1
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
2
|
Villalobos Solis MI, Engle NL, Spangler MK, Cottaz S, Fort S, Maeda J, Ané JM, Tschaplinski TJ, Labbé JL, Hettich RL, Abraham PE, Rush TA. Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:808578. [PMID: 37746234 PMCID: PMC10512320 DOI: 10.3389/ffunb.2022.808578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.
Collapse
Affiliation(s)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Margaret K. Spangler
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Jesse L. Labbé
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Paul E. Abraham
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tomás A. Rush
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
3
|
Germination of a Field: Women in Candida albicans Research. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Hu P, Liu L, Ke W, Tian X, Wang L. A cyclin protein governs the infectious and sexual life cycles of Cryptococcus neoformans. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1336-1345. [PMID: 33165808 DOI: 10.1007/s11427-020-1697-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Cell cycle is a fundamental process underlying growth and development in evolutionarily diverse organisms, including fungi. In human fungal pathogens, cell cycle control generally determines their life cycles, either in the environment or during infections. Thus, cell cycle components can potentially serve as important targets for the development of antifungal strategy against fungal infections. Here, in Cryptococcus neoformans, the most common cause of fatal fungal meningitis, we show that a previously uncharacterized B-type cyclin named Cbc1 is essential for both its infectious and sexual cycles. We reveal that Cbc1 coordinates various sexual differentiation and molecular processes, including meiosis. Especially, the absence of Cbc1 abolishes formation of sexual spores in C. neoformans, which are presumed infectious particles. Cbc1 is also required for the major Cryptococcus pathogenic attributes. Virulence assessment using the murine model of cryptococcosis revealed that the cbc1 mutant is avirulent. Together, our results provide an important insight into how C. neoformans employs shared cell cycle regulation to coordinate its infectious and sexual cycles, which are considered crucial for virulence evolution and the production of infectious spores.
Collapse
Affiliation(s)
- Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Zhu W, Fan X, Zhao Q, Xu Y, Wang X, Chen J. Bre1 and Ubp8 regulate H2B mono-ubiquitination and the reversible yeast-hyphae transition in Candida albicans. Mol Microbiol 2020; 115:332-343. [PMID: 33010070 DOI: 10.1111/mmi.14619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
The reversible yeast-hyphae transition of the human fungal pathogen Candida albicans is tightly linked to its pathogenicity. In this study, we show that histone H2B mono-ubiquitination (H2Bub) at lysine 123 was maintained at a low level in the yeast state, whereas it increased significantly during yeast-to-hyphae transition and decreased when hyphae converted to yeast. The increased H2Bub level is correlated with activation of the hyphal program. H2B ubiquitination and deubiquitination are dynamically regulated by the E3 ligase Bre1 and the deubiquitinase Ubp8 during the reversible yeast-hyphae transition. The functions of Bre1 and Ubp8 in hypha-specific gene (HSG) regulation appears to be direct because both are recruited to the coding regions of HSGs during hyphal induction. The sequential recruitment of Bre1 and Ubp8 to HSGs coding regions is important for the initiation and maintenance of HSG expression. Additionally, Ubp8 contributes to the pathogenicity of C. albicans during early infection in a mouse model. Our study is the first to link H2B ubiquitination to the morphological plasticity and pathogenicity of the human fungal pathogen C. albicans and shed light on potential antifungal treatments.
Collapse
Affiliation(s)
- Wencheng Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueyi Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinxing Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiongjun Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Edouarzin E, Horn C, Paudyal A, Zhang C, Lu J, Tong Z, Giaever G, Nislow C, Veerapandian R, Hua DH, Vediyappan G. Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids. MICROBIAL CELL 2020; 7:146-159. [PMID: 32548177 PMCID: PMC7278516 DOI: 10.15698/mic2020.06.719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eight drimane sesquiterpenoids including (-)-drimenol and (+)-albicanol were synthesized from (+)-sclareolide and evaluated for their antifungal activities. Three compounds, (-)-drimenol, (+)-albicanol, and (1R,2R,4aS,8aS)-2-hydroxy-2,5,5,8a-tetramethyl-decahydronaphthalene-1-carbaldehyde (4) showed strong activity against C. albicans. (-)-Drimenol, the strongest inhibitor of the three, (at concentrations of 8 – 64 µg/ml, causing 100% death of various fungi), acts not only against C. albicans in a fungicidal manner, but also inhibits other fungi such as Aspergillus, Cryptococcus, Pneumocystis, Blastomyces, Saksenaea and fluconazole resistant strains of C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. auris. These observations suggest that drimenol is a broad-spectrum antifungal agent. At a high concentration (100 μg/ml) drimenol caused rupture of the fungal cell wall/membrane. In a nematode model of C. albicans infection, drimenol rescued the worms from C. albicans-mediated death, indicating drimenol is tolerable and bioactive in metazoans. Genome-wide fitness profiling assays of both S. cerevisiae (nonessential homozygous and essential heterozygous) and C. albicans (Tn-insertion mutants) collections revealed putative genes and pathways affected by drimenol. Using a C. albicans mutant spot assay, the Crk1 kinase associated gene products, Ret2, Cdc37, and orf19.759, orf19.1672, and orf19.4382 were revealed to be involved in drimenol's mechanism of action. The three orfs identified in this study are novel and appear to be linked with Crk1 function. Further, computational modeling results suggest possible modifications of the structure of drimenol, including the A ring, for improving the antifungal activity.
Collapse
Affiliation(s)
- Edruce Edouarzin
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Connor Horn
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| | - Anuja Paudyal
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| | - Cunli Zhang
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Jianyu Lu
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Zongbo Tong
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Raja Veerapandian
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| | - Duy H Hua
- Department of Chemistry, 1212 Mid Campus Drive North, Kansas State University, Manhattan, KS 66506 USA
| | - Govindsamy Vediyappan
- Division of Biology, 1717 Claflin Road, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
7
|
Zhang C, Wang W, Kong Q, Liu F, Chen J, Sang H. Characterization of a Candida albicans isolate from a recurrent cervical lymphadenitis patient. Mycologia 2019; 111:942-952. [PMID: 31622176 DOI: 10.1080/00275514.2019.1666598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Candida albicans is the most frequently isolated opportunistic fungal pathogen in humans. However, patients with cervical lymphadenitis caused by Candida infection are rarely reported, and few studies have focused on the mechanisms underlying chronic Candida infection. In this study, we isolated a C. albicans strain (JL01) from a recurrent cervical lymphadenitis patient. The clinical isolate was identified by morphological observation and confirmed by DNA sequencing of the internal transcribed spacer (ITS) regions. Strain JL01 is resistant to azole antifungal drugs, but sensitive to amphotericin B. The strain is able to adapt to oxidative and osmotic stresses but is defective in filamentous and invasive growth. The strain displays attenuated virulence in a murine systemic infection model. RNA-sequencing analysis revealed that JL01 has a distinct gene expression profile compared with C. albicans reference strain SC5314; hundreds of transcripts were significantly dysregulated, including those related to morphogenesis and pathogenesis. Taken together, our clinical, virulence, morphological, and biological analyses suggest that the azole resistance, oxidative and osmotic stress tolerance, invasive defect, hypovirulence, and impaired interaction with the host immune system of strain JL01 may correlate with its ability to cause cervical lymphadenitis in the patient. Our research may contribute to elucidating the mechanism(s) underlying the drug resistance and immune escape of C. albicans in chronic fungal infection.
Collapse
Affiliation(s)
- Chengzhen Zhang
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Fang Liu
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| |
Collapse
|
8
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
9
|
O'Meara TR, Robbins N, Cowen LE. The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends Microbiol 2017; 25:809-819. [PMID: 28549824 DOI: 10.1016/j.tim.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
Abstract
Hsp90 is a conserved molecular chaperone that facilitates the folding and function of client proteins. Hsp90 function is dynamically regulated by interactions with co-chaperones and by post-translational modifications. In the fungal pathogen Candida albicans, Hsp90 enables drug resistance and virulence by stabilizing diverse signal transducers. Here, we review studies that have unveiled regulators of Hsp90 function, as well as downstream effectors that govern the key virulence traits of morphogenesis and drug resistance. We highlight recent work mapping the Hsp90 genetic network in C. albicans under diverse environmental conditions, and how these interactions provide insight into circuitry important for drug resistance, morphogenesis, and virulence. Ultimately, elucidating the Hsp90 chaperone network will aid in the development of therapeutics to treat fungal disease.
