1
|
Zhang J, Xu X, Zhou Y, Su J, Wang J. A meta-analysis and systematic review of different cyclin-dependent kinase 4/6 inhibitors in breast cancer. Front Oncol 2025; 15:1472407. [PMID: 40104496 PMCID: PMC11913826 DOI: 10.3389/fonc.2025.1472407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Objective The objective of this study was to assess the effectiveness and safety of CDK4/6 inhibitors in the treatment of hormone receptor-positive (HR+) breast cancer by using meta-analysis. Methods To gather comprehensive and reliable data for our analysis, we systematically searched multiple databases for relevant studies. We utilized RevMan5.3 software to perform the meta-analysis. Results Following a rigorous screening and evaluation process, we ultimately included a total of 13 studies in our analysis. Our findings showed that compared to endocrine therapy alone, the combination of CDK4/6 inhibitors with endocrine therapy significantly increased both PFS [HR 0.54 (95%CI: 0.50, 0.58), P<0.00001], OS [HR 0.77 (95%CI: 0.50, 0.58), P<0.00001] and ORR [RR 1.39 (95% CI: 1.21, 1.60), P<0.00001). However, it was also found that CDK4/6 inhibitors caused adverse drug reactions related to the blood system and digestive system (P<0.0001). Conclusions Our meta-analysis demonstrates that the addition of CDK4/6 inhibitors to endocrine therapy can result in improved PFS and OS for HR+ breast cancer patients. Meanwhile, we recommend close monitoring and management of these potential side effects when utilizing these inhibitors in breast cancer treatment. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023490499.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xinyu Xu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yeyue Zhou
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, China
| | - Jue Wang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Jiang H, Jin X, Gu H, Li B, Li Z, Sun Y. SPC25 upregulates CCND1 to promote the progression of esophageal squamous cell carcinoma by inhibiting MDM2-mediated E2F1 ubiquitination. Transl Oncol 2025; 53:102300. [PMID: 39919356 PMCID: PMC11849203 DOI: 10.1016/j.tranon.2025.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is highly malignant worldwide. Despite significant advances in the treatment of ESCC, the prognosis remains unfavourable, necessitating research into its mechanisms and treatments. Spindle component 25 (SPC25) can ensure the fidelity of mitotic progression and the accurate segregation of chromosomes, thus plays an important role in the development of malignant tumors, but its role in ESCC is yet to be determined. In this study, the expression of SPC25 was assessed by IHC in 88 primary ESCC samples, with its expression being correlated with advanced clinical features. The function of SPC25 in the proliferation, migration and tumorigenicity of ESCC cells was verified in vitro and in vivo. Mechanistically, SPC25 facilitated tumorigenesis through promoting CCND1 expression. As the transcription factor for CCND1, E2F1 is stabilized by SPC25 through binding the ubiquitin ligase MDM2, resulting in enhanced E2F1 expression, which in turn promotes the expression of CCND1. In addition, overexpression of CCND1 counteracted the effects of SPC25 silencing. Collectively, we demonstrated that the aberrant expression of SPC25 inhibited E2F1 ubiquitination and promoted CCND1 expression, thus accelerating the progression of ESCC. These findings propose novel insights into the role of SPC25 in ESCC and provide potential therapeutic strategies for targeting SPC25 in ESCC patients.
Collapse
Affiliation(s)
- Haoyao Jiang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xiangfeng Jin
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| | - Yifeng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
3
|
To B, Broeker C, Jhan JR, Garcia-Lerena J, Vusich J, Rempel R, Rennhack JP, Hollern D, Jackson L, Judah D, Swiatnicki M, Bylett E, Kubiak R, Honeysett J, Nevins J, Andrechek E. Insight into mammary gland development and tumor progression in an E2F5 conditional knockout mouse model. Oncogene 2024; 43:3402-3415. [PMID: 39341991 PMCID: PMC11554565 DOI: 10.1038/s41388-024-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Development of breast cancer is linked to altered regulation of mammary gland developmental processes. A better understanding of normal mammary gland development can thus reveal possible mechanisms of how normal cells are re-programmed to become malignant. E2Fs 1-4 are part of the E2F transcription factor family with varied roles in mammary development, but little is known about the role of E2F5. A combination of scRNAseq and predictive signature tools demonstrated the presence of E2F5 in the mammary gland and showed changes in predicted activity during the various phases of mammary gland development. Testing the hypothesis that E2F5 regulates mammary function, we generated a mammary-specific E2F5 knockout mouse model, resulting in modest mammary gland development changes. However, after a prolonged latency the E2F5 conditional knockout mice developed highly metastatic mammary tumors. Whole genome sequencing revealed significant intertumor heterogeneity. RNAseq and protein analysis identified altered levels of Cyclin D1, with similarities to MMTV-Neu tumors, suggesting that E2F5 conditional knockout mammary glands and tumors may be dependent on Cyclin D1. Transplantation of the tumors revealed metastases to lymph nodes that were enriched through serial transplantation in immune competent recipients. Based on these findings, we propose that loss of E2F5 leads to altered regulation of Cyclin D1, which facilitates the development of metastatic mammary tumors after long latency. More importantly, this study demonstrates that conditional loss of E2F5 in the mammary gland leads to tumor formation, revealing its role as a transcription factor regulating a network of genes that normally result in a tumor suppressor function.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Carson Broeker
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - John Vusich
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | | | | - Lauren Jackson
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - David Judah
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matt Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Evan Bylett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Rachel Kubiak
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jordan Honeysett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Eran Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Lu K, Zhang M, Qin H, Shen S, Song H, Jiang H, Zhang C, Xiao G, Tong L, Jiang Q, Chen D. Disruption of cyclin D1 degradation leads to the development of mantle cell lymphoma. Acta Pharm Sin B 2024; 14:2977-2991. [PMID: 39027231 PMCID: PMC11252481 DOI: 10.1016/j.apsb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 07/20/2024] Open
Abstract
Cyclin D1 has been recognized as an oncogene due to its abnormal upregulation in different types of cancers. Here, we demonstrated that cyclin D1 is SUMOylated, and we identified Itch as a specific E3 ligase recognizing SUMOylated cyclin D1 and mediating SUMO-induced ubiquitination and proteasome degradation of cyclin D1. We generated cyclin D1 mutant mice with mutations in the SUMOylation site, phosphorylation site, or both sites of cyclin D1, and found that double mutant mice developed a Mantle cell lymphoma (MCL)-like phenotype. We showed that arsenic trioxide (ATO) enhances cyclin D1 SUMOylation-mediated degradation through inhibition of cyclin D1 deSUMOylation enzymes, leading to MCL cell apoptosis. Treatment of severe combined immunodeficiency (SCID) mice grafted with MCL cells with ATO resulted in a significant reduction in tumor growth. In this study, we provide novel insights into the mechanisms of MCL tumor development and cyclin D1 regulation and discover a new strategy for MCL treatment.
Collapse
Affiliation(s)
- Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| | - Ming Zhang
- Oncology Department, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongyu Qin
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Division of Spine Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Siyu Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Haiqing Song
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hua Jiang
- Division of Spine Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chunxiang Zhang
- Department of Cardiology, Basic Medicine Innovation Center for Cardiometabolic Diseases of Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Sutanto R, Neahring L, Serra Marques A, Jacobo Jacobo M, Kilinc S, Goga A, Dumont S. The oncogene cyclin D1 promotes bipolar spindle integrity under compressive force. PLoS One 2024; 19:e0296779. [PMID: 38478555 PMCID: PMC10936824 DOI: 10.1371/journal.pone.0296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/19/2023] [Indexed: 03/17/2024] Open
Abstract
The mitotic spindle is the bipolar, microtubule-based structure that segregates chromosomes at each cell division. Aberrant spindles are frequently observed in cancer cells, but how oncogenic transformation affects spindle mechanics and function, particularly in the mechanical context of solid tumors, remains poorly understood. Here, we constitutively overexpress the oncogene cyclin D1 in human MCF10A cells to probe its effects on spindle architecture and response to compressive force. We find that cyclin D1 overexpression increases the incidence of spindles with extra poles, centrioles, and chromosomes. However, it also protects spindle poles from fracturing under compressive force, a deleterious outcome linked to multipolar cell divisions. Our findings suggest that cyclin D1 overexpression may adapt cells to increased compressive stress, possibly contributing to its prevalence in cancers such as breast cancer by allowing continued proliferation in mechanically challenging environments.
