1
|
Peña-Ponton C, Diez-Rodriguez B, Perez-Bello P, Becker C, McIntyre LM, van der Putten WH, De Paoli E, Heer K, Opgenoorth L, Verhoeven KJF. High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive transposable element superfamilies in the clonal Lombardy poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5839-5856. [PMID: 38836523 PMCID: PMC11427840 DOI: 10.1093/jxb/erae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation is environment-sensitive and can mediate stress responses. In trees, changes in the environment might cumulatively shape the methylome landscape over time. However, because high-resolution methylome studies usually focus on single environmental cues, the stress-specificity and long-term stability of methylation responses remain unclear. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone widely distributed across Europe. Adult trees from different geographic locations were clonally propagated in a common garden experiment and exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Whole-genome bisulfite sequencing revealed stress-induced and naturally occurring DNA methylation variants. In CG/CHG contexts, the same genomic regions were often affected by multiple stresses, suggesting a generic methylome response. Moreover, these variants showed striking overlap with naturally occurring methylation variants between trees from different locations. Drought treatment triggered CHH hypermethylation of transposable elements, affecting entire superfamilies near drought-responsive genes. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and identified stress-specific hypermethylation of entire transposon superfamilies with possible functional consequences. Our results underscore the importance of studying multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.
Collapse
Affiliation(s)
- Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Barbara Diez-Rodriguez
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
- Natural Resources and Climate Area, CARTIF Technology Centre, 47151 Boecillo, Valladolid, Spain
| | - Paloma Perez-Bello
- IGA Technology Services Srl. Via Jacopo Linussio 51, 33100 Udine UD, Italy
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, The Netherlands
| | - Emanuele De Paoli
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Katrin Heer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
| | - Lars Opgenoorth
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Lanciano S, Philippe C, Sarkar A, Pratella D, Domrane C, Doucet AJ, van Essen D, Saccani S, Ferry L, Defossez PA, Cristofari G. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. CELL GENOMICS 2024; 4:100498. [PMID: 38309261 PMCID: PMC10879037 DOI: 10.1016/j.xgen.2024.100498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.
Collapse
Affiliation(s)
- Sophie Lanciano
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Claude Philippe
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Arpita Sarkar
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - David Pratella
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Cécilia Domrane
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Aurélien J Doucet
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Dominic van Essen
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Simona Saccani
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Laure Ferry
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | | | - Gael Cristofari
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France.
| |
Collapse
|
4
|
Simoni S, Clemente C, Usai G, Vangelisti A, Natali L, Tavarini S, Angelini LG, Cavallini A, Mascagni F, Giordani T. Characterisation of LTR-Retrotransposons of Stevia rebaudiana and Their Use for the Analysis of Genetic Variability. Int J Mol Sci 2022; 23:ijms23116220. [PMID: 35682899 PMCID: PMC9181549 DOI: 10.3390/ijms23116220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Stevia rebaudiana is one of the most important crops belonging to the Asteraceae family. Stevia is cultivated all over the world as it represents a valid natural alternative to artificial sweeteners thanks to its leaves, which produce steviol glycosides that have high sweetening power and reduced caloric value. In this work, the stevia genome sequence was used to isolate and characterise full-length long-terminal repeat retrotransposons (LTR-REs), which account for more than half of the genome. The Gypsy retrotransposons were twice as abundant as the Copia ones. A disproportionate abundance of elements belonging to the Chromovirus/Tekay lineage was observed among the Gypsy elements. Only the SIRE and Angela lineages represented significant portions of the genome among the Copia elements. The dynamics with which LTR-REs colonised the stevia genome were also estimated; all isolated full-length elements turned out to be relatively young, with a proliferation peak around 1–2 million years ago. However, a different analysis conducted by comparing sequences encoding retrotranscriptase showed the occurrence of an older period in which there was a lot of LTR-RE proliferation. Finally, a group of isolated full-length elements belonging to the lineage Angela was used to analyse the genetic variability in 25 accessions of S. rebaudiana using the Inter-Retrotransposon Amplified Polymorphism (IRAP) protocol. The obtained fingerprints highlighted a high degree of genetic variability and were used to study the genomic structures of the different accessions. It was hypothesised that there are four ancestral subpopulations at the root of the analysed accessions, which all turned out to be admixed. Overall, these data may be useful for genome sequence annotations and for evaluating genetic variability in this species, which may be useful in stevia breeding.
Collapse
|
5
|
Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J. A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). PHYSIOLOGIA PLANTARUM 2021; 173:1729-1764. [PMID: 33547804 DOI: 10.1111/ppl.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Melon (Cucumis melo L.) is an important cucurbit and has been considered as a model plant for studying sex determination. The four most common sexual morphotypes in melon are monoecious (A-G-M), gynoecious (--ggM-), andromonoecious (A-G-mm), and hermaphrodite (--ggmm). Sex expression in melons is complex, as the genes and associated networks that govern the sex expression are not fully explored. Recently, RNA-seq transcriptomic profiling, ChIP-qPCR analysis integrated with gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathways predicted the differentially expressed genes including sex-specific ACS and ACO genes, in regulating the sex-expression, phytohormonal cross-talk, signal transduction, and secondary metabolism in melons. Integration of transcriptional control through genetic interaction in between the ACS7, ACS11, and WIP1 in epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3, epigenetically, overall determine sex expression. Alignment of protein sequences for establishing phylogenetic evolution, motif comparison, and protein-protein interaction supported the structural conservation while presence of the conserved hydrophilic and charged residues across the diverged evolutionary group predicted the functional conservation of the ACS protein. Presence of the putative cis-binding elements or DNA motifs, and its further comparison with DAP-seq-based cistrome and epicistrome of Arabidopsis, unraveled strong ancestry of melons with Arabidopsis. Motif comparison analysis also characterized putative genes and transcription factors involved in ethylene biosynthesis, signal transduction, and hormonal cross-talk related to sex expression. Overall, we have comprehensively reviewed research findings for a deeper insight into transcriptional and epigenetic regulation of sex expression and flower development in melons.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Binod Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| |
Collapse
|
6
|
Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, Mascagni F, Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC PLANT BIOLOGY 2021; 21:221. [PMID: 34000996 PMCID: PMC8127270 DOI: 10.1186/s12870-021-02991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Maria Ventimiglia
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Flavia Mascagni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Tommaso Giordani
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
7
|
Usai G, Vangelisti A, Simoni S, Giordani T, Natali L, Cavallini A, Mascagni F. DNA Modification Patterns within the Transposable Elements of the Fig ( Ficus carica L.) Genome. PLANTS 2021; 10:plants10030451. [PMID: 33673593 PMCID: PMC7997441 DOI: 10.3390/plants10030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Transposable element activity can be harmful to the host’s genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica L.) by exploiting high-quality genome reference and related N4-methylcytosine (4mC) and N6-methyladenine (6mA) data. Overall, 1.49% of transposon nucleotides showed either 4mC or 6mA modifications: the 4mC/6mA ratio was similar in Class I and Class II transposons, with a prevalence of 4mC, which is comparable to coding genes. Different percentages of 4mC or 6mA were observed among LTR-retrotransposon lineages and sub-lineages. Furthermore, both the Copia and Gypsy retroelements showed higher modification rates in the LTR and coding regions compared with their neighbour regions. Finally, the unconventional methylation of retrotransposons is unrelated to the number of close genes, suggesting that the 4mC and 6mA frequency in LTR-retrotransposons should not be related to transcriptional repression in the adjacency of the element. In conclusion, this study highlighted unconventional DNA modification patterns in fig transposable elements. Further investigations will focus on functional implications, in regards to how modified retroelements affect the expression of neighbouring genes, and whether these epigenetic markers can spread from repeats to genes, shaping the plant phenotype.