Collapse
Affiliation(s)
- Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
10
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
11
|
Liu JY, Li WJ, Shi C, Wang Y, Zhao Y, Xiang MJ. Mutations in the Flo8 transcription factor contribute to virulence and phenotypic traits in Candida albicans strains. Microbiol Res 2015; 178:1-8. [DOI: 10.1016/j.micres.2015.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 01/13/2023]
|
12
|
Chang P, Fan X, Chen J. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol 2015; 81:132-41. [DOI: 10.1016/j.fgb.2015.01.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
|
13
|
Yan M, Nie X, Wang H, Gao N, Liu H, Chen J. SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in Candida albicans. Mol Microbiol 2015; 98:69-89. [PMID: 26112173 DOI: 10.1111/mmi.13108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 01/26/2023]
Abstract
Candida albicans is the most common human fungal pathogen, yet is a normal commensal resident of the human gut. CO(2) levels in the gut are much higher than in air, and it is known that elevated CO(2) concentration promotes C. albicans cells to undergo a phenotypic switch from white to opaque phase. Wor1, the master regulator of opaque cell formation, is required for both the white to opaque transition and opaque maintenance. To elucidate the regulatory mechanism of Wor1, we set out to identify Wor1-interacting proteins using a yeast two-hybrid screen. A SUMO E3 ligase named Wos1 (Wor1 SUMO-ligase 1) was identified to interact with Wor1 and regulate Wor1 SUMOylation. WOS1 expression is upregulated in response to high CO(2), and the induction by CO(2) is dependent on the transcription factor Flo8. Under high CO(2) conditions, Wos1 is required for the white to opaque switch and acts downstream of Flo8. At atmospheric CO(2) levels, overexpression of Wos1 enhances Wor1 SUMOylation and promotes the white to opaque switch. Wor1 is found to be SUMOylated at lysine 385, and loss of this mark by point mutation leads to a defect in CO(2) -mediated opaque cell induction. Together, our genetic and biological data show that Wos1-mediated Wor1 SUMOylation contributes to the regulation of CO(2) -induced white to opaque switching as well as heritable maintenance of the opaque cell type.
Collapse
Affiliation(s)
- Minghui Yan
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xinyi Nie
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Huafeng Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Ning Gao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, USA
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| |
Collapse
|
14
|
Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. PLoS Pathog 2015; 11:e1004630. [PMID: 25617770 PMCID: PMC4305328 DOI: 10.1371/journal.ppat.1004630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/16/2014] [Indexed: 11/21/2022] Open
Abstract
The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity. The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.
Collapse
Affiliation(s)
- Jamie A. Greig
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Ian M. Sudbery
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan P. Richardson
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Julian R. Naglik
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biochemistry, Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- * E-mail: (PES); (YW)
| | - Peter E. Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (PES); (YW)
| |
Collapse
|
15
|
HOU BINBIN, LIU XIAOMING, ZHENG FANGLIANG, XU XUEZHU, ZHANG ZHENYING. Molecular cloning, modeling and differential expression of a gene encoding a silent information regulator-like protein from Sporothrix schenckii. Int J Mol Med 2014; 33:1415-22. [PMID: 24682409 PMCID: PMC4056409 DOI: 10.3892/ijmm.2014.1719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Sporothrix schenckii (S. schenckii) is a dimorphic fungus that produces lymphocutaneous lesions. The signature characteristic of S. schenckii is a temperature-induced phase transition. Silent information regulator (Sir) has been proven to be involved in phenotypic switching in Saccharomyces cerevisiae (S. cerevisiae) and Candida albicans (C. albicans) by organizing chromatin structure. In this study, we isolated and characterized a Sir homologue gene, designated as SsSir2, from the yeast form of S. schenckii. The full-length SsSir2 cDNA sequence is 1753 bp in size and contains an open reading frame of 1329 bp encoding 442 amino acids. The predicted molecular mass of SsSir2 is 48.1 kDa with an estimated theoretical isoelectric point of 4.6. The SsSir2 kinase domain shows a 78% identity with that of Hst2, a Sir2 Ib gene from S. cerevisiae. Three exons and two introns were identified within the 1472‑bp SsSir2 genomic DNA sequence of S. schenckii. A three-dimensional model of SsSir2 was constructed using a homology modeling method, and its reliability was evaluated. The active site of SsSir2 was identified by docking simulation, which indicated that several important residues, such as Asn127 and Asp129, play an important role in the histone deacetylase activity of Sir2 family proteins. The differential expression of the SsSir2 in two stages was demonstrated by real-time RT-PCR. The expression of SsSir2 was higher in the yeast stage compared with that in the mycelial one, which indicated that SsSir2 may be involved in the phenotypic switching and morphogenesis of the yeast phase in S. schenckii.
Collapse
Affiliation(s)
- BINBIN HOU
- Department of Dermatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - XIAOMING LIU
- Department of Dermatology, Hong Kong University - Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - FANGLIANG ZHENG
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, Life Science School of Liaoning University, Shenyang, Liaoning, P.R. China
| | - XUEZHU XU
- Department of Dermatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - ZHENYING ZHANG
- Department of Dermatology, Hong Kong University - Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
16
|
Du H, Guan G, Xie J, Sun Y, Tong Y, Zhang L, Huang G. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLoS One 2012; 7:e29707. [PMID: 22276126 PMCID: PMC3261855 DOI: 10.1371/journal.pone.0029707] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing not only superficial infections, but also life-threatening systemic disease. C. albicans can grow in several morphological forms including unicellular yeast-form, elongated hyphae and pseudohyphae. In certain natural environments, C. albicans also exists as biofilms, which are structured and surface-attached microbial communities. Transcription factors play a critical role in morphogenesis and biofilm development. In this study, we identified four adhesion-promoting transcription factors (Tec1, Cph1, Ume6 and Gat2) by screening a transcription factor overexpression library. Sequence analysis indicates that Gat2 is a GATA-type zinc finger transcription factor. Here we showed that the gat2/gat2 mutant failed to form biofilms on the plastic and silicone surfaces. Overexpression of GAT2 gene promoted filamentous and invasive growth on agar containing Lee's medium, while deletion of this gene had an opposite effect. However, inactivation of Gat2 had no obvious effect on N-acetyl-glucosamine (GlcNAc) induced hyphal development. In a mouse model of systemic infection, the gat2/gat2 mutant showed strongly attenuated virulence. Our results suggest that Gat2 plays a critical role in C. albicans biofilm formation, filamentous growth and virulence.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaojun Tong
- Graduate University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lixin Zhang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011; 48:747-63. [DOI: 10.1016/j.fgb.2011.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
|
18
|
Wang H, Song W, Huang G, Zhou Z, Ding Y, Chen J. Candida albicans Zcf37, a zinc finger protein, is required for stabilization of the white state. FEBS Lett 2011; 585:797-802. [PMID: 21315072 DOI: 10.1016/j.febslet.2011.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/31/2010] [Accepted: 02/04/2011] [Indexed: 11/19/2022]
Abstract
Candida albicans, the most prevalent human fungal pathogen, can switch stochastically between white and opaque phases. In this study, we identified Zcf37, a zinc finger protein, as a new regulator of white-opaque switching. Deletion of ZCF37 increased white-to-opaque switching frequency and stabilized the opaque state. Overexpression of ZCF37 promoted conversion of opaque cells to white phase, but needed existence of Efg1, a key regulator required for maintenance of the white state. Deletion of EFG1 abolished the effect of ectopically expressed Zcf37 on opaque-to-white switching, whereas ectopic expression of EFG1 promoted white cell formation without presence of Zcf37. Our results suggest that Zcf37 acts as an activator of white cell formation and a repressor of opaque state and functions upstream of Efg1.
