1
|
Nargis N, Sens DA, Mehus AA. Knockdown of Keratin 6 Within Arsenite-Transformed Human Urothelial Cells Decreases Basal/Squamous Expression, Inhibits Growth, and Increases Cisplatin Sensitivity. Cells 2024; 13:1803. [PMID: 39513911 PMCID: PMC11545824 DOI: 10.3390/cells13211803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Urothelial carcinoma (UC) is prevalent, especially in elderly males. The high rate of recurrence, treatment regime, and follow-up monitoring make UC a global health and economic burden. Arsenic is a ubiquitous toxicant that can be found in drinking water, and it is known that exposure to arsenic is associated with UC development. Around 25% of diagnosed UC cases are muscle-invasive (MIUC) which have poor prognosis and develop chemoresistance, especially if tumors are associated with squamous differentiation (SD). The immortalized UROtsa cell line is derived from normal human urothelium and our lab has malignantly transformed these cells using arsenite (As3+). These cells represent a basal subtype model of MIUC and the tumors derived from the As3+-transformed cells histologically and molecularly resemble clinical cases of the basal subtype of MIUC that have focal areas SD and expression of the basal keratins (KRT1, 5, 6, 14, and 16). Our previous data demonstrate that KRT6 protein expression correlates to areas of SD within the tumors. For this study, we performed a lentiviral knockdown of KRT6 in As3+-transformed UROtsa cells to evaluate the effects on morphology, gene/protein expression, growth, colony formation, and cisplatin sensitivity. The knockdown of KRT6 resulted in decreased expression of the basal keratins, decreased growth, decreased colony formation, and increased sensitivity to cisplatin, the standard treatment for MIUC. The results of this study suggest that KRT6 plays a role in UC cell growth and is an exploitable target to increase cisplatin sensitivity for MIUC tumors that may have developed resistance to cisplatin treatment.
Collapse
Affiliation(s)
| | | | - Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (N.N.); (D.A.S.)
| |
Collapse
|
2
|
Nanes BA, Bhatt K, Azarova E, Rajendran D, Munawar S, Isogai T, Dean KM, Danuser G. Shifts in keratin isoform expression activate motility signals during wound healing. Dev Cell 2024; 59:2759-2771.e11. [PMID: 39002537 PMCID: PMC11496015 DOI: 10.1016/j.devcel.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Keratin intermediate filaments confer structural stability to epithelial tissues, but the reason this simple mechanical function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. If and how this change modulates cellular functions that support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising mechanical stability by activating myosin motors to increase contractile force generation. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.
Collapse
Affiliation(s)
- Benjamin A Nanes
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kushal Bhatt
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evgenia Azarova
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabahat Munawar
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Blanco-Pintos T, Regueira-Iglesias A, Relvas M, Alonso-Sampedro M, Chantada-Vázquez MP, Balsa-Castro C, Tomás I. Using SWATH-MS to identify new molecular biomarkers in gingival crevicular fluid for detecting periodontitis and its response to treatment. J Clin Periodontol 2024; 51:1342-1358. [PMID: 38987231 DOI: 10.1111/jcpe.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
AIM To identify new biomarkers to detect untreated and treated periodontitis in gingival crevicular fluid (GCF) using sequential window acquisition of all theoretical mass spectra (SWATH-MS). MATERIALS AND METHODS GCF samples were collected from 44 periodontally healthy subjects and 40 with periodontitis (Stages III-IV). In the latter, 25 improved clinically 2 months after treatment. Samples were analysed using SWATH-MS, and proteins were identified by the UniProt human-specific database. The diagnostic capability of the proteins was determined with generalized additive models to distinguish the three clinical conditions. RESULTS In the untreated periodontitis vs. periodontal health modelling, five proteins showed excellent or good bias-corrected (bc)-sensitivity/bc-specificity values of >80%. These were GAPDH, ZG16B, carbonic anhydrase 1, plasma protease inhibitor C1 and haemoglobin subunit beta. GAPDH with MMP-9, MMP-8, zinc-α-2-glycoprotein and neutrophil gelatinase-associated lipocalin and ZG16B with cornulin provided increased bc-sensitivity/bc-specificity of >95%. For distinguishing treated periodontitis vs. periodontal health, most of these proteins and their combinations revealed a predictive ability similar to previous modelling. No model obtained relevant results to differentiate between periodontitis conditions. CONCLUSIONS New single and dual GCF protein biomarkers showed outstanding results in discriminating untreated and treated periodontitis from periodontal health. Periodontitis conditions were indistinguishable. Future research must validate these findings.
Collapse
Affiliation(s)
- T Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - M Relvas
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), Gandra, Portugal
| | - M Alonso-Sampedro
- Department of Internal Medicine and Clinical Epidemiology, Complejo Hospitalario Universitario, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - M P Chantada-Vázquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
4
|
Dinić M, Burgess JL, Lukić J, Catanuto P, Radojević D, Marjanović J, Verpile R, Thaller SR, Gonzalez T, Golić N, Strahinić I, Tomic-Canic M, Pastar I. Postbiotic lactobacilli induce cutaneous antimicrobial response and restore the barrier to inhibit the intracellular invasion of Staphylococcus aureus in vitro and ex vivo. FASEB J 2024; 38:e23801. [PMID: 39018106 PMCID: PMC11258854 DOI: 10.1096/fj.202400054rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Intracellular pathogens including Staphylococcus aureus contribute to the non-healing phenotype of chronic wounds. Lactobacilli, well known as beneficial bacteria, are also reported to modulate the immune system, yet their role in cutaneous immunity remains largely unknown. We explored the therapeutic potential of bacteria-free postbiotics, bioactive lysates of lactobacilli, to reduce intracellular S. aureus colonization and promote healing. Fourteen postbiotics derived from various lactobacilli species were screened, and Latilactobacillus curvatus BGMK2-41 was selected for further analysis based on the most efficient ability to reduce intracellular infection by S. aureus diabetic foot ulcer clinical isolate and S. aureus USA300. Treatment of both infected keratinocytes in vitro and infected human skin ex vivo with BGMK2-41 postbiotic cleared S. aureus. Keratinocytes treated in vitro with BGMK2-41 upregulated expression of antimicrobial response genes, of which DEFB4, ANG, and RNASE7 were also found upregulated in treated ex vivo human skin together with CAMP exclusively upregulated ex vivo. Furthermore, BGMK2-41 postbiotic treatment has a multifaceted impact on the wound healing process. Treatment of keratinocytes stimulated cell migration and the expression of tight junction proteins, while in ex vivo human skin BGMK2-41 increased expression of anti-inflammatory cytokine IL-10, promoted re-epithelialization, and restored the epidermal barrier via upregulation of tight junction proteins. Together, this provides a potential therapeutic approach for persistent intracellular S. aureus infections.
Collapse
Affiliation(s)
- Miroslav Dinić
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Jovanka Lukić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Paola Catanuto
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dušan Radojević
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanović
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Verpile
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seth R. Thaller
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tammy Gonzalez
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Strahinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Nanes BA, Bhatt K, Boujemaa-Paterski R, Azarova E, Munawar S, Rajendran D, Isogai T, Dean KM, Medalia O, Danuser G. Keratin isoform shifts modulate motility signals during wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.538989. [PMID: 37205459 PMCID: PMC10187270 DOI: 10.1101/2023.05.04.538989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Keratin intermediate filaments form strong mechanical scaffolds that confer structural stability to epithelial tissues, but the reason this function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. How this change modulates cellular function to support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising epidermal stability by activating myosin motors. This pathway depended on isoform-specific interaction between intrinsically disordered keratin head domains and non-filamentous vimentin shuttling myosin-activating kinases. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.
