FJ, Cao Y, Diede SJ, Tapscott SJ. MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev 2009; 23:694-707. [PMID: 19299559 DOI: 10.1101/gad.1765109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rhabdomyosarcomas are characterized by expression of myogenic specification genes, such as MyoD and/or Myf5, and some muscle structural genes in a population of cells that continues to replicate. Because MyoD is sufficient to induce terminal differentiation in a variety of cell types, we have sought to determine the molecular mechanisms that prevent MyoD activity in human embryonal rhabdomyosarcoma cells. In this study, we show that a combination of inhibitory Musculin:E-protein complexes and a novel splice form of E2A compete with MyoD for the generation of active full-length E-protein:MyoD heterodimers. A forced heterodimer between MyoD and the full-length E12 robustly restores differentiation in rhabdomyosarcoma cells and broadly suppresses multiple inhibitory pathways. Our studies indicate that rhabdomyosarcomas represent an arrested progress through a normal transitional state that is regulated by the relative abundance of heterodimers between MyoD and the full-length E2A proteins. The demonstration that multiple inhibitory mechanisms can be suppressed and myogenic differentiation can be induced in the RD rhabdomyosarcomas by increasing the abundance of MyoD:E-protein heterodimers suggests a central integrating function that can be targeted to force differentiation in muscle cancer cells.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lei H, Liu J, Fukushige T, Fire A, Krause M. Caudal-like PAL-1 directly activates the bodywall muscle module regulator hlh-1 in C. elegans to initiate the embryonic muscle gene regulatory network. Development 2009; 136:1241-9. [PMID: 19261701 DOI: 10.1242/dev.030668] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous work in C. elegans has shown that posterior embryonic bodywall muscle lineages are regulated through a genetically defined transcriptional cascade that includes PAL-1/Caudal-mediated activation of muscle-specific transcription factors, including HLH-1/MRF and UNC-120/SRF, which together orchestrate specification and differentiation. Using chromatin immunoprecipitation (ChIP) in embryos, we now demonstrate direct binding of PAL-1 in vivo to an hlh-1 enhancer element. Through mutational analysis of the evolutionarily conserved sequences within this enhancer, we identify two cis-acting elements and their associated transacting factors (PAL-1 and HLH-1) that are crucial for the temporal-spatial expression of hlh-1 and proper myogenesis. Our data demonstrate that hlh-1 is indeed a direct target of PAL-1 in the posterior embryonic C. elegans muscle lineages, defining a novel in vivo binding site for this crucial developmental regulator. We find that the same enhancer element is also a target of HLH-1 positive auto regulation, underlying (at least in part) the sustained high levels of CeMyoD in bodywall muscle throughout development. Together, these results provide a molecular framework for the gene regulatory network activating the muscle module during embryogenesis.
Collapse
Affiliation(s)
- Haiyan Lei
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics 2008; 180:2095-110. [PMID: 18832354 DOI: 10.1534/genetics.108.093302] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atonal is a Drosophila proneural protein required for the proper formation of the R8 photoreceptor cell, the founding photoreceptor cell in the developing retina. Proper expression and refinement of the Atonal protein is essential for the proper formation of the Drosophila adult eye. In vertebrates, expression of transcription factors orthologous to Drosophila Atonal (MATH5/Atoh7, XATH5, and ATH5) and their progressive restriction are also involved in specifying the retinal ganglion cell, the founding neural cell type in the mammalian retina. Thus, identifying factors that are involved in regulating the expression of Atonal during development are important to fully understand how retinal neurogenesis is accomplished. We have performed a chemical mutagenesis screen for autosomal dominant enhancers of a loss-of-function atonal eye phenotype. We report here the identification of five genes required for proper Atonal expression, three of which are novel regulators of Atonal expression in the Drosophila retina. We characterize the role of the daughterless, kismet, and roughened eye genes on atonal transcriptional regulation in the developing retina and show that each gene regulates atonal transcription differently within the context of retinal development. Our results provide additional insights into the regulation of Atonal expression in the developing Drosophila retina.