Collapse
|
8
|
Ma M, Chen X, Yin Y, Fan R, Li B, Zhan Y, Zeng F. DNA Methylation Silences Exogenous Gene Expression in Transgenic Birch Progeny. FRONTIERS IN PLANT SCIENCE 2020; 11:523748. [PMID: 33414793 PMCID: PMC7783445 DOI: 10.3389/fpls.2020.523748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
The genetic stability of exogenous genes in the progeny of transgenic trees is extremely important in forest breeding; however, it remains largely unclear. We selected transgenic birch (Betula platyphylla) and its hybrid F1 progeny to investigate the expression stability and silencing mechanism of exogenous genes. We found that the exogenous genes of transgenic birch could be transmitted to their offspring through sexual reproduction. The exogenous genes were segregated during genetic transmission. The hybrid progeny of transgenic birch WT1×TP22 (184) and WT1×TP23 (212) showed higher Bgt expression and greater insect resistance than their parents. However, the hybrid progeny of transgenic birch TP23×TP49 (196) showed much lower Bgt expression, which was only 13.5% of the expression in its parents. To elucidate the mechanism underlying the variation in gene expression between the parents and progeny, we analyzed the methylation rates of Bgt in its promoter and coding regions. The hybrid progeny with normally expressed exogenous genes showed much lower methylation rates (0-29%) than the hybrid progeny with silenced exogenous genes (32.35-45.95%). These results suggest that transgene silencing in the progeny is mainly due to DNA methylation at cytosine residues. We further demonstrated that methylation in the promoter region, rather than in the coding region, leads to gene silencing. We also investigated the relative expression levels of three methyltransferase genes: BpCMT, BpDRM, and BpMET. The transgenic birch line 196 with a silenced Gus gene showed, respectively, 2.54, 9.92, and 4.54 times higher expression levels of BpCMT, BpDRM, and BpMET than its parents. These trends are consistent with and corroborate the high methylation levels of exogenous genes in the transgenic birch line 196. Therefore, our study suggests that DNA methylation in the promoter region leads to silencing of exogenous genes in transgenic progeny of birch.
Collapse
Affiliation(s)
- Minghao Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohui Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yibo Yin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ruixin Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Bo Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Li B, Hu P, Zhu LB, You LL, Cao HH, Wang J, Zhang SZ, Liu MH, Toufeeq S, Huang SJ, Xu JP. DNA Methylation Is Correlated with Gene Expression during Diapause Termination of Early Embryonic Development in the Silkworm ( Bombyx mori). Int J Mol Sci 2020; 21:E671. [PMID: 31968548 PMCID: PMC7013401 DOI: 10.3390/ijms21020671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
DNA modification is a naturally occurring DNA modification in prokaryotic and eukaryotic organisms and is involved in several biological processes. Although genome-wide methylation has been studied in many insects, the understanding of global and genomic DNA methylation during insect early embryonic development, is lacking especially for insect diapause. In this study, we analyzed the relationship between DNA methylomes and transcriptomes in diapause-destined eggs compared to diapause-terminated eggs in the silkworm, Bombyx mori (B. mori). The results revealed that methylation was sparse in this species, as previously reported. Moreover, methylation levels in diapause-terminated eggs (HCl-treated) were 0.05% higher than in non-treated eggs, mainly due to the contribution of CG methylation sites. Methylation tends to occur in the coding sequences and promoter regions, especially at transcription initiation sites and short interspersed elements. Additionally, 364 methylome- and transcriptome-associated genes were identified, which showed significant differences in methylation and expression levels in diapause-destined eggs when compared with diapause-terminated eggs, and 74% of methylome and transcriptome associated genes showed both hypermethylation and elevated expression. Most importantly, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses showed that methylation may be positively associated with Bombyx mori embryonic development, by regulating cell differentiation, metabolism, apoptosis pathways and phosphorylation. Through analyzing the G2/M phase-specific E3 ubiquitin-protein ligase (G2E3), we speculate that methylation may affect embryo diapause by regulating the cell cycle in Bombyx mori. These findings will help unravel potential linkages between DNA methylation and gene expression during early insect embryonic development and insect diapause.
Collapse
Affiliation(s)
- Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, Anhui, China;
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Ming-Hui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, Anhui, China;
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Shou-Jun Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China; (B.L.); (P.H.); (L.-B.Z.); (L.-L.Y.); (H.-H.C.); (J.W.); (S.-Z.Z.); (S.T.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, Anhui, China
| |
Collapse
|
10
|
Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 344:31-89. [DOI: 10.1016/bs.ircmb.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Borgognone A, Castanera R, Morselli M, López-Varas L, Rubbi L, Pisabarro AG, Pellegrini M, Ramírez L. Transposon-associated epigenetic silencing during Pleurotus ostreatus life cycle. DNA Res 2018; 25:451-464. [PMID: 29893819 PMCID: PMC6191308 DOI: 10.1093/dnares/dsy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Transposable elements constitute an important fraction of eukaryotic genomes. Given their mutagenic potential, host-genomes have evolved epigenetic defense mechanisms to limit their expansion. In fungi, epigenetic modifications have been widely studied in ascomycetes, although we lack a global picture of the epigenetic landscape in basidiomycetes. In this study, we analysed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity and suggest that 21 nt small RNAs play a key role in transposon silencing. Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Remarkably, we found that nucleus-specific methylation levels varied in dikaryotic strains sharing identical genetic complement but different subculture conditions. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes. This study provides an integrated picture of epigenetic defense mechanisms leading to the transcriptional silencing of transposons and surrounding genes in basidiomycetes. Moreover, our findings suggest that transcriptional but not methylation reprogramming triggers fruitbody development in P. ostreatus.
Collapse
Affiliation(s)
- Alessandra Borgognone
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
- Institute for Genomics and Proteomics, UCLA-U.S. Department of Energy (DOE), University of California, Los Angeles, USA
| | - Leticia López-Varas
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
- Institute for Genomics and Proteomics, UCLA-U.S. Department of Energy (DOE), University of California, Los Angeles, USA
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| |
Collapse
|
12
|
El Baidouri M, Kim KD, Abernathy B, Li YH, Qiu LJ, Jackson SA. Genic C-Methylation in Soybean Is Associated with Gene Paralogs Relocated to Transposable Element-Rich Pericentromeres. MOLECULAR PLANT 2018; 11:485-495. [PMID: 29476915 DOI: 10.1016/j.molp.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Most plants are polyploid due to whole-genome duplications (WGD) and can thus have duplicated genes. Following a WGD, paralogs are often fractionated (lost) and few duplicate pairs remain. Little attention has been paid to the role of DNA methylation in the functional divergence of paralogous genes. Using high-resolution methylation maps of accessions of domesticated and wild soybean, we show that in soybean, a recent paleopolyploid with many paralogs, DNA methylation likely contributed to the elimination of genetic redundancy of polyploidy-derived gene paralogs. Transcriptionally silenced paralogs exhibit particular genomic features as they are often associated with proximal transposable elements (TEs) and are preferentially located in pericentromeres, likely due to gene movement during evolution. Additionally, we provide evidence that gene methylation associated with proximal TEs is implicated in the divergence of expression profiles between orthologous genes of wild and domesticated soybean, and within populations.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA; Corporate R&D, LG Chem, LG Science Park, 30 Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea.