Collapse
Affiliation(s)
- Benjamin A Nanes
- Department of Dermatology, UT Southwestern Medical Center; Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Kushal Bhatt
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | | | - Evgenia Azarova
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
- Present address: Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Sabahat Munawar
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich; Zurich CH-8057, Switzerland
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
6
|
Pinnaratip R, Zhang Z, Smies A, Forooshani PK, Tang X, Rajachar RM, Lee BP. Utilizing Robust Design to Optimize Composite Bioadhesive for Promoting Dermal Wound Repair. Polymers (Basel) 2023; 15:1905. [PMID: 37112052 PMCID: PMC10144490 DOI: 10.3390/polym15081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Catechol-modified bioadhesives generate hydrogen peroxide (H2O2) during the process of curing. A robust design experiment was utilized to tune the H2O2 release profile and adhesive performance of a catechol-modified polyethylene glycol (PEG) containing silica particles (SiP). An L9 orthogonal array was used to determine the relative contributions of four factors (the PEG architecture, PEG concentration, phosphate-buffered saline (PBS) concentration, and SiP concentration) at three factor levels to the performance of the composite adhesive. The PEG architecture and SiP wt% contributed the most to the variation in the results associated with the H2O2 release profile, as both factors affected the crosslinking of the adhesive matrix and SiP actively degraded the H2O2. The predicted values from this robust design experiment were used to select the adhesive formulations that released 40-80 µM of H2O2 and evaluate their ability to promote wound healing in a full-thickness murine dermal wound model. The treatment with the composite adhesive drastically increased the rate of the wound healing when compared to the untreated controls, while minimizing the epidermal hyperplasia. The release of H2O2 from the catechol and soluble silica from the SiP contributed to the recruitment of keratinocytes to the wound site and effectively promoted the wound healing.
Collapse
Affiliation(s)
- Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Ariana Smies
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Pegah Kord Forooshani
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| | - Xiaoqing Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
- Marine Ecology and Telemetry Research (MarEcoTel), Seabeck, WA 98380, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (R.P.)
| |
Collapse
|
7
|
Pereira B, Duque K, Ramos-Gonzalez G, Díaz-Solano D, Wittig O, Zamora M, Gledhill T, Cardier JE. Wound healing by transplantation of mesenchymal stromal cells loaded on polyethylene terephthalate scaffold: Implications for skin injury treatment. Injury 2023; 54:1071-1081. [PMID: 36801131 DOI: 10.1016/j.injury.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Several clinical studies have shown that cellular therapy based on mesenchymal stromal cells (MSCs) transplantation may accelerate wound healing. One major challenge is the delivery system used for MSCs transplantation. In this work, we evaluated the capacity of a scaffold based on polyethylene terephthalate (PET) to maintain the viability and biological functions of MSCs, in vitro. We examined the capacity of MSCs loaded on PET (MSCs/PET) to induce wound healing in an experimental model of full-thickness wound. METHODS Human MSCs were seeded and cultured on PET membranes at 37 °C for 48 h. Adhesion, viability, proliferation, migration, multipotential differentiation and chemokine production were evaluated in cultures of MSCs/PET. The possible therapeutic effect of MSCs/PET on the re-epithelialization of full thickness wounds was examined at day 3 post-wounding in C57BL/6 mice. Histological and immunohistochemical (IH) studies were performed to evaluate wound re-epithelialization and the presence of epithelial progenitor cells (EPC). As controls, wounds without treatment or treated with PET were established. RESULTS We observed MSCs adhered to PET membranes and maintained their viability, proliferation and migration. They preserved their multipotential capacity of differentiation and ability of chemokine production. MSCs/PET implants promoted an accelerated wound re-epithelialization, after three days post-wounding. It was associated with the presence of EPC Lgr6+ and K6+. DISCUSSION Our results show that MSCs/PET implants induce a rapid re-epithelialization of deep- and full-thickness wounds. MSCs/PET implants constitute a potential clinical therapy for treating cutaneous wounds.
Collapse
Affiliation(s)
- Betzabeth Pereira
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela; Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Kharelys Duque
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Giselle Ramos-Gonzalez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Dylana Díaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Mariela Zamora
- Departamento de Dermatologia, Hospital Militar "Dr Carlos Arvelo, Venezuela
| | - Teresa Gledhill
- Servicio de Anatomía Patológica, Hospital Vargas, Caracas 1010-A, Venezuela
| | - José E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
| |
Collapse
|
8
|
Zhu JG, Xie P, Zheng MD, Meng Y, Wei ML, Liu Y, Liu TW, Gong DQ. Dynamic changes in protein concentrations of keratins in crop milk and related gene expression in pigeon crops during different incubation and chick rearing stages. Br Poult Sci 2023; 64:100-109. [PMID: 36069156 DOI: 10.1080/00071668.2022.2119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.
Collapse
Affiliation(s)
- J G Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - M D Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M L Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - T W Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Bhattacharya N, Indra AK, Ganguli-Indra G. Selective Ablation of BCL11A in Epidermal Keratinocytes Alters Skin Homeostasis and Accelerates Excisional Wound Healing In Vivo. Cells 2022; 11:cells11132106. [PMID: 35805190 PMCID: PMC9265695 DOI: 10.3390/cells11132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transcriptional regulator BCL11A plays a crucial role in coordinating a suite of developmental processes including skin morphogenesis, barrier functions and lipid metabolism. There is little or no reports so far documenting the role of BCL11A in postnatal adult skin homeostasis and in the physiological process of tissue repair and regeneration. The current study establishes for the first time the In Vivo role of epidermal BCL11A in maintaining adult epidermal homeostasis and as a negative regulator of cutaneous wound healing. Conditional ablation of Bcl11a in skin epidermal keratinocytes (Bcl11aep−/−mice) enhances the keratinocyte proliferation and differentiation program, suggesting its critical role in epidermal homeostasis of adult murine skin. Further, loss of keratinocytic BCL11A promotes rapid closure of excisional wounds both in a cell autonomous manner likely via accelerating wound re-epithelialization and in a non-cell autonomous manner by enhancing angiogenesis. The epidermis specific Bcl11a knockout mouse serves as a prototype to gain mechanistic understanding of various downstream pathways converging towards the manifestation of an accelerated healing phenotype upon its deletion.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA
- OHSU Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Department of Dermatology, OHSU, Portland, OR 97239, USA
- Correspondence: (A.K.I.); (G.G.-I.)
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA;
- OHSU Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Correspondence: (A.K.I.); (G.G.-I.)
| |
Collapse
|
11
|
Teng T, Teng CS, Kaartinen V, Bush JO. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development 2022; 149:275520. [PMID: 35593401 PMCID: PMC9188751 DOI: 10.1242/dev.200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion. Summary: Multiple cellular processes mediate secondary palate fusion, including a unique form of streaming collective epithelial migration driven by pulsatile actomyosin contractility.
Collapse
Affiliation(s)
- Teng Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Camilla S. Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Vesa Kaartinen
- University of Michigan School of Dentistry 5 Department of Biologic and Materials Sciences , , Ann Arbor, MI 48109 , USA
| | - Jeffrey O. Bush
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| |
Collapse
|
12
|
Bao Q, Zhang X, Bao P, Liang C, Guo X, Yin M, Chu M, Yan P. Genome-wide identification, characterization, and expression analysis of keratin genes (KRTs) family in yak (Bos grunniens). Gene X 2022; 818:146247. [PMID: 35085710 DOI: 10.1016/j.gene.2022.146247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
As the largest subgroup of intermediate filament proteins, keratins are divided into two types of subfamily. Currently, the molecular mechanism of keratins in several animals has been reported but is limited in yak. Here, 53 different kinds of keratins were identified in the yak genome, including 23 type I and 30 type II keratins. Bioinformatics analysis in this study revealed that multiple phosphorylation sites were identified among all the family members. And the subcellular localization of these proteins was predicted to be in the nucleus, cytoskeleton, and cytoplasm. All keratin family proteins were unstable and the scores of instability coefficient were higher than 40. Phylogenetic analysis showed that high consistency results of the sequence conservation and grouping were found in the genomes of yak, sheep, cattle, mouse, rat, and human. Based on the expression patterns obtained from the transcriptome data, keratin genes (KRTs) were grouped into five clusters, and results also showed that KRTs were highly activated in skin tissues during the hair cycle in yak. Among the five clusters, Cluster II contained the most KRTs, which was the main expression pattern of the yak hair follicle cycle, followed by Cluster III. These results indicated the transition period from telogen to anagen and catagen to telogen were highly dynamic in yak. Gene expression correlation analysis showed that KRTs exhibited a strong correlation (mainly positive correlation) throughout the hair follicle development cycle. And the identification of hub KRTs in specific modules related to hair follicle development in this study was performed using the Weight Gene Co-Expression Network Analysis (WGCNA). Specific modules that include KRTs were darkgreen (KRT40), darkgrey (KRT5), turquoise (KRT1, KRT2, KRT10), bisque4 (KRT4), thistle2 (KRT9, KRT39), and yellowgreen (KRT24). The interaction network showed that these genes were found to be related to the regulation of cell cycle, melanogenesis, hair follicle development, keratinocyte proliferation. Our study provides theoretical support for the study of the evolutionary relationship and molecular mechanism of keratin family in B. grunnien.