Collapse
Affiliation(s)
- Huafeng Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
19
|
Song W, Wang H, Chen J. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model. FEMS Yeast Res 2011; 11:209-22. [PMID: 21205158 DOI: 10.1111/j.1567-1364.2010.00710.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many transcriptional regulators play roles in morphogenesis of the human pathogen Candida albicans. Recently, Sfl2, a sequence homolog of C. albicans Sfl1, has been shown to be required for hyphal development. In this report, we show that, like Sfl1, Sfl2 could complement the phenotypes of the Saccharomyces cerevisiae sfl1 mutant, and green fluorescent protein-tagged Sfl2 localized in the nuclei of both yeast and hyphal cells in C. albicans, reflecting its role as a transcriptional regulator. In C. albicans, SFL2 expression was induced at a high growth temperature (37 °C) at both transcriptional and translational levels. The deletion of SFL2 impaired filamentation at a high temperature, whereas the overexpression of SFL2 promoted filamentous growth at a low temperature. Sfl2-activated hyphal development needs the existence of Efg1 and Flo8 under aerobic conditions. Thus, in contrast to Sfl1, which represses filamentation, Sfl2 acts as an activator of filamentous growth in C. albicans. Functional analysis of chimeric Sfl proteins demonstrated that the opposite actions of C. albicans Sfl1 and Sfl2 were mainly mediated by their heat shock factor domains. Furthermore, the deletion of SFL2 attenuated virulence in a mouse model of gastrointestinal colonization and dissemination, indicating that Sfl2 is important for virulence in the gastrointestinal model of candidiasis. Our results provide new insights into Sfl2 functions in C. albicans morphogenesis and pathogenesis.
Collapse
Affiliation(s)
- Wenji Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
20
|
Liu X, Nie X, Ding Y, Chen J. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Acta Biochim Biophys Sin (Shanghai) 2010; 42:793-800. [PMID: 20929924 DOI: 10.1093/abbs/gmq093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is a human pathogenic fungus which can undergo a morphological transition from yeast to hyphae in response to a variety of environmental stimuli. We analyzed a C. albicans Asc1 (Absence of growth Suppressor of Cyp1) protein which is entirely composed of seven repeats of the WD domain, and is conserved from fungi to metazoan. Deleting the ASC1 in C. albicans led to a profound defect in hyphal development under hypha-inducing conditions examined. Furthermore, deletion of the ASC1 attenuated virulence of C. albicans in a mouse model of systemic infection. These data strongly suggested that the conserved WD-repeat protein Asc1 is required for morphogenesis and pathogenesis of C. albicans.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | | | | | | |
Collapse
|
21
|
Functional characterization of a new member of the Cdk9 family in Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1901-12. [PMID: 20952582 DOI: 10.1128/ec.00384-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdk9-like kinases in complex with T-type cyclins are essential components of the eukaryotic transcription elongation machinery. The full spectrum of Cdk9/cyclin T targets, as well as the specific consequences of phosphorylations, is still largely undefined. We identify and characterize here a Cdk9 kinase (PtkA) in the filamentous ascomycete Aspergillus nidulans. Deletion of ptkA had a lethal effect in later stages of vegetative growth and completely impeded asexual development. Overexpression of ptkA affected directionality of polarized growth and the initiation of new branching sites. A green fluorescent protein-tagged PtkA version localized inside the nucleus during interphase, supporting a role of PtkA in transcription elongation, as observed in other organisms. We also identified a putative cyclin T homolog, PchA, in the A. nidulans genome and confirmed its interaction with PtkA in vivo. Surprisingly, the Pcl-like cyclin PclA, previously described to be involved in asexual development, was also found to interact with PtkA, indicating a possible role of PtkA in linking transcriptional activity with development and/or morphogenesis in A. nidulans. This is the first report of a Cdk9 kinase interacting with a Pcl-like cyclin, revealing interesting new aspects about the involvement of this Cdk-subfamily in differential gene expression.
Collapse
|
22
|
Ghalehnoo ZR, Rashki A, Najimi M, Dominguez A. The role of diclofenac sodium in the dimorphic transition in Candida albicans. Microb Pathog 2009; 48:110-5. [PMID: 20026399 DOI: 10.1016/j.micpath.2009.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Diclofenac sodium is a non-steroidal anti-inflammatory drug that inhibits filamentation in Candida albicans. Here we examined the effect of diclofenac sodium on hypha formation in C. albicans. The C. albicans cells were treated with various concentrations of diclofenac sodium (50, 100, 200 and 500microg/ml) and incubated at 37 degrees C for 2h. The characteristics of hypha formation were then assessed microscopically in both liquid and solid media. The results indicated that the effect of diclofenac sodium was dependent on the concentration of this compound, and preincubation with 500microg/ml diclofenac sodium completely inhibited hypha formation in both liquid and solid media. RT-qPCR analysis of RNA extracted from C. albicans indicated that the levels of expression of agglutinin-like sequence 3 (ALS3), RAS1, EFG1 mRNA, which are regulated by the cAMP-EFG1 pathway in C. albicans and three hypha-specific genes (ALS1, ECE1 and HWP1), were decreased in diclofenac sodium treated cells compared to the levels in controls. Our results also demonstrated that diclofenac sodium possesses potent anti yeast-hypha transition activity in vitro and it could be useful in combined therapy with conventional antifungal agents in the management of treatment of Candida albicans infections.
Collapse
Affiliation(s)
- Zahra Rashki Ghalehnoo
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
23
|
Mss11, a transcriptional activator, is required for hyphal development in Candida albicans. EUKARYOTIC CELL 2009; 8:1780-91. [PMID: 19734367 DOI: 10.1128/ec.00190-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Candida albicans undergoes a morphological transition from yeast to hyphae in response to a variety of stimuli and growth conditions. We previously isolated a LisH domain containing transcription factor Flo8, which is essential for hyphal development in C. albicans. To search the putative binding partner of Flo8 in C. albicans, we identified C. albicans Mss11, a functional homolog of Saccharomyces cerevisiae Mss11, which also contains a LisH motif at its N terminus. C. albicans Mss11 can interact with Flo8 via the LisH motif by in vivo coimmunoprecipitation. The results of a chromatin immunoprecipitation (ChIP) assay showed that more Mss11 and Flo8 proteins bound to the upstream activating sequence region of HWP1 promoter in hyphal cells than in yeast cells, and the increased binding of each of these two proteins responding to hyphal induction was dependent on the other. Overexpression of MSS11 enhanced filamentous growth. Deletion of MSS11 caused a profound defect in hyphal development and the induction of hypha-specific genes. Our data suggest that Mss11 functions as an activator in hyphal development of C. albicans. Furthermore, overexpression of FLO8 can bypass the requirement of Mss11 in filamentous formation, whereas overexpression of MSS11 failed to promote hyphae growth in flo8 mutants. In summary, we show that the expression level of MSS11 increases during hyphal induction, and the enhanced expression of MSS11 may contribute to cooperative binding of Mss11 and Flo8 to the HWP1 promoter.
Collapse
|
24
|
Ueno Y, Maruyama N, Kanno M, Watanabe T, Ogasawara A, Mikami T, Matsumoto T. Effect of propranolol on hyphae formation signal in Candida albicans. Biol Pharm Bull 2009; 32:129-31. [PMID: 19122294 DOI: 10.1248/bpb.32.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans (C. albicans) is known as an opportunistic pathogen that changes from a yeast form to a hyphae form in response to various outside environmental signals. The addition of propranolol inhibited hyphae formation of C. albicans. Propranolol inhibited the expression of agglutinin like sequence 3 (ALS3) and ALS8mRNA, which are regulated by the cAMP-EFG1 pathway in C. albicans. Propranolol did not affect the expression of CST20, HST7 or CPH1mRNA, which are components of the mitogen-activated protein (MAP) kinase cascade in C. albicans. The expression of CYR1mRNA, which encodes adenylate cyclase of C. albicans, was not affected by propranolol. These findings indicated that the interruption of hyphae formation by propranolol is caused by inhibition of the cAMP-EFG1 pathway, but not effects on the MAP kinase cascade.
Collapse
Affiliation(s)
- Yukihiro Ueno
- Department of Microbiology, Tohoku Pharmceutical University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Hall RA, Cottier F, Mühlschlegel FA. Molecular networks in the fungal pathogen Candida albicans. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:191-212. [PMID: 19245940 DOI: 10.1016/s0065-2164(08)01006-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans is an important opportunistic fungal pathogen of humans. Its success as a commensal and pathogen extends from its ability to switch between both yeast and hyphal growth forms. Therefore, extensive research on this fungus has also focused on the identification and understanding of the regulatory networks behind this morphological switch. Here we review established signaling pathways, including the mitogen-activated protein kinase cascades and the cyclic AMP-dependent protein kinase A signaling pathway. In addition, we focus on new developments in the rapidly growing area of fungal environmental sensing, but importantly also highlight exciting new developments in the expanding field of molecular networks involved in fungal-fungal and fungal-bacterial interkingdom communication.