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Seibt KM, Wenke T, Muders K, Truberg B, Schmidt T. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:268-285. [PMID: 26996788 DOI: 10.1111/tpj.13170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.
Collapse
Affiliation(s)
- Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | | | | | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
14
|
Li SF, Zhang GJ, Yuan JH, Deng CL, Gao WJ. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes. PLANTA 2016; 243:1083-95. [PMID: 26919983 DOI: 10.1007/s00425-016-2485-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/07/2016] [Indexed: 05/03/2023]
Abstract
The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
15
|
Putative regulation mechanism for the MSTN gene by a CpG island generated by the SINE marker Ins227bp. BMC Vet Res 2015; 11:138. [PMID: 26100061 PMCID: PMC4476204 DOI: 10.1186/s12917-015-0428-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/05/2015] [Indexed: 11/16/2022] Open
Abstract
Background A single nucleotide polymorphism (SNP) in the first intron of the myostatin gene (MSTN) is associated with aptness of elite Thoroughbreds to race over sprint, middle or long distances. This intronic marker (g.66493737 T ≻ C), a short interspersed nuclear element (SINE) of 227 bp (Ins227bp) insertion polymorphism in the MSTN promoter, and the adjacent SNP BIEC2-417495 have not been studied for their association with racing aptness of the average Thoroughbreds raced in countries with lower status of the racing industry. This study investigated these markers regarding their prevalence and association with performance in common race horses. Markers were genotyped by amplification refractory mutation system-quantitative PCR (ARMS-qPCR) or amplicon melting. Furthermore, we asked whether the Ins227bp marker might theoretically regulate the expression of myostatin by generating a novel target for DNA methylation or by changing binding sites for transcription factors. Putative sites for DNA methylation or binding of transcription factors were predicted by MethPrimer and by the softwares JASPAR, MatInspector and UniPROBE, respectively. Results Pairwise linkage disequilibrium between g.66493737 T ≻ C and Ins227bp was high (r2 = 0.93). A lower linkage was determined for g.66493737 T ≻ C and BIEC2-417495 (r2 = 0.69) as well as for BIEC2-417495 and Ins227bp (r2 = 0.76). The estimated frequencies for the presence of Ins227bp (I) indel and the C alleles at g.66493737 T ≻ C and BIEC2-417495 were 0.46, 0.47 and 0.43, respectively. Heterozygotes represented the most abundant genotype at each locus. The best racing distance (BRD) was significantly different between the homozygotes of each SNP (p = 0.01 to 0.03). C allele homozygotes at BIEC2-417495 or g.66493737 T ≻ C, as well as Ins227bp homozygotes earned most money on a mean distance ranging from 1211 to 1230 m. Heterozygotes earned most money on races over 1690 to 1709 m. The BRD for the T/T carriers at both SNP loci and for the SINE-free genotype was 1812 to 1854 m. Other performance parameters were not significantly different between the genotypes, except of the relative success score (RSS). The RSS was significantly slightly better on a distance of ≤1300 m for all carriers of the C allele and the Ins227bp compared to homozygous T genotypes and SINE-negative horses (p = 0.037 to 0.046). For distances of more than 1300 m the RSS was not significantly different between genotypes. In silico assessment indicated that the Ins227bp promoter insertion might have generated a CpG island and a few novel putative binding sites for transcription factors. Conclusions All three target polymorphisms (Ins227bp, g.66493737 T ≻ C, BIEC2-417495) are suitable markers to assess the ability of non-elite Thoroughbreds to race at short or longer distances. The CpG island generated by Ins227bp may cause training-induced silencing of MSTN expression. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0428-3) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet 2014; 10:e1004785. [PMID: 25393550 PMCID: PMC4230842 DOI: 10.1371/journal.pgen.1004785] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is an ancient molecular modification found in most eukaryotes. In plants, DNA methylation is not only critical for transcriptionally silencing transposons, but can also affect phenotype by altering expression of protein coding genes. The extent of its contribution to phenotypic diversity over evolutionary time is, however, unclear, because of limited stability of epialleles that are not linked to DNA mutations. To dissect the relative contribution of DNA methylation to transposon surveillance and host gene regulation, we leveraged information from three species in the Brassicaceae that vary in genome architecture, Capsella rubella, Arabidopsis lyrata, and Arabidopsis thaliana. We found that the lineage-specific expansion and contraction of transposon and repeat sequences is the main driver of interspecific differences in DNA methylation. The most heavily methylated portions of the genome are thus not conserved at the sequence level. Outside of repeat-associated methylation, there is a surprising degree of conservation in methylation at single nucleotides located in gene bodies. Finally, dynamic DNA methylation is affected more by tissue type than by environmental differences in all species, but these responses are not conserved. The majority of DNA methylation variation between species resides in hypervariable genomic regions, and thus, in the context of macroevolution, is of limited phenotypic consequence. DNA methylation is an epigenetic mark that has received a great deal of attention in plants because it can be stably transmitted across generations. However, the rate of DNA methylation change, or epimutation, is greater than that of DNA mutation. In addition, different from DNA sequence, DNA methylation can vary within an individual in response to developmental or environmental cues. Whether altered characters can be passed on to the next generation via directed modifications in DNA methylation is a question of great interest. We have compared how DNA methylation changes between species, tissues, and environments using three closely related crucifers as examples. We found that DNA methylation is different between roots and shoots and changes with temperatures, but that such changes are not conserved across species. Moreover, most of the methylated sites are not conserved between species. This suggests that DNA methylation may respond to immediate fluctuations in the environment, but this response is not retained over long evolutionary periods. Thus, in contrast to transcriptional responses, conserved epigenetic responses at the level of DNA methylation are not widespread. Instead, the patterns of DNA methylation are largely determined by the evolution of genome structure, and responsive loci are likely short-lived accidents of this process.
