1
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
2
|
Singh S, Bernal Astrain G, Hincapie AM, Goudreault M, Smith MJ. Complex interplay between RAS GTPases and RASSF effectors regulates subcellular localization of YAP. EMBO Rep 2024; 25:3574-3600. [PMID: 39009833 PMCID: PMC11316025 DOI: 10.1038/s44319-024-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.
Collapse
Affiliation(s)
- Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Gabriela Bernal Astrain
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
3
|
Satoh AO, Fujioka Y, Kashiwagi S, Yoshida A, Fujioka M, Sasajima H, Nanbo A, Amano M, Ohba Y. Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation. Cell Rep 2023; 42:112229. [PMID: 36906852 DOI: 10.1016/j.celrep.2023.112229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.
Collapse
Affiliation(s)
- Aya O Satoh
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Sayaka Kashiwagi
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Aiko Yoshida
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Mari Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Hitoshi Sasajima
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Maho Amano
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
4
|
Khan A, Ni W, Baltazar T, Lopez-Giraldez F, Pober JS, Pierce RW. ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor-induced leak. FASEB J 2022; 36:e22254. [PMID: 35294066 PMCID: PMC9103844 DOI: 10.1096/fj.202101873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.
Collapse
Affiliation(s)
- Alamzeb Khan
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Weiming Ni
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Tania Baltazar
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | |
Collapse
|
5
|
Valentine JM, Ahmadian M, Keinan O, Abu-Odeh M, Zhao P, Zhou X, Keller MP, Gao H, Yu RT, Liddle C, Downes M, Zhang J, Lusis AJ, Attie AD, Evans RM, Rydén M, Saltiel AR. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest 2022; 132:e153357. [PMID: 34847077 PMCID: PMC8759781 DOI: 10.1172/jci153357] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
The dysregulation of energy homeostasis in obesity involves multihormone resistance. Although leptin and insulin resistance have been well characterized, catecholamine resistance remains largely unexplored. Murine β3-adrenergic receptor expression in adipocytes is orders of magnitude higher compared with that of other isoforms. While resistant to classical desensitization pathways, its mRNA (Adrb3) and protein expression are dramatically downregulated after ligand exposure (homologous desensitization). β3-Adrenergic receptor downregulation also occurs after high-fat diet feeding, concurrent with catecholamine resistance and elevated inflammation. This downregulation is recapitulated in vitro by TNF-α treatment (heterologous desensitization). Both homologous and heterologous desensitization of Adrb3 were triggered by induction of the pseudokinase TRIB1 downstream of the EPAC/RAP2A/PI-PLC pathway. TRIB1 in turn degraded the primary transcriptional activator of Adrb3, CEBPα. EPAC/RAP inhibition enhanced catecholamine-stimulated lipolysis and energy expenditure in obese mice. Moreover, adipose tissue expression of genes in this pathway correlated with body weight extremes in a cohort of genetically diverse mice and with BMI in 2 independent cohorts of humans. These data implicate a signaling axis that may explain reduced hormone-stimulated lipolysis in obesity and resistance to therapeutic interventions with β3-adrenergic receptor agonists.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Zhou
- Department of Pharmacology, Bioengineering, Chemistry, and Biochemistry, UCSD, San Diego, California, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hui Gao
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney School of Medicine, University of Sydney, Westmead, New South Wales, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Jin Zhang
- Department of Pharmacology, Bioengineering, Chemistry, and Biochemistry, UCSD, San Diego, California, USA
| | - Aldons J. Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Alan R. Saltiel
- Department of Medicine and
- Department of Pharmacology, Bioengineering, Chemistry, and Biochemistry, UCSD, San Diego, California, USA
| |
Collapse
|
6
|
Simulated Microgravity Increases the Permeability of HUVEC Monolayer through Up-Regulation of Rap1GAP and Decreased Rap2 Activation. Int J Mol Sci 2022; 23:ijms23020630. [PMID: 35054818 PMCID: PMC8776081 DOI: 10.3390/ijms23020630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Space microgravity condition has great physiological influence on astronauts’ health. The interaction of endothelial cells, which control vascular permeability and immune responses, is sensitive to mechanical stress. However, whether microgravity has significant effects on the physiological function of the endothelium has not been investigated. In order to address such a question, a clinostat-based culture model with a HUVEC monolayer being inside the culture vessel under the simulated microgravity (SMG) was established. The transmittance of FITC-tagged dextran was used to estimate the change of integrity of the adherens junction of the HUVEC monolayer. Firstly, we found that the permeability of the HUVEC monolayer was largely increased after SMG treatment. To elucidate the mechanism of the increased permeability of the HUVEC monolayer under SMG, the levels of total expression and activated protein levels of Rap1 and Rap2 in HUVEC cells, which regulate the adherens junction of endothelial cells, were detected by WB and GST pull-down after SMG. As the activation of both Rap1 and Rap2 was significantly decreased under SMG, the expression of Rap1GEF1 (C3G) and Rap1GAP in HUVECs, which regulate the activation of them, was further determined. The results indicate that both C3G and Rap1GAP showed a time-dependent increase with the expression of Rap1GAP being dominant at 48 h after SMG. The down-regulation of the expression of junctional proteins, VE-cadherin and β-catenin, in HUVEC cells was also confirmed by WB and immunofluorescence after SMG. To clarify whether up-regulation of Rap1GAP is necessary for the increased permeability of the HUVEC monolayer after SMG, the expression of Rap1GAP was knocked down by Rap1GAP-shRNA, and the change of permeability of the HUVEC monolayer was detected. The results indicate that knock-down of Rap1GAP reduced SMG-induced leaking of the HUVEC monolayer in a time-dependent manner. In total, our results indicate that the Rap1GAP-Rap signal axis was necessary for the increased permeability of the HUVEC monolayer along with the down-regulation of junctional molecules including VE-cadherin and β-catenin.
Collapse
|
7
|
Takino JI, Miyazaki S, Nagamine K, Hori T. The Role of RASGRP2 in Vascular Endothelial Cells-A Mini Review. Int J Mol Sci 2021; 22:ijms222011129. [PMID: 34681791 PMCID: PMC8537898 DOI: 10.3390/ijms222011129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
RAS guanyl nucleotide-releasing proteins (RASGRPs) are important proteins that act as guanine nucleotide exchange factors, which activate small GTPases and function as molecular switches for intracellular signals. The RASGRP family is composed of RASGRP1-4 proteins and activates the small GTPases, RAS and RAP. Among them, RASGRP2 has different characteristics from other RASGRPs in that it targets small GTPases and its localizations are different. Many studies related to RASGRP2 have been reported in cells of the blood cell lineage. Furthermore, RASGRP2 has also been reported to be associated with Huntington's disease, tumors, and rheumatoid arthritis. In addition, we also recently reported RASGRP2 expression in vascular endothelial cells, and clarified the involvement of xenopus Rasgrp2 in the vasculogenesis process and multiple signaling pathways of RASGRP2 in human vascular endothelial cells with stable expression of RASGRP2. Therefore, this article outlines the existing knowledge of RASGRP2 and focuses on its expression and role in vascular endothelial cells, and suggests that RASGRP2 functions as a protective factor for maintaining healthy blood vessels.
Collapse
Affiliation(s)
- Jun-ichi Takino
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (S.M.); (T.H.)
- Correspondence: ; Tel.: +81-823-73-8584
| | - Shouhei Miyazaki
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (S.M.); (T.H.)
| | - Kentaro Nagamine
- Faculty of Health Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan;
| | - Takamitsu Hori
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan; (S.M.); (T.H.)
| |
Collapse
|
8
|
RAP2A promotes apoptosis resistance of hepatocellular carcinoma cells via the mTOR pathway. Clin Exp Med 2021; 21:545-554. [PMID: 34018090 DOI: 10.1007/s10238-021-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive system cancer. In the current study, we investigated the biological effects of Ras-related protein Rap-2a (RAP2A), a GTPase protein, in HCC tissues and cells. We found that RAP2A was upregulated in HCC tissues and cells. RAP2A knockdown could effectively inhibit the proliferation of HCC cells and weaken its apoptosis resistance. In terms of its action mechanism, RAP2A may be involved in activating the mTOR signaling pathway. Therefore, we believe that RAP2A is abnormally highly expressed in HCC tissues and promotes tumor cell proliferation and apoptosis resistance by activating the mTOR signaling pathway, and it may serve as a potential target for HCC treatment.