Collapse
Affiliation(s)
- Qi Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Xiaolan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Mancai Yin
- Datong Cattle Farm in Qinghai Province, Xining 810000, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Yak Breeding Engineering, Lanzhou 730050, China.
| |
Collapse
|
13
|
Takagi T, Yamamoto M, Sugano A, Kanehira C, Kitamura K, Katayama M, Sakai K, Sato M, Abe S. Alteration of Oral and Perioral Soft Tissue in Mice following Incisor Tooth Extraction. Int J Mol Sci 2022; 23:ijms23062987. [PMID: 35328407 PMCID: PMC8951366 DOI: 10.3390/ijms23062987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Oral and perioral soft tissues cooperate with other oral and pharyngeal organs to facilitate mastication and swallowing. It is essential for these tissues to maintain their morphology for efficient function. Recently, it was reported that the morphology of oral and perioral soft tissue can be altered by aging or orthodontic treatment. However, it remains unclear whether tooth loss can alter these tissues’ morphology. This study examined whether tooth loss could alter lip morphology. First, an analysis of human anatomy suggested that tooth loss altered lip morphology. Next, a murine model of tooth loss was established by extracting an incisor; micro-computed tomography revealed that a new bone replaced the extraction socket. Body weight was significantly lower in the tooth loss (UH) group than in the non-extraction control (NH) group. The upper lip showed a greater degree of morphological variation in the UH group. Proteomic analysis and immunohistochemical staining of the upper lip illustrated that S100A8/9 expression was higher in the UH group, suggesting that tooth loss induced lip inflammation. Finally, soft-diet feeding improved lip deformity associated with tooth loss, but not inflammation. Therefore, soft-diet feeding is essential for preventing lip morphological changes after tooth loss.
Collapse
Affiliation(s)
- Takahiro Takagi
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
- Correspondence:
| | - Aki Sugano
- Department of Dental Hygiene, Tokyo Dental Junior College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Chiemi Kanehira
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Masateru Katayama
- Department of Neurosurgery, Tokyo Dental College, Ichikawa General Hospital, 5-11-13, Sugano, Ichikawa 272-8513, Japan;
| | - Katsuhiko Sakai
- Department of Oral Medicine and Hospital Dentistry, Tokyo Dental College, 5-11-13, Sugano, Ichikawa 272-8513, Japan;
| | - Masaki Sato
- Laboratory of Biology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
| |
Collapse
|
14
|
Sinsinwar S, Vadivel V. Development and characterization of catechin-in-cyclodextrin-in-phospholipid liposome to eradicate MRSA-mediated surgical site infection: Investigation of their anti-infective efficacy through in vitro and in vivo studies. Int J Pharm 2021; 609:121130. [PMID: 34600052 DOI: 10.1016/j.ijpharm.2021.121130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the prime pathogens responsible for surgical site infection (SSI). Treatment of SSI remains challenging because of resistant nature of MRSA, which is a major threat in recent years. Our previous work revealed the antibacterial potential of catechin isolated from cashewnut shell against MRSA. However, the application of catechin to treat MRSA-mediated SSI is hampered because of its poor solubility and low trans-dermal delivery. Hence, the present study focused on developing catechin-in-cyclodextrin-in-phospholipid liposome (CCPL) and evaluating its physicochemical characteristics and anti-infective efficacy through in vitro and in vivo models. Encapsulation of catechin with β-cyclodextrin and soybean lecithin was confirmed through UV-Vis spectroscopy, FTIR, and XRD techniques, while TEM imaging revealed the size of CCPL (206 nm). The CCPL displayed a higher level of water solubility (25.13%) and in vitro permeability (42.14%) compared to pure catechin. A higher level of encapsulation efficiency (98.9%) and antibacterial activity (19.8 mm of ZOI and 31.25 μg/mL of MIC) were noted in CCPL compared to the catechin/cyclodextrin complex. CCPL recorded significant and dose-dependent healing of the incision, significant reduction of bacterial count, improved epithelization, and effective prevention of inflammation in skin samples of SSI-induced Balb/c mice. Data of the present work suggest that the CCPL could be considered as a novel and potential candidate to mitigate MRSA-mediated SSI after clinical trials.
Collapse
Affiliation(s)
- Simran Sinsinwar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
15
|
Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells. Int J Mol Sci 2021; 22:ijms22147646. [PMID: 34299265 PMCID: PMC8305830 DOI: 10.3390/ijms22147646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air–liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.
Collapse
|
16
|
Masre SF, Rath N, Olson MF, Greenhalgh DA. Epidermal ROCK2 induces AKT1/GSK3β/β-catenin, NFκB and dermal tenascin C; but enhanced differentiation and p53/p21 inhibit papilloma. Carcinogenesis 2021; 41:1409-1420. [PMID: 31907522 DOI: 10.1093/carcin/bgz205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
ROCK2 roles in epidermal differentiation and carcinogenesis have been investigated in mice expressing an RU486-inducible, 4HT-activated ROCK2 transgene (K14.creP/lslROCKer). RU486/4HT-mediated ROCKer activation induced epidermal hyperplasia similar to cutaneous oncogenic rasHa (HK1.ras); however ROCKer did not elicit papillomas. Instead, anomalous basal-layer ROCKer expression corrupted normal ROCK2 roles underlying epidermal rigidity/stiffness and barrier maintanance, resulting in premature keratin K1, loricrin and filaggrin expression. Also, hyperproliferative/stress-associated keratin K6 was reduced; possibly reflecting altered ROCK2 roles in epidermal rigidity and keratinocyte flexibility/migration during wound healing. Consistent with increased proliferation, K14.creP/lslROCKer hyperplasia displayed supra-basal-to-basal increases in activated p-AKT1, inactivated p-GSK3β ser9 and membranous/nuclear β-catenin expression together with weak NFκB, which were absent in equivalent HK1.ras hyperplasia. Furthermore, ROCKer-mediated increases in epidermal rigidity via p-MypT1 inactivation/elevated MLC, coupled to anomalous β-catenin expression, induced tenascin C-positive dermal fibroblasts. Alongside an altered ECM, these latent tenascin C-positive dermal fibroblasts may become putative pre-cancer-associated fibroblasts (pre-CAFs) and establish a susceptibility that subsequently contributes to tumour progression. However, anomalous differentiation was also accompanied by an immediate increase in basal-layer p53/p21 expression; suggesting that while ROCK2/AKT1/β-catenin activation increased keratinocyte proliferation resulting in hyperplasia, compensatory p53/p21 and accelerated differentiation helped inhibit papillomatogenesis.
