1
|
Hlavac K, Pavelkova P, Ondrisova L, Mraz M. FoxO1 signaling in B cell malignancies and its therapeutic targeting. FEBS Lett 2024. [PMID: 39533662 DOI: 10.1002/1873-3468.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
FoxO transcription factors (FoxO1, FoxO3a, FoxO4, FoxO6) are a highly evolutionary conserved subfamily of the 'forkhead' box proteins. They have traditionally been considered tumor suppressors, but FoxO1 also exhibits oncogenic properties. The complex nature of FoxO1 is illustrated by its various roles in B cell development and differentiation, immunoglobulin gene rearrangement and cell-surface B cell receptor (BCR) structure, DNA damage control, cell cycle regulation, and germinal center reaction. FoxO1 is tightly regulated at a transcriptional (STAT3, HEB, EBF, FoxOs) and post-transcriptional level (Akt, AMPK, CDK2, GSK3, IKKs, JNK, MAPK/Erk, SGK1, miRNA). In B cell malignancies, recurrent FoxO1 activating mutations (S22/T24) and aberrant nuclear export and activity have been described, underscoring the potential of its therapeutic inhibition. Here, we review FoxO1's roles across B cell and myeloid malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and multiple myeloma (MM). We also discuss preclinical evidence for FoxO1 targeting by currently available inhibitors (AS1708727, AS1842856, cpd10).
Collapse
Affiliation(s)
- Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
2
|
Tomiyasu H, Habara M, Hanaki S, Sato Y, Miki Y, Shimada M. FOXO1 promotes cancer cell growth through MDM2-mediated p53 degradation. J Biol Chem 2024; 300:107209. [PMID: 38519029 PMCID: PMC11021968 DOI: 10.1016/j.jbc.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024] Open
Abstract
FOXO1 is a transcription factor and potential tumor suppressor that is negatively regulated downstream of PI3K-PKB/AKT signaling. Paradoxically, FOXO also promotes tumor growth, but the detailed mechanisms behind this role of FOXO are not fully understood. In this study, we revealed a molecular cascade by which the Thr24 residue of FOXO1 is phosphorylated by AKT and is dephosphorylated by calcineurin, which is a Ca2+-dependent protein phosphatase. Curiously, single nucleotide somatic mutations of FOXO1 in cancer occur frequently at and near Thr24. Using a calcineurin inhibitor and shRNA directed against calcineurin, we revealed that calcineurin-mediated dephosphorylation of Thr24 regulates FOXO1 protein stability. We also found that FOXO1 binds to the promoter region of MDM2 and activates transcription, which in turn promotes MDM2-mediated ubiquitination and degradation of p53. FOXO3a and FOXO4 are shown to control p53 activity; however, the significance of FOXO1 in p53 regulation remains largely unknown. Supporting this notion, FOXO1 depletion increased p53 and p21 protein levels in association with the inhibition of cell proliferation. Taken together, these results indicate that FOXO1 is stabilized by calcineurin-mediated dephosphorylation and that FOXO1 supports cancer cell proliferation by promoting MDM2 transcription and subsequent p53 degradation.
Collapse
Affiliation(s)
- Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan; Department of Molecular Biology, Nagoya University, Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| |
Collapse
|
3
|
Zhang CC, Li Y, Jiang CY, Le QM, Liu X, Ma L, Wang FF. O-GlcNAcylation mediates H 2O 2-induced apoptosis through regulation of STAT3 and FOXO1. Acta Pharmacol Sin 2024; 45:714-727. [PMID: 38191912 PMCID: PMC10943090 DOI: 10.1038/s41401-023-01218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
The O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a critical post-translational modification that couples the external stimuli to intracellular signal transduction networks. However, the critical protein targets of O-GlcNAcylation in oxidative stress-induced apoptosis remain to be elucidated. Here, we show that treatment with H2O2 inhibited O-GlcNAcylation, impaired cell viability, increased the cleaved caspase 3 and accelerated apoptosis of neuroblastoma N2a cells. The O-GlcNAc transferase (OGT) inhibitor OSMI-1 or the O-GlcNAcase (OGA) inhibitor Thiamet-G enhanced or inhibited H2O2-induced apoptosis, respectively. The total and phosphorylated protein levels, as well as the promoter activities of signal transducer and activator of transcription factor 3 (STAT3) and Forkhead box protein O 1 (FOXO1) were suppressed by OSMI-1. In contrast, overexpressing OGT or treating with Thiamet-G increased the total protein levels of STAT3 and FOXO1. Overexpression of STAT3 or FOXO1 abolished OSMI-1-induced apoptosis. Whereas the anti-apoptotic effect of OGT and Thiamet-G in H2O2-treated cells was abolished by either downregulating the expression or activity of endogenous STAT3 or FOXO1. These results suggest that STAT3 or FOXO1 are the potential targets of O-GlcNAcylation involved in the H2O2-induced apoptosis of N2a cells.