Collapse
|
30
|
Powell LM, Deaton AM, Wear MA, Jarman AP. Specificity of Atonal and Scute bHLH factors: analysis of cognate E box binding sites and the influence of Senseless. Genes Cells 2008; 13:915-29. [PMID: 18681894 PMCID: PMC3287287 DOI: 10.1111/j.1365-2443.2008.01217.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The question of how proneural bHLH transcription factors recognize and regulate their target genes is still relatively poorly understood. We previously showed that Scute (Sc) and Atonal (Ato) target genes have different cognate E box motifs, suggesting that specific DNA interactions contribute to differences in their target gene specificity. Here we show that Sc and Ato proteins (in combination with Daughterless) can activate reporter gene expression via their cognate E boxes in a non-neuronal cell culture system, suggesting that the proteins have strong intrinsic abilities to recognize different E box motifs in the absence of specialized cofactors. Functional comparison of E boxes from several target genes and site-directed mutagenesis of E box motifs suggests that specificity and activity require further sequence elements flanking both sides of the previously identified E box motifs. Moreover, the proneural cofactor, Senseless, can augment the function of Sc and Ato on their cognate E boxes and therefore may contribute to proneural specificity.
Collapse
Affiliation(s)
- Lynn M. Powell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Martin A. Wear
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Hjiantoniou E, Anayasa M, Nicolaou P, Bantounas I, Saito M, Iseki S, Uney JB, Phylactou LA. Twist induces reversal of myotube formation. Differentiation 2008; 76:182-92. [PMID: 17662069 DOI: 10.1111/j.1432-0436.2007.00195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammals possess reduced ability to regenerate lost tissue, compared with other vertebrates, which can regenerate through differentiation of precursor cells or de-differentiation. Mammalian multinucleated myotube formation is a differentiation process, which arises from the fusion of mononucleated myoblasts and is thought to be an irreversible process toward muscle formation. By overexpressing the Twist gene in terminally differentiated myotubes, we managed to induce reversal of cell differentiation. More specifically, following expression of the Twist gene, myotubes underwent morphological changes that caused them to cleave. This was accompanied by a reduction in the expression of certain myogenic markers. Interestingly, Twist overexpression also caused a reduction in the muscle transcription factor MyoD. Further experiments showed an increase in the cell cycle entry molecule, cyclin D1 and initiation of DNA synthesis, due to Twist overexpression. The exploitation of Twist-mediated reversal of differentiation and the study of its specific mechanism would be important in order to study mammalian cellular de-differentiation and determine its potential in muscle regeneration.
Collapse
Affiliation(s)
- Eleni Hjiantoniou
- The Cyprus Institute of Neurology & Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dubois L, Enriquez J, Daburon V, Crozet F, Lebreton G, Crozatier M, Vincent A. Collier transcription in a single Drosophila muscle lineage: the combinatorial control of muscle identity. Development 2007; 134:4347-55. [PMID: 18003742 DOI: 10.1242/dev.008409] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specification of muscle identity in Drosophila is a multistep process: early positional information defines competence groups termed promuscular clusters, from which muscle progenitors are selected, followed by asymmetric division of progenitors into muscle founder cells (FCs). Each FC seeds the formation of an individual muscle with morphological and functional properties that have been proposed to reflect the combination of transcription factors expressed by its founder. However, it is still unclear how early patterning and muscle-specific differentiation are linked. We addressed this question, using Collier (Col; also known as Knot) expression as both a determinant and read-out of DA3 muscle identity. Characterization of the col upstream region driving DA3 muscle specific expression revealed the existence of three separate phases of cis-regulation, correlating with conserved binding sites for different mesodermal transcription factors. Examination of col transcription in col and nautilus (nau) loss-of-function and gain-of-function conditions showed that both factors are required for col activation in the ;naïve' myoblasts that fuse with the DA3 FC, thereby ensuring that all DA3 myofibre nuclei express the same identity programme. Together, these results indicate that separate sets of cis-regulatory elements control the expression of identity factors in muscle progenitors and myofibre nuclei and directly support the concept of combinatorial control of muscle identity.