Collapse
|
17
|
Hong SJ, Lee HJ, Oh JH, Jung SH, Min KO, Choi SW, Rhyu MG. Age-related methylation patterning of housekeeping genes and tissue-specific genes is distinct between the stomach antrum and body. Epigenomics 2013; 5:283-99. [PMID: 23750644 DOI: 10.2217/epi.13.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM The methylation-variable sites around CpG islands are frequently overmethylated in Helicobacter pylori-infected stomachs. Age-related patterns of the overmethylation changes were compared between the fast-growing antrum cells and the slow-growing body cells. MATERIALS & METHODS A total of 316 H. pylori-positive tissues and 380 H. pylori-negative tissues were obtained by endoscopic biopsy. The methylation-variable sites of ten housekeeping genes and nine tissue-specific genes were semiquantitatively analyzed, based on the ten-level classification of methylation-specific PCR intensity. The overmethylated genes were scored when their methylation levels were higher than an intermediate level of each gene common in the H. pylori-negative mucosa. RESULTS The age-dependent methylation level of the inactive APC gene observed similarly in the antrum and the body was used as an age standard of methylation variation in a biopsy tissue. The overmethylation of housekeeping genes and stomach-specific genes rapidly increased to a high plateau frequency in the young-aged APC methylation cases (mean age: 43 years) in the H. pylori-positive antrum. In the H. pylori-positive body, most of the overmethylated housekeeping genes slowly increased to a peak frequency in the middle-aged APC methylation cases (mean age: 53 years). The housekeeping gene pairs showed high correlations (Spearman's correlation coefficient > 0.4) in both the antrum and the body. CONCLUSION The overmethylation of housekeeping genes rapidly and slowly increased to a high frequency in concordance with a rapid and slow growth of epithelial cells in the H. pylori-infected stomach.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong Socho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Rhyu MG, Oh JH, Hong SJ. Epigenetic implication of gene-adjacent retroelements in Helicobacter pylori-infected adults. Epigenomics 2013; 4:527-35. [PMID: 23130834 DOI: 10.2217/epi.12.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A chronic inflammatory condition of gastric mucosa can facilitate the influx of new stem cells into the stomach. Epigenetic codes, such as DNA methylation, may be responsible for the stable maintenance of epigenetic phenotypes established in the new stomach-adapted stem cells. A number of hypotheses have been made for the role of CpG-island methylation, which is common in the Helicobacter pylori-infected stomach. However, they could not explain the plausible role of CpG-island methylation in the re-establishment of epigenetic phenotypes. These islands are highly repetitive sequences densely methylated throughout the human genome, the so-called parasitic retroelements, which expand a number of cDNA copies with reverse transcriptase. The densely methylated retroelements adjacent to the host genes can form the transitional-CpG sites around gene-control regions that are barely methylated. This review focuses on the putative role of transitional CpG methylation in the adaptive differentiation of new stem cells in the H. pylori-infected stomach.
Collapse
Affiliation(s)
- Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong Socho-gu, Seoul 137-701, Korea
| | | | | |
Collapse
|
19
|
Latrasse D, Jégu T, Meng PH, Mazubert C, Hudik E, Delarue M, Charon C, Crespi M, Hirt H, Raynaud C, Bergounioux C, Benhamed M. Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Res 2013; 41:2907-17. [PMID: 23341037 PMCID: PMC3597657 DOI: 10.1093/nar/gks1458] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/07/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022] Open
Abstract
Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling.
Collapse
Affiliation(s)
- David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Pin-Hong Meng
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Christelle Mazubert
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Elodie Hudik
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Céline Charon
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Martin Crespi
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Heribert Hirt
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France, Institute of Horticulture, Guizhou Academy of Agricultural Sciences, GuiYang, Guizhou Province, 550006, P.R. China, Institut des Sciences du Végétal, UPR CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France and URGV Plant Genomics, INRA/CNRS/University of Evry, 2 rue Gaston Cremieux, 91057 Evry, France
| |
Collapse
|
20
|
Byun HM, Nordio F, Coull BA, Tarantini L, Hou L, Bonzini M, Apostoli P, Bertazzi PA, Baccarelli A. Temporal stability of epigenetic markers: sequence characteristics and predictors of short-term DNA methylation variations. PLoS One 2012; 7:e39220. [PMID: 22745719 PMCID: PMC3379987 DOI: 10.1371/journal.pone.0039220] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/21/2012] [Indexed: 01/27/2023] Open
Abstract
Background DNA methylation is an epigenetic mechanism that has been increasingly investigated in observational human studies, particularly on blood leukocyte DNA. Characterizing the degree and determinants of DNA methylation stability can provide critical information for the design and conduction of human epigenetic studies. Methods We measured DNA methylation in 12 gene-promoter regions (APC, p16, p53, RASSF1A, CDH13, eNOS, ET-1, IFNγ, IL-6, TNFα, iNOS, and hTERT) and 2 of non-long terminal repeat elements, i.e., L1 and Alu in blood samples obtained from 63 healthy individuals at baseline (Day 1) and after three days (Day 4). DNA methylation was measured by bisulfite-PCR-Pyrosequencing. We calculated intraclass correlation coefficients (ICCs) to measure the within-individual stability of DNA methylation between Day 1 and 4, subtracted of pyrosequencing error and adjusted for multiple covariates. Results Methylation markers showed different temporal behaviors ranging from high (IL-6, ICC = 0.89) to low stability (APC, ICC = 0.08) between Day 1 and 4. Multiple sequence and marker characteristics were associated with the degree of variation. Density of CpG dinucleotides nearby the sequence analyzed (measured as CpG(o/e) or G+C content within ±200bp) was positively associated with DNA methylation stability. The 3′ proximity to repeat elements and range of DNA methylation on Day 1 were also positively associated with methylation stability. An inverted U-shaped correlation was observed between mean DNA methylation on Day 1 and stability. Conclusions The degree of short-term DNA methylation stability is marker-dependent and associated with sequence characteristics and methylation levels.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mono-allelic retrotransposon insertion addresses epigenetic transcriptional repression in human genome. J Biomed Sci 2012; 19:13. [PMID: 22300442 PMCID: PMC3315731 DOI: 10.1186/1423-0127-19-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Retrotransposons have been extensively studied in plants and animals and have been shown to have an impact on human genome dynamics and evolution. Their ability to move within genomes gives retrotransposons to affect genome instability. Methods we examined the polymorphic inserted AluYa5, evolutionary young Alu, in the progesterone receptor gene to determine the effects of Alu insertion on molecular environment. We used mono-allelic inserted cell lines which carry both Alu-present and Alu-absent alleles. To determine the epigenetic change and gene expression, we performed restriction enzyme digestion, Pyrosequencing, and Chromatin Immunoprecipitation. Results We observed that the polymorphic insertion of evolutionally young Alu causes increasing levels of DNA methylation in the surrounding genomic area and generates inactive histone tail modifications. Consequently the Alu insertion deleteriously inactivates the neighboring gene expression. Conclusion The mono-allelic Alu insertion cell line clearly showed that polymorphic inserted repetitive elements cause the inactivation of neighboring gene expression, bringing aberrant epigenetic changes.
Collapse
|
22
|
Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 2011; 7:e1002301. [PMID: 21980304 PMCID: PMC3183085 DOI: 10.1371/journal.pgen.1002301] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022] Open
Abstract
The "arms race" relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE-induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.
Collapse
|
23
|
Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 2011; 89:495-504. [PMID: 21916613 DOI: 10.1139/o11-046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A typical eukaryotic genome harbors a rich variety of repetitive elements. The most abundant are retrotransposons, mobile retroelements that utilize reverse transcriptase and an RNA intermediate to relocate to a new location within the cellular genomes. A vast majority of the repetitive mammalian genome content has originated from the retrotransposition of SINE (100-300 bp short interspersed nuclear elements that are derived from the structural 7SL RNA or tRNA), LINE (7kb long interspersed nuclear element), and LTR (2-3 kb long terminal repeats) transposable element superfamilies. Broadly labeled as "evolutionary junkyard" or "fossils", this enigmatic "dark matter" of the genome possesses many yet to be discovered properties.
Collapse
|
24
|
Pal A, Srivastava T, Sharma MK, Mehndiratta M, Das P, Sinha S, Chattopadhyay P. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia. J Cell Mol Med 2011; 14:2646-54. [PMID: 19508390 PMCID: PMC4373486 DOI: 10.1111/j.1582-4934.2009.00792.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O2 for 6 weeks and compared with cells cultured in 21% O2 for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells.