Collapse
Affiliation(s)
- Renaldo Sutanto
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Andrea Serra Marques
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Mauricio Jacobo Jacobo
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Seda Kilinc
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
6
|
Jiao X, Di Sante G, Casimiro MC, Tantos A, Ashton AW, Li Z, Quach Y, Bhargava D, Di Rocco A, Pupo C, Crosariol M, Lazar T, Tompa P, Wang C, Yu Z, Zhang Z, Aldaaysi K, Vadlamudi R, Mann M, Skordalakes E, Kossenkov A, Du Y, Pestell RG. A cyclin D1 intrinsically disordered domain accesses modified histone motifs to govern gene transcription. Oncogenesis 2024; 13:4. [PMID: 38191593 PMCID: PMC10774418 DOI: 10.1038/s41389-023-00502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | | | - Mathew C Casimiro
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, GA, 31794, USA
| | - Agnes Tantos
- Institute of Enzymology, Hun-Ren Research Centre for Natural Sciences, Budapest, Hungary
| | - Anthony W Ashton
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, 19003, USA
| | - Zhiping Li
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Yen Quach
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | | | | | - Claudia Pupo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marco Crosariol
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Peter Tompa
- Institute of Enzymology, Hun-Ren Research Centre for Natural Sciences, Budapest, Hungary
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Chenguang Wang
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhao Zhang
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | - Kawthar Aldaaysi
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Ratna Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Monica Mann
- Department of Obstetrics and Gynecology, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | | | | | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA
| | - Richard G Pestell
- Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba.
- The Wistar Institute, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
8
|
Fang M, Wu HK, Pei Y, Zhang Y, Gao X, He Y, Chen G, Lv F, Jiang P, Li Y, Li W, Jiang P, Wang L, Ji J, Hu X, Xiao RP. E3 ligase MG53 suppresses tumor growth by degrading cyclin D1. Signal Transduct Target Ther 2023; 8:263. [PMID: 37414783 PMCID: PMC10326024 DOI: 10.1038/s41392-023-01458-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.
Collapse
Affiliation(s)
- Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Hong-Kun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, 310003, Hangzhou, China
| | - Yumeng Pei
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Yumei Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Wenwen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
9
|
Sutanto R, Neahring L, Marques AS, Kilinc S, Goga A, Dumont S. The oncogene cyclin D1 promotes bipolar spindle integrity under compressive force. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542893. [PMID: 37398487 PMCID: PMC10312523 DOI: 10.1101/2023.05.30.542893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The mitotic spindle is the bipolar, microtubule-based structure that segregates chromosomes at each cell division. Aberrant spindles are frequently observed in cancer cells, but how oncogenic transformation affects spindle mechanics and function, particularly in the mechanical context of solid tumors, remains poorly understood. Here, we constitutively overexpress the oncogene cyclin D1 in human MCF10A cells to probe its effects on spindle architecture and response to compressive force. We find that cyclin D1 overexpression increases the incidence of spindles with extra poles, centrioles, and chromosomes. However, it also protects spindle poles from fracturing under compressive force, a deleterious outcome linked to multipolar cell divisions. Our findings suggest that cyclin D1 overexpression may adapt cells to increased compressive stress, contributing to its prevalence in cancers such as breast cancer by allowing continued proliferation in mechanically challenging environments.
Collapse
Affiliation(s)
- Renaldo Sutanto
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Andrea Serra Marques
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Seda Kilinc
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Developmental & Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
10
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
11
|
Shah AN, Santa-Maria CA, Mukhija D, Shah N, Kang AK, Kumthekar P, Burdett K, Chandra S, Chang J, Tsarwhas D, Woodman J, Jovanovic B, Gerratana L, Gradishar W, Cristofanilli M. A Phase II Single-arm Study of Palbociclib in Patients With HER2-positive Breast Cancer With Brain Metastases and Analysis of ctDNA in Patients With Active Brain Metastases. Clin Breast Cancer 2023; 23:324-329. [PMID: 36621430 DOI: 10.1016/j.clbc.2022.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Palbociclib is highly efficacious and well tolerated in hormone-receptor positive (HR+) metastatic breast cancer (BC) but its activity for HER2+ BC with brain metastases (BM) is unknown. METHODS In a single-arm phase II study we evaluated palbociclib with trastuzumab for patients with HER2+ MBC and BM. The primary endpoint was BM response rate. Circulating tumor DNA (ctDNA) was evaluated at baseline, and in a subset of patients at cycle 3 and progression. We also retrospectively identified additional patients with metastatic BC, active BM, and a ctDNA assessment prior to therapy for BM. RESULTS Twelve patients with HER2+ MBC were enrolled, 4 with HR+ and 8 with HR- disease. No responses were seen. Best response was stable disease for 6 patients and progressive disease for 6 patients. The median PFS was 2.2 months, interquartile range (IQR) was 1.56 to 3.63 months. The median OS was 13.1 months and IQR was 9.4 to 23.8 months The CNS was the primary site of progression for all patients. The median variant allele fraction (VAF) of the dominant variant in each patient was 0.18% (interquartile range [IQR] 0.12%-0.47%) with a median number of somatic alterations of 1. We additionally evaluated ctDNA results from 26 patients with BC and active BM, among whom the median VAF was 11.8% (IQR 3.9%-27.3%) with a median number of alterations was 6 (IQR 4-9). Notably, progressive systemic disease was significantly less frequent in the trial cohort compared with additional retrospectively identified patients (8% vs. 81%). CONCLUSION Palbociclib did not demonstrate activity in HER2+ MBC with BM. Patients with progressive BM but stable, responding, or absent systemic disease have low VAF and number of alterations detected by ctDNA analysis from blood.
Collapse
Affiliation(s)
- Ami N Shah
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL.
| | - Cesar A Santa-Maria
- Sidney Kimmel Comprehensive Cancer Center of Johns Hopkins University, Baltimore, MD
| | - Dhruvika Mukhija
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Nikita Shah
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Anthony K Kang
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Priya Kumthekar
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Kirsten Burdett
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Shruti Chandra
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | | | - Dean Tsarwhas
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Jill Woodman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Borko Jovanovic
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, PN, Aviano, Italy
| | - William Gradishar
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | | |
Collapse
|
12
|
Nagare S, Lokhande KB, Swamy KV. Docking and simulation studies on cyclin D/CDK4 complex for targeting cell cycle arrest in cancer using flavanone and its congener. J Mol Model 2023; 29:90. [PMID: 36881272 DOI: 10.1007/s00894-023-05496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Flavanone compounds are naturally occurring phytochemicals present in most of citrus fruits reported to be a potential anticancer moiety as it majorly participates in the inhibition of the cell cycle, apoptosis, and angiogenesis. Because of poor bioavailability, natural flavanones were not used as therapeutic targets so flavanone congeners were prepared by modifying at B-functional group using compound libraries such as PubChem Database. Cyclin-dependent kinase is primarily activating the cell cycle and potentiating the M phase, in order to control the cell cycle in cancer cyclin-dependent pathway was targeted and potential cyclin D/CDK4 receptor protein was retrieved from Protein Data Bank (PDBID:2W9Z). The binding site was determined using FlexX docking. Flavanone and its congeners were docked against the 2W9Z receptor protein with the docking software FlexX. For validation of docking results, molecular dynamics simulations of the best-fitting molecule were carried out using Desmond Package. Noncovalent interactions like hydrogen bonds, electrostatic interaction, and Van der walls potentials for stable conformations were calculated. Thus, upon docking and molecular dynamics studies, we discovered the potential flavanone derivatives such as Flavanone 20, Flavanone 25, and Flavanone 29, will become a potential drug target in controlling cell cycle arrest and may become a futuristic candidate in targeting cancer.