Collapse
Affiliation(s)
- Chen-Chun Zhang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Yuan Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Chang-You Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Qiu-Min Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Fei-Fei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang Z, Zhang Q, Yu Y, Su S. Epigallocatechin gallate inhibits ovarian cancer cell growth and induces cell apoptosis via activation of FOXO3A. In Vitro Cell Dev Biol Anim 2023; 59:739-746. [PMID: 38038884 DOI: 10.1007/s11626-023-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/12/2023] [Indexed: 12/02/2023]
Abstract
Epigallocatechin gallate (EGCG), a bioactive component in tea, displays broad anti-cancer effects. Our study was designed to evaluate the anti-cancer effects of EGCG on ovarian cancer and explored the underlying molecular mechanisms. To evaluate the in vitro inhibitory effects of EGCG against ovarian cancer, MTT assay, colony formation assay, apoptosis assay, and wound healing assay, were performed. Besides, the inhibitory effects of EGCG on tumor growth in the xenograft animal model were evaluated by measuring tumor volume and tumor weight. Moreover, Western blotting and qPCR were used to evaluate the levels of target genes and proteins. Treatment with EGCG inhibited cell migration and cell survival, and promoted cell apoptosis in A2780 and SKOV3 cells. Interestingly, treatment with EGCG inhibited the tumor growth in the xenograft animal model. The mechanistic study revealed that treatment with EGCG induced the activation of FOXO3A and suppressed the expression of c-Myc both in vitro and in vivo. Our findings demonstrate that EGCG suppress ovarian cancer cell growth, which may be due to its regulation on FOXO3A and c-Myc.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Qinghua Zhang
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Yani Yu
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China
| | - Shan Su
- Department of Gynecology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036, Shandong, China.
| |
Collapse
|
5
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
6
|
Sun P, Cui H, Wang S, Zhang Y, Hong S, Wang X, Ren C, Lai Y. FoxO1 is a negative regulator of neointimal hyperplasia in a rat model of patch angioplasty. Biomed Pharmacother 2023; 165:115262. [PMID: 37542853 DOI: 10.1016/j.biopha.2023.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Neointimal hyperplasia persists as a barrier following vascular interventions. Forkhead Box O1 (FoxO1) is a transcription factor that possesses a distinctive fork head domain and indirectly contributes to various physiological processes. FoxO1 expression and signaling also impact the energy metabolism of vascular smooth muscle cells, potentially influencing neointimal hyperplasia. Our hypothesis is that FoxO1 inhibits neointimal hyperplasia in a rat patch angioplasty model. Four groups were compared in a rat aorta patch angioplasty model: the control group without treatment, patches coated with AS184286 (a FoxO1 inhibitor) in a PLGA matrix, patches coated with FoxO1 in a PLGA matrix, and patches coated with MLN0905 (a PLK1 inhibitor) in a PLGA matrix. The patches were harvested on Day 14 and subjected to analysis. FoxO1-positive and p-FoxO1 cells were observed after patch angioplasty. The addition of FoxO1 through patches coated with exogenous FoxO1 protein in a PLGA matrix significantly inhibited neointimal thickness (p = 0.0012). The treated groups exhibited significantly lower numbers of CD3 (p = 0.0003), CD45 (p < 0.0001), and PCNA (p < 0.0001)-positive cells. PLK1 is an upstream transcriptional regulator of FoxO1, governing the expression and function of FoxO1. MLN0905 PLGA-coated patches exhibited comparable reductions in neointimal thickness and inflammatory cell accumulation. FoxO1 represents a promising therapeutic strategy for inhibiting neointimal hyperplasia.