Collapse
Affiliation(s)
- Laurence Dubois
- Centre de Biologie du Développement, UMR 5547 CNRS/UPS, IFR 109, Institut d'Exploration Fonctionnelle des Génomes, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Laursen KB, Mielke E, Iannaccone P, Füchtbauer EM. Mechanism of transcriptional activation by the proto-oncogene Twist1. J Biol Chem 2007; 282:34623-33. [PMID: 17893140 DOI: 10.1074/jbc.m707085200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Twist1, a master regulator in development and a key factor in tumorigenesis, is known to repress transcription by several mechanisms and is therefore considered to mediate its function mainly through inhibition. A role of Twist1 as transactivator has also been reported but, so far, without providing a mechanism for such an activity. Here we show that heterodimeric complexes of Twist1 and E12 mediate E-box-dependent transcriptional activation. We identify a novel Twist1 transactivation domain that coactivates together with the less potent E12 transactivation domain. We found three specific residues in the highly conserved WR domain to be essential for the transactivating function of murine Twist1 and suggest an alpha-helical structure of the transactivation domain.
Collapse
|
34
|
Heidt AB, Rojas A, Harris IS, Black BL. Determinants of myogenic specificity within MyoD are required for noncanonical E box binding. Mol Cell Biol 2007; 27:5910-20. [PMID: 17562853 PMCID: PMC1952131 DOI: 10.1128/mcb.01700-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 11/27/2006] [Accepted: 05/21/2007] [Indexed: 11/20/2022] Open
Abstract
The MyoD family of basic helix-loop-helix (bHLH) transcription factors has the remarkable ability to induce myogenesis in vitro and in vivo. This myogenic specificity has been mapped to two amino acids in the basic domain, an alanine and threonine, referred to as the myogenic code. These essential determinants of myogenic specificity are conserved in all MyoD family members from worms to humans, yet their function in myogenesis is unclear. Induction of the muscle transcriptional program requires that MyoD be able to locate and stably bind to sequences present in the promoter regions of critical muscle genes. Recent studies have shown that MyoD binds to noncanonical E boxes in the myogenin gene, a critical locus required for myogenesis, through interactions with resident heterodimers of the HOX-TALE transcription factors Pbx1A and Meis1. In the present study, we show that the myogenic code is required for MyoD to bind to noncanonical E boxes in the myogenin promoter and for the formation of a tetrameric complex with Pbx/Meis. We also show that these essential determinants of myogenesis are sufficient to confer noncanonical E box binding to the E12 basic domain. Thus, these data show that noncanonical E box binding correlates with myogenic potential, and we speculate that the myogenic code residues in MyoD function as myogenic determinants via their role in noncanonical E box binding and recognition.
Collapse
Affiliation(s)
- Analeah B Heidt
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
35
|
Zhao J, Wang P, Corsi AK. The C. elegans Twist target gene, arg-1, is regulated by distinct E box promoter elements. Mech Dev 2007; 124:377-89. [PMID: 17369030 PMCID: PMC1913944 DOI: 10.1016/j.mod.2007.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/19/2007] [Accepted: 01/31/2007] [Indexed: 11/23/2022]
Abstract
Proper metazoan mesoderm development requires the function of a basic helix-loop-helix (bHLH) transcription factor, Twist. Twist-containing dimers regulate the expression of target genes by binding to E box promoter elements containing the site CANNTG. In Caenorhabditis elegans, CeTwist functions in a subset of mesodermal cells. Our study focuses on how CeTwist controls the expression of its target gene, arg-1. We find that a 385bp promoter region of arg-1, which contains three different E box elements, is sufficient for maintaining the full CeTwist-dependent expression pattern. Interestingly, the expression of arg-1 in different tissues is regulated distinctly, and each of the three E boxes plays a unique role in the regulation. The first and the third E boxes (E1 and E3) are required for expression in a distinct subset of the mesodermal tissues where arg-1 is normally expressed, and the second E box (E2) is required for expression in the full set of those tissues. The essential role of E2 in arg-1 regulation is correlated with the finding that E2 binds with greater affinity than E1 or E3 to CeTwist dimers. A potential role for additional transcription factors in mesodermal gene regulation is suggested by the discovery of a novel site that is also required for arg-1 expression in a subset of the tissues but is not bound in vitro by CeTwist. On the basis of these results, we propose a model of CeTwist gene regulation in which expression is controlled by tissue-specific binding of distinct sets of E boxes.