Collapse
Affiliation(s)
- Arnab Pal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Estécio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S, Oki Y, Kondo Y, Jelinek J, Shen L, Hartung H, Aplan PD, Czerniak BA, Liang S, Issa JPJ. Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 2010; 20:1369-82. [DOI: 10.1101/gr.107318.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic silencing plays an important role in cancer development. An attractive hypothesis is that local DNA features may participate in differential predisposition to gene hypermethylation. We found that, compared with methylation-resistant genes, methylation-prone genes have a lower frequency of SINE and LINE retrotransposons near their transcription start site. In several large testing sets, this distribution was highly predictive of promoter methylation. Genome-wide analysis showed that 22% of human genes were predicted to be methylation-prone in cancer; these tended to be genes that are down-regulated in cancer and that function in developmental processes. Moreover, retrotransposon distribution marks a larger fraction of methylation-prone genes compared to Polycomb group protein (PcG) marking in embryonic stem cells; indeed, PcG marking and our predictive model based on retrotransposon frequency appear to be correlated but also complementary. In summary, our data indicate that retrotransposon elements, which are widespread in our genome, are strongly associated with gene promoter DNA methylation in cancer and may in fact play a role in influencing epigenetic regulation in normal and abnormal physiological states.
Collapse
|
26
|
Muramoto H, Yagi S, Hirabayashi K, Sato S, Ohgane J, Tanaka S, Shiota K. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions. Genes Cells 2010; 15:855-65. [DOI: 10.1111/j.1365-2443.2010.01423.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
28
|
Tan MP. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:21-26. [PMID: 19889550 DOI: 10.1016/j.plaphy.2009.10.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 10/20/2009] [Accepted: 10/20/2009] [Indexed: 05/26/2023]
Abstract
Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation.
Collapse
Affiliation(s)
- Ming-pu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009; 461:1135-8. [PMID: 19847267 DOI: 10.1038/nature08498] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/09/2009] [Indexed: 12/22/2022]
Abstract
Sex determination in plants leads to the development of unisexual flowers from an originally bisexual floral meristem. This mechanism results in the enhancement of outcrossing and promotes genetic variability, the consequences of which are advantageous to the evolution of a species. In melon, sexual forms are controlled by identity of the alleles at the andromonoecious (a) and gynoecious (g) loci. We previously showed that the a gene encodes an ethylene biosynthesis enzyme, CmACS-7, that represses stamen development in female flowers. Here we show that the transition from male to female flowers in gynoecious lines results from epigenetic changes in the promoter of a transcription factor, CmWIP1. This natural and heritable epigenetic change resulted from the insertion of a transposon, which is required for initiation and maintenance of the spreading of DNA methylation to the CmWIP1 promoter. Expression of CmWIP1 leads to carpel abortion, resulting in the development of unisexual male flowers. Moreover, we show that CmWIP1 indirectly represses the expression of the andromonoecious gene, CmACS-7, to allow stamen development. Together our data indicate a model in which CmACS-7 and CmWIP1 interact to control the development of male, female and hermaphrodite flowers in melon.
Collapse
|
30
|
Gogvadze E, Buzdin A. Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 2009; 66:3727-42. [PMID: 19649766 PMCID: PMC11115525 DOI: 10.1007/s00018-009-0107-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/11/2009] [Accepted: 07/14/2009] [Indexed: 12/31/2022]
Abstract
Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition.
Collapse
Affiliation(s)
- Elena Gogvadze
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya st, 117997 Moscow, Russia.
| | | |
Collapse
|
31
|
Hong SJ, Kang MI, Oh JH, Jung YC, Kim YH, Kim SJ, Choi SH, Seo EJ, Choi SW, Rhyu MG. DNA methylation and expression patterns of key tissue-specific genes in adult stem cells and stomach tissues. J Korean Med Sci 2009; 24:918-29. [PMID: 19794993 PMCID: PMC2752778 DOI: 10.3346/jkms.2009.24.5.918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/01/2009] [Indexed: 11/25/2022] Open
Abstract
CpG-island margins and non-island-CpG sites round the transcription start sites of CpG-island-positive and -negative genes are methylated to various degrees in a tissue-specific manner. These methylation-variable CpG sites were analyzed to delineate a relationship between the methylation and transcription of the tissue-specific genes. The level of tissue-specific transcription was estimated by counting the number of the total transcripts in the SAGE (serial analysis of gene expression) database. The methylation status of 12 CpG-island margins and 21 non-island CpG sites near the key tissue-specific genes was examined in pluripotent stromal cells obtained from fat and bone marrow samples as well as in lineage-committed cells from marrow bulk, stomach, colon, breast, and thyroid samples. Of the 33 CpG sites examined, 10 non-island-CpG sites, but none of the CpG-island margins were undermethylated concurrent with tissue-specific expression of their nearby genes. The net methylation of the 33 CpG sites and the net amount of non-island-CpG gene transcripts were high in stomach tissues and low in stromal cells. The present findings suggest that the methylation of the non-island-CpG sites is inversely associated with the expression of the nearby genes, and the concert effect of transitional-CpG methylation is linearly associated with the stomach-specific genes lacking CpG-islands.
Collapse
Affiliation(s)
- Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Hwan Oh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Chae Jung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Ho Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Ja Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hye Choi
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Joo Seo
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Wook Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
32
|
Lavi T, Siman-Tov R, Ankri S. Insights into the mechanism of DNA recognition by the methylated LINE binding protein EhMLBP of Entamoeba histolytica. Mol Biochem Parasitol 2009; 166:117-25. [DOI: 10.1016/j.molbiopara.2009.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/28/2022]
|
33
|
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genes Dev 2009; 19:1419-28. [PMID: 19478138 PMCID: PMC2720190 DOI: 10.1101/gr.091678.109] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/20/2009] [Indexed: 12/25/2022]
Abstract
Transposable elements (TEs) are ubiquitous genomic parasites. The deleterious consequences of the presence and activity of TEs have fueled debate about the evolutionary forces countering their expansion. Purifying selection is thought to purge TE insertions from the genome, and TE sequences are targeted by hosts for epigenetic silencing. However, the interplay between epigenetic and evolutionary forces countering TE expansion remains unexplored. Here we analyze genomic, epigenetic, and population genetic data from Arabidopsis thaliana to yield three observations. First, gene expression is negatively correlated with the density of methylated TEs. Second, the signature of purifying selection is detectable for methylated TEs near genes but not for unmethylated TEs or for TEs far from genes. Third, TE insertions are distributed by age and methylation status, such that older, methylated TEs are farther from genes. Based on these observations, we present a model in which host silencing of TEs near genes has deleterious effects on neighboring gene expression, resulting in the preferential loss of methylated TEs from gene-rich chromosomal regions. This mechanism implies an evolutionary tradeoff in which the benefit of TE silencing imposes a fitness cost via deleterious effects on the expression of nearby genes.
Collapse
Affiliation(s)
- Jesse D. Hollister
- Department of Ecology and Evolutionary Biology, University of Californina, Irvine, Irvine, California 92697-2525, USA
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of Californina, Irvine, Irvine, California 92697-2525, USA
| |
Collapse
|
34
|
Abstract
Retrotransposons, mainly LINEs, SINEs, and endogenous retroviruses, make up roughly 40% of the mammalian genome and have played an important role in genome evolution. Their prevalence in genomes reflects a delicate balance between their further expansion and the restraint imposed by the host. In any human genome only a small number of LINE1s (L1s) are active, moving their own and SINE sequences into new genomic locations and occasionally causing disease. Recent insights and new technologies promise answers to fundamental questions about the biology of transposable elements.