Collapse
Affiliation(s)
- Sagar Nagare
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, India, 400614.,Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033.,Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India
| | - K Venkateswara Swamy
- Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science and Research, MIT Art, Design and Technology University, Pune, Maharashtra, India, 412201.
| |
Collapse
|
13
|
Macheroni C, Gameiro Lucas TF, Souza DS, Vicente CM, Pereira GJDS, Junior IDSV, Juliano MA, Porto CS. Activation of estrogen receptor ESR1 and ESR2 induces proliferation of the human testicular embryonal carcinoma NT2/D1 cells. Mol Cell Endocrinol 2022; 554:111708. [PMID: 35792284 DOI: 10.1016/j.mce.2022.111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
The aims of the present study were to investigate the expression of the classic estrogen receptors ESR1 and ESR2, the splicing variant ESR1-36 and GPER in human testicular embryonal carcinoma NT2/D1 cells, and the effects of the activation of the ESR1 and ESR2 on cell proliferation. Immunostaining of ESR1, ESR2, and GPER were predominantly found in the nuclei, and less abundant in the cytoplasm. ESR1-36 isoform was predominantly expressed in the perinuclear region and cytoplasm, and some weakly immunostained in the nuclei. In nonstimulated NT2/D1 cells (control), proteins of the cell cycle CCND1, CCND2, CCNE1 and CDKN1B are present. Activation of ESR1 and ESR2 increases, respectively, CCND2 and CCNE1 expression, but not CCND1. Activation of ESR2 also mediates upregulation of the cell cycle inhibitor CDKN1B. This protein co-immunoprecipitated with CCND2. Also, E2 induces an increase in the number and viability of the NT2/D1 cells. These effects are blocked by simultaneous pretreatment with ESR1-and ESR2-selective antagonists, confirming that both estrogen receptors regulate NT2/D1 cell proliferation. In addition, E2 increases SRC phosphorylation, and SRC mediates cell proliferation. Our study provides novel insights into the signatures and molecular mechanisms of estrogen receptor in NT2/D1 cells.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Thaís Fabiana Gameiro Lucas
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Gustavo José da Silva Pereira
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia e Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP, 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
14
|
Ramamoorthi G, Kodumudi K, Snyder C, Grover P, Zhang H, Greene MI, Basu A, Gallen C, Wiener D, Costa RLB, Han HS, Koski G, Czerniecki BJ. Intratumoral delivery of dendritic cells plus anti-HER2 therapy triggers both robust systemic antitumor immunity and complete regression in HER2 mammary carcinoma. J Immunother Cancer 2022; 10:jitc-2022-004841. [PMID: 35710296 PMCID: PMC9204433 DOI: 10.1136/jitc-2022-004841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Human epidermal growth factor receptor 2 (HER2) targeted antibodies in combination with chemotherapy has improved outcomes of HER2 positive (pos) breast cancer (BC) but toxicity of therapy remains a problem. High levels of tumor-infiltrating lymphocytes are associated with increased pathologic complete responses for patients treated with neoadjuvant therapy. Here we sought to investigate whether delivery of intratumoral (i.t.) multiepitope major histocompatibility complex (MHC) class II HER2 peptides-pulsed type I polarized dendritic cells (HER2-DC1) in combination with anti-HER2 antibodies without chemotherapy could enhance tumor regression by increasing anti-HER2 lymphocyte infiltration into the tumor. Methods BALB/c mice bearing orthotopic TUBO tumors, BALB/c mice bearing subcutaneous (s.c.) CT26 hHER2 tumors, or BALB-HER2/neu transgenic mice were all treated with i.t. or s.c. HER2-DC1, anti-HER2 antibodies, paclitaxel, T-DM1 or in combination. Immune response, host immune cells and effector function were analyzed using flow cytometry, interferon-γ ELISA and cytokine/chemokine arrays. The contributions of CD4+ and CD8+ T cells and antibody dependent cellular cytotoxicity (ADCC) were assessed using depleting antibodies and FcγR KO mice. Molecular changes were evaluated by immunohistochemistry and western blot. Results HER2-DC1 combined with anti-HER2 antibodies delivered i.t. compared to s.c. induced complete tumor regression in 75–80% of treated mice, with increased tumor infiltrating CD4+ and CD8+ T, B, natural killer T cells (NKT) and natural killer cells, and strong anti-HER2 responses in all HER2pos BC models tested. The therapy caused regression of untreated distant tumors. Labeled HER2-DC1 migrated prominently into the distant tumor and induced infiltration of various DC subsets into tumors. HER2-DC1 i.t. combined with anti-HER2 antibodies displayed superior antitumor response compared to standard chemotherapy with anti-HER2 antibodies. Lasting immunity was attained which prevented secondary tumor formation. The presence of CD4+ and CD8+ T cells and ADCC were required for complete tumor regression. In the HER2pos BC models, HER2-DC1 i.t. combined with anti-HER2 antibodies effectively diminished activation of HER2-mediated oncogenic signaling pathways. Conclusions HER2-DC1 i.t. with anti-HER2 antibodies mediates tumor regression through combined activation of T and B cell compartments and provides evidence that HER2-DC1 i.t. in combination with anti-HER2 antibodies can be tested as an effective alternative therapeutic strategy to current chemotherapy and anti-HER2 antibodies in HER2pos BC.
Collapse
Affiliation(s)
- Ganesan Ramamoorthi
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Krithika Kodumudi
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Colin Snyder
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Payal Grover
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amrita Basu
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Corey Gallen
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Doris Wiener
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ricardo L B Costa
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hyo S Han
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Gary Koski
- Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, Moffitt Cancer Center, Tampa, Florida, USA .,Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
15
|
Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, Mobarak H, Yazdani E, Parkhideh S, Hamblin MR, Aref AR. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev 2022; 67:11-24. [DOI: 10.1016/j.cytogfr.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022]
|
16
|
Thielhelm TP, Goncalves S, Welford SM, Mellon EA, Cohen ER, Nourbakhsh A, Fernandez-Valle C, Telischi F, Ivan ME, Dinh CT. Understanding the Radiobiology of Vestibular Schwannomas to Overcome Radiation Resistance. Cancers (Basel) 2021; 13:4575. [PMID: 34572805 PMCID: PMC8467596 DOI: 10.3390/cancers13184575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannomas (VS) are benign tumors arising from cranial nerve VIII that account for 8-10% of all intracranial tumors and are the most common tumors of the cerebellopontine angle. These tumors are typically managed with observation, radiation therapy, or microsurgical resection. Of the VS that are irradiated, there is a subset of tumors that are radioresistant and continue to grow; the mechanisms behind this phenomenon are not fully understood. In this review, the authors summarize how radiation causes cellular and DNA injury that can activate (1) checkpoints in the cell cycle to initiate cell cycle arrest and DNA repair and (2) key events that lead to cell death. In addition, we discuss the current knowledge of VS radiobiology and how it may contribute to clinical outcomes. A better understanding of VS radiobiology can help optimize existing treatment protocols and lead to new therapies to overcome radioresistance.