Collapse
Affiliation(s)
| | | | - Ann K. Corsi
- *Author for correspondence: , Phone: 202-319-5274, Fax: 202-319-5721
| |
Collapse
|
36
|
Corre S, Galibert MD. Upstream stimulating factors: highly versatile stress-responsive transcription factors. ACTA ACUST UNITED AC 2005; 18:337-48. [PMID: 16162174 DOI: 10.1111/j.1600-0749.2005.00262.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Upstream stimulating factors (USF), USF-1 and USF-2, are members of the eucaryotic evolutionary conserved basic-Helix-Loop-Helix-Leucine Zipper transcription factor family. They interact with high affinity to cognate E-box regulatory elements (CANNTG), which are largely represented across the whole genome in eucaryotes. The ubiquitously expressed USF-transcription factors participate in distinct transcriptional processes, mediating recruitment of chromatin remodelling enzymes and interacting with co-activators and members of the transcription pre-initiation complex. Results obtained from both cell lines and knock-out mice indicates that USF factors are key regulators of a wide number of gene regulation networks, including the stress and immune responses, cell cycle and proliferation, lipid and glucid metabolism, and in melanocytes USF-1 has been implicated as a key UV-activated regulator of genes associated with pigmentation. This review will focus on general characteristics of the USF-transcription factors and their place in some regulatory networks.
Collapse
Affiliation(s)
- Sébastien Corre
- CNRS UMR 6061 Laboratoire de Génétique et Développement, Faculté de Médecine, Université de Rennes-1, Rennes Cedex, France
| | | |
Collapse
|
37
|
Wyszyńska-Koko J, Kurył J. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region. Anim Biotechnol 2004; 15:159-73. [PMID: 15595701 DOI: 10.1081/labt-200038667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.
Collapse
Affiliation(s)
- J Wyszyńska-Koko
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Wolka Kosowska, Poland.
| | | |
Collapse
|
38
|
Powell LM, Zur Lage PI, Prentice DRA, Senthinathan B, Jarman AP. The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol Cell Biol 2004; 24:9517-26. [PMID: 15485919 PMCID: PMC522279 DOI: 10.1128/mcb.24.21.9517-9526.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors required for the genesis of Drosophila sense organ precursors (Atonal and Scute). We show that the proneural target gene, Bearded, is regulated by both Scute and Atonal via distinct E-box consensus binding sites. By comparing with other Ato-dependent enhancer sequences, we define an Ato-specific binding consensus that differs from the previously defined Scute-specific E-box consensus, thereby defining distinct E(Ato) and E(Sc) sites. These E-box variants are crucial for function. First, tandem repeats of 20-bp sequences containing E(Ato) and E(Sc) sites are sufficient to confer Atonal- and Scute-specific expression patterns, respectively, on a reporter gene in vivo. Second, interchanging E(Ato) and E(Sc) sites within enhancers almost abolishes enhancer activity. While the latter finding shows that enhancer context is also important in defining how proneural proteins interact with these sites, it is clear that differential utilization of DNA binding sites underlies proneural protein specificity.