Collapse
Affiliation(s)
- Siti F Masre
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| | - Nicola Rath
- Molecular and Cellular Biology Laboratory, Cancer Research UK, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Ryerson MaRS Research Facility MaRS Discovery District, West Tower 661 University Avenue Toronto, Ontario, Canada
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, UK
| |
Collapse
|
17
|
Shi H, Cheer K, Simanainen U, Lesmana B, Ma D, Hew JJ, Parungao RJ, Li Z, Cooper MS, Handelsman DJ, Maitz PK, Wang Y. The contradictory role of androgens in cutaneous and major burn wound healing. BURNS & TRAUMA 2021; 9:tkaa046. [PMID: 33928173 PMCID: PMC8058007 DOI: 10.1093/burnst/tkaa046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Indexed: 01/25/2023]
Abstract
Wound healing is a complex process involving four overlapping phases: haemostasis, inflammation, cell recruitment and matrix remodeling. In mouse models, surgical, pharmacological and genetic approaches targeting androgen actions in skin have shown that androgens increase interleukin-6 and tumor necrosis factor-α production and reduce wound re-epithelization and matrix deposition, retarding cutaneous wound healing. Similarly, clinical studies have shown that cutaneous wound healing is slower in men compared to women. However, in major burn injury, which triggers not only local wound-healing processes but also systemic hypermetabolism, the role of androgens is poorly understood. Recent studies have claimed that a synthetic androgen, oxandrolone, increases protein synthesis, improves lean body mass and shortens length of hospital stay. However, the possible mechanisms by which oxandrolone regulates major burn injury have not been reported. In this review, we summarize the current findings on the roles of androgens in cutaneous and major burn wound healing, as well as androgens as a potential therapeutic treatment option for patients with major burn injuries.
Collapse
Affiliation(s)
- Huaikai Shi
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Kenny Cheer
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Ulla Simanainen
- Andrology, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Brian Lesmana
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Duncan Ma
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Jonathan J Hew
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Roxanne J Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Zhe Li
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia.,Burns and Reconstructive Surgery Unit, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Mark S Cooper
- Adrenal Steroid Laboratory, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - David J Handelsman
- Andrology, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Peter K Maitz
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia.,Burns and Reconstructive Surgery Unit, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord Hospital, Gate, 3 Hospital road, Concord, NSW 2139, Australia
| |
Collapse
|
18
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
19
|
Tran-Nguyen TM, Le KT, Nguyen LGT, Tran TLT, Hoang-Thai PC, Tran TL, Tan SL, Tran-Van H. Third-degree burn mouse treatment using recombinant human fibroblast growth factor 2. Growth Factors 2020; 38:282-290. [PMID: 34415815 DOI: 10.1080/08977194.2021.1967342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is a multifunctional protein that has major roles in wound healing, tissue repair, and regeneration. This therapeutic protein is widely used for burn treatment because it can stimulate cell proliferation and differentiation, angiogenesis, and extracellular matrix remodeling. In this study, we developed a simple method using a controlled heated brass rod to create a homogenous third-degree burn murine model and evaluated the treatment using recombinant human FGF-2 (rhFGF-2). The results indicated that the wound area was 0.83 ± 0.05 cm2 and wound depth was 573.42 ± 147.82 μm. Mice treated with rhFGF-2 showed higher rates of wound closure, granulation tissue formation, angiogenesis, and re-epithelialization than that of phosphate-buffered saline (PBS)-treated group. In conclusion, our lab-made rhFGF-2 could be a potentially therapeutic protein for burn treatment as well as a bioequivalent drug for other commercial applications using FGF-2.
Collapse
Affiliation(s)
- Thu-Minh Tran-Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Institute of Drug Quality Control, Ho Chi Minh City, Vietnam
| | - Khanh-Thien Le
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Le-Giang Thi Nguyen
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thanh-Loan Thi Tran
- Department of Histology - Embryology and Pathology, University of Medicine and Pharmacy at HCMC, Ho Chi Minh City, Vietnam
| | | | - Thuoc Linh Tran
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Sik-Loo Tan
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hieu Tran-Van
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Thyroxine restores severely impaired cutaneous re-epithelialisation and angiogenesis in a novel preclinical assay for studying human skin wound healing under "pathological" conditions ex vivo. Arch Dermatol Res 2020; 313:181-192. [PMID: 32572565 PMCID: PMC7935818 DOI: 10.1007/s00403-020-02092-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/14/2020] [Accepted: 03/28/2020] [Indexed: 01/18/2023]
Abstract
Impaired cutaneous wound healing remains a major healthcare challenge. The enormity of this challenge is compounded by the lack of preclinical human skin wound healing models that recapitulate selected key factors underlying impaired healing, namely hypoxia/poor tissue perfusion, oxidative damage, defective innervation, and hyperglycaemia. Since organ-cultured human skin already represents a denervated and impaired perfusion state, we sought to further mimic “pathological” wound healing conditions by culturing experimentally wounded, healthy full-thickness frontotemporal skin from three healthy female subjects for three days in either serum-free supplemented Williams’ E medium or in unsupplemented medium under “pathological” conditions (i.e. hypoxia [5% O2], oxidative damage [10 mM H2O2], absence of insulin, excess glucose). Under these “pathological” conditions, dermal–epidermal split formation and dyskeratosis were prominent in organ-cultured human skin, and epidermal reepithelialisation was significantly impaired (p < 0.001), associated with reduced keratinocyte proliferation (p < 0.001), cytokeratin 6 expression (p < 0.001) and increased apoptosis (p < 0.001). Moreover, markers of intracutaneous angiogenesis (CD31 immunoreactivity and the number of of CD31 positive cells and CD31 positive vessel lumina) were significantly reduced. Since we had previously shown that thyroxine promotes wound healing in healthy human skin ex vivo, we tested whether this in principle also occurs under “pathological” wound healing conditions. Indeed, thyroxine administration sufficed to rescue re-epithelialisation (p < 0.001) and promoted both epidermal keratinocyte proliferation (p < 0.01) and angiogenesis in terms of CD31 immunoreactivity and CD31 positive cells under “pathological” conditions (p < 0.001) ex vivo. This demonstrates the utility of this pragmatic short-term ex vivo model, which recapitulates some key parameters of impaired human skin wound healing, for the preclinical identification of promising wound healing promoters.
Collapse
|
21
|
Gouveia M, Zemljič-Jokhadar Š, Vidak M, Stojkovič B, Derganc J, Travasso R, Liovic M. Keratin Dynamics and Spatial Distribution in Wild-Type and K14 R125P Mutant Cells-A Computational Model. Int J Mol Sci 2020; 21:E2596. [PMID: 32283594 PMCID: PMC7177522 DOI: 10.3390/ijms21072596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal filament network whose structural organization seriously conditions its function. Dynamic keratin particles and aggregates are often observed at the periphery of mutant keratinocytes related to the hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and 14. To account for their emergence in mutant cells, we extended an existing mathematical model of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the keratin distribution inside the cell. This model includes the turnover between soluble, particulate and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly of an intermediate keratin phase into filaments, and demonstrated that this change is enough to account for the loss of keratin filaments in the cell's interior and the emergence of keratin particles at its periphery. The developed mathematical model is also particularly tailored to model the spatial distribution of keratins as the cell changes its shape.