Collapse
Affiliation(s)
- Torin P Thielhelm
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin R Cohen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816, USA
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Sinclair WD, Cui X. The Effects of HER2 on CDK4/6 Activity in Breast Cancer. Clin Breast Cancer 2021; 22:e278-e285. [PMID: 34607757 DOI: 10.1016/j.clbc.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND CDK4/6 inhibitors have been used to treat hormone receptor-positive HER2-negative advanced breast cancer. Their benefit in HER2-positive breast cancer has not been determined yet. In this study, we investigated the effects of HER2 on CDK4/6 activity by assessing the level of downstream phosphorylated retinoblastoma protein (pRb) in HER2-positive breast cancer (HER2 positivity is defined by immunohistochemical study or FISH, regardless of ER status) to determine if these cases may be responsive to CDK4/6 inhibitors. MATERIALS AND METHODS One hundred and thirty cases of breast biopsies with invasive carcinoma were collected, including 77 cases of HER2+ (39 cases of ER +PR±HER2+ and 38 cases of ER-PR-HER2+) and 53 cases of HER2- (ER-PR-HER2-) breast cancer. Immunohistochemical study of pRb was performed and the pRb level was assessed by H-score (intensity x percentage of positive cells). RESULTS The pRb H-score ranges from 3 to 270. The average H-scores for the ER-PR-HER2+, ER+PR±HER2+ and ER-PR-HER2- groups are 115.8 ± 75.8, 93.1 ± 68.6 and 63.1 ± 65.6, respectively. By comparison, HER2+ cases have significantly higher pRb levels than HER2- cases (P = .001). Among HER2+ cases, there was a trend of positive correlation between the HER2 gene copy number, and the pRb level although not statistically significant (r = 0.192, 95% CI, [-0.033, 0.399], P = .09). CONCLUSION In breast cancer, HER2 positivity leads to significantly higher levels of CDK4/6 activity as reflexed by pRb. Breast cancer that is positive for HER2 may respond to CDK4/6 inhibitors and pRb may potentially be used as a biomarker to predict the responsiveness.
Collapse
Affiliation(s)
- William D Sinclair
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, 43210, OH
| | - Xiaoyan Cui
- Department of Pathology, Cleveland Clinic, Cleveland, 44195, OH.
| |
Collapse
|
18
|
Pparγ1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers (Basel) 2021; 13:cancers13092171. [PMID: 33946495 PMCID: PMC8125290 DOI: 10.3390/cancers13092171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.
Collapse
|
19
|
Dai M, Boudreault J, Wang N, Poulet S, Daliah G, Yan G, Moamer A, Burgos SA, Sabri S, Ali S, Lebrun JJ. Differential Regulation of Cancer Progression by CDK4/6 Plays a Central Role in DNA Replication and Repair Pathways. Cancer Res 2021; 81:1332-1346. [PMID: 33372040 DOI: 10.1158/0008-5472.can-20-2121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Although the cyclin-dependent kinases CDK4 and CDK6 play fundamental roles in cancer, the specific pathways and downstream targets by which they exert their tumorigenic effects remain elusive. In this study, we uncover distinct and novel functions for these kinases in regulating tumor formation and metastatic colonization in various solid tumors, including those of the breast, prostate, and pancreas. Combining in vivo CRISPR-based CDK4 and CDK6 gene editing with pharmacologic inhibition approaches in orthotopic transplantation and patient-derived xenograft preclinical models, we defined clear functions for CDK4 and CDK6 in facilitating tumor growth and progression in metastatic cancers. Transcriptomic profiling of CDK4/6 CRISPR knockouts in breast cancer revealed these two kinases to regulate cancer progression through distinct mechanisms. CDK4 regulated prometastatic inflammatory cytokine signaling, whereas CDK6 mainly controlled DNA replication and repair processes. Inhibition of CDK6 but not CDK4 resulted in defective DNA repair and increased DNA damage. Multiple CDK6 DNA replication/repair genes were not only associated with cancer subtype, grades, and poor clinical outcomes, but also facilitated primary tumor growth and metastasis in vivo. CRISPR-based genomic deletion of CDK6 efficiently blocked tumor formation and progression in preestablished cell- and patient-derived xenograft preclinical models of breast cancer, providing a potential novel targeted therapy for these deadly tumors. SIGNIFICANCE: In-depth transcriptomic analysis identifies cyclin-dependent kinases CDK4 and CDK6 as regulators of metastasis through distinct signaling pathways and reveals the DNA replication/repair pathway as central in promoting these effects.
Collapse
Affiliation(s)
- Meiou Dai
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Julien Boudreault
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Ni Wang
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Sophie Poulet
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Girija Daliah
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Gang Yan
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Alaa Moamer
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Sergio A Burgos
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Canada
- Department of Medicine, McGill University Health Center, Metabolic Disorders and Complications Program, Montreal, Quebec, Canada
| | - Siham Sabri
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Suhad Ali
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Sencan S, Tanriover M, Ulasli M, Karakas D, Ozpolat B. UV radiation resistance-associated gene (UVRAG) promotes cell proliferation, migration, invasion by regulating cyclin-dependent kinases (CDK) and integrin-β/Src signaling in breast cancer cells. Mol Cell Biochem 2021; 476:2075-2084. [PMID: 33515382 DOI: 10.1007/s11010-021-04063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.
Collapse
Affiliation(s)
- Sevide Sencan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mine Tanriover
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Mustafa Ulasli
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Didem Karakas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Yoshioka H, Ramakrishnan SS, Shim J, Suzuki A, Iwata J. Excessive All-Trans Retinoic Acid Inhibits Cell Proliferation Through Upregulated MicroRNA-4680-3p in Cultured Human Palate Cells. Front Cell Dev Biol 2021; 9:618876. [PMID: 33585479 PMCID: PMC7876327 DOI: 10.3389/fcell.2021.618876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate. Here we show that miR-4680-3p plays a crucial role in cleft palate pathogenesis. We found that all-trans retinoic acid (atRA) specifically induces miR-4680-3p in cultured human embryonic palatal mesenchymal (HEPM) cells. Overexpression of miR-4680-3p inhibited cell proliferation in a dose-dependent manner through the suppression of expression of ERBB2 and JADE1, which are known cleft palate-related genes. Importantly, a miR-4680-3p-specific inhibitor normalized cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with atRA. Taken together, our results suggest that upregulation of miR-4680-3p induced by atRA may cause cleft palate through suppression of ERBB2 and JADE1. Thus, miRs may be potential targets for the prevention and diagnosis of cleft palate.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junbo Shim
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
22
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
23
|
Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020; 9:cells9122648. [PMID: 33317149 PMCID: PMC7763888 DOI: 10.3390/cells9122648] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-984-496204
| |
Collapse
|
24
|
Rennhack JP, Andrechek ER. Low E2F2 activity is associated with high genomic instability and PARPi resistance. Sci Rep 2020; 10:17948. [PMID: 33087787 PMCID: PMC7578094 DOI: 10.1038/s41598-020-74877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
The E2F family, classically known for a central role in cell cycle, has a number of emerging roles in cancer including angiogenesis, metabolic reprogramming, metastasis and DNA repair. E2F1 specifically has been shown to be a critical mediator of DNA repair; however, little is known about DNA repair and other E2F family members. Here we present an integrative bioinformatic and high throughput drug screening study to define the role of E2F2 in maintaining genomic integrity in breast cancer. We utilized in vitro E2F2 ChIP-chip and over expression data to identify transcriptional targets of E2F2. This data was integrated with gene expression from E2F2 knockout tumors in an MMTV-Neu background. Finally, this data was compared to human datasets to identify conserved roles of E2F2 in human breast cancer through the TCGA breast cancer, Cancer Cell Line Encyclopedia, and CancerRx datasets. Through these methods we predict that E2F2 transcriptionally regulates mediators of DNA repair. Our gene expression data supports this hypothesis and low E2F2 activity is associated with a highly unstable tumor. In human breast cancer E2F2, status was also correlated with a patient's response to PARP inhibition therapy. Taken together this manuscript defines a novel role of E2F2 in cancer progression beyond cell cycle and could impact patient treatment.