Collapse
Affiliation(s)
- John L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Comparative analysis of distinct non-coding characteristics potentially contributing to the divergence of human tissue-specific genes. Genetica 2008; 136:127-34. [DOI: 10.1007/s10709-008-9323-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
|
36
|
Kang MY, Lee BB, Ji YI, Jung EH, Chun HK, Song SY, Park SE, Park J, Kim DH. Association of interindividual differences in p14ARF promoter methylation with single nucleotide polymorphism in primary colorectal cancer. Cancer 2008; 112:1699-707. [PMID: 18327804 DOI: 10.1002/cncr.23335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND CpG island hypermethylation has been reported at the promoter region of many tumor suppressor genes in colorectal cancers. However, there are significant interindividual differences in the degree of DNA methylation in colorectal cancers. The objective of the current study was to understand whether single nucleotide polymorphisms (SNPs) around the promoter of a gene are implicated in the interindividual differences of CpG island hypermethylation. METHODS Promoter methylation of the p14(ARF) gene and messenger RNA (mRNA) expression levels of p14(ARF), DNA methyltransferase 1 (DNMT1), and DNMT3b were investigated by using methylation-specific polymerase chain reaction (PCR) analysis (MSP) and quantitative real-time PCR analysis in fresh tissues from 188 patients with colorectal cancer. SNPs around the p14(ARF) promoter were genotyped in DNA from peripheral blood lymphocytes in 300 healthy individuals and in 188 patients with colorectal cancer by using matrix-assisted laser desorption/ionization mass spectrometry. RESULTS p14(ARF) methylation was present in 61 of 188 colorectal cancers (32%). Fourteen SNPs among the 20 candidate SNPs were identified as monomorphic in the Korean population studied. Two individual SNPs (-4256 thymine to cytosine [T-->C] and -1477 guanine to adenine [G-->A]), which were in strong linkage disequilibrium (|D'|=0.99; correlation coefficient [r(2)]=0.95), were associated significantly with p14(ARF) methylation. Patients who had the CC variant at the-4256 locus or the AA variant at the -1477 locus had 2.42 times (95% confidence interval [95% CI], 1.07-5.46; P = .03) and 2.47 times (95% CI, 1.09-5.56; P= .03) greater risk of p14(ARF) methylation than patients who had the TT or GG homozygote, respectively, after adjusting for mRNA levels of DNMTs. Four major haplotypes were identified within a block (-4256 T-->C, -3631 T-->C, -1477 G-->A, and +20,188 T-->C). p14(ARF) promoter methylation also was associated significantly with the CCAT haplotype (odds ratio [OR], 8.31; 95% CI, 2.43-28.41; P= .0007) and the CTAC haplotype (OR, 9.71; 95% CI, 1.09-86.24; P= .04). CONCLUSIONS The current results suggested that SNPs around the p14(ARF) promoter region may be responsible for the interindividual susceptibility to p14(ARF) promoter methylation among individuals with colorectal cancer.
Collapse
Affiliation(s)
- Mi Yeon Kang
- Center for Genome Research, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Kangnam-Ku, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Simons C, Makunin IV, Pheasant M, Mattick JS. Maintenance of transposon-free regions throughout vertebrate evolution. BMC Genomics 2007; 8:470. [PMID: 18093339 PMCID: PMC2241635 DOI: 10.1186/1471-2164-8-470] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Accepted: 12/20/2007] [Indexed: 01/23/2023] Open
Abstract
Background We recently reported the existence of large numbers of regions up to 80 kb long that lack transposon insertions in the human, mouse and opossum genomes. These regions are significantly associated with loci involved in developmental and transcriptional regulation. Results Here we report that transposon-free regions (TFRs) are prominent genomic features of amphibian and fish lineages, and that many have been maintained throughout vertebrate evolution, although most transposon-derived sequences have entered these lineages after their divergence. The zebrafish genome contains 470 TFRs over 10 kb and a further 3,951 TFRs over 5 kb, which is comparable to the number identified in mammals. Two thirds of zebrafish TFRs over 10 kb are orthologous to TFRs in at least one mammal, and many have orthologous TFRs in all three mammalian genomes as well as in the genome of Xenopus tropicalis. This indicates that the mechanism responsible for the maintenance of TFRs has been active at these loci for over 450 million years. However, the majority of TFR bases cannot be aligned between distantly related species, demonstrating that TFRs are not the by-product of strong primary sequence conservation. Syntenically conserved TFRs are also more enriched for regulatory genes compared to lineage-specific TFRs. Conclusion We suggest that TFRs contain extended regulatory sequences that contribute to the precise expression of genes central to early vertebrate development, and can be used as predictors of important regulatory regions.
Collapse
Affiliation(s)
- Cas Simons
- Australian Research Council Special Research Center for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| | | | | | | |
Collapse
|
38
|
Kang MI, Kim HS, Jung YC, Kim YH, Hong SJ, Kim MK, Baek KH, Kim CC, Rhyu MG. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem 2007; 102:224-39. [PMID: 17352407 DOI: 10.1002/jcb.21291] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In general, methylation of the promoter regions is inversely correlated with gene expression. The transitional CpG area between the promoter-associated CpG islands and the nearby retroelements is often methylated in a tissue-specific manner. This study analyzed the relationship between gene expression and the methylation of the transitional CpGs in two human stromal cells derived from the bone marrow (BMSC) and adipose tissue (ATSC), both of which have a multilineage differentiation potential. The transitional CpGs of the osteoblast-specific (RUNX2 and BGLAP), adipocyte-specific (PPARgamma2), housekeeping (CDKN2A and MLH1), and mesenchyme-unrelated (RUNX3) genes were examined by methylation-specific PCR. The expression of each gene was measured using reverse-transcription PCR analysis. The RUNX2, BGLAP, and CDKN2A genes in the BMSC, and the PPARgamma2 gene in the ATSC exhibited hypomethylation of the transitional CpGs along with the strong expression. The CpG island of RUNX3 gene not expressed in both BMSC and ATSC was hypermethylated. Transitional hypomethylation of the MLH1 gene was accompanied by the higher expression in the BMSC than in the ATSC. The weakly methylated CpGs of the PPARgamma2 gene in the BMSC became hypomethylated along with the strong expression during the osteoblastic differentiation. There were no notable changes in the transitional methylation and expression of the genes other than PPARgamma2 after the differentiation. Therefore, the transitional methylation and gene expression established in mesenchymal cells tend to be consistently preserved under the induction of differentiation. Weak transitional methylation of the PPARgamma2 gene in the BMSC suggests a methylation-dependent mechanism underlying the adiopogenesis of bone marrow.
Collapse
Affiliation(s)
- Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007; 35:4743-54. [PMID: 17617638 PMCID: PMC1950553 DOI: 10.1093/nar/gkm455] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It is generally assumed that transposable elements, including endogenous retroviruses (ERVs), are silenced by DNA methylation/chromatin structure in mammalian cells. However, there have been very few experimental studies to examine the methylation status of human ERVs. In this study, we determined and compared the methylation status of the 5′ long terminal repeats (LTRs) of different copies of the human endogenous retrovirus (HERV) family HERV-E, which are inserted in various genomic contexts. We found that three HERV-E LTRs which function as alternative gene promoters in placenta are unmethylated in that tissue but heavily methylated in blood cells, where these LTRs are not active promoters. This difference is not solely due to global hypomethylation in placenta, since two general measures of methylation levels of HERV-E and HERV-K LTRs suggest only 10–15% lower overall HERV methylation in placenta compared to blood. Comparisons between methylation levels of the LTR-derived gene promoters and six random HERV-E LTRs in placenta showed that the former display significantly lower methylation levels than random LTRs. Moreover, the differences in methylation between LTRs cannot always be explained by their genomic environment, since methylation of flanking sequences can be very different from methylation of the LTR itself.