Collapse
Affiliation(s)
- Lynn M Powell
- Division of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Grasberger H, Ye H, Mashima H, Bell GI. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1. Gene 2004; 344:143-59. [PMID: 15656981 DOI: 10.1016/j.gene.2004.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/02/2004] [Accepted: 09/17/2004] [Indexed: 11/25/2022]
Abstract
The WD40 repeats containing zinc finger protein 106 (ZFP106) is a conserved mammalian protein of unknown function. However, its cDNA shares an extended region of identity with the scr homology domain 3 binding protein 3 (Sh3bp3) cDNA encoding a protein implicated in the insulin signaling pathway. Asking, whether Zfp106 and Sh3bp3 are products of the same gene, we characterized the structures and transcriptional regulation of Zfp106 and its human homologue, ZFP106. A TATA-less, CpG island associated promoter (P1), was mapped by 5'-RACE to a region 19 kb upstream of the ZFP106 translation start site. P1 is active throughout development and at low levels in all adult tissues examined. A conserved cis-element in the proximal P1 region showed specific binding to nuclear respiratory factor-1 (NRF-1). Mutagenesis of this site and transfection of a dominant-negative NRF-1 both revealed the crucial role of NRF-1 in activation of P1. The broad tissue expression of P1 was in contrast to the high level of ZFP106 mRNA observed in striated muscle. This prompted additional 5'-RACE experiments that established a second, TATA box-containing promoter (P2) upstream of the third coding exon. P1 and P2 transcripts encode proteins with distinct N-terminal sequences, with Sh3bp3 corresponding to a rare, alternatively spliced P2 transcript. P2 initiated transcripts are specifically expressed in striated muscle and their level is strongly upregulated during myogenic, but not adipogenic differentiation. By deletion analysis, the region between nucleotides -296 to +96 was sufficient for robust P2 responsiveness to myogenic differentiation. This response is mediated by the additive effect of binding of myogenin to three critical E boxes within this region. In addition, transcriptional enhancer factor-1 family factors contribute to both basal and myogenesis induced P2 activity. In situ hybridization of mouse embryos confirmed predominant expression of Zfp106 in tissues with high developmental expression of either NRF-1 (brown fat and developing brain) or myogenin (striated muscle). Our results suggest distinct roles of tissue-specific ZFP106 isoforms in growth related metabolism and provide the foundation for further studies into the regulation and function of ZFP106.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
40
|
Turner EC, Cureton CH, Weston CJ, Smart OS, Allemann RK. Controlling the DNA Binding Specificity of bHLH Proteins through Intramolecular Interactions. ACTA ACUST UNITED AC 2004; 11:69-77. [PMID: 15112996 DOI: 10.1016/j.chembiol.2003.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/28/2003] [Accepted: 10/28/2003] [Indexed: 11/20/2022]
Abstract
Reversible control of the conformation of proteins was employed to probe the relationship between flexibility and specificity of the basic helix-loop-helix protein MyoD. A fusion protein (apaMyoD) was designed where the basic DNA binding helix of MyoD was stablized by an amino-terminal extension with a sequence derived from the bee venom peptide apamin. The disulfide-stabilized helix from apamin served as a nucleus for a helix that extended for a further ten residues, thereby holding apaMyoD's DNA recognition helix in a predominantly alpha-helical conformation. The thermal stability of the DNA complexes of apaMyoD was increased by 13 degrees C relative to MyoD-bHLH. Measurements of the fluorescence anisotropy change on DNA binding indicated that apaMyoD bound to E-box-containing DNA sequences with enhanced affinity relative to MyoD-bHLH. Consequently, the DNA binding specificity of apaMyoD was increased 10-fold.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Nguyen QGV, Buskin JN, Himeda CL, Shield MA, Hauschka SD. Differences in the function of three conserved E-boxes of the muscle creatine kinase gene in cultured myocytes and in transgenic mouse skeletal and cardiac muscle. J Biol Chem 2003; 278:46494-505. [PMID: 12968024 DOI: 10.1074/jbc.m308194200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1256-base pair enhancer-promoter of the mouse muscle creatine kinase gene includes three CAnnTG E-boxes that are conserved among mammals and have flanking and middle sequences conforming to consensus muscle regulatory factor binding sites. This study seeks to determine whether these E-boxes are critical for muscle creatine kinase expression in physiologically distinct muscles. Mutations of the "right" and "left" E-boxes in the enhancer decreased expression in cultured skeletal myocytes approximately 10- and 2-fold, respectively, whereas a "promoter" E-box mutation had little effect. In neonatal myocardiocytes, the left E-box mutation decreased expression approximately 3-fold, whereas right or promoter E-box mutations had no effect. Very different effects were seen in transgenic mice, where the promoter E-box mutation decreased expression in quadriceps, extensor digitorum longus, and soleus approximately 10-fold, and approximately 100-fold in distal tongue, diaphragm, and ventricle. The right E-box mutation, tested in the presence of the other two mutations, caused a significant decrease in distal tongue, but not in quadriceps, extensor digitorum longus, soleus, or ventricle. Mutation of the left E-box actually raised expression in soleus, suggesting a possible repressor role for this control element. The discrepancies between mutation effects in differentiating skeletal muscle cultures, neonatal myocardiocytes, and adult mice suggested that the E-boxes might play different roles during muscle development and adult steady-state function. However, transgenic analysis of embryonic and early postnatal mice indicated no positive role for these three E-boxes in early development, implying that differences in E-box function between adult muscle and cultured cells are the result of physiological signals.