Collapse
|
9
|
Jang YN, Jang H, Kim GH, Noh JE, Chang KA, Lee KJ. RAPGEF2 mediates oligomeric Aβ-induced synaptic loss and cognitive dysfunction in the 3xTg-AD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 47:625-639. [PMID: 33345400 PMCID: PMC8359155 DOI: 10.1111/nan.12686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS Amyloid-β (Aβ) oligomers trigger synaptic degeneration that precedes plaque and tangle pathology. However, the signalling molecules that link Aβ oligomers to synaptic pathology remain unclear. Here, we addressed the potential role of RAPGEF2 as a novel signalling molecule in Aβ oligomer-induced synaptic and cognitive impairments in human-mutant amyloid precursor protein (APP) mouse models of Alzheimer's disease (AD). METHODS To investigate the role of RAPGEF2 in Aβ oligomer-induced synaptic and cognitive impairments, we utilised a combination of approaches including biochemistry, molecular cell biology, light and electron microscopy, behavioural tests with primary neuron cultures, multiple AD mouse models and post-mortem human AD brain tissue. RESULTS We found significantly elevated RAPGEF2 levels in the post-mortem human AD hippocampus. RAPGEF2 levels also increased in the transgenic AD mouse models, generating high levels of Aβ oligomers before exhibiting synaptic and cognitive impairment. RAPGEF2 upregulation activated the downstream effectors Rap2 and JNK. In cultured hippocampal neurons, oligomeric Aβ treatment increased the fluorescence intensity of RAPGEF2 and reduced the number of dendritic spines and the intensities of synaptic marker proteins, while silencing RAPGEF2 expression blocked Aβ oligomer-induced synapse loss. Additionally, the in vivo knockdown of RAPGEF2 expression in the AD hippocampus prevented cognitive deficits and the loss of excitatory synapses. CONCLUSIONS These findings demonstrate that the upregulation of RAPGEF2 levels mediates Aβ oligomer-induced synaptic and cognitive disturbances in the AD hippocampus. We propose that an early intervention regarding RAPGEF2 expression may have beneficial effects on early synaptic pathology and memory loss in AD.
Collapse
Affiliation(s)
- You-Na Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - HoChung Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeong-Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
10
|
Takino JI, Sato T, Nagamine K, Hori T. The inhibition of Bax activation-induced apoptosis by RasGRP2 via R-Ras-PI3K-Akt signaling pathway in the endothelial cells. Sci Rep 2019; 9:16717. [PMID: 31723205 PMCID: PMC6854084 DOI: 10.1038/s41598-019-53419-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Apoptosis of endothelial cells is a very important event in various diseases and angiogenesis. We recently reported that ras guanyl nucleotide releasing protein 2 (RasGRP2), which is a guanine nucleotide exchange factor, was expressed in the human umbilical vein endothelial cells (HUVECs) and that Rap1 activation by its overexpression inhibited apoptosis by suppressing tumor necrosis factor-α induced-reactive oxygen species (ROS) production. However, other signaling pathways and roles of RasGRP2 not mediated via Rap1 are not well understood. Therefore, we compared the Mock (M) and the RasGRP2-stable overexpression (R) immortalized HUVECs using BAM7 and anisomycin, which are apoptosis inducers. BAM7 and anisomycin induced apoptosis without causing ROS production, and such apoptosis was significantly increased in M cells, but not in R cells. RasGRP2 suppressed BAM7- and anisomycin-induced apoptosis, but not via the Rap1 pathway as observed using Rap1 knockdown. Furthermore, RasGRP2 activated not only Rap1 but also R-Ras, and suppressed apoptosis by activating R-Ras-phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. The phosphorylation of Akt by RasGRP2 inhibited Bax translocation by promoting translocation of hexokinase-2 (HK-2) from cytoplasm to mitochondria. Taken together, it was suggested that RasGRP2 suppresses the Bax activation-induced apoptosis by promoting HK-2 translocation to mitochondria via R-Ras-PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jun-Ichi Takino
- Laboratory of Biochemistry, Hiroshima International University, Hiroshima, Japan.
| | - Takuma Sato
- Laboratory of Biochemistry, Hiroshima International University, Hiroshima, Japan
| | - Kentaro Nagamine
- Laboratory of Biochemistry, Hiroshima International University, Hiroshima, Japan
- Department of Clinical Nutrition, Hiroshima International University, Hiroshima, Japan
| | - Takamitsu Hori
- Laboratory of Biochemistry, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
11
|
M. Beck E, Parnell E, Cowley A, Porter A, Gillespie J, Robinson J, Robinson L, Pannifer AD, Hamon V, Jones P, Morrison A, McElroy S, Timmerman M, Rutjes H, Mahajan P, Wiejak J, Luchowska-Stańska U, Morgan D, Barker G, Rehmann H, Yarwood SJ. Identification of A Novel Class of Benzofuran Oxoacetic Acid-Derived Ligands that Selectively Activate Cellular EPAC1. Cells 2019; 8:cells8111425. [PMID: 31726720 PMCID: PMC6912754 DOI: 10.3390/cells8111425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Cyclic AMP promotes EPAC1 and EPAC2 activation through direct binding to a specific cyclic nucleotide-binding domain (CNBD) within each protein, leading to activation of Rap GTPases, which control multiple cell responses, including cell proliferation, adhesion, morphology, exocytosis, and gene expression. As a result, it has become apparent that directed activation of EPAC1 and EPAC2 with synthetic agonists may also be useful for the future treatment of diabetes and cardiovascular diseases. To identify new EPAC agonists we have developed a fluorescent-based, ultra-high-throughput screening (uHTS) assay that measures the displacement of binding of the fluorescent cAMP analogue, 8-NBD-cAMP to the EPAC1 CNBD. Triage of the output of an approximately 350,000 compound screens using this assay identified a benzofuran oxaloacetic acid EPAC1 binder (SY000) that displayed moderate potency using orthogonal assays (competition binding and microscale thermophoresis). We next generated a limited library of 91 analogues of SY000 and identified SY009, with modifications to the benzofuran ring associated with a 10-fold increase in potency towards EPAC1 over SY000 in binding assays. In vitro EPAC1 activity assays confirmed the agonist potential of these molecules in comparison with the known EPAC1 non-cyclic nucleotide (NCN) partial agonist, I942. Rap1 GTPase activation assays further demonstrated that SY009 selectively activates EPAC1 over EPAC2 in cells. SY009 therefore represents a novel class of NCN EPAC1 activators that selectively activate EPAC1 in cellulae.
Collapse
Affiliation(s)
- Elizabeth M. Beck
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Euan Parnell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Angela Cowley
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Alison Porter
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Jonathan Gillespie
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - John Robinson
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Lindsay Robinson
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Andrew D. Pannifer
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Veronique Hamon
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Philip Jones
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Angus Morrison
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Stuart McElroy
- European Screening Centre Newhouse, University of Dundee, Biocity Scotland, Bo’Ness Road, Newhouse, Lanarkshire ML1 5UH, UK; (E.M.B.); (A.C.); (A.P.); (J.G.); (J.R.); (L.R.); (A.D.P.); (V.H.); (P.J.); (A.M.); (S.M.)
| | - Martin Timmerman
- Pivot Park Screening Centre, Kloosterstraat 9, 5349 AB Oss, The Netherlands; (M.T.); (H.R.)
| | - Helma Rutjes
- Pivot Park Screening Centre, Kloosterstraat 9, 5349 AB Oss, The Netherlands; (M.T.); (H.R.)
| | - Pravin Mahajan
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK;
| | - Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK; (J.W.); (U.L.-S.)
| | - Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK; (J.W.); (U.L.-S.)
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.M.); (G.B.)
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.M.); (G.B.)
| | - Holger Rehmann
- Department of Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, 3508 TC Utrecht, The Netherlands;
| | - Stephen J. Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK; (J.W.); (U.L.-S.)