Collapse
Affiliation(s)
- Daphne Reiss
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
- *To whom correspondence should be addressed.+1-604-675-8139+1-604-877-0712
| |
Collapse
|
40
|
Abstract
At certain evolutionary junctures, two or more mutations participating in the build-up of a new complex function may be required to become available simultaneously in the same individuals. How could this happen in higher organisms whose populations are small compared to those of microbes, and in which chances of combined nearly simultaneous highly specific favorable mutations are correspondingly low? The question can in principle be answered for regulatory evolution, one of the basic processes of evolutionary change. A combined resetting of transcription rates in several genes could occur in the same individual. It is proposed that, in eukaryotes, changes in epigenetic trends and epigenetically transforming encounters between alternative chromatin structures could arise frequently enough so as to render probable particular conjunctions of changed transcription rates. Such conjunctions could involve mutational changes with low specificity requirements in gene-associated regions of non-protein-coding sequences. The effects of such mutations, notably when they determine the use of histone variants and covalent modifications of histones, can be among those that migrate along chromatin. Changes in chromatin structure are often cellularly inheritable over at least a limited number of generations of cells, and of individuals when the germ line is involved. SINEs and LINEs, which have been considered "junk DNA", are among the repeat sequences that would appear liable to have teleregulatory effects on the function of a nearby promoter, through changes in their numbers and distribution. There may also be present preexisting unstably inheritable epigenetic trends leading to cellular variegation, trends endemic in a cell population based on DNA sequences previously established in the neighborhood. Either way, epigenetically conditioned teleregulatory trends may display only limited penetrance. The imposition at a distance of new chromatin structures with regulatory impact can occur in cis as well as in trans, and is examined as intrachromosomally spreading teleregulation and interchromosomal "gene kissing". The chances for two or more particular epigenetically determined regulatory trends to occur together in a cell are increased thanks to the proposed low specificity requirements for most of the pertinent sequence changes in intergenic and intronic DNA or in the distribution of middle repetitive sequences that have teleregulatory impact. Inheritable epigenetic changes ("epimutations") with effects at a distance would then perdure over the number of generations required for "assimilation" of the several regulatory novelties through the occurrence and selection, gene by gene, of specific classical mutations. These mutations would have effects similar to the epigenetic effects, yet would provide stability and penetrance. The described epigenetic/genetic partnership may well at times have opened the way toward certain complex new functions. Thus, the presence of "junk DNA", through co-determining the (higher or lower) order and the variants of chromatin structure with regulatory effects at a distance, might make an important contribution to the evolution of complex organisms.
Collapse
Affiliation(s)
- Emile Zuckerkandl
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
41
|
Abstract
One of the oldest unsolved problems in genetics is the observation that gene silencing can 'spread' along a chromosome. Although spreading has been widely perceived as a process of long-range assembly of heterochromatin proteins, such 'oozing' might not apply in most cases. Rather, long-range silencing seems to be a dynamic process, involving local diffusion of histone-modifying enzymes from source binding sites to low-affinity sites nearby. Discontinuous silencing might reflect looping interactions, whereas the spreading of continuous silencing might be driven by the processive movement of RNA or DNA polymerases. We review the evidence for the spreading of silencing in many contexts and organisms and conclude that multiple mechanisms have evolved that silence genes at a distance.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | |
Collapse
|
42
|
Eller CD, Regelson M, Merriman B, Nelson S, Horvath S, Marahrens Y. Repetitive sequence environment distinguishes housekeeping genes. Gene 2006; 390:153-65. [PMID: 17141428 PMCID: PMC1857324 DOI: 10.1016/j.gene.2006.09.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/18/2006] [Accepted: 09/24/2006] [Indexed: 12/14/2022]
Abstract
Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes by their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear Element-1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, was used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes.
Collapse
Affiliation(s)
- C. Daniel Eller
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Moira Regelson
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Barry Merriman
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Stan Nelson
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
| | - Steve Horvath
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
- UCLA Department of Biostatistics, School of Public Health, Box 951772, Los Angeles, California 90095-1772, USA
| | - York Marahrens
- UCLA Department of Human Genetics David Geffen School of Medicine, Gonda Center, 695 E. Young Drive South, Los Angeles, California 90095-7088, USA
- * to whom correspondence should be addressed: York Marahrens, UCLA Department of Human Genetics, Gonda Center, Room 4554b, 695 Charles E. Young Drive, Los Angeles, CA 90095, USA, Phone: (310) 267-2466, Fax: (310) 794-5446, E-mail:
| |
Collapse
|
43
|
Meng L, Ziv M, Lemaux PG. Nature of stress and transgene locus influences transgene expression stability in barley. PLANT MOLECULAR BIOLOGY 2006; 62:15-28. [PMID: 16900326 DOI: 10.1007/s11103-006-9000-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 04/06/2006] [Indexed: 05/11/2023]
Abstract
Stress and the nature of the transgene locus can affect transgene expression stability. These effects were studied in two, stably expressing, T6 populations of barley (Hordeum vulgare): bombardment-mediated, multi-copy lines with ubiquitin-driven bar and uidA or single-copy lines from Ds-mediated gene delivery with ubiquitin-driven bar alone. Imposing the environmental stresses, water and nutrient deprivation and heat shock, did not reproducibly affect transgene expression stability; however, high frequencies of heritable transcriptional gene silencing (TGS) occurred following in vitro culture after six generations of stable expression in the multi-copy subline, T3#30, but not in the other lines studied. T3#30 plants with complete TGS had epigenetic modification patterns exactly like those in an identical sibling subline, T3#31, which had significant reduction in transgene expression in the T3 generation and was completely transcriptionally silenced in the absence of imposed stresses in the T6 generation. Complete TGS in T3#30 plants correlated with methylation in the 5'UTR and intron of the ubi1 promoter complex and condensation of chromatin around the transgenes; DNA methylation likely occurred prior to chromatin condensation. Partial TGS in T3#30 also correlated with methylation of the ubi1 promoter complex, as occurred with complete TGS. T3#30 has a complex transgene structure with inverted repeat transgene fragments and a 3'-LTR from a barley retrotransposon, and therefore the transgene locus itself may affect its tendency to silence after in vitro culture and transgene silencing might result from host defense mechanisms activated by changes in plant developmental programming and/or stresses imposed during in vitro growth.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley , CA 94720, USA
| | | | | |
Collapse
|
44
|
Liu ZH, Jiao D, Sun X. Classifying genomic sequences by sequence feature analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2006; 3:201-5. [PMID: 16689686 PMCID: PMC5172532 DOI: 10.1016/s1672-0229(05)03027-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream, exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.