Collapse
Affiliation(s)
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Raman D, Tiwari AK. Role of eIF4A1 in triple-negative breast cancer stem-like cell-mediated drug resistance. Cancer Rep (Hoboken) 2020; 5:e1299. [PMID: 33053607 PMCID: PMC9780423 DOI: 10.1002/cnr2.1299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
In cap-dependent translation, the eukaryotic translation initiation factor 4A (eIF4A1) is an mRNA helicase is involved in unwinding of the secondary structure, such as the stem-loops, at the 5'-leader regions of the key oncogenic mRNAs. This facilitates ribosomal scanning and translation of the oncogenic mRNAs. eIF4A1 has a regulatory role in translating many oncoproteins that have vital roles in several steps of metastases. Sridharan et. al. have discovered and provide a novel insight into how eIF4A1 can play a regulatory role in drug resistance by influencing the levels of pluripotent Yamanaka transcription factors and ATP-binding cassette (ABC) transporters in triple-negative breast cancer (TNBC) stem-like cells. These findings may help us understand the molecular underpinnings of chemoresistance, especially in established metastases in TNBC. Importantly, eIF4A1 may form a novel clinical target in metastatic TNBC and the drug eFT226 from Effector Therapeutics targeting eIF4A1 is already in phase1-2 clinical trial.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer BiologyUniversity of Toledo Health Science CampusToledoOhio
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental TherapeuticsUniversity of Toledo Health Science CampusToledoOhio
| |
Collapse
|
26
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
27
|
Chen K, Jiao X, Ashton A, Di Rocco A, Pestell TG, Sun Y, Zhao J, Casimiro MC, Li Z, Lisanti MP, McCue PA, Shen D, Achilefu S, Rui H, Pestell RG. The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis 2020; 9:83. [PMID: 32948740 PMCID: PMC7501870 DOI: 10.1038/s41389-020-00266-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1–S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1–S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17β-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.
Collapse
Affiliation(s)
- Ke Chen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Anthony Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Timothy G Pestell
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA.,Dept of Science and Math, Abraham Baldwin Agricultural college, Tifton, GA, 31794, Georgia
| | - Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Michael P Lisanti
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Duanwen Shen
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA.,Departments of Radiology, Washington University, St. Louis, MO, 63110, USA.,Departments of Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, 63110, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA. .,The Wistar Cancer Center, Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Cyclin D1 promotes secretion of pro-oncogenic immuno-miRNAs and piRNAs. Clin Sci (Lond) 2020; 134:791-805. [PMID: 32219337 DOI: 10.1042/cs20191318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023]
Abstract
The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.
Collapse
|
29
|
Simond AM, Muller WJ. In vivo modeling of the EGFR family in breast cancer progression and therapeutic approaches. Adv Cancer Res 2020; 147:189-228. [PMID: 32593401 DOI: 10.1016/bs.acr.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra M Simond
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Palmer N, Kaldis P. Less-well known functions of cyclin/CDK complexes. Semin Cell Dev Biol 2020; 107:54-62. [PMID: 32386818 DOI: 10.1016/j.semcdb.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases (CDKs) are activated by cyclins, which play important roles in dictating the actions of CDK/cyclin complexes. Cyclin binding influences the substrate specificity of these complexes in addition to their susceptibility to inhibition or degradation. CDK/cyclin complexes are best known to promote cell cycle progression in the mitotic cell cycle but are also crucial for important cellular processes not strictly associated with cellular division. This chapter primarily explores the understudied topic of CDK/cyclin complex functionality during the DNA damage response. We detail how CDK/cyclin complexes perform dual roles both as targets of DNA damage checkpoint signaling as well as effectors of DNA repair. Additionally, we discuss the potential CDK-independent roles of cyclins in these processes and the impact of such roles in human diseases such as cancer. Our goal is to place the spotlight on these important functions of cyclins either acting as independent entities or within CDK/cyclin complexes which have attracted less attention in the past. We consider that this will be important for a more complete understanding of the intricate functions of cell cycle proteins in the DNA damage response.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore; Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Box 50332, SE-202 13, Malmö, Sweden.
| |
Collapse
|
31
|
Wang W, Zhang R, Wang X, Wang N, Zhao J, Wei Z, Xiang F, Wang C. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci 2020; 111:1422-1434. [PMID: 32011034 PMCID: PMC7156822 DOI: 10.1111/cas.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) displays higher heterogeneity, stronger invasiveness, higher risk of metastasis and poorer prognosis compared with major breast cancer subtypes. KIF3A, a member of the kinesin family of motor proteins, serves as a microtubule-directed motor subunit and has been found to regulate early development, ciliogenesis and tumorigenesis. To explore the expression, regulation and mechanism of KIF3A in TNBC, 3 TNBC cell lines, 98 cases of primary TNBC and paired adjacent tissues were examined. Immunohistochemistry, real-time PCR, western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques, transwell assays, scratch tests, and xenograft mice models were used. We found that KIF3A was overexpressed in TNBC and such high KIF3A expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3A suppressed TNBC cell proliferation by repressing the Rb-E2F signaling pathway and inhibited migration and invasion by repressing epithelial-mesenchymal transition. The tumor size was smaller and the number of lung metastatic nodules was lower in KIF3A depletion MDA-MB-231 cell xenograft mice than in the negative control group. In addition, KIF3A overexpression correlated with chemoresistance. These results suggested that high expression of KIF3A in TNBC was associated with the tumor progression and metastasis.
Collapse
Affiliation(s)
- Weilin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Runze Zhang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiao Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ning Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Jing Zhao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhimin Wei
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fenggang Xiang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chengqin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
32
|
Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 2020; 67:159-170. [PMID: 32006569 DOI: 10.1016/j.semcancer.2020.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
D cyclins include three isoforms: D1, D2, and D3. D cyclins heterodimerize with cyclin-dependent kinase 4/6 (CDK4/6) to form kinase complexes that can phosphorylate and inactivate Rb. Inactivation of Rb triggers the activation of E2F transcription factors, which in turn regulate the expression of genes whose products drive cell cycle progression. Because D-type cyclins function as mitogenic sensors that link growth factor signaling directly with G1 phase progression, it is not surprising that D cyclin accumulation is dysregulated in a variety of human tumors. Elevated expression of D cyclins results from gene amplification, increased gene transcription and protein translation, decreased microRNA levels, and inefficiency or loss of ubiquitylation-mediated protein degradation. This review focuses on the clinicopathological importance of D cyclins, how dysregulation of Ubiquitin-Proteasome System (UPS) contributes to the overexpression of D cyclins, and the therapeutic potential through targeting D cyclin-related machinery in human tumors.
Collapse
|
33
|
O'Sullivan CC, Suman VJ, Goetz MP. The emerging role of CDK4/6i in HER2-positive breast cancer. Ther Adv Med Oncol 2019; 11:1758835919887665. [PMID: 31832106 PMCID: PMC6887797 DOI: 10.1177/1758835919887665] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Prior to the advent of the monoclonal antibody trastuzumab, human epidermal growth-factor receptor 2 (HER2)-positive (HER2+) breast cancer (BC) was associated with an aggressive clinical course and poor survival outcomes. In the era of effective HER2-directed therapies, median survival rates for patients with metastatic HER2+ BC now approach 5 years. Despite these improvements, the majority of affected patients unfortunately die from disease. Therapies to overcome treatment resistance are being actively pursued. One strategy has been to target the cyclin-dependent kinases 4/6 (CDK4/6), as they are downstream of HER2 and many of the cellular pathways driving resistance to HER2-targeted therapies, and play a key role in proliferation by controlling transition through the G1 restriction point to the S phase of the cell cycle. In this article, we review the published literature with regard to the rationale for CDK4/6-directed therapies in HER2+ BC and discuss ongoing clinical research and new challenges in the field.
Collapse
Affiliation(s)
- Ciara C O'Sullivan
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905-0002, USA
| | - Vera J Suman
- Department of Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
34
|
Keratin 19 regulates cell cycle pathway and sensitivity of breast cancer cells to CDK inhibitors. Sci Rep 2019; 9:14650. [PMID: 31601969 PMCID: PMC6787034 DOI: 10.1038/s41598-019-51195-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Keratin 19 (K19) belongs to the keratin family of proteins, which maintains structural integrity of epithelia. In cancer, K19 is highly expressed in several types where it serves as a diagnostic marker. Despite the positive correlation between higher expression of K19 in tumor and worse patient survival, the role of K19 in breast cancer remains unclear. Therefore, we ablated K19 expression in MCF7 breast cancer cells and found that K19 was required for cell proliferation. Transcriptome analyses of KRT19 knockout cells identified defects in cell cycle progression and levels of target genes of E2F1, a key transcriptional factor for the transition into S phase. Furthermore, proper levels of cyclin dependent kinases (CDKs) and cyclins, including D-type cyclins critical for E2F1 activation, were dependent on K19 expression, and K19-cyclin D co-expression was observed in human breast cancer tissues. Importantly, K19 interacts with cyclin D3, and a loss of K19 resulted in decreased protein stability of cyclin D3 and sensitivity of cells towards CDK inhibitor-induced cell death. Overall, these findings reveal a novel function of K19 in the regulation of cell cycle program and suggest that K19 may be used to predict the efficacy of CDK inhibitors for treatments of breast cancer.