Collapse
Affiliation(s)
- Rebecca A Hall
- Department of Biosciences, University of Kent, Canterbury T2 7NJ, UK
| | | | | |
Collapse
|
26
|
Huang H, Harcus D, Whiteway M. Transcript profiling of a MAP kinase pathway in C. albicans. Microbiol Res 2008; 163:380-93. [DOI: 10.1016/j.micres.2008.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 02/27/2008] [Accepted: 03/02/2008] [Indexed: 10/22/2022]
|
27
|
Mao X, Li Y, Wang H, Cao F, Chen J. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans. FEMS Microbiol Lett 2008; 285:233-41. [PMID: 18564337 DOI: 10.1111/j.1574-6968.2008.01236.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candida albicans is a polymorphic human opportunistic pathogen in which the Swi-Snf complex functions as an activator whereas Tup1 acts as a general repressor during the yeast-hyphae transition. In Saccharomyces cerevisiae, the interplay between the Swi-Snf complex and the Tup1-Ssn6 repressive complex regulates the balance between active and repressed chromatin structures of a number of genes. To study the interplay between Candida albicans Swi1 and Tup1 and their effects on morphogenesis, we analyzed phenotypes of swi1/swi1, tup1/tup1 and swi1/swi1 tup1/tup1 mutants under various growth conditions. The swi1/swi1 mutant failed to form true hyphae, whereas the tup1/tup1 mutant exhibited constitutive filamentous growth. Deletion of SWI1 in the tup1/tup1 mutant completely blocked hyphal growth under all the conditions examined. Under aerobic conditions, the swi1/swi1 tup1/tup1 mutant most resembled the swi1/swi1 mutant in phenotype, actin polarization and gene expression pattern. In invaded agar, the double mutant showed similar phenotypes as the swi1/swi1 mutant, while under embedded conditions, it grew as a pseudohypha-like form different from that of the wild-type strain, swi1/swi1 or tup1/tup1 mutants. These results suggest that Swi1 may play a dominant role by antagonizing the repressive effect of the Tup1 on hyphal development in C. albicans.
Collapse
Affiliation(s)
- Xuming Mao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
28
|
Sari F, Heinrich M, Meyer W, Braus GH, Irniger S. The C-terminal region of the meiosis-specific protein kinase Ime2 mediates protein instability and is required for normal spore formation in budding yeast. J Mol Biol 2008; 378:31-43. [PMID: 18339400 DOI: 10.1016/j.jmb.2008.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 01/24/2008] [Accepted: 02/01/2008] [Indexed: 01/09/2023]
Abstract
The cyclin-dependent kinase Cdk1 and the related kinase Ime2 act in concert to trigger progression of the meiotic cell cycle in the yeast Saccharomyces cerevisiae. These kinases share several functions and substrates during meiosis, but their regulation seems to be clearly different. In contrast to Cdk1, no cyclin seems to be involved in the regulation of Ime2 activity. Ime2 is a highly unstable protein, and we aimed to elucidate the relevance of Ime2 instability. We first determined the sequence elements required for Ime2 instability by constructing a set of deletions in the IME2 gene. None of the small deletions in Ime2 affected its instability, but deletion of a 241 amino acid C-terminal region resulted in a highly stabilized protein. Thus, the C-terminal domain of Ime2 is important for mediating protein instability. The stabilized, truncated Ime2 protein is highly active in vivo. Replacement of the IME2 gene with the truncated IME2DeltaC241 in diploid strains did not interfere with meiotic nuclear divisions, but caused abnormalities in spore formation, as manifested by the appearance of many asci with a reduced spore number such as triads and dyads. The truncated Ime2 caused a reduction of spore number in a dominant manner. We conclude that downregulation of Ime2 kinase activity mediated by the C-terminal domain is required for the efficient production of normal four-spore asci. Our data suggest a role for Ime2 in spore number control in S. cerevisiae.
Collapse
Affiliation(s)
- Fatih Sari
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Westwater C, Balish E, Warner TF, Nicholas PJ, Paulling EE, Schofield DA. Susceptibility of gnotobiotic transgenic mice (Tgepsilon26) with combined deficiencies in natural killer cells and T cells to wild-type and hyphal signalling-defective mutants of Candida albicans. J Med Microbiol 2007; 56:1138-1144. [PMID: 17761474 DOI: 10.1099/jmm.0.47110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germfree transgenic epsilon 26 mice (Tgepsilon26), deficient in natural killer cells and T cells, were colonized (alimentary tract) with Candida albicans wild-type or each of two hyphal transcription factor signalling mutant strains (efg1/efg1, efg1/efg1 cph1/cph1). Each Candida strain colonized the alimentary tract, infected keratinized gastric tissues to a similar extent, and induced a granulocyte-dominated inflammatory response in infected tissues. Both wild-type and mutant strains formed hyphae in vivo and were able to elicit an increase in cytokine [tumour necrosis factor alpha, interleukin (IL)-10 and IL-12] and chemokine (KC and macrophage inflammatory protein-2] mRNAs in infected tissues; however, administration of the wild-type strain was lethal for the Tgepsilon26 mice, whereas the mice colonized with the mutant strains survived. Death of the Tgepsilon26-colonized mice appeared to be due to occlusive oesophageal candidiasis, and not to disseminated candidiasis of endogenous origin. In contrast, the mutant strains exhibited a significantly reduced capacity to infect (frequency and severity) oro-oesophageal (tongue and oesophagus) tissues. Therefore, the two hyphal signalling-defective mutants were less able to infect oro-oesophageal tissues and were non-lethal, but retained their ability to colonize the alimentary tract with yeast and hyphae, infect keratinized gastric tissues, and evoke an inflammatory response in orogastric tissues.
Collapse
Affiliation(s)
- Caroline Westwater
- Department of Stomatology, Medical University of South Carolina, Charleston, SC, USA
| | - Edward Balish
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas F Warner
- Department of Surgical Pathology, University of Wisconsin Medical School, Madison, WI, USA
| | - Peter J Nicholas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Emily E Paulling
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - David A Schofield
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
30
|
Li Y, Su C, Mao X, Cao F, Chen J. Roles of Candida albicans Sfl1 in hyphal development. EUKARYOTIC CELL 2007; 6:2112-21. [PMID: 17715361 PMCID: PMC2168412 DOI: 10.1128/ec.00199-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to switch between different morphological forms is an important feature of Candida albicans and is relevant to its pathogenesis. Many conserved positive and negative transcription factors are involved in morphogenetic regulation of the two dimorphic fungi Candida albicans and Saccharomyces cerevisiae. In S. cerevisiae, the transcriptional repressor Sfl1 and the activator Flo8 function antagonistically in invasive and filamentous growth. We have previously reported that Candida albicans Flo8 is a transcription factor essential for hyphal development and virulence in C. albicans. To determine whether a similar negative factor exists in C. albicans, we identified Candida albicans Sfl1 as a functional homolog of the S. cerevisiae sfl1 mutant. Sfl1 is a negative regulator of hyphal development in C. albicans. Deletion of C. albicans SFL1 enhanced filamentous growth and hypha-specific gene expression in several media and at several growth temperatures. Overexpression of the SFL1 led to a significant reduction of filament formation. Both deletion and overexpression of the SFL1 attenuated virulence of C. albicans in a mouse model. Deleting FLO8 in an sfl1/sfl1 mutant completely blocked hyphal development in various growth conditions examined, suggesting that C. albicans Sfl1 may act as a negative regulator of filamentous growth by antagonizing Flo8 functions. We suggest that, similar to the case for S. cerevisiae, a combination of dual control by activation and repression of Flo8 and Sfl1 may contribute to the fine regulatory network in C. albicans morphogenesis responding to different environmental cues.