Collapse
Affiliation(s)
- Quynh-Giao V Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Life on earth has evolved on a photic carousel, spinning through alternating periods of light and darkness. This playful image belies the fact that only those organisms that learned how to benefit from the recurring features in their environment were allowed to ride on. This selection process has engendered many daily rhythms in our biosphere, most of which rely on the anticipatory power of an endogenously generated marker of phase: the biological clock. The basic mechanisms driving this remarkable device have been really tough to decode but are finally beginning to unravel as chronobiologists probe deeper and wider in and around the recently discovered gears of the clock. Like its chemical predecessors, biological circadian oscillators are characterized by interlaced positive and negative feedback loops, but with constants and variables carefully balanced to achieve an approximately 24h period. The loops at the heart of these biological oscillators are sustained by specific patterns of gene expression and precisely tuned posttranscriptional modifications. It follows that a molecular understanding of the biological clock hinges, in no small measure, on a better understanding of the cis-acting elements that bestow a given gene with its circadian properties. The present review summarizes what is known about these elements and what remains to be elucidated.
Collapse
Affiliation(s)
- Estela Muñoz
- Unit on Temporal Gene Expression, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
43
|
Michel G, Minet E, Mottet D, Remacle J, Michiels C. Site-directed mutagenesis studies of the hypoxia-inducible factor-1alpha DNA-binding domain. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:73-83. [PMID: 12393189 DOI: 10.1016/s0167-4781(02)00484-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor, is activated when cells are exposed to hypoxia. It is composed of two subunits, HIF-1alpha and ARNT. When activated, it binds to the hypoxia-responsive element (HRE) and up-regulates the expression of several genes (vascular endothelial growth factor (VEGF), erythropoietin (EPO), enolase, em leader ). By molecular modeling, a 3-D model for the complex between the DNA-binding domain of HIF-1 (bHLH domain) and its consensus DNA sequence has been developed. Specific interactions between three amino acids (Ser22, Ala25, Arg30) of the HIF-1alpha subunit and DNA bases were identified. In order to further investigate the role of these amino acids, we generated four mutants of the HIF-1alpha subunit using site-directed mutagenesis. The activity of each mutant was tested using a reporter gene containing either 6 HRE sequences or the authentic human VEGF promoter. The results show that three mutants, Ala25Ser, Ala26Glu and Arg30Ala, were no longer active in the reporter gene assay. On the other hand, the Ser22Ala mutant increased the reporter gene expression, in normoxia as well as in hypoxia. These results correlate with the ones obtained when the DNA-binding capability of the mutants was assayed by electrophoretic mobility shift assays (EMSA): Arg30Ala and Ala26Glu mutants bind very weakly to HRE while the Ser22Ala mutant has the same binding capacity as the wild-type HIF-1alpha. These results bring new insights on the specificity of the protein/DNA interactions for HIF-1 towards HRE.