- Correspondence:
| |
Collapse
|
12
|
|
13
|
Nakamura H, Shimamura S, Yasuda S, Kono M, Kono M, Fujieda Y, Kato M, Oku K, Bohgaki T, Shimizu T, Iwasaki N, Atsumi T. Ectopic RASGRP2 (CalDAG-GEFI) expression in rheumatoid synovium contributes to the development of destructive arthritis. Ann Rheum Dis 2018; 77:1765-1772. [PMID: 30076153 DOI: 10.1136/annrheumdis-2018-213588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/27/2018] [Accepted: 07/14/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune polyarthritis, in which fibroblast-like synoviocytes (FLS) play a key role in cartilage and bone destruction through tumour-like proliferation and invasiveness. Considering still unsatisfactory remission rate in RA even under treatment with biological disease-modifying antirheumatic drugs, novel therapeutic strategy for treatment-resistant RA is still awaited. In this study, we analysed the expression and function of Ras guanine nucleotide-releasing proteins (RASGRPs), guanine exchange factors for small GTPase Ras, in FLS as a potential therapeutic target for RA. METHODS The expression of RASGRPs mRNA was quantified by a real-time PCR assay in FLS isolated from synovial tissue samples. RASGRP2 protein was also evaluated immunohistochemically. Then, we transiently transfected FLS with RASGRP2 expression vector and assessed their proliferation, adhesion, migration and invasion by cellular functional assays and downstream signalling activation using immunoblot. Finally, the therapeutic effect of RASGRP2 silencing was evaluated in type-II collagen-induced arthritis rats. RESULTS RASGRP2 was abundantly expressed in FLS from RA synovium, whereas scarcely found in those from osteoarthritis. Expression of RASGRP2 in RA-FLS was enhanced by transforming growth factor-beta. RASGRP2 activated RAP-1, subsequently affecting nuclear factor kappa-light-chain-enhancer of activated B cells pathway and actin dynamics in FLS. RASGRP2-overexpressed FLS had increased abilities of adhesion, migration and interleukin (IL)-6 production. Silencing of RASGRP2 using the intra-articular injection of Rasgrp2-specific siRNAs dampened experimental arthritis in rats by inhibiting pannus formation. CONCLUSIONS RASGRP2 was identified to be involved in the pathogenesis of RA by promoting adhesion, migration and IL-6 production from FLS, proposed as a potential novel non-immunosuppressive therapeutic target for RA.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sanae Shimamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michihiro Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshiyuki Bohgaki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Chen X, Shibata AC, Hendi A, Kurashina M, Fortes E, Weilinger NL, MacVicar BA, Murakoshi H, Mizumoto K. Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. eLife 2018; 7:38801. [PMID: 30063210 PMCID: PMC6067881 DOI: 10.7554/elife.38801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo. Genes do more than just direct the color of our hair or eyes. They produce proteins that are involved in almost every process in the body. In humans, the majority of active genes can be found in the brain, where they help it to develop and work properly – effectively controlling how we move and behave. The brain’s functional units, the nerve cells or neurons, communicate with each other by releasing messenger molecules in the gap between them, the synapse. These molecules are then picked up from specific receptor proteins of the receiving neuron. In the nervous system, neurons only form synapses with the cells they need to connect with, even though they are surrounded by many more cells. This implies that they use specific mechanisms to stop neurons from forming synapses with incorrect target cells. This is important, because if too many synapses were present or if synapses formed with incorrect target cells, it would compromise the information flow in the nervous system. This would ultimately lead to various neurological conditions, including Autism Spectrum Disorder. In 2013, researchers found that in the roundworm Caenorhabditis elegans, a receptor protein called Plexin, is located at the surface of the neurons and can inhibit the formation of nearby synapses. Now, Chen et al. – including one author involved in the previous research – wanted to find out what genes Plexin manipulates when it stops synapses from growing. Knowing what each of those genes does can help us understand how neurons can inhibit synapses. The results revealed that Plexin appears to regulate two genes, Rap2 and TNIK. Plexin reduced the activity of Rap2 in the neuron that released the messenger, which hindered the formation of synapses. The gene TNIK and its protein on the other hand, have the ability to modify other proteins and could so inhibit the growth of synapses. When TNIK was experimentally removed, the number of synapses increased, but when its activity was increased, the number of synapses was strongly reduced. These findings could help scientists understand how mutations in Rap2 or TNIK can lead to various neurological conditions. A next step will be to test if these genes also affect the formation of synapses in other species such as mice, which have a more complex nervous system that is structurally and functionally more similar to that of humans.
Collapse
Affiliation(s)
- Xi Chen
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Akihiro Ce Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ardalan Hendi
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Ethan Fortes
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | | | - Brian A MacVicar
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Loss of RapC causes defects in cytokinesis, cell migration, and multicellular development of Dictyostelium. Biochem Biophys Res Commun 2018; 499:783-789. [PMID: 29614268 DOI: 10.1016/j.bbrc.2018.03.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 11/22/2022]
Abstract
The small GTPase Ras proteins are involved in diverse cellular processes. We investigated the functions of RapC, one of 15 Ras subfamily GTPases in Dictyostelium. Loss of RapC resulted in a spread shape of cells; severe defects in cytokinesis leading to multinucleation; decrease of migration speed in chemoattractant-mediated cell migration, likely through increased cell adhesion; and aberrations in multicellular development producing abnormal multiple tips from one mound and multi-branched developmental structures. Defects in cells lacking RapC were rescued by expressing GFP-RapC in rapC null cells. Our results demonstrate that RapC, despite its high sequence homology with Rap1, plays a negative role in cell spreading and cell adhesion, in contrast to Rap1, which is a key regulator of cell adhesion and cytoskeleton rearrangement. In addition, RapC appears to have a unique function in multicellular development and is involved in tip formation from mounds. This study contributes to the understanding of Ras-mediated cellular processes.
Collapse
|
16
|
Extracellular Signals Induce Glycoprotein M6a Clustering of Lipid Rafts and Associated Signaling Molecules. J Neurosci 2017; 37:4046-4064. [PMID: 28275160 DOI: 10.1523/jneurosci.3319-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/25/2017] [Accepted: 02/18/2017] [Indexed: 01/08/2023] Open
Abstract
Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. To examine how signaling protein complexes are clustered in rafts, we focused on the functions of glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing mouse neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a GPM6a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a, such as Rufy3, Rap2, and Tiam2/STEF, accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation in neuronal development. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of neuronal polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.SIGNIFICANCE STATEMENT Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. We focused on glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.
Collapse
|
17
|
Rap1GAP inhibits tumor progression in endometrial cancer. Biochem Biophys Res Commun 2017; 485:476-483. [PMID: 28196746 DOI: 10.1016/j.bbrc.2017.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Endometrioid adenocarcinoma (EAC) is a common endometrial cancer with recent dramatic increases in incidence. Previous findings indicate that Rap1GAP acts as a tumor suppressor inhibiting Ras superfamily protein Rap1 in multiple aggressive carcinomas; however, Rap1GAP expression in EAC has not been investigated. In this study, the tumor suppressing activity of Rap1GAP in EAC was explored. METHODS EAC cell lines were used to examine Rap1GAP levels by real-time RT-PCR and western blotting and the effects of Rap1GAP on cancer cell invasion and migration. Rap1GAP expression was analyzed by immunohistochemical staining for Rap1GAP, E-cadherin in surgically resected tumors of 114 EAC patients scored according to EAC differentiation grade. Prognostic variables such as age, stage, grade, tumor size, and immunostaining for Rap1GAP, E-cadherin were evaluated using Cox regression multivariate analysis. RESULTS Low Rap1GAP expression was detected in poorly differentiated EAC cells. Rap1GAP deficiency significantly accelerated while Rap1 deficiency decreased cancer cell migration and invasion. Patients with higher Rap1GAP, E-cadherin, and especially combined Rap1GAP/E-cadherin levels had better overall survival than EAC patients with no or weak expression. In addition, Rap1GAP expression was an independent prognostic factor in EAC. CONCLUSIONS Inhibition of Rap1GAP expression increases EAC cell migration and invasion through upregulation of Rap1. Low expression of Rap1GAP correlates with poor EAC differentiation. Our findings suggest that Rap1GAP is an important tumor suppressor with high prognostic value in EAC.
Collapse
|
18
|
Gera N, Swanson KD, Jin T. β-Arrestin 1-dependent regulation of Rap2 is required for fMLP-stimulated chemotaxis in neutrophil-like HL-60 cells. J Leukoc Biol 2016; 101:239-251. [PMID: 27493245 DOI: 10.1189/jlb.2a1215-572r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins have emerged as key regulators of cytoskeletal rearrangement that are required for directed cell migration. Whereas it is known that β-arrestins are required for formyl-Met-Leu-Phe receptor (FPR) recycling, less is known about their role in regulating FPR-mediated neutrophil chemotaxis. Here, we show that β-arrestin 1 (ArrB1) coaccumulated with F-actin within the leading edge of neutrophil-like HL-60 cells during chemotaxis, and its knockdown resulted in markedly reduced migration within fMLP gradients. The small GTPase Ras-related protein 2 (Rap2) was found to bind ArrB1 under resting conditions but dissociated upon fMLP stimulation. The FPR-dependent activation of Rap2 required ArrB1 but was independent of Gαi activity. Significantly, depletion of either ArrB1 or Rap2 resulted in reduced chemotaxis and defects in cellular repolarization within fMLP gradients. These data strongly suggest a model in which FPR is able to direct ArrB1 and other bound proteins that are required for lamellipodial extension to the leading edge in migrating neutrophils, thereby orientating and directing cell migration.
Collapse
Affiliation(s)
- Nidhi Gera
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| | - Kenneth D Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| |
Collapse
|
19
|
Zhu Z, Di J, Lu Z, Gao K, Zheng J. Rap2B GTPase: structure, functions, and regulation. Tumour Biol 2016; 37:7085-93. [PMID: 27012552 DOI: 10.1007/s13277-016-5033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Collapse
Affiliation(s)
- Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
20
|
Abstract
Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM.