Collapse
Affiliation(s)
- Marcos Gouveia
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Špela Zemljič-Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| | - Biljana Stojkovič
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Rui Travasso
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| |
Collapse
|
22
|
Xiao J, Kuang X, Dai L, Zhang L, He B. Anti-tumour effects of Keratin 6A in lung adenocarcinoma. CLINICAL RESPIRATORY JOURNAL 2020; 14:667-674. [PMID: 32162441 DOI: 10.1111/crj.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND To examine the effects of Keratin 6A (KRT6A) protein on the proliferation, migration and invasion abilities of lung adenocarcinoma cells, and to analyse the relationship between the expression level of KRT6A protein and the survival prognosis of lung adenocarcinoma patients. METHODS Western Blot was used to detect the expression of KRT6A protein in lung adenocarcinoma cell lines. CCK-8 experiment and colony formation assays were performed to detect the proliferation ability. Wound healing assay and transwell migration assay were conducted to detect the migration ability. Transwell invasion assay was conducted to detect the invasion ability. Immunohistochemistry was used to detect the expression of KRT6A protein in lung adenocarcinoma tissues. RESULTS We first found that the expression of KRT6A protein in lung adenocarcinoma cell lines was low. After overexpressed KRT6A protein in lung adenocarcinoma cells, we then found that KRT6A protein could not only inhibit the proliferation ability of lung adenocarcinoma cells but also inhibit them migration and invasion abilities. In addition, we also found that there had obvious difference in the expression of KRT6A protein in between patients. And through further analysis, we finally discovered that high expression of KRT6A protein was related to favourable prognosis in lung adenocarcinoma patients. CONCLUSIONS KRT6A protein inhibits the proliferation, migration and invasion abilities of lung adenocarcinoma cells, and high expression of KRT6A protein is a predictor of good prognosis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Kuang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Longxia Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Lihai Zhang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Zieman AG, Coulombe PA. Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: new insights into skin epithelial homeostasis and avenues for treatment. Br J Dermatol 2020; 182:564-573. [PMID: 31021398 PMCID: PMC6814456 DOI: 10.1111/bjd.18033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pachyonychia congenita (PC), a rare genodermatosis, primarily affects ectoderm-derived epithelial appendages and typically includes oral leukokeratosis, nail dystrophy and very painful palmoplantar keratoderma (PPK). PC dramatically impacts quality of life although it does not affect lifespan. PC can arise from mutations in any of the wound-repair-associated keratin genes KRT6A, KRT6B, KRT6C, KRT16 or KRT17. There is no cure for this condition, and current treatment options for PC symptoms are limited and palliative in nature. OBJECTIVES This review focuses on recent progress made towards understanding the pathophysiology of PPK lesions, the most prevalent and debilitating of all PC symptoms. METHODS We reviewed the relevant literature with a particular focus on the Krt16 null mouse, which spontaneously develops footpad lesions that mimic several aspects of PC-associated PPK. RESULTS There are three main stages of progression of PPK-like lesions in Krt16 null mice. Ahead of lesion onset, keratinocytes in the palmoplantar (footpad) skin exhibit specific defects in terminal differentiation, including loss of Krt9 expression. At the time of PPK onset, there is elevated oxidative stress and hypoactive Keap1-Nrf2 signalling. During active PPK, there is a profound defect in the ability of the epidermis to maintain or return to normal homeostasis. CONCLUSIONS The progress made suggests new avenues to explore for the treatment of PC-based PPK and deepens our understanding of the mechanisms controlling skin tissue homeostasis. What's already known about this topic? Pachyonychia congenita (PC) is a rare genodermatosis caused by mutations in KRT6A, KRT6B, KRT6C, KRT16 and KRT17, which are normally expressed in skin appendages and induced following injury. Individuals with PC present with multiple clinical symptoms that usually include thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts and oral leukokeratosis. The study of PC pathophysiology is made challenging because of its low incidence and high complexity. There is no cure or effective treatment for PC. What does this study add? This text reviews recent progress made when studying the pathophysiology of PPK associated with PC. This recent progress points to new possibilities for devising effective therapeutics that may complement current palliative strategies.
Collapse
Affiliation(s)
- A. G. Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - P. A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Wang X, Jiang B, Sun H, Zheng D, Zhang Z, Yan L, Li E, Wu Y, Xu RH. Noninvasive application of mesenchymal stem cell spheres derived from hESC accelerates wound healing in a CXCL12-CXCR4 axis-dependent manner. Theranostics 2019; 9:6112-6128. [PMID: 31534540 PMCID: PMC6735514 DOI: 10.7150/thno.32982] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSC) derived from adult tissues effectively promote wound healing. However, MSC quality varies, and the quantity of MSC is limited, as MSC are acquired through donations. Moreover, the survival and functioning of dissociated MSC delivered to an inflammatory lesion are subject to challenges. Methods: Here, spheres (EMSCSp) generated from human embryonic stem cell-derived MSC (EMSC) were directly dropped onto excised wounds in mice; the effects of EMSCSp were compared to those of dissociated EMSC (EMSCDiss). Following transplantation, we measured the extent of wound closure, dissected the histological features of the wounds, determined transcriptomic changes in cells isolated from the treated and control wounds, and evaluated the molecular mechanism of the effects of EMSC. Results: The application of EMSCSp onto murine dermal wounds substantially increased survival and efficacy of EMSC compared to the topical application of EMSCDiss. RNA sequencing (RNA-Seq) of cells isolated from the wounds highlighted the involvement of CXCL12-CXCR4 signaling in the effects of EMSCSp, which was verified in EMSC via CXCL12 knockdown and in target cells (vascular endothelial cells, epithelial keratinocytes, and macrophages) via CXCR4 inhibition. Finally, we enhanced the biosafety of EMSCSp by engineering cells with an inducible suicide gene. Conclusions: Together, these data suggest the topical application of EMSCSp as an unlimited, quality-assured, safe, and noninvasive therapy for wound healing and the CXCL12-CXCR4 axis as a key player in this treatment.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bin Jiang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Huiyan Sun
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhenwu Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Li Yan
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
26
|
Lehmann SM, Leube RE, Schwarz N. Keratin 6a mutations lead to impaired mitochondrial quality control. Br J Dermatol 2019; 182:636-647. [PMID: 31004504 DOI: 10.1111/bjd.18014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Epidermal differentiation is a multilevel process in which keratinocytes need to lose their organelles, including their mitochondria, by autophagy. Disturbed autophagy leads to thickening of the epidermis as seen in pachyonychia congenita (PC), a rare skin disease caused by mutations in keratins 6, 16 and 17. OBJECTIVES To ask if mitophagy, the selective degradation of mitochondria by autophagy, is disturbed in PC and, if so, at which stage. METHODS Immortalized keratinocytes derived from patients with PC were used in fluorescence-based and biochemical assays to dissect the different steps of mitophagy. RESULTS PC keratinocytes accumulated old mitochondria and displayed disturbed clearance of mitochondria after mitochondrial uncoupling. However, early mitophagy steps and autophagosome formation were not affected. We observed that autolysosomes accumulate in PC and are not sufficiently recycled. CONCLUSIONS We propose an influence of keratins on autolysosomal degradation and recycling. What's already known about this topic? Terminal epidermal differentiation is a multistep process that includes the elimination of cellular components by autophagy. Autophagy-impaired keratinocytes have been shown to result in thickening of epidermal layers. Hyperkeratosis also occurs in pachyonychia congenita (PC), a rare skin disease caused by mutations in keratins 6, 16 and 17. What does this study add? Keratins contribute to mitochondrial quality control as well as maintenance of mitochondria-endoplasmic reticulum contact sites. Keratins influence autolysosomal maturation or reformation. What is the translational message? Overaged mitochondria and autolysosomes accumulate in PC. Mutations in keratin 6a lead to severely impaired mitophagy, which might contribute to PC pathogenesis.
Collapse
Affiliation(s)
- S M Lehmann
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - R E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - N Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
p73 regulates epidermal wound healing and induced keratinocyte programming. PLoS One 2019; 14:e0218458. [PMID: 31216312 PMCID: PMC6583996 DOI: 10.1371/journal.pone.0218458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
p63 is a transcriptional regulator of ectodermal development that is required for basal cell proliferation and stem cell maintenance. p73 is a closely related p53 family member that is expressed in select p63-positive basal cells and can heterodimerize with p63. p73-/- mice lack multiciliated cells and have reduced numbers of basal epithelial cells in select tissues; however, the role of p73 in basal epithelial cells is unknown. Herein, we show that p73-deficient mice exhibit delayed wound healing despite morphologically normal-appearing skin. The delay in wound healing is accompanied by decreased proliferation and increased levels of biomarkers of the DNA damage response in basal keratinocytes at the epidermal wound edge. In wild-type mice, this same cell population exhibited increased p73 expression after wounding. Analyzing single-cell transcriptomic data, we found that p73 was expressed by epidermal and hair follicle stem cells, cell types required for wound healing. Moreover, we discovered that p73 isoforms expressed in the skin (ΔNp73) enhance p63-mediated expression of keratinocyte genes during cellular reprogramming from a mesenchymal to basal keratinocyte-like cell. We identified a set of 44 genes directly or indirectly regulated by ΔNp73 that are involved in skin development, cell junctions, cornification, proliferation, and wound healing. Our results establish a role for p73 in cutaneous wound healing through regulation of basal keratinocyte function.