Collapse
|
35
|
Abstract
Deregulated cell division, resulting in aberrant cell proliferation, is one of the key hallmarks of cancer. Cyclin-dependent kinases (CDKs) play a central role in cell cycle progression in cancer, and the clinical development of the CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has changed clinical practice in the setting of endocrine-receptor positive breast cancer. Results of pivotal phase II and III trials investigating these CDK4/6 inhibitors in patients with endocrine receptor-positive, advanced breast cancer have demonstrated a significant improvement in progression-free survival, with a safe toxicity profile. No validated biomarkers of sensitivity or resistance exist at the moment. Future development of CDK4/6 inhibitors in breast cancer should focus on the identification of predictive biomarkers, the development of drug combinations to overcome resistance, and the application of CDK4/6 inhibitors to other breast cancer subtypes.
Collapse
|
36
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
37
|
Howard CM, Bearss N, Subramaniyan B, Tilley A, Sridharan S, Villa N, Fraser CS, Raman D. The CXCR4-LASP1-eIF4F Axis Promotes Translation of Oncogenic Proteins in Triple-Negative Breast Cancer Cells. Front Oncol 2019; 9:284. [PMID: 31106142 PMCID: PMC6499106 DOI: 10.3389/fonc.2019.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are lacking. In addition, patient mortality mainly results from the metastasized lesions. CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 associated with eIF4A in a CXCL12-dependent manner via a proximity ligation assay. We then confirmed this finding, and the association of LASP1 with eIF4B via co-immunoprecipitation assays. Furthermore, we show that LASP1 can interact with eIF4A and eIF4B through a GST-pulldown approach. Activation of CXCR4 signaling increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins. This impaired ability of eIF4A was confirmed by a previously established 5′UTR luciferase reporter assay. Finally, lack of LASP1 sensitizes 231S cells to pharmacological inhibition of eIF4A by Rocaglamide A as evident through BIRC5 expression. Overall, our work identified the CXCR4-LASP1 axis to be a novel mediator in oncogenic protein translation. Thus, our axis of study represents a potential target for future TNBC therapies.
Collapse
Affiliation(s)
- Cory M Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nicole Bearss
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nancy Villa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
38
|
Walens A, DiMarco AV, Lupo R, Kroger BR, Damrauer JS, Alvarez JV. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 2019; 8:e43653. [PMID: 30990165 PMCID: PMC6478432 DOI: 10.7554/elife.43653] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Over half of breast-cancer-related deaths are due to recurrence 5 or more years after initial diagnosis and treatment. This latency suggests that a population of residual tumor cells can survive treatment and persist in a dormant state for many years. The role of the microenvironment in regulating the survival and proliferation of residual cells following therapy remains unexplored. Using a conditional mouse model for Her2-driven breast cancer, we identify interactions between residual tumor cells and their microenvironment as critical for promoting tumor recurrence. Her2 downregulation leads to an inflammatory program driven by TNFα/NFκB signaling, which promotes immune cell infiltration in regressing and residual tumors. The cytokine CCL5 is elevated following Her2 downregulation and remains high in residual tumors. CCL5 promotes tumor recurrence by recruiting CCR5-expressing macrophages, which may contribute to collagen deposition in residual tumors. Blocking this TNFα-CCL5-macrophage axis may be efficacious in preventing breast cancer recurrence.
Collapse
Affiliation(s)
- Andrea Walens
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - Ashley V DiMarco
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - Ryan Lupo
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - Benjamin R Kroger
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - Jeffrey S Damrauer
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - James V Alvarez
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| |
Collapse
|
39
|
Marcon BH, Shigunov P, Spangenberg L, Pereira IT, de Aguiar AM, Amorín R, Rebelatto CK, Correa A, Dallagiovanna B. Cell cycle genes are downregulated after adipogenic triggering in human adipose tissue-derived stem cells by regulation of mRNA abundance. Sci Rep 2019; 9:5611. [PMID: 30948750 PMCID: PMC6449374 DOI: 10.1038/s41598-019-42005-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
The adipogenic process is characterized by the expression of adipocyte differentiation markers that lead to changes in cell metabolism and to the accumulation of lipid droplets. Moreover, during early adipogenesis, cells undergo a strong downregulation of translational activity with a decrease in cell size, proliferation and migration. In the present study, we identified that after 24 hours of adipogenic induction, human adipose tissue-derived stem cells (hASCs) undergo a G1-cell cycle arrest consistent with reduced proliferation, and this effect was correlated with a shift in polysome profile with an enrichment of the monosomal fraction and a reduction of the polysomal fraction. Polysome profiling analysis also revealed that this change in the monosomal/polysomal ratio was related to a strong downregulation of cell cycle and proliferation genes, such as cyclins and cyclin-dependent kinases (CDKs). Comparing total and polysome-associated mRNA sequencing, we also observed that this downregulation was mostly due to a reduction of cell cycle and proliferation transcripts via control of total mRNA abundance, rather than by translational control.
Collapse
Affiliation(s)
- Bruna H Marcon
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Patrícia Shigunov
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo. Mataojo 2020, Montevideo, 11400, Uruguay
| | - Isabela Tiemy Pereira
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Alessandra Melo de Aguiar
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil
| | - Rocío Amorín
- Unidad de Bioinformática, Institut Pasteur Montevideo. Mataojo 2020, Montevideo, 11400, Uruguay
| | - Carmen K Rebelatto
- Núcleo de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Alejandro Correa
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| | - Bruno Dallagiovanna
- Instituto Carlos Chagas, Fiocruz-Paraná. Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81350-010, Brazil.
| |
Collapse
|
40
|
Robert M, Frenel JS, Bourbouloux E, Berton Rigaud D, Patsouris A, Augereau P, Gourmelon C, Campone M. Pharmacokinetic drug evaluation of abemaciclib for advanced breast cancer. Expert Opin Drug Metab Toxicol 2019; 15:85-91. [DOI: 10.1080/17425255.2019.1559816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Marie Robert
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | - Jean-Sébastien Frenel
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | - Emmanuelle Bourbouloux
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | | | - Anne Patsouris
- Medical Oncology, Institut de Cancérologie de l’Ouest, Paul Papin, Angers, France
| | - Paule Augereau
- Medical Oncology, Institut de Cancérologie de l’Ouest, Paul Papin, Angers, France
| | - Carole Gourmelon
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
| | - Mario Campone
- Medical Oncology, Institut de Cancérologie de l’Ouest, René Gauducheau, St Herblain, France
- Medical Oncology, Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), France
| |
Collapse
|
41
|
Pegram MD, Zong Y, Yam C, Goetz MP, Moulder SL. Innovative Strategies: Targeting Subtypes in Metastatic Breast Cancer. Am Soc Clin Oncol Educ Book 2018; 38:65-77. [PMID: 30231328 DOI: 10.1200/edbk_200715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer continues to be a life-threatening diagnosis that impacts hundreds of thousands of patients around the world. Targeted therapies are usually associated with less toxicity compared with cytotoxic chemotherapies and often induce response or durable disease control in estrogen receptor (ER) and/or HER2+ breast cancers. Drugs that target CDK 4/6 either alone or in combination with endocrine therapy have demonstrated substantial improvements in progression-free survival (PFS) compared with endocrine monotherapy. Most recently, PARP inhibitors have shown longer PFS compared with physician's choice of chemotherapy in BRCA-associated cancers, leading to the first U.S. Food and Drug Administration (FDA) approval of a targeted therapy with the potential to benefit a subgroup of patients with triple-negative breast cancer (TNBC). Finally, newer drug delivery strategies using antibody drug conjugates have also allowed a "targeted approach" to deliver moderate to extremely potent cytotoxins directly to sites of metastatic disease, with less toxicity.