Collapse
|
21
|
Gasper R, Sot B, Wittinghofer A. GTPase activity of Di-Ras proteins is stimulated by Rap1GAP proteins. Small GTPases 2014; 1:133-141. [PMID: 21686267 DOI: 10.4161/sgtp.1.3.14742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 11/19/2022] Open
Abstract
The Ras family is the largest and most diverse sub-group of Ras-like G proteins. This complexity is further increased by the high number of regulatory Guanine nucleotide Exchange Factors (GEFs) and GTPase Activating Proteins (GAPs) that target specific members of this subfamily. Di-Ras1 and Di-Ras2 are little characterized members of the Ras-like sub-group with still unidentified regulatory and effector proteins. Here we determined the nucleotide binding properties of Di-Ras1/Di-Ras2. The above nanomolar affinity and the inability to react with members of the Cdc25 RasGEF family might suggest that activation does not require a GEF. We identified Rap1GAP1 and Rap1GAP2 as specific GTPase activating proteins of the Di-Ras family. Dual-specificity GAPs of the GAP1(m) family could not activate Di-Ras proteins, despite the presence of the required catalytic residue. Although Di-Ras proteins share GAPs with Rap G proteins, no common effectors could be identified in vitro.
Collapse
Affiliation(s)
- Raphael Gasper
- Max-Planck-Institut für Molekulare Physiologie; Abteilung Strukturelle Biologie; Dortmund, Germany
| | | | | |
Collapse
|
22
|
Droppelmann CA, Campos-Melo D, Volkening K, Strong MJ. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front Cell Neurosci 2014; 8:282. [PMID: 25309324 PMCID: PMC4159981 DOI: 10.3389/fncel.2014.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3' untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
Collapse
Affiliation(s)
- Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| |
Collapse
|
23
|
Azeloglu EU, Hardy SV, Eungdamrong NJ, Chen Y, Jayaraman G, Chuang PY, Fang W, Xiong H, Neves SR, Jain MR, Li H, Ma’ayan A, Gordon RE, He JC, Iyengar R. Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 2014; 7:ra12. [PMID: 24497609 PMCID: PMC4220789 DOI: 10.1126/scisignal.2004621] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Collapse
Affiliation(s)
- Evren U. Azeloglu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Simon V. Hardy
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Narat John Eungdamrong
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yibang Chen
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Gomathi Jayaraman
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Peter Y. Chuang
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wei Fang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mohit R. Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ronald E. Gordon
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John Cijiang He
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
24
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
25
|
Pye DS, Rubio I, Pusch R, Lin K, Pettitt AR, Till KJ. Chemokine unresponsiveness of chronic lymphocytic leukemia cells results from impaired endosomal recycling of Rap1 and is associated with a distinctive type of immunological anergy. THE JOURNAL OF IMMUNOLOGY 2013; 191:1496-504. [PMID: 23804711 DOI: 10.4049/jimmunol.1203484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trafficking of malignant lymphocytes is fundamental to the biology of chronic lymphocytic leukemia (CLL). Transendothelial migration (TEM) of normal lymphocytes into lymph nodes requires the chemokine-induced activation of Rap1 and αLβ2 integrin. However, in most cases of CLL, Rap1 is refractory to chemokine stimulation, resulting in failed αLβ2 activation and TEM unless α4β1 is coexpressed. In this study, we show that the inability of CXCL12 to induce Rap1 GTP loading in CLL cells results from failure of Rap1-containing endosomes to translocate to the plasma membrane. Furthermore, failure of chemokine-induced Rap1 translocation/GTP loading was associated with a specific pattern of cellular IgD distribution resembling that observed in normal B cells anergized by DNA-based Ags. Anergic features and chemokine unresponsiveness could be simultaneously reversed by culturing CLL cells ex vivo, suggesting that these two features are coupled and driven by stimuli present in the in vivo microenvironment. Finally, we show that failure of Rap1 translocation/GTP loading is linked to defective activation of phospholipase D1 and its upstream activator Arf1. Taken together, our findings indicate that chemokine unresponsiveness in CLL lymphocytes results from failure of Arf1/phospholipase D1-mediated translocation of Rap1 to the plasma membrane for GTP loading and may be a specific feature of anergy induced by DNA Ags.
Collapse
Affiliation(s)
- Derek S Pye
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Zeiser J, Gerhard R, Just I, Pich A. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques. J Proteome Res 2013; 12:1604-18. [PMID: 23387933 DOI: 10.1021/pr300973q] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile is the major cause of intestinal infections in hospitals. The major virulence factors are toxin A (TcdA) and toxin B (TcdB), which belong to the group of clostridial glucosylating toxins (CGT) that inactivate small GTPases. After a 24 h incubation period with TcdA or a glucosyltransferase-deficient mutant TcdA (gdTcdA), quantitative changes in the proteome of colonic cells (Caco-2) were analyzed using high-resolution LC-MS/MS and the SILAC technique. The changes in abundance of more than 5100 proteins were quantified. Nearly 800 toxin-responsive proteins were identified that were involved in cell cycle, cell structure, and adhesion as well as metabolic processes. Several proteins localized to mitochondria or involved in lipid metabolism were consistently of higher abundance after TcdA treatment. All changes of protein abundance depended on the glucosyltransferase activity of TcdA. Glucosylation of the known targets of TcdA such as RhoA, RhoC, RhoG was detected by LC-MS/MS. In addition, an almost complete glucosylation of Rap1(A/B), Rap2(A/B/C) and a partial glucosylation of Ral(A/B) and (H/K/N)Ras were detected. The glucosylation pattern of TcdA was compared to that of other CGT like TcdB, the variant TcdB from C. difficile strain VPI 1470 (TcdBF), and lethal toxin from C. sordellii (TcsL).
Collapse
Affiliation(s)
- Johannes Zeiser
- Hannover Medical School, Institute of Toxicology , Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
27
|
JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood 2013; 121:658-65. [DOI: 10.1182/blood-2012-07-440487] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Polycythemia vera (PV) is characterized by an increased RBC mass, spontaneous erythroid colony formation, and the JAK2V617F mutation. PV is associated with a high risk of mesenteric and cerebral thrombosis. PV RBC adhesion to endothelial laminin is increased and mediated by phosphorylated erythroid Lu/BCAM. In the present work, we investigated the mechanism responsible for Lu/BCAM phosphorylation in the presence of JAK2V617F using HEL and BaF3 cell lines as well as RBCs from patients with PV. High levels of Rap1-GTP were found in HEL and BaF3 cells expressing JAK2V617F compared with BaF3 cells with wild-type JAK2. This finding was associated with increased Akt activity, Lu/BCAM phosphorylation, and cell adhesion to laminin that were inhibited by the dominant-negative Rap1S17N or by the specific Rap1 inhibitor GGTI-298. Surprisingly, knocking-down EpoR in HEL cells did not alter Akt activity or cell adhesion to laminin. Our findings reveal a novel EpoR-independent Rap1/Akt signaling pathway that is activated by JAK2V617F in circulating PV RBCs and responsible for Lu/BCAM activation. This new characteristic of JAK2V617F could play a critical role in initiating abnormal interactions among circulating and endothelial cells in patients with PV.
Collapse
|
28
|
Nagai H, Yasuda S, Ohba Y, Fukuda M, Nakamura T. All members of the EPI64 subfamily of TBC/RabGAPs also have GAP activities towards Ras. J Biochem 2012; 153:283-8. [PMID: 23248241 DOI: 10.1093/jb/mvs147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The importance of interconnective signalling networks between distinct GTPases and their regulators is being recognized. EPI64C/TBC1D10C/carabin, a haematopoietically enriched GTPase-activating protein (GAP) for Rab35, has been shown to exhibit RasGAP activity. Owing to the diverged Rab specificities among the EPI64 members (EPI64A-C) and the relatively weak sequence conservation between EPI64A/B and EPI64C in their catalytic TBC domains, it is difficult to predict whether EPI64A and B will also have RasGAP activities. Therefore, in this study, we examined the RasGAP activities of all three EPI64 subfamily members. We found that EPI64A-C exhibited in vivo GAP activities towards Ras using three independent methods, spectrofluorometry with Förster resonance energy transfer (FRET) sensors, the Bos' pull-down assay and time-lapse FRET imaging. EPI64A and B were predominantly localized at the periphery of COS-7 cells. In COS-7 cells, confocal FRET imaging showed that H-Ras activity was higher at the Golgi than at the plasma membrane. Thus, we propose that EPI64A and B, which are ubiquitously expressed members of the EPI64 subfamily, inactivate Ras and certain Rabs at the periphery of cells.