Collapse
Affiliation(s)
- Yandong Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
31
|
Wang J, Yan Z, Shen SH, Whiteway M, Jiang L. Expression ofCaPTC7is developmentally regulated during serum-induced morphogenesis in the human fungal pathogen Candida albicans. Can J Microbiol 2007; 53:237-44. [PMID: 17496972 DOI: 10.1139/w06-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2C protein phosphatases (PP2C) represent a diversified protein phosphatase family and play various roles in cells. We previously identified and characterized a novel PP2C phosphatase encoded by the CaPTC7 gene in the human fungal pathogen Candida albicans . The CaPtc7p has 365 amino acids with a PP2C core domain at the C terminus and an additional 116-residue N-terminal sequence containing a mitochondrion-targeting sequence. Here, we show that CaPtc7p is indeed localized in the mitochondrion, the only eukaryotic PP2C phosphatase that has been directly shown to reside in the mitochondrion, suggesting its potential role in the regulation of mitochondrial physiology. Furthermore, we show that the expression of CaPTC7 at both transcriptional and protein levels is developmentally regulated during the serum-induced morphogenesis of C. albicans cells. However, disruption of the two alleles of CaPTC7 does not affect cell viability or filamentous development in C. albicans.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Molecular and Cellular Pharmacology, College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
32
|
Shea JM, Del Poeta M. Lipid signaling in pathogenic fungi. Curr Opin Microbiol 2006; 9:352-8. [PMID: 16798065 DOI: 10.1016/j.mib.2006.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 06/09/2006] [Indexed: 11/16/2022]
Abstract
Recent studies have highlighted the importance of lipid signaling molecules in the development and pathogenicity of clinically important fungi. In Cryptococcus neoformans, sphingolipid-derived diacylglycerol has been shown to induce the transcription of the putative virulence factor App1, which inhibits the phagocytosis of fungal cells by alveolar macrophages, as well as to activate the protein kinase C Pkc1, which promotes cell-wall stability and increased melanin production. In Candida albicans, exposure to the oxylipin farnesol causes the regulation of specific genes involved in hyphal development, drug resistance and iron acquisition. Farnesol increases resistance to oxidative stress in C. albicans but, interestingly, induces apoptotic-like cell death in Aspergillus nidulans, suggesting that this molecule has multiple and opposing functions. Finally, fungal cells secrete eicosanoids, which are lipid molecules with putative signaling functions in fungi, and the recent characterization of the first fungal enzymes associated with the production of eicosanoids in A. nidulans and Aspergillus fumigatus provides new insights into the understanding of the role of eicosanoid production in the biology of fungal pathogenesis.
Collapse
Affiliation(s)
- John M Shea
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
33
|
Mao X, Cao F, Nie X, Liu H, Chen J. The Swi/Snf chromatin remodeling complex is essential for hyphal development in Candida albicans. FEBS Lett 2006; 580:2615-22. [PMID: 16647065 DOI: 10.1016/j.febslet.2006.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/24/2006] [Accepted: 04/03/2006] [Indexed: 11/22/2022]
Abstract
The ability of dimorphic transition between yeast and hyphal forms in Candida albicans is one of the vital determinants for its pathogenicity and virulence. We isolated C. albicans SWI1 as a suppressor of the invasive growth defect in a Saccharomyces cerevisiae mutant. Expression of C. albicans SWI1 in S. cerevisiae partially complemented the growth defect of a swi1 mutant in the utilization of glycerol. Swi1 is in a complex with Snf2 in C. albicans, and both proteins are localized in the nucleus independent of the growth form. Deleting SWI1 or SNF2 in C. albicans prevented true hyphal formation and resulted in constitutive pseudohypha-like growth in all media examined. Furthermore, swi1/swi1 mutant was defective in hypha-specific gene expression and avirulent in a mouse model of systemic infection. These data strongly suggest the conserved Swi/Snf complex in C. albicans is required for hyphal development and pathogenicity.
Collapse
Affiliation(s)
- Xuming Mao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
34
|
Huang GH, Nie XY, Chen JY. CaMac1, a Candida albicans copper ion-sensing transcription factor, promotes filamentous and invasive growth in Saccharomyces cerevisiae. Acta Biochim Biophys Sin (Shanghai) 2006; 38:213-7. [PMID: 16518547 DOI: 10.1111/j.1745-7270.2006.00146.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Molecular mechanisms of morphogenesis share many common components between Candida albicans and Saccharomyces cerevisiae. The Kss1-associated MAPK cascade and the cAMP/PKA pathway are two important signal transduction pathways that control morphogenesis in S. cerevisiae. A C. albicans copper ion-sensing transcription factor gene, CaMAC1, was cloned from C. albicans SC5314. Ectopic expression of CaMAC1 in S. cerevisiae promoted filamentous and invasive growth. In diploid cells, CaMac1 could suppress the filamentous growth defect of mutants in the Kss1-associated MAPK pathway and the cAMP/PKA pathway. In haploid strains, ectopic expression of CaMAC1 suppressed the invasive growth defect of mutants in the MAPK pathway (ste7, ste12 and tec1), but failed to suppress the invasive growth defect of the flo8 mutant. Our results suggest that the activation of CaMac1 is independent of the MAPK and cAMP/PKA pathways in filament formation, but requires Flo8 factor for invasive growth. In the media containing a high concentration of CuSO4, the yeast filamentous and invasive growth was blocked. The activating effect of CaMac1 is inhibited by copper ions.
Collapse
Affiliation(s)
- Guang-Hua Huang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
35
|
Bassilana M, Hopkins J, Arkowitz RA. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. EUKARYOTIC CELL 2005; 4:588-603. [PMID: 15755921 PMCID: PMC1087799 DOI: 10.1128/ec.4.3.588-603.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Rho G protein Cdc42 and its exchange factor Cdc24 are required for hyphal growth of the human fungal pathogen Candida albicans. Previously, we reported that strains ectopically expressing Cdc24 or Cdc42 are unable to form hyphae in response to serum. Here we investigated the role of these two proteins in hyphal growth, using quantitative real-time PCR to measure induction of hypha-specific genes together with time lapse microscopy. Expression of the hypha-specific genes examined depends on the cyclic AMP-dependent protein kinase A pathway culminating in the Efg1 and Tec1 transcription factors. We show that strains with reduced levels of CDC24 or CDC42 transcripts induce hypha-specific genes yet cannot maintain their expression in response to serum. Furthermore, in serum these mutants form elongated buds compared to the wild type and mutant budding cells, as observed by time lapse microscopy. Using Cdc24 fused to green fluorescent protein, we also show that Cdc24 is recruited to and persists at the germ tube tip during hyphal growth. Altogether these data demonstrate that the Cdc24/Cdc42 GTPase module is required for maintenance of hyphal growth. In addition, overexpression studies indicate that specific levels of Cdc24 and Cdc42 are important for invasive hyphal growth. In response to serum, CDC24 transcript levels increase transiently in a Tec1-dependent fashion, as do the G-protein RHO3 and the Rho1 GTPase activating protein BEM2 transcript levels. These results suggest that a positive feedback loop between Cdc24 and Tec1 contributes to an increase in active Cdc42 at the tip of the germ tube which is important for hypha formation.
Collapse
Affiliation(s)
- Martine Bassilana
- Institute of Signaling, Developmental Biology, and Cancer, UMR 6543 Centre National de la Recherche Scientifique, Centre de Biochimie, University of Nice, 06108 Nice, France.
| | | | | |
Collapse
|
36
|
Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen J, Liu H. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 2005; 17:295-307. [PMID: 16267276 PMCID: PMC1345667 DOI: 10.1091/mbc.e05-06-0502] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene expression. The flo8/flo8 mutant is avirulent in a mouse model of systemic infection. Genome-wide transcription profiling of efg1/efg1 and flo8/flo8 using a C. albicans DNA microarray suggests that Flo8 controls subsets of Efg1-regulated genes. Most of these genes are hypha specific, including HGC1 and IHD1. We also show that Flo8 interacts with Efg1 in yeast and hyphal cells by in vivo immunoprecipitation. Similar to efg1/efg1, flo8/flo8 and cdc35/cdc35 show enhanced hyphal growth under an embedded growth condition. Our results suggest that Flo8 may function downstream of the cAMP/PKA pathway, and together with Efg1, regulates the expression of hypha-specific genes and genes that are important for the virulence of C. albicans.