Collapse
Affiliation(s)
- Gaetan Michel
- Laboratoire de Biochimie et Biologie Cellulaire, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
44
|
Zhang WM, Popova SN, Bergman C, Velling T, Gullberg MK, Gullberg D. Analysis of the human integrin alpha11 gene (ITGA11) and its promoter. Matrix Biol 2002; 21:513-23. [PMID: 12392762 DOI: 10.1016/s0945-053x(02)00054-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrin alpha11beta1 is a collagen receptor which is expressed in a subset of mesenchymally-derived tissues during embryogenesis. Based on available human chromosome 15-derived sequences and genomic PCR, the complete exon structure of ITGA11, including the proximal promoter, was assembled into 30 exons. The inserted region (encoding amino acids 804-826) distinguishing alpha11 from other integrin alpha chains, was placed in the very beginning of exon 20. PCR data failed to show alternative splicing of RNA transcribed from this region. Using the oligo-capping technique a major transcription start site was mapped 30 nucleotides upstream of the translation start and identified as an abbreviated initiator sequence. Promoter sequence analysis in silico suggested the presence of multiple binding sites for transcription factors in the region upstream of the transcription start. 3 kb of the 5' flanking sequence was isolated and used to generate luciferase promoter constructs. In the fibrosarcoma cell line HT1080 a core promoter [nt (-)127-(+)25], a potential silencer region [nt (-)400-(-)127] and a potential enhancer region [nt (-)1519-(-)400], were identified as being important for alpha11 transcription in mesenchymal cells. Furthermore, studies of the promoter region will provide valuable information regarding the molecular mechanisms underlying the cell- and tissue- specific expression pattern of ITGA11.
Collapse
Affiliation(s)
- Wan-Ming Zhang
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Box 582, Husargatan 3, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Loebel DAF, O'Rourke MP, Steiner KA, Banyer J, Tam PPL. Isolation of differentially expressed genes from wild-type and Twist mutant mouse limb buds. Genesis 2002; 33:103-13. [PMID: 12124942 DOI: 10.1002/gene.10091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the mouse, Twist is required for normal limb and craniofacial development. We show that the aristaless-like transcription factors, Alx3 and Alx4 are downregulated in the Twist(-/-) mutant and may be potential targets of Twist. By suppression subtractive hybridization we isolated 31 and 18 unique clones representing mRNAs that are putatively downregulated and upregulated respectively in Twist(-/-) forelimb buds. These included genes encoding cytoskeletal components, metabolic enzymes, hemoglobin molecules, membrane transport proteins, components of transcription and translation complexes, protein modification enzymes and proteins related to cell proliferation and apoptosis. Differential expression of selected clones was validated by whole mount in situ hybridization to E10.5 wild-type and Twist(-/-) embryos. We show that four novel clones are expressed in the Twist-expressing craniofacial tissues and paraxial mesoderm and downregulated in Twist(-/-) embryos, raising the possibility that they are, in addition to genes of the Alx family, downstream targets of Twist.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | | | | | | | | |
Collapse
|
46
|
Abstract
The general requirement to induce mesoderm and allocate cells into different mesodermal tissues such as body muscle or heart is common in many animal embryos. Since the discovery of the twist gene, there has been great progress toward unraveling the molecular mechanisms that control mesoderm specification and differentiation. Twist was first identified in Drosophila as a gene crucial for proper gastrulation and mesoderm formation. In the fly embryo, Twist continues to play additional roles, allocating mesodermal cells into the body wall muscle fate and patterning a subset of these muscles. Twist is also required for proper differentiation of the adult musculature. Twist homologues have been identified in a great variety of organisms, which span the phylogenetic tree. These organisms include other invertebrates such as jellyfish, nematode, leech and lancelet as well as vertebrates such as frog, chick, fish, mouse and human. The Twist family shares both homology in structure across the basic helix-loop-helix domain and in expression during mesoderm and muscle development in most species. Here we review the current state of knowledge of the Twist family and consider how Twist functions during development. Moreover, we highlight experimental evidence that shows common themes that Twist employs during specification and patterning of the mesoderm among evolutionarily distant organisms. Conserved principles and the molecular mechanisms underlying them are discussed.