Collapse
Affiliation(s)
- Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|
29
|
Dong X, Tang W, Stopenski S, Brose MS, Korch C, Meinkoth JL. RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells. Endocr Relat Cancer 2012; 19:575-88. [PMID: 22696507 PMCID: PMC3531979 DOI: 10.1530/erc-12-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The functional significance of decreased RAP1GAP protein expression in human tumors is unclear. To identify targets of RAP1GAP downregulation in the thyroid gland, RAP1 and RAP2 protein expression in human thyroid cells and in primary thyroid tumors were analyzed. RAP1GAP and RAP2 were co-expressed in normal thyroid follicular cells. Intriguingly, RAP1 was not detected in normal thyroid cells, although it was detected in papillary thyroid carcinomas, which also expressed RAP2. Both RAP proteins were detected at the membrane in papillary thyroid tumors, suggesting that they are activated when RAP1GAP is downregulated. To explore the functional significance of RAP1GAP depletion, RAP1GAP was transiently expressed at the lowest level that is sufficient to block endogenous RAP2 activity in papillary and anaplastic thyroid carcinoma cell lines. RAP1GAP impaired the ability of cells to spread and migrate on collagen. Although RAP1GAP had no effect on protein tyrosine phosphorylation in growing cells, RAP1GAP impaired phosphorylation of focal adhesion kinase and paxillin at sites phosphorylated by SRC in cells acutely plated on collagen. SRC activity was increased in suspended cells, where it was inhibited by RAP1GAP. Inhibition of SRC kinase activity impaired cell spreading and motility. These findings identify SRC as a target of RAP1GAP depletion and suggest that the downregulation of RAP1GAP in thyroid tumors enhances SRC-dependent signals that regulate cellular architecture and motility.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Department of Pharmacology - Head and Neck Surgery, School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRB II/III, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
The Small GTPase Rap1b: A Bidirectional Regulator of Platelet Adhesion Receptors. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:412089. [PMID: 22745904 PMCID: PMC3382407 DOI: 10.1155/2012/412089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/12/2012] [Accepted: 04/27/2012] [Indexed: 11/27/2022]
Abstract
Integrins and other families of cell adhesion receptors are responsible for platelet adhesion and aggregation, which are essential steps for physiological haemostasis, as well as for the development of thrombosis. The modulation of platelet adhesive properties is the result of a complex pattern of inside-out and outside-in signaling pathways, in which the members of the Rap family of small GTPases are bidirectionally involved.
This paper focuses on the regulation of the main Rap GTPase expressed in circulating platelets, Rap1b, downstream of adhesion receptors, and summarizes the most recent achievements in the investigation of the function of this protein as regulator of platelet adhesion and thrombus formation.
Collapse
|
31
|
Ferrando IM, Chaerkady R, Zhong J, Molina H, Jacob HKC, Herbst-Robinson K, Dancy BM, Katju V, Bose R, Zhang J, Pandey A, Cole PA. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol Cell Proteomics 2012; 11:355-69. [PMID: 22499769 DOI: 10.1074/mcp.m111.015750] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cellular proto-oncogene c-Src is a nonreceptor tyrosine kinase involved in cell growth and cytoskeletal regulation. Despite being dysregulated in a variety of human cancers, its precise functions are not fully understood. Identification of the substrates of c-Src remains a major challenge, because there is no simple way to directly stimulate its activity. Here we combine the chemical rescue of mutant c-Src and global quantitative phosphoproteomics to obtain the first high resolution snapshot of the range of tyrosine phosphorylation events that occur in the cell immediately after specific c-Src stimulation. After enrichment by anti-phosphotyrosine antibodies, we identified 29 potential novel c-Src substrate proteins. Tyrosine phosphopeptide mapping allowed the identification of 382 nonredundant tyrosine phosphopeptides on 213 phosphoproteins. Stable isotope labeling of amino acids in cell culture-based quantitation allowed the detection of 97 nonredundant tyrosine phosphopeptides whose level of phosphorylation is increased by c-Src. A large number of previously uncharacterized c-Src putative protein targets and phosphorylation sites are presented here, a majority of which play key roles in signaling and cytoskeletal networks, particularly in cell adhesion. Integrin signaling and focal adhesion kinase signaling pathway are two of the most altered pathways upon c-Src activation through chemical rescue. In this context, our study revealed the temporal connection between c-Src activation and the GTPase Rap1, known to stimulate integrin-dependent adhesion. Chemical rescue of c-Src provided a tool to dissect the spatiotemporal mechanism of activation of the Rap1 guanine exchange factor, C3G, one of the identified potential c-Src substrates that plays a role in focal adhesion signaling. In addition to unveiling the role of c-Src in the cell and, specifically, in the Crk-C3G-Rap1 pathway, these results exemplify a strategy for obtaining a comprehensive understanding of the functions of nonreceptor tyrosine kinases with high specificity and kinetic resolution.
Collapse
Affiliation(s)
- Isabel Martinez Ferrando
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yap DB, Walker DC, Prentice LM, McKinney S, Turashvili G, Mooslehner-Allen K, de Algara TR, Fee J, de Tassigny XD, Colledge WH, Aparicio S. Mll5 is required for normal spermatogenesis. PLoS One 2011; 6:e27127. [PMID: 22069496 PMCID: PMC3206077 DOI: 10.1371/journal.pone.0027127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/11/2011] [Indexed: 12/02/2022] Open
Abstract
Background Mll5 is currently a member of the Mll family of SET domain histone methyltransferase proteins but studies have also showed that it could be part of the SET3 branch of proteins. Recently, constitutive knock out animal studies have shown that Mll5 is required for proper haematopoietic stem cell differentiation, and loss of Mll5 results in synthetic lethality for genome de-methylation. Mll5 deficient male mice are infertile and here we analyse the consequences of Mll5 deficiency for spermatogenesis. Methodology/Principal Findings Mll5 deficient male mice, but not female mice, are infertile. Here we show using RNA in-situ hybridization that Mll5 is expressed in the germ cells of the testes of wild type mice. Consistent with the expression of Mll5, we demonstrate by electron microscopy, video microscopy and in vitro fertilisation techniques that Mll5 deficient mice have defects in terminal maturation and packaging of sperm. The defects seen include detachment of the acrosomal cap and impaired excess cytoplasm removal. Functional tests of sperm motility show a lack of progressive motility of spermatozoa from Mll5 deficient animals. None of these defects could be rescued by in vitro fertilization. Using microarray analysis we show that transcripts implicated in spermatogenesis are dysregulated. Conclusions/Significance Our data demonstrate a clear role of Mll5 in mammalian spermatogenesis at the level of terminal differentiation providing further support for its classification in the SET3 branch of proteins. Moreover, this study identifies Tlk2, Utx, Gpr64, Sult4a1, Rap2ip, Vstm2 and HoxA10 as possible Mll5 targets that together may account for the observed spermatozoa maturation defects.
Collapse
Affiliation(s)
- Damian B. Yap
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C. Walker
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leah M. Prentice
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven McKinney
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Gulisa Turashvili
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | - Teresa Ruiz de Algara
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - John Fee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Xavier d'Anglemont de Tassigny
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - William H. Colledge
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
33
|
Pöling J, Szibor M, Schimanski S, Ingelmann ME, Rees W, Gajawada P, Kochfar Z, Lörchner H, Salwig I, Shin JY, Wiebe K, Kubin T, Warnecke H, Braun T. Induction of Smooth Muscle Cell Migration During Arteriogenesis Is Mediated by Rap2. Arterioscler Thromb Vasc Biol 2011; 31:2297-305. [DOI: 10.1161/atvbaha.111.232835] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective—
Collateral artery growth or arteriogenesis is the primary means of the circulatory system to maintain blood flow in the face of major arterial occlusions. Arteriogenesis depends on activation of fibroblast growth factor (FGF) receptors, but relatively little is known about downstream mediators of FGF signaling.
Methods and Results—
We screened for signaling components that are activated in response to administration of FGF-2 to cultured vascular smooth muscle cells (VSMCs) and detected a significant increase of Rap2 but not of other Ras family members, which corresponded to a strong upregulation of Rap2 and C-Raf in growing collaterals from rabbits with femoral artery occlusion. Small interfering RNAs directed against Rap2 did not affect FGF-2 induced proliferation of VSMC but strongly inhibited their migration. Inhibition of FGF receptor-1 (FGFR1) signaling by infusion of a sulfonic acid polymer or infection with a dominant-negative FGFR1 adenovirus inhibited Rap2 upregulation and collateral vessel growth. Similarly, expression of dominant-negative Rap2 blocked arteriogenesis, whereas constitutive active Rap2 enhanced collateral vessel growth.