Collapse
Affiliation(s)
- Fang Cao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. EUKARYOTIC CELL 2005; 3:900-9. [PMID: 15302823 PMCID: PMC500875 DOI: 10.1128/ec.3.4.900-909.2004] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine auxotrophy, based on disruption of both URA3 alleles in diploid Candida albicans strain SC5314, has been widely used to select gene deletion mutants created in this fungus by "Ura-blasting" and PCR-mediated disruption. We compared wild-type URA3 expression with levels in mutant strains where URA3 was positioned either within deleted genes or at the highly expressed RPS10 locus. URA3 expression levels differed significantly and correlated with the specific activity of Ura3p, orotidine 5'-monophosphate decarboxylase. Reduced URA3 expression following integration at the GCN4 locus was associated with an attenuation of virulence. Furthermore, a comparison of the SC5314 (URA3) and CAI-4 (ura3) proteomes revealed that inactivation of URA3 caused significant changes in the levels of 14 other proteins. The protein levels of all except one were partially or fully restored by the reintegration of a single copy of URA3 at the RPS10 locus. Transcript levels of genes expressed ectopically at this locus in reconstituted heterozygous mutants also matched the levels found when the genes were expressed at their native loci. Therefore, phenotypic changes in C. albicans can be associated with the selectable marker rather than the target gene. Reintegration of URA3 at an appropriate expression locus such as RPS10 can offset most problems related to the phenotypic changes associated with gene knockout methodologies.
Collapse
Affiliation(s)
- Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Bachewich C, Nantel A, Whiteway M. Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol Microbiol 2005; 57:942-59. [PMID: 16091036 DOI: 10.1111/j.1365-2958.2005.04727.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Treatments that perturb DNA synthesis or mitosis will activate checkpoints that prevent cell cycle progression and cell proliferation. In yeast-form cells of the fungal pathogen Candida albicans, exposure to hydroxyurea (HU) or shutting off expression of the polo-like kinase CaCDC5 blocked nuclear division and spindle elongation, but activated a highly polarized growth mode. We have used transcription profiling both to characterize the initiation and progression of this polar growth pattern and to determine how cell elongation may be linked to the cell cycle in C. albicans. Different gene expression patterns during early stages of cell elongation support the concept that CaCdc5p-depleted and HU-exposed cells were blocked at different stages of the cell cycle, and suggest that different signals may generate the common polarized growth phenotype. Consistent with this, BUB2 expression was modulated in CaCdc5p-depleted cells, and absence of BUB2 prevented the maintenance of cell polarization, resulting in multibudded, pseudohyphal cells with constrictions. In contrast, HU-induced filaments did not modulate or require BUB2, but were dependent on the GTPase Ras1p. However, at later stages of cell elongation, transcription profiles were more similar, and comparisons with serum-induced hyphae revealed that the cell cycle-arrested filaments expressed several targets of the hyphal signalling pathways. Thus, arresting the yeast cell cycle in S or M phase generates a polarized growth pattern through different mechanisms in C. albicans, and maintenance of the polar growth mode can ultimately lead to the expression of hyphal-associated cell wall and virulence-related factors, in the absence of any external stimuli.
Collapse
Affiliation(s)
- Catherine Bachewich
- Health Sector, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal Quebec, H4P 2R2, Canada.
| | | | | |
Collapse
|
39
|
Balish E, Warner TF, Nicholas PJ, Paulling EE, Westwater C, Schofield DA. Susceptibility of germfree phagocyte oxidase- and nitric oxide synthase 2-deficient mice, defective in the production of reactive metabolites of both oxygen and nitrogen, to mucosal and systemic candidiasis of endogenous origin. Infect Immun 2005; 73:1313-20. [PMID: 15731028 PMCID: PMC1064974 DOI: 10.1128/iai.73.3.1313-1320.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice deficient for phagocyte oxidase (Phox) and nitric oxide synthase 2 (NOS2) (gp91phox-/-/NOS2-/-), defective in the production of both reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI), were used to investigate the role of phagocytic cells during mucosal and systemic candidiasis of endogenous origin. The alimentary tracts of germfree mice were colonized with Candida albicans wild type or each of two hyphal signaling-defective mutants (efg1/efg1 and efg1/efg1 cph1/cph1). All Candida-colonized gp91phox-/-/NOS2-/- mice were moribund within 12 to 15 days after oral inoculation. C. albicans wild-type and mutant strains colonized the alimentary tracts equally well and were able to translocate, most likely via Peyer's patches and mesenteric lymph nodes, to the internal organs and trigger the formation of abscesses; however, the wild-type and mutant strains did not survive in the abscessed murine tissues. Surprisingly, there was no significant difference in the ability of peritoneal exudate cells from gp91phox-/-/NOS2-/-, NOS2-/-, gp91phox-/-, or immunocompetent C57BL/6 mice to kill C. albicans in vitro. This suggests that anti-Candida factors other than ROI and RNI can control the growth of C. albicans and that gp91phox-/-/NOS2-/- mice die due to the inability of the host to control its inflammatory response to Candida. Correspondingly, reverse transcription-PCR analysis showed increased expression of the cytokines gamma interferon, tumor necrosis factor alpha, and the chemokines MIP-2 and KC at the site of infection, while interleukin-15 expression remained relatively unchanged between germfree and infected tissues. These studies indicate that defects in ROI and RNI enabled C. albicans to translocate and disseminate to the internal organs, resulting in an uncontrolled immune response, severe pathology, and death; however, ROI and RNI were not required for the killing of phagocytized C. albicans, indicating that other anti-Candida factors either compensate or are sufficient for the killing of phagocytized Candida.
Collapse
Affiliation(s)
- Edward Balish
- Division of Mycology, Department of Microbiology and Immunology, BSB201, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29403, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 2005; 49:584-9. [PMID: 15673737 PMCID: PMC547270 DOI: 10.1128/aac.49.2.584-589.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Candida albicans biofilms are structured microbial communities with high levels of drug resistance. Farnesol, a quorum-sensing molecule that inhibits hyphal formation in C. albicans, has been found to prevent biofilm formation by C. albicans. There is limited information, however, about the molecular mechanism of farnesol against biofilm formation. We used cDNA microarray analysis to identify the changes in the gene expression profile of a C. albicans biofilm inhibited by farnesol. Confocal scanning laser microscopy was used to visualize and confirm normal and farnesol-inhibited biofilms. A total of 274 genes were identified as responsive, with 104 genes up-regulated and 170 genes down-regulated. Independent reverse transcription-PCR analysis was used to confirm the important changes detected by microarray analysis. In addition to hyphal formation-associated genes (e.g., TUP1, CRK1, and PDE2), a number of other genes with roles related to drug resistance (e.g., FCR1 and PDR16), cell wall maintenance (e.g., CHT2 and CHT3), and iron transport (e.g., FTR2) were responsive, as were several genes encoding heat shock proteins (e.g., HSP70, HSP90, HSP104, CaMSI3, and SSA2). Further study of these differentially regulated genes is warranted to evaluate how they may be involved in C. albicans biofilm formation. Consistent with the down-regulation of the cell surface hydrophobicity-associated gene (CSH1), the water-hydrocarbon two-phase assay showed a decrease in cell surface hydrophobicity in the farnesol-treated group compared to that in the control group. Our data provide new insight into the molecular mechanism of farnesol against C. albicans biofilm formation.
Collapse
Affiliation(s)
- Ying-Ying Cao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guohe Rd., Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Harcus D, Nantel A, Marcil A, Rigby T, Whiteway M. Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 2004; 15:4490-9. [PMID: 15269278 PMCID: PMC519143 DOI: 10.1091/mbc.e04-02-0144] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We used transcription profiling in Candida albicans to investigate cellular regulation involving cAMP. We found that many genes require the adenylyl cyclase Cdc35p for proper expression. These include genes encoding ribosomal subunit proteins and RNA polymerase subunit proteins, suggesting that growth could be controlled in part by cAMP-mediated modulation of gene expression. Other genes influenced by loss of adenylyl cyclase are involved in metabolism, the cell wall, and stress response and include a group of genes of unknown function that are unique to C. albicans. The profiles generated by loss of the adenylyl cyclase regulator Ras1p and a downstream effector Efg1p were also examined. The loss of Ras1p function disturbs the expression of a subset of the genes regulated by adenylyl cyclase, suggesting both that the primary role of Ras1p in transcriptional regulation involves its influence on the function of Cdc35p and that there are Ras1p independent roles for Cdc35p. The transcription factor Efg1p is also needed for the expression of many genes; however, these genes are distinct from those modulated by Cdc35p with the exception of a class of hyphal-specific genes. Therefore transcription profiling establishes that cAMP plays a key role in the overall regulation of gene expression in C. albicans, and enhances our detailed understanding of the circuitry controlling this regulation.