Collapse
|
28
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Affiliation(s)
- Jan Stana
- Specialist in Vascular Surgery; Schön Klinik Vogtareuth, Klinik für operative und interventionelle Gefäßchirurgie, Krankenhausstraße 20, DE-83569 Vogtareuth, Germany
| | - Uroš Maver
- Head of Institute of Biomedical Sciences, Assistant Professor in Pharmacology and Toxicology; University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, SI-2000 Maribor, Slovenia. University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Uroš Potočnik
- Head of Center for Human Molecular Genetics and Pharmacogenomics, Professor of Biochemistry and Genetics; University of Maribor, Faculty of Medicine, Center for human molecular genetics and pharmacogenomics, Taborska ulica 8, SI-2000 Maribor, Slovenia. University of Maribor, Faculty for Chemistry and Chemical engineering, Laboratory for Biochemistry, Molecular Biology and Genomics, Smetanova 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
30
|
Muzumdar S, Hiebert H, Haertel E, Ben-Yehuda Greenwald M, Bloch W, Werner S, Schäfer M. Nrf2-Mediated Expansion of Pilosebaceous Cells Accelerates Cutaneous Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:568-579. [PMID: 30593821 DOI: 10.1016/j.ajpath.2018.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor is a key regulator of the cellular stress response. Therefore, pharmacologic Nrf2 activation is a promising strategy for skin protection and cancer prevention. This study found that genetic Nrf2 activation in keratinocytes accelerates wound repair. Enhanced proliferation of cells of the pilosebaceous unit peripheral to the wound and a concomitant acceleration of re-epithelialization were identified as the underlying mechanism. Nrf2 specifically promoted the expansion of pilosebaceous cells expressing markers of junctional zone and upper isthmus follicular stem cells. This may result, at least in part, from the up-regulation of the direct Nrf2 target epigen and a concomitant increase in epidermal growth factor receptor signaling. The increase in pilosebaceous cells provided a larger pool of keratinocytes that migrate into the wound, resulting in faster wound closure. These results unravel a novel function of Nrf2 in wound repair and suggest the use of NRF2-activating compounds in patients with impaired healing.
Collapse
Affiliation(s)
- Sukalp Muzumdar
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hayley Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Eric Haertel
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
Grosvenor AJ, Deb-Choudhury S, Middlewood PG, Thomas A, Lee E, Vernon JA, Woods JL, Taylor C, Bell FI, Clerens S. The physical and chemical disruption of human hair after bleaching - studies by transmission electron microscopy and redox proteomics. Int J Cosmet Sci 2018; 40:536-548. [DOI: 10.1111/ics.12495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- A. J. Grosvenor
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - S. Deb-Choudhury
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - P. G. Middlewood
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - A. Thomas
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - E. Lee
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - J. A. Vernon
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - J. L. Woods
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
| | - C. Taylor
- Unilever R&D; Port Sunlight Bebington U.K
| | - F. I. Bell
- Unilever R&D; Port Sunlight Bebington U.K
| | - S. Clerens
- Food & Bio-based Products; AgResearch, Lincoln Research Centre; Christchurch New Zealand
- Biomolecular Interaction Centre; University of Canterbury; Christchurch New Zealand
| |
Collapse
|
32
|
POLTEP K, TESENA P, YINGCHUTRAKUL Y, TAYLOR J, WONGTAWAN T. Optimisation of a serum albumin removal protocol for use in a proteomic study to identify the protein biomarkers for silent gastric ulceration in horses. J Equine Sci 2018; 29:53-60. [PMID: 30250392 PMCID: PMC6145863 DOI: 10.1294/jes.29.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
Abstract
Silent gastric ulceration occurs without evidence of clinical signs and is common in horses. There is currently no a simple and effective method to diagnose this disease. Proteomics can be used to identify serum biomarkers, but the most abundant serum protein, albumin, could conceal candidate biomarkers. Therefore, it is recommended to remove albumin before a proteomic study; however, there is no specific albumin depletion kit or standard protocol available for horse samples. The objectives of this study were to optimise a protocol to remove equine serum albumin and to use albumin-depleted serum to identify the protein biomarkers for silent gastric ulceration. Gastroscopy was used to identify gastric ulceration, and serum was obtained from horses with either a healthy gastric mucosa or gastric ulceration. Serum albumin was removed using the trichloroacetic acid (TCA) protein precipitation method, and this protocol was optimised by varying the concentration of TCA, type of organic solvents, ratio of serum to protein precipitation solution, and incubation times. Electrophoresis and image analysis were used to compare the amounts of albumin, immunoglobulins G (IgG), and protein degradation before and after TCA precipitation. The best protocol was chosen to remove albumin for a proteomic study (electrophoresis and mass spectrometry). The results revealed that protocol 2 (ratio of serum to solution 1:5, 10% TCA in acetone, and 90 min incubation) was the most efficient protocol to remove albumin (98%) and IgG heavy (80%) and light (98%) chains without degrading other proteins. After electrophoresis and mass spectrometry analysis, KRT1, KRT6A and KRT18 were identified as potential markers for silent gastric ulceration.
Collapse
Affiliation(s)
- Kanaporn POLTEP
- The Monitoring and Surveillance Centre for
Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol
University, Nakhon Pathom 73170, Thailand
- Laboratory of Cellular Biomedicine and
Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom
73170, Thailand
| | - Parichart TESENA
- Department of Clinical Science and Public
Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170,
Thailand
| | - Yodying YINGCHUTRAKUL
- Proteomics Research Laboratory, Genome
Technology Research Unit, National Centre for Genetics Engineering and Biotechnology,
Pathum Thani 12120, Thailand
| | - Jane TAYLOR
- Biomedical Teaching Organisation, Biomedical
Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9AG,
U.K.
| | - Tuempong WONGTAWAN
- Department of Preclinic and Applied Animal
Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170,
Thailand
- Laboratory of Cellular Biomedicine and
Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom
73170, Thailand
| |
Collapse
|
33
|
Khani P, Ghazi F, Zekri A, Nasri F, Behrangi E, Aghdam AM, Mirzaei H. Keratins and epidermolysis bullosa simplex. J Cell Physiol 2018; 234:289-297. [PMID: 30078200 DOI: 10.1002/jcp.26898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Medical Immunology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology and Laser Surgery, Clinical Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Whiteley J, Chow T, Adissu H, Keating A, Rogers IM. Topical Application of Culture-Expanded CD34+ Umbilical Cord Blood Cells from Frozen Units Accelerates Healing of Diabetic Skin Wounds in Mice. Stem Cells Transl Med 2018; 7:591-601. [PMID: 29752867 PMCID: PMC6090513 DOI: 10.1002/sctm.17-0302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/29/2018] [Indexed: 11/11/2022] Open
Abstract
Chronic and nonhealing wounds are constant health issues facing patients with type 2 diabetes. As the incidence of type 2 diabetes mellitus (T2DM) increases, the incidence of chronic wounds and amputations will rise. T2DM is associated with peripheral arterial occlusive disease, which leads to the development of nonhealing skin ulcers after minor trauma. Patients develop severe pain limiting their mobility and ability to work and take care of themselves, thus putting a significant burden on the family and society. CD34+ cells from umbilical cord blood (UCB) grown in fibroblast growth factor-4 (FGF-4), stem cell factor, and Flt3-ligand produced a population of cells that have the ability to proliferate and develop properties enabling them to enhance tissue regeneration. The goal of this study was to assess in vitro cultured CD34+ cells in a setting where they would eventually be rejected so we could isolate paracrine signaling mediated therapeutic effect from the therapeutic effect due to engraftment and differentiation. To achieve this, we used db/db mice as a model for diabetic skin ulcers. Here, we report that in vitro cultured UCB CD34+ cells from frozen units can accelerate wound healing and resulted in the regeneration of full thickness skin. This study demonstrates a new indication for banked UCB units in the area of tissue regeneration. Stem Cells Translational Medicine 2018;7:591-601.