Collapse
Affiliation(s)
- Mark D Pegram
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Yu Zong
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Clinton Yam
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Matthew P Goetz
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Stacy L Moulder
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| |
Collapse
|
42
|
Chang MM, Lai MS, Hong SY, Pan BS, Huang H, Yang SH, Wu CC, Sun HS, Chuang JI, Wang CY, Huang BM. FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 2018; 109:3503-3518. [PMID: 30191630 PMCID: PMC6215879 DOI: 10.1111/cas.13793] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) promotes cancer progression; however, its role in cell proliferation related to tumorigenesis remains elusive. We investigated how FGF9 affected MA‐10 mouse Leydig tumor cell proliferation and found that FGF9 significantly induced cell proliferation by activating ERK1/2 and retinoblastoma (Rb) phosphorylations within 15 minutes. Subsequently, the expressions of E2F1 and the cell cycle regulators: cyclin D1, cyclin E1 and cyclin‐dependent kinase 4 (CDK4) in G1 phase and cyclin A1, CDK2 and CDK1 in S‐G2/M phases were increased at 12 hours after FGF9 treatment; and cyclin B1 in G2/M phases were induced at 24 hours after FGF9 stimulation, whereas the phosphorylations of p53, p21 and p27 were not affected by FGF9. Moreover, FGF9‐induced effects were inhibited by MEK inhibitor PD98059, indicating FGF9 activated the Rb/E2F pathway to accelerate MA‐10 cell proliferation by activating ERK1/2. Immunoprecipitation assay and ChIP‐quantitative PCR results showed that FGF9‐induced Rb phosphorylation led to the dissociation of Rb‐E2F1 complexes and thereby enhanced the transactivations of E2F1 target genes, Cyclin D1, Cyclin E1 and Cyclin A1. Silencing of FGF receptor 2 (FGFR2) using lentiviral shRNA inhibited FGF9‐induced ERK1/2 phosphorylation and cell proliferation, indicating that FGFR2 is the obligate receptor for FGF9 to bind and activate the signaling pathway in MA‐10 cells. Furthermore, in a severe combined immunodeficiency mouse xenograft model, FGF9 significantly promoted MA‐10 tumor growth, a consequence of increased cell proliferation and decreased apoptosis. Conclusively, FGF9 interacts with FGFR2 to activate ERK1/2, Rb/E2F1 and cell cycle pathways to induce MA‐10 cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siou-Ying Hong
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Hsin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hsun Yang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
Sudhan DR, Schwarz LJ, Guerrero-Zotano A, Formisano L, Nixon MJ, Croessmann S, González Ericsson PI, Sanders M, Balko JM, Avogadri-Connors F, Cutler RE, Lalani AS, Bryce R, Auerbach A, Arteaga CL. Extended Adjuvant Therapy with Neratinib Plus Fulvestrant Blocks ER/HER2 Crosstalk and Maintains Complete Responses of ER +/HER2 + Breast Cancers: Implications to the ExteNET Trial. Clin Cancer Res 2018; 25:771-783. [PMID: 30274983 DOI: 10.1158/1078-0432.ccr-18-1131] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The phase III ExteNET trial showed improved invasive disease-free survival in patients with HER2+ breast cancer treated with neratinib versus placebo after trastuzumab-based adjuvant therapy. The benefit from neratinib appeared to be greater in patients with ER+/HER2+ tumors. We thus sought to discover mechanisms that may explain the benefit from extended adjuvant therapy with neratinib.Experimental Design: Mice with established ER+/HER2+ MDA-MB-361 tumors were treated with paclitaxel plus trastuzumab ± pertuzumab for 4 weeks, and then randomized to fulvestrant ± neratinib treatment. The benefit from neratinib was evaluated by performing gene expression analysis for 196 ER targets, ER transcriptional reporter assays, and cell-cycle analyses. RESULTS Mice receiving "extended adjuvant" therapy with fulvestrant/neratinib maintained a complete response, whereas those treated with fulvestrant relapsed rapidly. In three ER+/HER2+ cell lines (MDA-MB-361, BT-474, UACC-893) but not in ER+/HER2- MCF7 cells, treatment with neratinib induced ER reporter transcriptional activity, whereas treatment with fulvestrant resulted in increased HER2 and EGFR phosphorylation, suggesting compensatory reciprocal crosstalk between the ER and ERBB RTK pathways. ER transcriptional reporter assays, gene expression, and immunoblot analyses showed that treatment with neratinib/fulvestrant, but not fulvestrant, potently inhibited growth and downregulated ER reporter activity, P-AKT, P-ERK, and cyclin D1 levels. Finally, similar to neratinib, genetic and pharmacologic inactivation of cyclin D1 enhanced fulvestrant action against ER+/HER2+ breast cancer cells. CONCLUSIONS These data suggest that ER blockade leads to reactivation of ERBB RTKs and thus extended ERBB blockade is necessary to achieve durable clinical outcomes in patients with ER+/HER2+ breast cancer.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luis J Schwarz
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Oncosalud-AUNA, Lima, Peru
| | - Angel Guerrero-Zotano
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luigi Formisano
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mellissa J Nixon
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah Croessmann
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula I González Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda Sanders
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M Balko
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Carlos L Arteaga
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee. .,Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Cruz M, Reinert T, Cristofanilli M. Emerging Innovative Therapeutic Approaches Leveraging Cyclin-Dependent Kinase Inhibitors to Treat Advanced Breast Cancer. Clin Pharmacol Ther 2018; 103:1009-1019. [PMID: 29226311 DOI: 10.1002/cpt.965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/03/2025]
Abstract
Estrogen receptor-positive (ER+) tumors represent the most common form of breast cancer. Although endocrine therapy (ET) results in benefit for the majority of these patients, disease progression invariably occurs. The discovery of the relation between cyclin-dependent kinases (CDKs) and the ER pathways is one of the major advances in unveiling mechanisms of resistance to ET. In this article we review the role of CDK4/6 inhibitors in ER + breast cancer patients.