Collapse
Affiliation(s)
- Doreen Harcus
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | |
Collapse
|
42
|
Ni J, Gao Y, Liu H, Chen J. Candida albicansCdc37 interacts with the Crk1 kinase and is required for Crk1 production. FEBS Lett 2004; 561:223-30. [PMID: 15013782 DOI: 10.1016/s0014-5793(04)00172-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 12/11/2003] [Accepted: 12/15/2003] [Indexed: 11/29/2022]
Abstract
Crk1, a Cdc2-related protein kinase from the human pathogenic fungus Candida albicans, plays an important role in hyphal development and virulence. To address its regulatory mechanisms, we searched for Crk1 interacting proteins by two-hybrid screening. A CDC37 ortholog (CaCDC37) was cloned from the screening with the Crk1 kinase domain as the bait. The CaCdc37 interacted preferentially with the kinase domain of Crk1 (Crk1N) as shown by two-hybrid and immunoprecipitation experiments. CaCDC37 could complement a cdc37 thermosensitive mutant (cdc37-34) of Saccharomyces cerevisiae. Importantly, Crk1 protein was hardly detectable in the cdc37-34 mutant at restrictive temperature. However, upon expression of CaCdc37 in the cdc37 mutant, Crk1 protein was detected even at restrictive temperature. Our data suggested that CaCdc37 was required for the production of Crk1 kinase. Like Cdc37 proteins of S. cerevisiae and higher eukaryotes, CaCdc37 might function as a molecular chaperone that stabilized Crk1 and other protein kinases in C. albicans. In support of this, CaSTI1 was identified from a two-hybrid screen with the full-length Crk1 as the bait. CaSti1 showed two-hybrid interactions with both Crk1 and the CaCdc37.
Collapse
Affiliation(s)
- Jian Ni
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
43
|
Pei Y, Shuman S. Characterization of the Schizosaccharomyces pombe Cdk9/Pch1 protein kinase: Spt5 phosphorylation, autophosphorylation, and mutational analysis. J Biol Chem 2003; 278:43346-56. [PMID: 12904290 DOI: 10.1074/jbc.m307319200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizosaccharomyces pombe Cdk9/Pch1 protein kinase is a functional ortholog of the essential Saccharomyces cerevisiae Bur1/Bur2 kinase and a putative ortholog of metazoan P-TEFb (Cdk9/cyclin T). SpCdk9/Pch1 phosphorylates of the carboxyl-terminal domain (CTD) of the S. pombe transcription elongation factor Spt5, which consists of 18 tandem repeats of a nonapeptide of consensus sequence 1TPAWNSGSK9. We document the divalent cation dependence and specificity of SpCdk9/Pch1, its NTP dependence and specificity, the dependence of Spt5-CTD phosphorylation on the number of tandem nonamer repeats, and the specificity for phosphorylation of the Spt5-CTD on threonine at position 1 within the nonamer element. SpCdk9/Pch1 also phosphorylates the CTD heptaptide repeat array of the largest subunit of S. pombe RNA polymerase II (consensus sequence YSPTSPS) and does so exclusively on serine. SpCdk9/Pch1 catalyzes autophosphorylation of the kinase and cyclin subunits of the kinase complex. The distribution of phosphorylation sites on SpCdk9 (86% Ser(P), 11% Thr(P), 3% Tyr(P)) is distinct from that on Pch1 (2% Ser(P), 98% Thr(P)). We conducted a structure-guided mutational analysis of SpCdk9, whereby a total of 29 new mutations of 12 conserved residues were tested for in vivo function by complementation of a yeast bur1Delta mutant. We identified many lethal and conditional mutations of side chains implicated in binding ATP and the divalent cation cofactor, phosphoacceptor substrate recognition, and T-loop dynamics. We surmise that the lethality of the of T212A mutation in the T-loop reflects an essential phosphorylation event, insofar as the conservative T212S change rescued wild-type growth; the phosphomimetic T212E change rescued growth at 30 degrees C; and the effects of mutating the T-loop threonine were phenocopied by mutations in the three conserved arginines predicted to chelate the phosphate on the T-loop threonine.
Collapse
Affiliation(s)
- Yi Pei
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
44
|
Zheng XD, Wang YM, Wang Y. CaSPA2 is important for polarity establishment and maintenance in Candida albicans. Mol Microbiol 2003; 49:1391-405. [PMID: 12940995 DOI: 10.1046/j.1365-2958.2003.03646.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Saccharomyces cerevisiae Spa2p is a component of polarisome that controls cell polarity. Here, we have characterized the role of its homologue, CaSpa2p, in the polarized growth in Candida albicans. During yeast growth, GFP-tagged CaSpa2p localized to distinct growth sites in a cell cycle-dependent manner, while during hyphal growth it persistently localized to hyphal tips throughout the cell cycle. Persistent tip localization of the protein was also observed in Catup1Delta and Canrg1Delta, mutants constitutive for filamentous growth. Caspa2Delta exhibited defects in polarity establishment and maintenance, such as random budding and failure to confine growth to a small surface area leading to round cells with wide, elongated bud necks and markedly thicker hyphae. It was also defective in nuclear positioning, presumably a result of defective interactions between cytoplasmic microtubules with certain polarity determinants. The highly conserved SHD-I and SHD-V domains were found to be important and responsible for different aspects of CaSpa2p function. Caspa2Delta exhibited no virulence in the mouse systemic candidiasis model. Because of the existence of distinct growth forms and the easy control of the switch between them in vitro, C. albicans may serve as a useful model in cell polarity research.
Collapse
Affiliation(s)
- Xin-De Zheng
- Microbial Collection and Screening Laboratory, Institute of Molecular and Cell Biology, Singapore 117609
| | | | | |
Collapse
|
45
|
Henry-Stanley MJ, Hess DJ, Erickson EA, Garni RM, Wells CL. Effect of lipopolysaccharide on virulence of intestinal candida albicans. J Surg Res 2003; 113:42-9. [PMID: 12943809 DOI: 10.1016/s0022-4804(03)00156-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Candida albicans is a polymorphic fungus that frequently causes systemic infection in postsurgical and trauma patients. Others have reported that Escherichia coli lipopolysaccharide (LPS) acts as a copathogen to enhance the virulence of parenteral C. albicans. Experiments were designed to clarify the effect of parenteral LPS on systemic candidiasis initiated via the oral route. MATERIALS AND METHODS Antibiotic-treated mice were orally inoculated with C. albicans CAF2 (wild-type) or mutant HLC54 (defective in filament formation), and were given 100 microg parenteral LPS 16 h before sacrifice. Separate groups of mice were additionally exposed to intermittent hypoxia prior to LPS. At sacrifice, cecal flora and microbial translocation to the mesenteric lymph nodes were quantified. C. albicans adherence to cultured HT-29 and Caco-2 enterocytes (pretreated with LPS, or calcium-free medium to expose the enterocyte lateral surface, or both) was quantified by enzyme-linked immunoabsorbent assay. RESULTS All mice had high numbers of cecal C. albicans, and LPS was associated with an additional increase in cecal concentrations of HLC54 but not CAF2. Translocation of HLC54, but not CAF2, appeared facilitated by hypoxia, but LPS did not facilitate translocation in any treatment group. Exposure of the lateral surface of cultured enterocytes had no effect on C. albicans adherence, although LPS consistently decreased adherence of both C. albicans strains. CONCLUSIONS In contrast to experiments where systemic candidiasis was initiated by the parenteral route, parenteral LPS did not act as a copathogen in mice with systemic candidiasis initiated by the oral route, and these results might be related to LPS-induced alterations in C. albicans adherence to host enterocytes.