Collapse
Affiliation(s)
- Jennifer Whiteley
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Theresa Chow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto
| | - Hibret Adissu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Armand Keating
- Krembil Research Institute, Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre, Cell Therapy Program, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Murawala H, Ranadive I, Patel S, Desai I, Balakrishnan S. Protein expression pattern and analysis of differentially expressed peptides during various stages of tail regeneration in Hemidactylus flaviviridis. Mech Dev 2018; 150:1-9. [DOI: 10.1016/j.mod.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
|
36
|
Gadye L, Das D, Sanchez MA, Street K, Baudhuin A, Wagner A, Cole MB, Choi YG, Yosef N, Purdom E, Dudoit S, Risso D, Ngai J, Fletcher RB. Injury Activates Transient Olfactory Stem Cell States with Diverse Lineage Capacities. Cell Stem Cell 2017; 21:775-790.e9. [PMID: 29174333 PMCID: PMC5728414 DOI: 10.1016/j.stem.2017.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
Tissue homeostasis and regeneration are mediated by programs of adult stem cell renewal and differentiation. However, the mechanisms that regulate stem cell fates under such widely varying conditions are not fully understood. Using single-cell techniques, we assessed the transcriptional changes associated with stem cell self-renewal and differentiation and followed the maturation of stem cell-derived clones using sparse lineage tracing in the regenerating mouse olfactory epithelium. Following injury, quiescent olfactory stem cells rapidly shift to activated, transient states unique to regeneration and tailored to meet the demands of injury-induced repair, including barrier formation and proliferation. Multiple cell fates, including renewed stem cells and committed differentiating progenitors, are specified during this early window of activation. We further show that Sox2 is essential for cells to transition from the activated to neuronal progenitor states. Our study highlights strategies for stem cell-mediated regeneration that may be conserved in other adult stem cell niches.
Collapse
Affiliation(s)
- Levi Gadye
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael A Sanchez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelly Street
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ariane Baudhuin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yoon Gi Choi
- QB3 Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sandrine Dudoit
- Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Davide Risso
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY 10065, USA
| | - John Ngai
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; QB3 Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E929. [PMID: 28796191 PMCID: PMC5578295 DOI: 10.3390/ma10080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Ankit K Rochani
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| |
Collapse
|
38
|
Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascré G, Simons BD, Blanpain C. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 2017; 8:14684. [PMID: 28248284 PMCID: PMC5339881 DOI: 10.1038/ncomms14684] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders. Wound healing is essential to repair the skin after injury and distinct stem cells in the epidermis are known to contribute to the process. Here the authors perform molecular, functional and clonal analysis and reveal the individual contribution of stem cells coming from different epidermal compartments to the wound-healing process in mice.
Collapse
Affiliation(s)
| | | | - Steffen Rulands
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Guilhem Mascré
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Cédric Blanpain
- Université Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
39
|
Jimi S, De Francesco F, Ferraro GA, Riccio M, Hara S. A Novel Skin Splint for Accurately Mapping Dermal Remodeling and Epithelialization During Wound Healing. J Cell Physiol 2017; 232:1225-1232. [PMID: 27626888 DOI: 10.1002/jcp.25595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/13/2016] [Indexed: 11/11/2022]
Abstract
The mouse excisional dorsal full-thickness wound model with a silicon splint fixed on the skin has been widely used to mimic human wound healing. However, the method cannot accurately quantify dermal remodeling, since the initial point of epithelialization on the wound surface is unclear. To overcome this limitation, we have developed a novel mouse excisional wound model to assess the degree of epithelial extension and regeneration, using a plastic ring-shaped splint fixed beneath the surrounding epidermal tissue. At the end of the experiment, tissue samples were fixed in formalin, the splint was excised, and paraffin sections were prepared. Splint holes, corresponding to the prior location of the splint, were evident on the tissue cross-sections, and the epidermis above the holes was considered the initial excision site. The epidermal contraction and epithelial regeneration, as independent essential tissue alterations in wound healing, could be distinguishable and quantified. Compared with previous splint models, this method provides an accurate evaluation of epidermal processes in wound healing, and can be a platform to assess the effects of various wound healing factors. J. Cell. Physiol. 232: 1225-1232, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shiro Jimi
- Central Laboratory for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Francesco De Francesco
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Giuseppe A Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Michele Riccio
- Department of Reconstructive Plastic Surgery-Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Shuuji Hara
- Department of Pharmaceutical Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
40
|
|
41
|
Huen AC, Marathi A, Nam PK, Wells A. CXCL11 Expression by Keratinocytes Occurs Transiently Between Reaching Confluence and Cellular Compaction. Adv Wound Care (New Rochelle) 2016; 5:517-526. [PMID: 28078185 DOI: 10.1089/wound.2015.0680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Objective: To investigate whether differentiation or cellular confluence is responsible for CXCL11 expression patterns in re-epithelialization. Approach:In vitro model systems of re-epithelialization using the HaCaT keratinocyte cell line were utilized in monitoring expression of differentiation markers, including desmoplakin and various cytokeratins while evaluating for an association with chemokine CXCL11 expression. Results: CXCL11 expression was elevated in sparse culture with peak expression near the time of confluence. This somewhat followed the accumulation of desmoplakin in detergent-insoluble pool of proteins. However, in postconfluent, despite continued accumulation of desmoplakin within cells, CXCL11 expression decreased to baseline levels. This biphasic pattern was also seen in low calcium culture, an environment that inhibits keratinocyte differentiation and accumulation of desmosomal proteins. Highest CXCL11-expressing areas best correlated with newly confluent areas within culture expressing basal keratin 14, but also activated keratin 6. Innovation: Achievement of a threshold cellular density induces cell signaling cascade through CXCR3 that, in addition to other undiscovered pathways, can progress cutaneous wounds from the proliferative into the remodeling phases of cutaneous wound healing. Conclusion: These results suggest that the achievement of confluence with increased cellular density by migrating keratinocytes at the wound edge triggers expression of CXCL11. Since CXCR3 stimulation in endothelial cells results in apoptosis and causes neovascular pruning, whereas stimulation of CXCR3 in fibroblasts results decreased motility and cellular contraction, we speculate that CXCL11 expression by epidermal cells upon achieving cellular confluence could be the source of CXCR3 stimulation in the dermis ushering a transition from proliferative to remodeling phases of wound healing.
Collapse
Affiliation(s)
- Arthur C. Huen
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Archana Marathi
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter K. Nam
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Defects in Stratum Corneum Desquamation Are the Predominant Effect of Impaired ABCA12 Function in a Novel Mouse Model of Harlequin Ichthyosis. PLoS One 2016; 11:e0161465. [PMID: 27551807 PMCID: PMC4994956 DOI: 10.1371/journal.pone.0161465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
Harlequin Ichthyosis is a severe skin disease caused by mutations in the human gene encoding ABCA12. Here, we characterize a novel mutation in intron 29 of the mouse Abca12 gene that leads to the loss of a 5' splice donor site and truncation of the Abca12 RNA transcript. Homozygous mutants of this smooth skin or smsk allele die perinatally with shiny translucent skin, typical of animal models of Harlequin Ichthyosis. Characterization of smsk mutant skin showed that the delivery of glucosylceramides and CORNEODESMOSIN was defective, while ultrastructural analysis revealed abnormal lamellar bodies and the absence of lipid lamellae in smsk epidermis. Unexpectedly, mutant stratum corneum remained intact when subjected to harsh chemical dissociation procedures. Moreover, both KALLIKREIN 5 and -7 were drastically decreased, with retention of desmoplakin in mutant SC. In cultured wild type keratinocytes, both KALLIKREIN 5 and -7 colocalized with ceramide metabolites following calcium-induced differentiation. Reducing the intracellular levels of glucosylceramide with a glucosylceramide synthase inhibitor resulted in decreased secretion of KALLIKREIN proteases by wild type keratinocytes, but not by smsk mutant keratinocytes. Together, these findings suggest an essential role for ABCA12 in transferring not only lipids, which are required for the formation of multilamellar structures in the stratum corneum, but also proteolytic enzymes that are required for normal desquamation. Smsk mutant mice recapitulate many of the pathological features of HI and can be used to explore novel topical therapies against a potentially lethal and debilitating neonatal disease.