Conclusion—
Rap2 is part of the arteriogenic program and acts downstream of the FGFR1 to stimulate VSMC migration. Specific modulation of Rap2 might be an attractive target to manipulate VSMC migration, which plays a role in numerous pathological processes.
Collapse
Affiliation(s)
- Jochen Pöling
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Marten Szibor
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Silvia Schimanski
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Marie-Elisabeth Ingelmann
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Wolfgang Rees
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Praveen Gajawada
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Zaber Kochfar
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Holger Lörchner
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Isabelle Salwig
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Jae-Young Shin
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Karsten Wiebe
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Thomas Kubin
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Henning Warnecke
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| | - Thomas Braun
- From the Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (J.P., M.S., S.S., M.-E.I., P.G., Z.K., H.L., I.S., J.-Y.S., T.K., T.B.); Department of Cardiac Surgery, Schüchtermann-Klinik, Bad Rothenfelde, Germany (J.P., W.R., H.W.); University Hospital Münster, Germany (K.W.)
| |
Collapse
|
34
|
Mitra A, Kalayarasan S, Gupta V, Radha V. TC-PTP dephosphorylates the guanine nucleotide exchange factor C3G (RapGEF1) and negatively regulates differentiation of human neuroblastoma cells. PLoS One 2011; 6:e23681. [PMID: 21876762 PMCID: PMC3158094 DOI: 10.1371/journal.pone.0023681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 07/24/2011] [Indexed: 11/29/2022] Open
Abstract
The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellular T-cell protein tyrosine phosphatase TC-PTP (PTPN2) using the human neuroblastoma cell line, IMR-32. In vivo and in vitro binding assays demonstrated interaction between C3G and TC-PTP. Interaction is mediated through the Crk-binding region of C3G and C-terminal noncatalytic residues of TC-PTP. C3G interacted better with a substrate trap mutant of TC48 and this complex formation was inhibited by vanadate. Endogenous pC3G colocalized with catalytically inactive mutant TC48 in the Golgi. Expression of TC48 abrogated pervanadate and c-Src induced phosphorylation of C3G without affecting total cellular phospho-tyrosine. Insulin-like growth factor treatment of c-Src expressing cells resulted in dephosphorylation of C3G dependent on the activity of endogenous TC48. TC48 expression inhibited forskolin induced tyrosine phosphorylation of C3G and neurite outgrowth in IMR-32 cells. Our results identify a novel Golgi localized substrate of TC48 and delineate a role for TC48 in dephosphorylation of substrates required during differentiation of human neuroblastoma cells.
Collapse
Affiliation(s)
- Aninda Mitra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, Andhra Pradesh, India
| | | | | | | |
Collapse
|
35
|
Hewer RC, Sala-Newby GB, Wu YJ, Newby AC, Bond M. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J Mol Cell Cardiol 2010; 50:87-98. [PMID: 20971121 PMCID: PMC3093616 DOI: 10.1016/j.yjmcc.2010.10.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 12/14/2022]
Abstract
Cyclic AMP signalling promotes VSMC quiescence in healthy vessels and during vascular healing following injury. Cyclic AMP inhibits VSMC proliferation via mechanisms that are not fully understood. We investigated the role of PKA and Epac signalling on cAMP-induced inhibition of VSMC proliferation. cAMP-mediated growth arrest was PKA-dependent. However, selective PKA activation with 6-Benzoyl-cAMP did not inhibit VSMC proliferation, indicating a requirement for additional pathways. Epac activation using the selective cAMP analogue 8-CPT-2′-O-Me-cAMP, did not affect levels of hyperphosphorylated Retinoblastoma (Rb) protein, a marker of G1-S phase transition, or BrdU incorporation, despite activation of the Epac-effector Rap1. However, 6-Benzoyl-cAMP and 8-CPT-2′-O-Me-cAMP acted synergistically to inhibit Rb-hyperphosphorylation and BrdU incorporation, indicating that both pathways are required for growth inhibition. Consistent with this, constitutively active Epac increased Rap1 activity and synergised with 6-Benzoyl-cAMP to inhibit VSMC proliferation. PKA and Epac synergised to inhibit phosphorylation of ERK and JNK. Induction of stellate morphology, previously associated with cAMP-mediated growth arrest, was also dependent on activation of both PKA and Epac. Rap1 inhibition with Rap1GAP or siRNA silencing did not negate forskolin-induced inhibition of Rb-hyperphosphorylation, BrdU incorporation or stellate morphology. This data demonstrates for the first time that Epac synergises with PKA via a Rap1-independent mechanism to mediate cAMP-induced growth arrest in VSMC. This work highlights the role of Epac as a major player in cAMP-dependent growth arrest in VSMC.
Collapse
|
36
|
Mitra A, Radha V. F-actin-binding domain of c-Abl regulates localized phosphorylation of C3G: role of C3G in c-Abl-mediated cell death. Oncogene 2010; 29:4528-42. [PMID: 20581864 DOI: 10.1038/onc.2010.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The c-Abl tyrosine kinase maintains cellular homeostasis through its ability to regulate apoptosis and actin dynamics. In vivo, c-Abl activity is stringently regulated and mechanisms involved are not fully understood. Here, we identified the Rap1 guanine nucleotide exchange factor, C3G (RapGEF1), as a substrate and an effector of c-Abl-mediated functions. Ectopic expression of c-Abl in mammalian cell lines, known to induce apoptosis, resulted in phosphorylation of endogenous C3G on Y504 coincident with cell detachment and chromatin condensation. Phosphorylation of C3G coincided with restricted c-Abl activation in regions rich in actin, and was dependent on cellular F-actin dynamics. Unlike C3G or c-Abl, p-C3G was resistant to detergent extraction, suggesting its enhanced affinity for the cytoskeleton. Localized C3G phosphorylation and coincidence with cells undergoing cell death was dependent on F-actin-binding domain (FABD) of c-Abl. Activation of endogenous c-Abl by oxidative stress was associated with phosphorylation of cellular C3G on Y504. Inhibition of C3G expression and function using RNAi or dominant-negative approaches inhibited c-Abl-mediated cell death. These findings identify C3G as a novel target of c-Abl and also show that FABD of c-Abl is essential for regulation of its restricted activation to induce apoptosis.
Collapse
Affiliation(s)
- A Mitra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | | |
Collapse
|
37
|
The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol Cell Biol 2010; 30:3956-69. [PMID: 20547757 DOI: 10.1128/mcb.00242-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epac1 (exchange protein directly activated by cyclic AMP [cAMP]) couples intracellular cAMP to the activation of Rap1, a Ras family GTPase that regulates cell adhesion, proliferation, and differentiation. Using mass spectrometry, we identified the small G protein Ran and Ran binding protein 2 (RanBP2) as potential binding partners of Epac1. Ran is a small G protein best known for its role in nuclear transport and can be found at the nuclear pore through its interaction with RanBP2. Here we demonstrate that Ran-GTP and Epac1 interact with each other in vivo and in vitro. This binding requires a previously uncharacterized Ras association (RA) domain in Epac1. Surprisingly, the interaction of Epac1 with Ran is necessary for the efficient activation of Rap1 by Epac1. We propose that Ran and RanBP2 anchor Epac1 to the nuclear pore, permitting cAMP signals to activate Rap1 at the nuclear envelope.
Collapse
|
38
|
Kawabe H, Neeb A, Dimova K, Young SM, Takeda M, Katsurabayashi S, Mitkovski M, Malakhova OA, Zhang DE, Umikawa M, Kariya KI, Goebbels S, Nave KA, Rosenmund C, Jahn O, Rhee J, Brose N. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65:358-72. [PMID: 20159449 DOI: 10.1016/j.neuron.2010.01.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2009] [Indexed: 11/29/2022]
Abstract
Nedd4-1 is a "neuronal precursor cell expressed and developmentally downregulated protein" and among the most abundant E3 ubiquitin ligases in mammalian neurons. In analyses of conventional and conditional Nedd4-1-deficient mice, we found that Nedd4-1 plays a critical role in dendrite formation. Nedd4-1, the serine/threonine kinase TNIK, and Rap2A form a complex that controls Nedd4-1-mediated ubiquitination of Rap2A. Ubiquitination by Nedd4-1 inhibits Rap2A function, which reduces the activity of Rap2 effector kinases of the TNIK family and promotes dendrite growth. We conclude that a Nedd4-1/Rap2A/TNIK signaling pathway regulates neurite growth and arborization in mammalian neurons.