Collapse
|
46
|
Bachewich C, Thomas DY, Whiteway M. Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth. Mol Biol Cell 2003; 14:2163-80. [PMID: 12802083 PMCID: PMC165105 DOI: 10.1091/mbc.02-05-0076] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Morphogenesis in the fungal pathogen Candida albicans is an important virulence-determining factor, as a dimorphic switch between yeast and hyphal growth forms can increase pathogenesis. We identified CaCDC5, a cell cycle regulatory polo-like kinase (PLK) in C. albicans and demonstrate that shutting off its expression induced cell cycle defects and dramatic changes in morphology. Cells lacking CaCdc5p were blocked early in nuclear division with very short spindles and unseparated chromatin. GFP-tagged CaCdc5p localized to unseparated spindle pole bodies, the spindle, and chromatin, consistent with a role in spindle elongation at an earlier point in the cell cycle than that described for the homologue Cdc5p in yeast. Strikingly, the cell cycle defects were accompanied by the formation of hyphal-like filaments under yeast growth conditions. Filament growth was determinate, as the filaments started to die after 24 h. The filaments resembled serum-induced hyphae with respect to morphology, organization of cytoplasmic microtubules, localization of nuclei, and expression of hyphal-specific components. Filament formation required CaCDC35, but not EFG1 or CPH1. Similar defects in spindle elongation and a corresponding induction of filaments occurred when yeast cells were exposed to hydroxyurea. Because CaCdc5p does not appear to act as a direct repressor of hyphal growth, the data suggest that a target of CaCdc5p function is associated with hyphal-like development. Thus, an internal, cell cycle-related cue can activate hyphal regulatory networks in Candida.
Collapse
Affiliation(s)
- Catherine Bachewich
- Health Sector, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, H4P 2R2, Canada.
| | | | | |
Collapse
|
47
|
Kim AS, Garni RM, Henry-Stanley MJ, Bendel CM, Erlandsen SL, Wells CL. Hypoxia and extraintestinal dissemination of Candida albicans yeast forms. Shock 2003; 19:257-62. [PMID: 12630526 DOI: 10.1097/00024382-200303000-00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida albicans is a pleomorphic fungus with budding yeast and filamentous forms, and is a frequent cause of complicating infections in patients who are postsurgical, in shock, and have trauma. Many cases of systemic candidiasis are thought to orginate from the intestine, but it is unclear if the filament or the yeast is the more invasive form. Because C. albicans is relatively noninvasive and because mesenteric ischemia is thought to facilitate extraintestinal microbial dissemination, wild-type C. albicans CAF2 and mutant HLC54 (defective in filament formation) were orally inoculated into antibiotic-treated mice that were housed exclusively in room air, or were intermittently exposed to 10% oxygen for 1-h intervals. Both strains of C. albicans colonized the cecum in similar numbers (approximately 10(6.7)/g). C. albicans translocation to the draining mesenteric lymph nodes was not detected in mice inoculated with CAF2 (normoxic or hypoxic) or in normoxic mice inoculated with HLC54, but was detected in 33% (P < 0.01) of hypoxic mice inoculated with HLC54. Using Caco-2 and HT-29 enterocytes cultivated on plastic dishes and pretreated for 48 h in 10% oxygen, adherence of C. albicans HLC54 was decreased compared with wild-type CAF2, and hypoxia had no noticeable effect on adherence of either CAF2 or HLC54. Using enterocytes cultivated on permeable 8-microm filters, transepithelial migration of C. albicans CAF2 and HLC54 appeared similar. Thus, C. albicans HLC54 (defective in filament formation) was more invasive in hypoxic mice compared with wild-type CAF2, and host factors (e.g., mesenteric ischemia) rather than an innate ability to interact with enterocytes might play a more important role in extraintestinal dissemination of C. albicans yeast forms.
Collapse
Affiliation(s)
- Adam S Kim
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wei H, Requena N, Fischer R. The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 2003; 47:1577-88. [PMID: 12622813 DOI: 10.1046/j.1365-2958.2003.03405.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental signals can be transduced into intracellular responses by the action of MAP kinase cascades. Sequential phosphorylation results in the transient activation of a MAP kinase, which in turn activates certain transcription factors and thus a set of pathway-specific genes. Many steps in this cascade are conserved, and homologues have been discovered from yeast to human. We have characterized the MAPKK kinase, SteC, a homologue of Saccharomyces cerevisiae Ste11, in the filamentous fungus Aspergillus nidulans. The 886-amino-acid-long protein shares the highest similarity to Neurospora crassa Nrc-1. Deletion of the gene in A. nidulans results in a slower growth rate, the formation of more branched hyphae, altered conidiophore morphology, an inhibition of heterokaryon formation and a block of cleistothecium development. The gene is transcriptionally activated during asexual development and controls the phosphorylation of two putative MAP kinases.
Collapse
Affiliation(s)
- Huijun Wei
- Department of Microbiology, University of Marburg and Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | | | |
Collapse
|
49
|
Bendel CM, Hess DJ, Garni RM, Henry-Stanley M, Wells CL. Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Crit Care Med 2003; 31:501-7. [PMID: 12576958 DOI: 10.1097/01.ccm.0000049954.48239.a1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Candida albicans, a dimorphic fungus that switches from yeast to filamentous forms, is a major cause of complicating systemic infection in intensive care patients. The aim of this study was to compare the pathogenic potential of C. albicans yeast and filamentous forms. DESIGN Separate groups of mice were inoculated either intravenously or orally with C. albicans CAF2 (wild type), HLC54 (yeast forms defective in filament formation), or BCa2-10 (constitutively filamentous). Mice were killed 1, 7, 14, and 21 days after intravenous C. albicans and kidneys and liver were quantitatively cultured; cohort groups were observed for mortality. Mice were pretreated with antibiotics for 3 days before oral inoculation with C. albicans, and killed 3 days later with dexamethasone administered for the latter 3 days; at sacrifice, the mesenteric lymph nodes and kidneys were cultured to monitor extraintestinal dissemination of C. albicans. SETTING University teaching hospital research laboratory. SUBJECTS Female, Swiss Webster, adult mice. MEASUREMENTS AND MAIN RESULTS In intravenously inoculated mice, mortality was highest with wild-type C. albicans CAF2 (92%), intermediate with HLC54 (56%), and not detected with constitutively filamentous BCa2-10 (0%); BCa2-10 was cleared from the kidney and liver, but CAF2 and HLC54 were recovered at approximately 10(5-7)/g kidney and 10(4-5)/g liver. There was only occasional mortality in orally inoculated mice and the numbers of cecal C. albicans CAF2 and HLC54 were similarly high (approximately 10(7)/g), whereas numbers of cecal BCa2-10 were at least 100-fold lower. Extraintestinal dissemination was greatest with HLC54, intermediate with CAF2, and undetectable with BCa2-10. CONCLUSIONS Of the three C. albicans strains studied, wild-type CAF2 was most virulent in intravenously inoculated mice and HLC54 (defective in filament formation) was most virulent in orally inoculated mice. The constitutively filamentous BCa2-10 was avirulent in both models, suggesting that filamentous forms by themselves might not be critically important for C. albicans virulence.
Collapse
Affiliation(s)
- Catherine M Bendel
- Department of Pediatrics, University of Minnesota, Minneapolis 55455-0374, USA
| | | | | | | | | |
Collapse
|
50
|
Sánchez-Martínez C, Pérez-Martín J. Gpa2, a G-protein alpha subunit required for hyphal development in Candida albicans. EUKARYOTIC CELL 2002; 1:865-74. [PMID: 12477787 PMCID: PMC138749 DOI: 10.1128/ec.1.6.865-874.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is able to respond to environmental changes by inducing a distinct morphological program, which is related to the ability to infect mammalian hosts. Although some of the signal transduction pathways involved in this response are known, it is not clear how the environmental signals are sensed and transmitted to these transduction cascades. In this work, we have studied the function of GPA2, a new gene from C. albicans, which encodes a G-protein alpha-subunit homologue. We demonstrate that Gpa2 plays an important role in the yeast-hypha dimorphic transition in the response of C. albicans to some environmental inducers. Deletion of both alleles of the GPA2 gene causes in vitro defects in morphological transitions in Spider medium and SLAD medium and in embedded conditions but not in medium containing serum. These defects cannot be reversed by exogenous addition of cyclic AMP. However, overexpression of HST7, which encodes a component of the filament-inducing mitogen-activated protein kinase (MAPK) cascade, bypasses the Gpa2 requirement. We have obtained different gain-of-function and loss-of-function mutant alleles of the GPA2 gene, which we have introduced in several C. albicans genetic backgrounds. Our results indicate that, in response to environmental cues, Gpa2 is required for the regulation of a MAPK signaling pathway.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | | |
Collapse
|