Collapse
Affiliation(s)
- Irinka Castanon
- Program in Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
47
|
El Ghouzzi V, Bonaventure J, Munnich A. TWIST: un nouvel acteur de l’ossification des os plats. Med Sci (Paris) 2001. [DOI: 10.1051/medsci/200117121281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Smith JE, Cronmiller C. TheDrosophila daughterlessgene autoregulates and is controlled by both positive and negativecisregulation. Development 2001; 128:4705-14. [PMID: 11731451 DOI: 10.1242/dev.128.23.4705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As the only class I helix-loop-helix transcription factor in Drosophila, Daughterless (Da) has generally been regarded as a ubiquitously expressed binding partner for other developmentally regulated bHLH transcription factors. From analysis of a novel tissue-specific allele, dalyh, we show that da expression is not constitutive, but is dynamically regulated. This transcriptional regulation includes somatic ovary-specific activation, autoregulation and negative regulation. Unexpectedly, the diverse functions of da may require that expression levels be tightly controlled in a cell and/or tissue-specific manner. Our analysis of dalyh identifies it as the first springer insertion that functions as an insulating element, with its disruptive activity mediated by the product of a fourth chromosome gene, Suppressor of lyh [Su(lyh)].
Collapse
Affiliation(s)
- J E Smith
- Department of Biology, Gilmer Hall, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA
| | | |
Collapse
|
49
|
Saito T, Guan F, Papolos DF, Lau S, Klein M, Fann CS, Lachman HM. Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 2001; 6:387-95. [PMID: 11443522 DOI: 10.1038/sj.mp.4000871] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 12/11/2000] [Accepted: 12/19/2000] [Indexed: 11/09/2022]
Abstract
Genes involved in the regulation of synaptic vesicle function are potential candidates for the development of psychiatric disorders. In addition to experimental and theoretical considerations, a number of genes involved in synaptic vesicle function map to regions of the genome that have been linked to bipolar disorder (BPD) and schizophrenia (SZ). One is synaptojanin 1 (SYNJ1) which maps to 21q22.2, a chromosomal region that has been linked to BPD in a subset of families in several studies. Synaptojanin 1 is an inositol 5-phosphatase that has an important role in synaptic vesicle endocytosis. Mutation screening of 32 exons, intron--exon junctions, and 839 bases of 5'-flanking DNA resulted in the identification of 11 mutations of which four were very common and seven were very rare. Of the 11 mutations identified, several may have functional significance including two coding variants, two that may affect the binding of a transcription factor, and two that involve known splicing regulatory domains. Five bipolar patients out of 149 analyzed were found who have one of the four rare variants that were most likely to have functional significance compared with 0/148 controls. The allele frequencies for three of the four common variants were very similar in bipolar patients and controls. A slight difference in allele frequency was found for an interesting mutation we detected in intron 12 in which two non-adjacent thymidine residues are deleted in a poly-AT tract located near the exon 12 splice donor site (chi(2) = 2.45, P = 0.12, 2-tailed). Although we failed to unequivocally identify a specific SYNJ1 allele that could be responsible for putative chromosome 21q22-linked BPD, several interesting variants were found to be increased in bipolar subjects and should be further investigated.
Collapse
Affiliation(s)
- T Saito
- Department of Psychiatry, Division of Psychiatry Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Marshall P, Chartrand N, Worton RG. The mouse dystrophin enhancer is regulated by MyoD, E-box-binding factors, and by the serum response factor. J Biol Chem 2001; 276:20719-26. [PMID: 11259421 DOI: 10.1074/jbc.m102100200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo studies in the mouse have revealed that the muscle promoter of the mouse dystrophin gene can target the right ventricle of the heart only, suggesting the need for other regulatory elements to target the skeletal muscle as well as other compartments of the heart. In this study we report the identification of the mouse dystrophin gene enhancer that is located approximately 8.5 kilobases downstream from the mouse dystrophin gene muscle promoter. The enhancer was tested in myogenic G8, H9-C2, and nonmyogenic 3T3 cell lines and is mostly active in G8 myotubes. Sequence analysis of the mouse dystrophin gene enhancer revealed the presence of four E-boxes numbered E1-E4, a putative mef-2 binding site, and a serum response element. Site-directed mutagenesis studies have shown that E-boxes 1, 2, and 3 as well as the serum response element are required for enhancer activity. Gel shift analysis revealed two binding activities at binding sites E1 and E3 which were specific to myotubes, and supershift assays confirmed that myoD binds at both these sites. Our study also shows that werum response factor binds the serum response element but in myoblasts and fibroblasts only, suggesting that serum response factor may repress enhancer function.
Collapse
Affiliation(s)
- P Marshall
- Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | |
Collapse
|