Collapse
Affiliation(s)
- Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Crittenden JR, Dunn DE, Merali FI, Woodman B, Yim M, Borkowska AE, Frosch MP, Bates GP, Housman DE, Lo DC, Graybiel AM. CalDAG-GEFI down-regulation in the striatum as a neuroprotective change in Huntington's disease. Hum Mol Genet 2010; 19:1756-65. [PMID: 20147317 DOI: 10.1093/hmg/ddq055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Huntingtin protein (Htt) is ubiquitously expressed, yet Huntington's disease (HD), a fatal neurologic disorder produced by expansion of an Htt polyglutamine tract, is characterized by neurodegeneration that occurs primarily in the striatum and cerebral cortex. Such discrepancies between sites of expression and pathology occur in multiple neurodegenerative disorders associated with expanded polyglutamine tracts. One possible reason is that disease-modifying factors are tissue-specific. Here, we show that the striatum-enriched protein, CalDAG-GEFI, is severely down-regulated in the striatum of mouse HD models and is down-regulated in HD individuals. In the R6/2 transgenic mouse model of HD, striatal neurons with the largest aggregates of mutant Htt have the lowest levels of CalDAG-GEFI. In a brain-slice explant model of HD, knock-down of CalDAG-GEFI expression rescues striatal neurons from pathology induced by transfection of polyglutamine-expanded Htt exon 1. These findings suggest that the striking down-regulation of CalDAG-GEFI in HD could be a protective mechanism that mitigates Htt-induced degeneration.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, MIT, 43 Vassar Street, Building 46-6133, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Visualization of Ras-PI3K interaction in the endosome using BiFC. Cell Signal 2009; 21:1672-9. [PMID: 19616621 DOI: 10.1016/j.cellsig.2009.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 11/22/2022]
Abstract
Recent studies indicate the importance of spatiotemporal regulation in the diversity and specificity of intracellular signaling. Here, we show that Ras-PI3K signaling plays an important role in the local regulation of phosphatidylinositol metabolism in the endosome through live-cell imaging by using a bimolecular fluorescence complementation technique, in which molecular interaction is indicated by fluorescence emission. Using several possible combinations of Ras and the Ras-binding domain, we identified an optimal set of probe molecules that yielded the most significant increase in fluorescence intensity between the active and inactive forms of Ras. This combination revealed that, among the Ras effectors tested, phosphatidylinositol 3-kinase (PI3K) was specifically implicated in signaling in the endosome. We also found that full length PI3K was recruited to the endosome in EGF- and Ras-dependent manners, which appears to be essential for the activation of PI3K in this compartment. Taken together, these findings demonstrate that the spatiotemporal regulation of Ras-PI3K signaling may dictate the activation of PI3K and subsequent downstream signaling in the endosome.
Collapse
|
41
|
Tse KWK, Dang-Lawson M, Lee RL, Vong D, Bulic A, Buckbinder L, Gold MR. B cell receptor-induced phosphorylation of Pyk2 and focal adhesion kinase involves integrins and the Rap GTPases and is required for B cell spreading. J Biol Chem 2009; 284:22865-77. [PMID: 19561089 DOI: 10.1074/jbc.m109.013169] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling by the B cell receptor (BCR) promotes integrin-mediated adhesion and cytoskeletal reorganization. This results in B cell spreading, which enhances the ability of B cells to bind antigens and become activated. Proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK) are related cytoplasmic tyrosine kinases that regulate cell adhesion, cell morphology, and cell migration. In this report we show that BCR signaling and integrin signaling collaborate to induce the phosphorylation of Pyk2 and FAK on key tyrosine residues, a modification that increases the kinase activity of Pyk2 and FAK. Activation of the Rap GTPases is critical for BCR-induced integrin activation as well as for BCR- and integrin-induced reorganization of the actin cytoskeleton. We now show that Rap activation is essential for BCR-induced phosphorylation of Pyk2 and for integrin-induced phosphorylation of Pyk2 and FAK. Moreover Rap-dependent phosphorylation of Pyk2 and FAK required an intact actin cytoskeleton as well as actin dynamics, suggesting that Rap regulates Pyk2 and FAK via its effects on the actin cytoskeleton. Importantly B cell spreading induced by BCR/integrin co-stimulation or by integrin engagement was inhibited by short hairpin RNA-mediated knockdown of either Pyk2 or FAK expression and by treatment with PF-431396, a chemical inhibitor that blocks the kinase activities of both Pyk2 and FAK. Thus Pyk2 and FAK are downstream targets of the Rap GTPases that play a key role in regulating B cell morphology.
Collapse
Affiliation(s)
- Kathy W K Tse
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Borland G, Bird RJ, Palmer TM, Yarwood SJ. Activation of protein kinase Calpha by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein beta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 2009; 284:17391-403. [PMID: 19423709 PMCID: PMC2719379 DOI: 10.1074/jbc.m109.015370] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/30/2009] [Indexed: 01/09/2023] Open
Abstract
We recently found that induction of the anti-inflammatory SOCS-3 gene by cyclic AMP occurs through novel cyclic AMP-dependent protein kinase-independent mechanisms involving activation of CCAAT/enhancer-binding protein (C/EBP) transcription factors, notably C/EBPbeta, by the cyclic AMP GEF EPAC1 and the Rap1 GTPase. In this study we show that down-regulation of phospholipase (PL) Cepsilon with small interfering RNA or blockade of PLC activity with chemical inhibitors ablates exchange protein directly activated by cyclic AMP (EPAC)-dependent induction of SOCS-3 in COS1 cells. Consistent with this, stimulation of cells with 1-oleoyl-2-acetyl-sn-glycerol and phorbol 12-myristate 13-acetate, both cell-permeable analogues of the PLC product diacylglycerol, are sufficient to induce SOCS-3 expression in a Ca2+-dependent manner. Moreover, the diacylglycerol- and Ca2+-dependent protein kinase C (PKC) isoform PKCalpha becomes activated following cyclic AMP elevation or EPAC stimulation. Conversely, down-regulation of PKC activity with chemical inhibitors or small interfering RNA-mediated depletion of PKCalpha or -delta blocks EPAC-dependent SOCS-3 induction. Using the MEK inhibitor U0126, we found that activation of ERK MAPKs is essential for SOCS-3 induction by either cyclic AMP or PKC. C/EBPbeta is known to be phosphorylated and activated by ERK. Accordingly, we found ERK activation to be essential for cyclic AMP-dependent C/EBP activation and C/EBPbeta-dependent SOCS-3 induction by cyclic AMP and PKC. Moreover, overexpression of a mutant form of C/EBPbeta (T235A), which lacks the ERK phosphorylation site, blocks SOCS-3 induction by cyclic AMP and PKC in a dominant-negative manner. Together, these results indicate that EPAC mediates novel regulatory cross-talk between the cyclic AMP and PKC signaling pathways leading to ERK- and C/EBPbeta-dependent induction of the SOCS-3 gene.
Collapse
Affiliation(s)
- Gillian Borland
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Rebecca J. Bird
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Timothy M. Palmer
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Stephen J. Yarwood
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
43
|
Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C. Control of transforming growth factor β signal transduction by small GTPases. FEBS J 2009; 276:2947-65. [DOI: 10.1111/j.1742-4658.2009.07031.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Abstract
Epac1 is a guanine nucleotide exchange factor (GEF) for the small G protein Rap and is directly activated by cyclic AMP (cAMP). Upon cAMP binding, Epac1 undergoes a conformational change that allows the interaction of its GEF domain with Rap, resulting in Rap activation and subsequent downstream effects, including integrin-mediated cell adhesion and cell-cell junction formation. Here, we report that cAMP also induces the translocation of Epac1 toward the plasma membrane. Combining high-resolution confocal fluorescence microscopy with total internal reflection fluorescence and fluorescent resonance energy transfer assays, we observed that Epac1 translocation is a rapid and reversible process. This dynamic redistribution of Epac1 requires both the cAMP-induced conformational change as well as the DEP domain. In line with its translocation, Epac1 activation induces Rap activation predominantly at the plasma membrane. We further show that the translocation of Epac1 enhances its ability to induce Rap-mediated cell adhesion. Thus, the regulation of Epac1-Rap signaling by cAMP includes both the release of Epac1 from autoinhibition and its recruitment to the plasma membrane.
Collapse
|
45
|
Uechi Y, Bayarjargal M, Umikawa M, Oshiro M, Takei K, Yamashiro Y, Asato T, Endo S, Misaki R, Taguchi T, Kariya KI. Rap2 function requires palmitoylation and recycling endosome localization. Biochem Biophys Res Commun 2008; 378:732-7. [PMID: 19061864 DOI: 10.1016/j.bbrc.2008.11.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 11/19/2008] [Indexed: 11/28/2022]
Abstract
Rap2A, Rap2B, and Rap2C are Ras-like small G proteins. The role of their post-translational processing has not been investigated due to the lack of information on their downstream signaling. We have recently identified the Traf2- and Nck-interacting kinase (TNIK), a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases, as a specific Rap2 effector. Here we report that, in HEK293T cells, Rap2A (farnesylated) and Rap2C (likely farnesylated), but not Rap2B (geranylgeranylated), require palmitoylation for membrane-association and TNIK activation, whereas all Rap2 proteins, including Rap2B, require palmitoylation for induction of TNIK-mediated phenotype, the suppression of cell spreading. Furthermore, we report for the first time that, in COS-1 cells, Rap2 proteins localize, and recruit TNIK, to the recycling endosomes, but not the Golgi nor the endoplasmic reticulum, in a palmitoylation-dependent manner. These observations implicate the involvement of palmitoylation and recycling endosome localization in cellular functions of Rap2 proteins.