Collapse
|
45
|
Kim YH, Hong SJ, Jung YC, Kim SJ, Seo EJ, Choi SW, Rhyu MG. The 5'-end transitional CpGs between the CpG islands and retroelements are hypomethylated in association with loss of heterozygosity in gastric cancers. BMC Cancer 2006; 6:180. [PMID: 16827945 PMCID: PMC1552088 DOI: 10.1186/1471-2407-6-180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 07/10/2006] [Indexed: 01/28/2023] Open
Abstract
Background A loss of heterozygosity (LOH) represents a unilateral chromosomal loss that reduces the dose of highly repetitive Alu, L1, and LTR retroelements. The aim of this study was to determine if the LOH events can affect the spread of retroelement methylation in the 5'-end transitional area between the CpG islands and their nearest retroelements. Methods The 5'-transitional area of all human genes (22,297) was measured according to the nearest retroelements to the transcription start sites. For 50 gastric cancer specimens, the level of LOH events on eight cancer-associated chromosomes was estimated using the microsatellite markers, and the 5'-transitional CpGs of 20 selected genes were examined by methylation analysis using the bisulfite-modified DNA. Results The extent of the transitional area was significantly shorter with the nearest Alu elements than with the nearest L1 and LTR elements, as well as in the extragenic regions containing a higher density of retroelements than in the intragenic regions. The CpG islands neighbouring a high density of Alu elements were consistently hypomethylated in both normal and tumor tissues. The 5'-transitional methylated CpG sites bordered by a low density of Alu elements or the L1 and LTR elements were hypomethylated more frequently in the high-level LOH cases than in the low-level LOH cases. Conclusion The 5'-transitional methylated CpG sites not completely protected by the Alu elements were hypomethylated in association with LOH events in gastric cancers. This suggests that an irreversible unbalanced decrease in the genomic dose reduces the spread of L1 methylation in the 5'-end regions of genes.
Collapse
Affiliation(s)
- Young-Ho Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Jin Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Chae Jung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Ja Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Joo Seo
- Department of Clinical Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Wook Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mun-Gan Rhyu
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
46
|
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125:315-26. [PMID: 16630819 DOI: 10.1016/j.cell.2006.02.041] [Citation(s) in RCA: 4025] [Impact Index Per Article: 211.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/18/2006] [Accepted: 02/23/2006] [Indexed: 02/06/2023]
Abstract
The most highly conserved noncoding elements (HCNEs) in mammalian genomes cluster within regions enriched for genes encoding developmentally important transcription factors (TFs). This suggests that HCNE-rich regions may contain key regulatory controls involved in development. We explored this by examining histone methylation in mouse embryonic stem (ES) cells across 56 large HCNE-rich loci. We identified a specific modification pattern, termed "bivalent domains," consisting of large regions of H3 lysine 27 methylation harboring smaller regions of H3 lysine 4 methylation. Bivalent domains tend to coincide with TF genes expressed at low levels. We propose that bivalent domains silence developmental genes in ES cells while keeping them poised for activation. We also found striking correspondences between genome sequence and histone methylation in ES cells, which become notably weaker in differentiated cells. These results highlight the importance of DNA sequence in defining the initial epigenetic landscape and suggest a novel chromatin-based mechanism for maintaining pluripotency.
Collapse
Affiliation(s)
- Bradley E Bernstein
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
48
|
Kang MI, Rhyu MG, Kim YH, Jung YC, Hong SJ, Cho CS, Kim HS. The length of CpG islands is associated with the distribution of Alu and L1 retroelements. Genomics 2006; 87:580-90. [PMID: 16488573 DOI: 10.1016/j.ygeno.2006.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/20/2022]
Abstract
Alu and L1 retroelements have been suggested to initiate the spread of CpG methylation. In this study, the spread of CpG methylation was estimated based on the distance between the CpG islands and the nearest retroelements. All human genes (23,116) were examined and the correlations between the length of the CpG islands and the distance and density of the confronting retroelements were examined using nonoverlapping 5-kb windows. There was a linear relationship between the length of the CpG islands and the density of the Alu elements and an inverse relationship between the CpG islands and the L1 elements located more distantly, suggesting a suppressive effect of the Alu's on the spread of L1 methylation. Methylation analysis of the transitional CpG sites between the CpG islands and the nearest retroelements upstream of 16 genes was then carried out using DNA preparations from 11 different human tissues. Methylation-variable transitional CpGs were observed for the selected genes and the different tissues.
Collapse
Affiliation(s)
- Moo-Il Kang
- Department of Internal Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Sironi M, Menozzi G, Comi GP, Cereda M, Cagliani R, Bresolin N, Pozzoli U. Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol 2006; 7:R120. [PMID: 17181857 PMCID: PMC1794433 DOI: 10.1186/gb-2006-7-12-r120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/25/2006] [Accepted: 12/20/2006] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) represent more than 45% of the human and mouse genomes. Both parasitic and mutualistic features have been shown to apply to the host-TE relationship but a comprehensive scenario of the forces driving TE fixation within mammalian genes is still missing. RESULTS We show that intronic multispecies conserved sequences (MCSs) have been affecting TE integration frequency over time. We verify that a selective economizing pressure has been acting on TEs to decrease their frequency in highly expressed genes. After correcting for GC content, MCS density and intron size, we identified TE-enriched and TE-depleted gene categories. In addition to developmental regulators and transcription factors, TE-depleted regions encompass loci that might require subtle regulation of transcript levels or precise activation timing, such as growth factors, cytokines, hormones, and genes involved in the immune response. The latter, despite having reduced frequencies of most TE types, are significantly enriched in mammalian-wide interspersed repeats (MIRs). Analysis of orthologous genes indicated that MIR over-representation also occurs in dog and opossum immune response genes, suggesting, given the partially independent origin of MIR sequences in eutheria and metatheria, the evolutionary conservation of a specific function for MIRs located in these loci. Consistently, the core MIR sequence is over-represented in defense response genes compared to the background intronic frequency. CONCLUSION Our data indicate that gene function, expression level, and sequence conservation influence TE insertion/fixation in mammalian introns. Moreover, we provide the first report showing that a specific TE family is evolutionarily associated with a gene function category.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E Medea, Bioinformatic Lab, Via don L Monza, 23842 Bosisio Parini (LC), Italy
| | - Giorgia Menozzi
- Scientific Institute IRCCS E Medea, Bioinformatic Lab, Via don L Monza, 23842 Bosisio Parini (LC), Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena Foundation, 20100 Milan, Italy
| | - Matteo Cereda
- Scientific Institute IRCCS E Medea, Bioinformatic Lab, Via don L Monza, 23842 Bosisio Parini (LC), Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E Medea, Bioinformatic Lab, Via don L Monza, 23842 Bosisio Parini (LC), Italy
| | - Nereo Bresolin
- Scientific Institute IRCCS E Medea, Bioinformatic Lab, Via don L Monza, 23842 Bosisio Parini (LC), Italy
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena Foundation, 20100 Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E Medea, Bioinformatic Lab, Via don L Monza, 23842 Bosisio Parini (LC), Italy
| |
Collapse
|
50
|
Abstract
Despite the presence of over 3 million transposons separated on average by approximately 500 bp, the human and mouse genomes each contain almost 1000 transposon-free regions (TFRs) over 10 kb in length. The majority of human TFRs correlate with orthologous TFRs in the mouse, despite the fact that most transposons are lineage specific. Many human TFRs also overlap with orthologous TFRs in the marsupial opossum, indicating that these regions have remained refractory to transposon insertion for long evolutionary periods. Over 90% of the bases covered by TFRs are noncoding, much of which is not highly conserved. Most TFRs are not associated with unusual nucleotide composition, but are significantly associated with genes encoding developmental regulators, suggesting that they represent extended regions of regulatory information that are largely unable to tolerate insertions, a conclusion difficult to reconcile with current conceptions of gene regulation.
Collapse
Affiliation(s)
- Cas Simons
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|