Collapse
Affiliation(s)
- Marcelo Cruz
- Developmental Therapeutics Division of Hematology Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tomás Reinert
- Medical Science Post Graduation Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
45
|
Wang G, Gormley M, Qiao J, Zhao Q, Wang M, Di Sante G, Deng S, Dong L, Pestell T, Ju X, Casimiro MC, Addya S, Ertel A, Tozeren A, Li Q, Yu Z, Pestell RG. Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics 2018; 8:2251-2263. [PMID: 29721077 PMCID: PMC5928887 DOI: 10.7150/thno.23877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/25/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/β-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Michael Gormley
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Jing Qiao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Shengqiong Deng
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200120, China
| | - Lin Dong
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tim Pestell
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Mathew C. Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Ayden Tozeren
- Center for Integrated Bioinformatics, Drexel University, Philadelphia, PA 19104
- School of Biomedical Engineering, Systems and Health Sciences, Drexel University, Philadelphia, PA 19104
| | - Qinchuan Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
46
|
Syn NLX, Wee I, Wong ALA, Goh RM, Ow SGW, Lambertini M, Lee SC. Cyclin-dependent kinase (CDK) inhibitors for hormone receptor-positive advanced breast cancer. Hippokratia 2018. [DOI: 10.1002/14651858.cd012919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nicholas LX Syn
- National University of Singapore; Cancer Science Institute of Singapore; Singapore Singapore
- National University Cancer Institute; Department of Haematology-Oncology; 1E Kent Ridge Road NUHS Tower Block, Level 7 Singapore Singapore 119228
| | - Ian Wee
- National University of Singapore; Cancer Science Institute of Singapore; Singapore Singapore
- National University Cancer Institute; Department of Haematology-Oncology; 1E Kent Ridge Road NUHS Tower Block, Level 7 Singapore Singapore 119228
| | - Andrea Li-Ann Wong
- National University of Singapore; Cancer Science Institute of Singapore; Singapore Singapore
- National University Cancer Institute; Department of Haematology-Oncology; 1E Kent Ridge Road NUHS Tower Block, Level 7 Singapore Singapore 119228
| | - Robby M Goh
- National University Cancer Institute; Department of Haematology-Oncology; 1E Kent Ridge Road NUHS Tower Block, Level 7 Singapore Singapore 119228
| | - Samuel Guan-Wei Ow
- National University Cancer Institute; Department of Haematology-Oncology; 1E Kent Ridge Road NUHS Tower Block, Level 7 Singapore Singapore 119228
| | - Matteo Lambertini
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B.); Department of Medicine, Breast Cancer Translational Research Laboratory; Brussels Belgium
| | - Soo-Chin Lee
- National University of Singapore; Cancer Science Institute of Singapore; Singapore Singapore
- National University Cancer Institute; Department of Haematology-Oncology; 1E Kent Ridge Road NUHS Tower Block, Level 7 Singapore Singapore 119228
| |
Collapse
|
47
|
Yahya SMM, Abdelhamid AO, Abd-Elhalim MM, Elsayed GH, Eskander EF. The effect of newly synthesized progesterone derivatives on apoptotic and angiogenic pathway in MCF-7 breast cancer cells. Steroids 2017; 126:15-23. [PMID: 28797724 DOI: 10.1016/j.steroids.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022]
Abstract
Due to its high potency and selectivity, anticancer agents consisting of combined molecules have gained great interests. The current study introduces newly synthesized progesterone derivatives of promising anticancer effect. Moreover, the pro-apoptotic and anti-angiogenic effects of these compounds were studied extensively. Several thiazole, pyridine, pyrazole, thiazolopyridine and pyrazolopyridine progesterone derivatives were synthesized. The structure of the novel progesterone derivatives was elucidated and confirmed using the analytical and spectral data. This novel derivatives were tested for their cytotoxic effect against human breast cancer cells (MCF-7) using neutral red uptake assay. Tested compounds showed anticancer activity against MCF-7 cancer cell line in the descending order of 7>2>3>8>6>9>4. The expression levels of Bcl-2, survivin, CCND1, CDC2, P53 and P21, VEGF, Hif-1α, MMP-2, MMP-9, Ang-1, Ang-2, and FGF-1 genes were investigated using QRT-PCR (Quantitative real time-polymerase chain reaction). The study clarified that compounds 2, 3, 4, 6, 7, 8 and 9 showed significant pro-apoptotic effect through the down regulation of Bcl-2., besides, survivin and CCND1 expression levels were down regulated by compounds 3, 4, 6, 7, 8, 9. However, Compound 4 may exert this pro-apoptotic effect through the up-regulation of P53 gene expression. On the other hand, the anti-angiogenic effect of these newly synthesized derivatives was due to their down regulation of VEGF, Ang-2, MMP-9 and FGF-1; and the up-regulation of HIF-1α and ang-1. This study recommended promising pro-apoptotic and anti-angiogenic anticancer agents acting through the regulation of key regulators of apoptosis, cell cycle genes, and pro-angiogenic genes.
Collapse
Affiliation(s)
| | - Abdou O Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ghada H Elsayed
- Hormones Department, National Research Centre, Dokki, Giza, Egypt
| | - Emad F Eskander
- Hormones Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
48
|
Pestell TG, Jiao X, Kumar M, Peck AR, Prisco M, Deng S, Li Z, Ertel A, Casimiro MC, Ju X, Di Rocco A, Di Sante G, Katiyar S, Shupp A, Lisanti MP, Jain P, Wu K, Rui H, Hooper DC, Yu Z, Goldman AR, Speicher DW, Laury-Kleintop L, Pestell RG. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget 2017; 8:81754-81775. [PMID: 29137220 PMCID: PMC5669846 DOI: 10.18632/oncotarget.19953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022] Open
Abstract
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.
Collapse
Affiliation(s)
- Timothy G Pestell
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Mukesh Kumar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marco Prisco
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Shengqiong Deng
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Li
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Adam Ertel
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Xiaoming Ju
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Sanjay Katiyar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Alison Shupp
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Salford, Greater Manchester, England, UK
| | - Pooja Jain
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Douglas C Hooper
- Department of Microbiology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
49
|
Casimiro MC, Di Sante G, Di Rocco A, Loro E, Pupo C, Pestell TG, Bisetto S, Velasco-Velázquez MA, Jiao X, Li Z, Kusminski CM, Seifert EL, Wang C, Ly D, Zheng B, Shen CH, Scherer PE, Pestell RG. Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK-LKB1 Signaling Axis. Cancer Res 2017; 77:3391-3405. [PMID: 28522753 PMCID: PMC5705201 DOI: 10.1158/0008-5472.can-16-0425] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 10/12/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis. Cancer Res; 77(13); 3391-405. ©2017 AACR.
Collapse
Affiliation(s)
- Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center (PCARM), Doylestown, Pennsylvania
- Pennsylvania Biotechnology Center of Bucks County at Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center (PCARM), Doylestown, Pennsylvania
- Pennsylvania Biotechnology Center of Bucks County at Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center (PCARM), Doylestown, Pennsylvania
- Pennsylvania Biotechnology Center of Bucks County at Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| | - Emanuele Loro
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claudia Pupo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Timothy G Pestell
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sara Bisetto
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Xuanmao Jiao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhiping Li
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Erin L Seifert
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chenguang Wang
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Daniel Ly
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Che-Hung Shen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Philipp E Scherer
- Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, Texas
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center (PCARM), Doylestown, Pennsylvania.
- Pennsylvania Biotechnology Center of Bucks County at Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| |
Collapse
|
50
|
Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices. Int J Mol Sci 2017; 18:ijms18020425. [PMID: 28212313 PMCID: PMC5343959 DOI: 10.3390/ijms18020425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
Scientific evidence suggests that many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. In this study, we examined the chemopreventive effects of the Apiaceae spices, anise, caraway, and celery seeds against 17β-estrogen (E2)-mediated mammary tumorigenesis in an ACI (August-Copenhagen Irish) rat model. Female ACI rats were given either control diet (AIN 93M) or diet supplemented with 7.5% (w/w) of anise, caraway, or celery seed powder. Two weeks later, one half of the animals in each group received subcutaneous silastic implants of E2. Diet intake and body weight were recorded weekly, and animals were euthanized after 3 and 12 weeks. E2-treatment showed significantly (2.1- and 3.4-fold) enhanced growth of pituitary gland at 3 and 12 weeks, respectively. All test spices significantly offset the pituitary growth by 12 weeks, except celery which was effective as early as three weeks. Immunohistochemical analysis for proliferative cell nuclear antigen (PCNA) in mammary tissues showed significant reduction in E2-mediated mammary cell proliferation. Test spices reduced the circulating levels of both E2 and prolactin at three weeks. This protection was more pronounced at 12 weeks, with celery eliciting the highest effect. RT-PCR and western blot analysis were performed to determine the potential molecular targets of the spices. Anise and caraway diets significantly offset estrogen-mediated overexpression of both cyclin D1 and estrogen receptor α (ERα). The effect of anise was modest. Likewise, expression of CYP1B1 and CYP1A1 was inhibited by all test spices. Based on short-term molecular markers, caraway was selected over other spices based on its enhanced effect on estrogen-associated pathway. Therefore, a tumor-end point study in ACI rats was conducted with dietary caraway. Tumor palpation from 12 weeks onwards revealed tumor latency of 29 days in caraway-treated animals compared with first tumor appearance at 92 days in control group. At the end of the study (25 weeks), the tumor incidence was 96% in the control group compared with only 70% in the caraway group. A significant reduction in tumor volume (661 ± 123 vs. 313 ± 81 mm³) and tumor multiplicity (4.2 ± 0.4 vs. 2.5 ± 0.5 tumors/animal) was also observed in the caraway group compared with the control group. Together, our data show dietary caraway can significantly delay and prevent the hormonal mammary tumorigenesis by modulating different cellular and molecular targets.
Collapse
|