Collapse
Affiliation(s)
- Yukiko Uechi
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Radha V, Rajanna A, Gupta RK, Dayma K, Raman T. The guanine nucleotide exchange factor, C3G regulates differentiation and survival of human neuroblastoma cells. J Neurochem 2008; 107:1424-35. [PMID: 18957052 DOI: 10.1111/j.1471-4159.2008.05710.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal differentiation involving neurite growth is dependent on environmental cues which are relayed by signalling pathways to actin cytoskeletal remodelling. C3G, the exchange factor for Rap1, functions in pathways leading to actin reorganization and filopodia formation, processes required during neurite growth. In the present study, we have analyzed the function of C3G, in regulating neuronal cell survival and plasticity. Human neuroblastoma cells, IMR-32 induced to differentiate by serum starvation or by treatment with nerve growth factor (NGF) or forskolin showed enhanced C3G protein levels. Transient over-expression of C3G stimulated neurite growth and also increased responsiveness to NGF and serum deprivation induced differentiation. C3G-induced neurite growth was dependent on both its catalytic and N-terminal regulatory domains, and on the functions of Cdc42 and Rap1. Knockdown of C3G using small hairpin RNA inhibited forskolin and NGF-induced morphological differentiation of IMR-32 cells. Forskolin-induced differentiation was dependent on catalytic activity of C3G. Forskolin and NGF treatment resulted in phosphorylation of C3G at Tyr504 predominantly in the Golgi. C3G expression induced the cell cycle inhibitor p21 and C3G knockdown enhanced cell death in response to serum starvation. These findings demonstrate a novel function for C3G in regulating survival and differentiation of human neuroblastoma cells.
Collapse
Affiliation(s)
- Vegesna Radha
- Centre for Cellular and Molecular Biology, Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, India.
| | | | | | | | | |
Collapse
|
47
|
Nonaka H, Takei K, Umikawa M, Oshiro M, Kuninaka K, Bayarjargal M, Asato T, Yamashiro Y, Uechi Y, Endo S, Suzuki T, Kariya KI. MINK is a Rap2 effector for phosphorylation of the postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun 2008; 377:573-578. [PMID: 18930710 DOI: 10.1016/j.bbrc.2008.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/18/2022]
Abstract
Rap1 and Rap2 are similar Ras-like G proteins but perform distinct functions. By the affinity chromatography/mass-spectrometry approach and the yeast two-hybrid screening, we identified Misshapen/NIKs-related kinase (MINK) as a novel Rap2-interacting protein that does not interact with Rap1 or Ras. MINK is a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases. The interaction between MINK and Rap2 was GTP-dependent and required Phe39 within the effector region of Rap2; the corresponding residue in Rap1 and Ras is Ser. MINK was enriched in the brain, and both MINK and its close relative, Traf2- and Nck-interacting kinase (TNIK), interacted with a postsynaptic scaffold protein containing tetratricopeptide repeats, ankyrin repeats and a coiled-coil region (TANC1) and induced its phosphorylation, under control of Rap2 in cultured cells. These are novel actions of MINK and TNIK, and consistent with a role of MINK as a Rap2 effector in the brain.
Collapse
Affiliation(s)
- Hideo Nonaka
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kimiko Takei
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Masato Umikawa
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Minoru Oshiro
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kouichi Kuninaka
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Maitsetseg Bayarjargal
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Tsuyoshi Asato
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Yoshito Yamashiro
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Yukiko Uechi
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Japan
| | - Shogo Endo
- Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Shinshu University Graduate School of Medicine, Japan
| | - Ken-Ichi Kariya
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.
| |
Collapse
|
48
|
Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci 2008; 28:8178-88. [PMID: 18701680 DOI: 10.1523/jneurosci.1944-08.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Within the Ras superfamily of GTPases, Rap1 and Rap2 are the closest homologs to Ras. In non-neural cells, Rap signaling can antagonize Ras signaling. In neurons, Rap also seems to oppose Ras in terms of synaptic function. Whereas Ras is critical for long-term potentiation (LTP), Rap1 has been shown to be required for long-term depression (LTD), and Rap2 has been implicated in depotentiation. Moreover, active Rap1 and Rap2 cause loss of surface AMPA receptors and reduced miniature EPSC amplitude and frequency in cultured neurons. The role of Rap signaling in vivo, however, remains poorly understood. To study the function of Rap2 in the brain and in behavior, we created transgenic mice expressing either constitutively active (Rap2V12) or dominant-negative (Rap2N17) mutants of Rap2 in postnatal forebrain. Multiple lines of Rap2N17 mice showed only weak expression of the transgenic protein, and no phenotype was observed. Rap2V12 mice displayed fewer and shorter dendritic spines in CA1 hippocampal neurons, and enhanced LTD at CA3-CA1 synapses. Behaviorally, Rap2V12 mice showed impaired spatial learning and defective extinction of contextual fear, which correlated with reduced basal phosphorylation of extracellular signal-regulated kinase (ERK) and blunted activation of ERK during fear extinction training. Our data support the idea that Rap2 opposes Ras-ERK signaling in the brain, thereby inhibiting dendritic spine development/maintenance, promoting synaptic depression rather than LTP, and impairing learning. The findings also implicate Rap2 signaling in fear extinction mechanisms, which are thought to be aberrant in anxiety disorders and posttraumatic stress disorder.
Collapse
|
49
|
Lin KBL, Freeman SA, Zabetian S, Brugger H, Weber M, Lei V, Dang-Lawson M, Tse KWK, Santamaria R, Batista FD, Gold MR. The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands. Immunity 2008; 28:75-87. [PMID: 18191594 DOI: 10.1016/j.immuni.2007.11.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/19/2007] [Accepted: 11/19/2007] [Indexed: 01/17/2023]
Abstract
B lymphocytes spread and extend membrane processes when searching for antigens and form immune synapses upon contacting cells that display antigens on their surface. Although these dynamic morphological changes facilitate B cell activation, the signaling pathways underlying these processes are not fully understood. We found that activation of the Rap GTPases was essential for these changes in B cell morphology. Rap activation was important for B cell receptor (BCR)- and lymphocyte-function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune-synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane-process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens but not soluble antigens. Thus by controlling B cell morphology and cytoskeletal organization, Rap might play a key role in the activation of B cells by particulate and cell-associated antigens.
Collapse
Affiliation(s)
- Kevin B L Lin
- Department of Microbiology and Immunology, I3 and CELL Research Groups, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Y, Yan J, De P, Chang HC, Yamauchi A, Christopherson KW, Paranavitana NC, Peng X, Kim C, Munugalavadla V, Munugulavadla V, Kapur R, Chen H, Shou W, Stone JC, Kaplan MH, Dinauer MC, Durden DL, Quilliam LA. Rap1a null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins. THE JOURNAL OF IMMUNOLOGY 2008; 179:8322-31. [PMID: 18056377 DOI: 10.4049/jimmunol.179.12.8322] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Ras-related GTPases Rap1a and 1b have been implicated in multiple biological events including cell adhesion, free radical production, and cancer. To gain a better understanding of Rap1 function in mammalian physiology, we deleted the Rap1a gene. Although loss of Rap1a expression did not initially affect mouse size or viability, upon backcross into C57BL/6J mice some Rap1a-/- embryos died in utero. T cell, B cell, or myeloid cell development was not disrupted in Rap1a-/- mice. However, macrophages from Rap1a null mice exhibited increased haptotaxis on fibronectin and vitronectin matrices that correlated with decreased adhesion. Chemotaxis of lymphoid and myeloid cells in response to CXCL12 or CCL21 was significantly reduced. In contrast, an increase in FcR-mediated phagocytosis was observed. Because Rap1a was previously copurified with the human neutrophil NADPH oxidase, we addressed whether GTPase loss affected superoxide production. Neutrophils from Rap1a-/- mice had reduced fMLP-stimulated superoxide production as well as a weaker initial response to phorbol ester. These results suggest that, despite 95% amino acid sequence identity, similar intracellular distribution, and broad tissue distribution, Rap1a and 1b are not functionally redundant but rather differentially regulate certain cellular events.
Collapse
Affiliation(s)
- Yu Li
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|