Collapse
|
43
|
Macal M, Tam MA, Hesser C, Di Domizio J, Leger P, Gilliet M, Zuniga EI. CD28 Deficiency Enhances Type I IFN Production by Murine Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1900-9. [PMID: 26773151 DOI: 10.4049/jimmunol.1501658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
Type I IFNs (IFN-I) are key innate mediators that create a profound antiviral state and orchestrate the activation of almost all immune cells. Plasmacytoid dendritic cells (pDCs) are the most powerful IFN-I-producing cells and play important roles during viral infections, cancer, and autoimmune diseases. By comparing gene expression profiles of murine pDCs and conventional DCs, we found that CD28, a prototypic T cell stimulatory receptor, was highly expressed in pDCs. Strikingly, CD28 acted as a negative regulator of pDC IFN-I production upon TLR stimulation but did not affect pDC survival or maturation. Importantly, cell-intrinsic CD28 expression restrained pDC (and systemic) IFN-I production during in vivo RNA and DNA viral infections, limiting antiviral responses and enhancing viral growth early after exposure. Finally, CD28 also downregulated IFN-I response upon skin injury. Our study identified a new pDC regulatory mechanism by which the same CD28 molecule that promotes stimulation in most cells that express it is co-opted to negatively regulate pDC IFN-I production and limit innate responses.
Collapse
Affiliation(s)
- Monica Macal
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Miguel A Tam
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Charles Hesser
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Jeremy Di Domizio
- Service de Dermatologie et vénéréologie, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, Lausanne CH-1011, Switzerland
| | - Psylvia Leger
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Michel Gilliet
- Service de Dermatologie et vénéréologie, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, Lausanne CH-1011, Switzerland
| | - Elina I Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| |
Collapse
|
44
|
Yunusbaeva MM, Yunusbaev BB, Valiev RR, Khammatova AA, Khusnutdinova EK. Широкое многообразие кератинов человека. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-5-42-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
А review presents systematic data about the diversity of human keratins. The results of numerous studies concerning the structure and functions of keratins, their distribution in various cells and tissues were summarized. The role of these proteins in the development of human hereditary diseases, as well as modern approaches in use keratins in immunohistochemistry and perspectives of their further studies are discussed.
Collapse
|
45
|
Kim KH, Chung WS, Kim Y, Kim KS, Lee IS, Park JY, Jeong HS, Na YC, Lee CH, Jang HJ. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling. Phytother Res 2015; 29:1251-8. [PMID: 26014513 DOI: 10.1002/ptr.5375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/07/2022]
Abstract
Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway.
Collapse
Affiliation(s)
- Kang-Hoon Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yoomi Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Ki-Suk Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - In-Seung Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Ji Young Park
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hyeon-Soo Jeong
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Chang-Hun Lee
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
46
|
Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, Skazik‐Voogt C, Baron JM. Characterization of a novel standardized human three‐dimensional skin wound healing model using non‐sequential fractional ultrapulsed CO
2
laser treatments. Lasers Surg Med 2015; 47:257-65. [DOI: 10.1002/lsm.22341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Yvonne Marquardt
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Philipp M. Amann
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Ruth Heise
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Katharina Czaja
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | - Timm Steiner
- Department of Oral and Maxillofacial SurgeryMedical FacultyRWTH Aachen UniversityAachenGermany
| | - Hans F. Merk
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| | | | - Jens M. Baron
- Department of Dermatology and AllergologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
47
|
Tancharoen S, Matsuyama T, Kawahara KI, Tanaka K, Lee LJ, Machigashira M, Noguchi K, Ito T, Imamura T, Potempa J, Kikuchi K, Maruyama I. Cleavage of host cytokeratin-6 by lysine-specific gingipain induces gingival inflammation in periodontitis patients. PLoS One 2015; 10:e0117775. [PMID: 25688865 PMCID: PMC4331500 DOI: 10.1371/journal.pone.0117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/PURPOSE Lysine-specific gingipain (Kgp) is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis), a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F). We investigated the release of K6F and its induction of cytokine secretion. METHODS K6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay. RESULTS We identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359-378), in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt. CONCLUSION Kgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on release, induces invasion and cytokine secretion by human gingival fibroblasts. Thus, Kgp may contribute to the development of periodontal disease.
Collapse
Affiliation(s)
- Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Takashi Matsuyama
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ko-ichi Kawahara
- Laboratory of Functional Foods, Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Kenji Tanaka
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, Japan
| | - Lyang-Ja Lee
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, Japan
| | - Miho Machigashira
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Takahisa Imamura
- Department of Molecular Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jan Potempa
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, Kentucky, United States of America
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kiyoshi Kikuchi
- Department of Physiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
48
|
Ko CH, Yi S, Ozaki R, Cochrane H, Chung H, Lau W, Koon CM, Hoi SWH, Lo W, Cheng KF, Lau CBS, Chan WY, Leung PC, Chan JCN. Healing effect of a two-herb recipe (NF3) on foot ulcers in Chinese patients with diabetes: a randomized double-blind placebo-controlled study. J Diabetes 2014; 6:323-34. [PMID: 24330156 DOI: 10.1111/1753-0407.12117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/04/2013] [Accepted: 12/08/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In the present study, we examined the effect of a two-herb traditional Chinese medicine (NF3), comprised of Astragali Radix and Radix Rehmanniae, on the healing of diabetic foot ulcer and the possible molecular mechanisms involved. METHODS This was a prospective randomized double-blind placebo-controlled study. Sixteen diabetic patients were randomized to receive either placebo or NF3 for 6 months. Ulcer healing and sensory changes were examined. Molecular studies included measurement of serum tumor necrosis factor (TNF)-α and RNA microarray investigation. RESULTS The daily rate of reduction in ulcer area was 3.55% in the NF3 group and 1.52% in the placebo group (P = 0.062). In the index limb, the number of negative tests for sensory neuropathy using monofilament was reduced from 27% to 7% in the NF3 group and from 37% to 35% in the placebo group (P < 0.001). In addition, NF3 significantly decreased serum TNF-α levels (P = 0.034). Microarray studies revealed concerted changes following NF3 treatment in the expression of genes implicated in fibroblast regeneration, angiogenesis, and anti-inflammation. CONCLUSIONS In this proof-of-concept study, 6-month treatment with NF3 was associated with improved wound healing and sensation accompanied by concerted changes in gene expression.
Collapse
Affiliation(s)
- Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Winge MCG, Bradley M, Björck E. Impaired wound healing and cheilitis in a Pachyonychia congenita K6a family. J Eur Acad Dermatol Venereol 2014; 29:185-7. [PMID: 24708461 DOI: 10.1111/jdv.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M C G Winge
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine L8:02, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
50
|
Batzer AT, Marsh C, Kirsner RS. The use of keratin-based wound products on refractory wounds. Int Wound J 2014; 13:110-5. [PMID: 24580740 DOI: 10.1111/iwj.12245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022] Open
Abstract
Keratin proteins have been shown to play a key role in wound healing. Controlled keratin gene (KRT) expression promotes cell growth, migration and differentiation, and as an example of the importance of keratin proteins, absence of KRT17 has been shown to delay wound closure. In addition, downregulation of KRT6 and KRT16 in non-healing chronic venous ulcers suggests that deregulation of keratin expression contributes to non-healing phenotype. A sample of 45 chronic wounds of mixed aetiologies presenting in 31 patients were treated with keratin-based novel topical wound healing products. Thirty-seven wounds or 82% of wounds were either healed or reduced in size of >50% during treatment, with 29 (64%) healing completely and an additional 8 wounds experiencing 50% wound size reduction or greater. Of the wounds that responded, 15 required antimicrobial treatment during their course of treatment, suggesting that keratin dressing treatment should be interrupted briefly and then restarted when wound infection occur.
Collapse
Affiliation(s)
- Annette T Batzer
- Rogue Regional Medical Center Advanced Wound Center, Medford, OR, USA
| | - Clive Marsh
- Keraplast Research, Christchurch, New Zealand
| | - Robert S Kirsner
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|