Collapse
Affiliation(s)
- Peng Sun
- Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Hao Cui
- Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Shengwei Wang
- Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Xiao Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China
| | - Changwei Ren
- Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China.
| | - Yongqiang Lai
- Department of Cardiovascular Surgery Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vascular Diseases, Beijing, China.
| |
Collapse
|
7
|
Moore XTR, Gheghiani L, Fu Z. The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells 2023; 12:cells12091344. [PMID: 37174744 PMCID: PMC10177174 DOI: 10.3390/cells12091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphorylation substrates through which it regulates many biological processes, including mitosis, apoptosis, metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation, metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability of these proteins. In addition, we review the prognostic and clinical significance of these proteins in human cancers and, more importantly, the different approaches that have been used to disrupt PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential of targeting PLK1-regulated FOX TFs in human cancers.
Collapse
Affiliation(s)
- Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lilia Gheghiani
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Rehman S, Hadj-Moussa H, Hawkins L, Storey KB. Role of FOXO transcription factors in the tolerance of whole-body freezing in the wood frog, Rana sylvatica. Cryobiology 2023; 110:44-48. [PMID: 36539050 DOI: 10.1016/j.cryobiol.2022.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The wood frog (Rana Sylvatica) can endure the sub-zero temperatures of winter by freezing up to 65% of total body water as extracellular ice and retreating into a prolonged hypometabolic state. Freeze survival requires the coordination of various adaptations, including a global suppression of metabolic functions and select activation of pro-survival genes. Transcription factors playing roles in metabolism, stress tolerance, and cell proliferation may assist in making survival in a frozen state possible. In this study, the role of Forkhead box 'other' (FOXO) transcription factors in freeze tolerance, and related changes to the insulin pathway, are investigated. Immunoblotting was used to assess total and phosphorylated amounts of FOXO proteins in wood frogs subjected to freezing for 24 h and thawed recovery for 8 h. Levels of active FOXO3 increased in brain, kidney, and liver during freezing and thawing, suggesting a need to maintain or enhance antioxidant defenses under these stresses. Results implicate FOXO involvement in the metabolic regulation of natural freeze tolerance.
Collapse
Affiliation(s)
- Saif Rehman
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Liam Hawkins
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
10
|
Maruyama T, Saito K, Higurashi M, Ishikawa F, Kohno Y, Mori K, Shibanuma M. HMGA2 drives the IGFBP1/AKT pathway to counteract the increase in P27KIP1 protein levels in mtDNA/RNA-less cancer cells. Cancer Sci 2022; 114:152-163. [PMID: 36102493 PMCID: PMC9807519 DOI: 10.1111/cas.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.
Collapse
Affiliation(s)
- Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Koji Saito
- Department of PathologyShowa University School of MedicineTokyoJapan,Department of PathologyTeikyo University HospitalTokyoJapan
| | - Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Yohko Kohno
- Showa University Koto Toyosu HospitalTokyoJapan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| |
Collapse
|
11
|
da Silva FA, Rodrigues-Ribeiro L, Melo-Braga MN, Passos-Silva DG, Sampaio WO, Gorshkov V, Kjeldsen F, Verano-Braga T, Santos RAS. Phosphoproteomic studies of alamandine signaling in CHO-MrgD and human pancreatic carcinoma cells: An antiproliferative effect is unveiled. Proteomics 2022; 22:e2100255. [PMID: 35652611 DOI: 10.1002/pmic.202100255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Alamandine is a heptapeptide from the renin-angiotensin system (RAS) with similar structure/function to angiotensin-(1-7) [ang-(1-7)], but they act via different receptors. It remains elusive whether alamandine is an antiproliferative agent like ang-(1-7). The goal of this study was to evaluate the potential antiproliferative activity of alamandine and the underlying cellular signaling. We evaluated alamandine effect in the tumoral cell lines Mia PaCa-2 and A549, and in the nontumoral cell lines HaCaT, CHO and CHO transfected with the alamandine receptor MrgD (CHO-MrgD). Alamandine was able to reduce the proliferation of the tumoral cell lines in a MrgD-dependent fashion. We did not observe any effect in the nontumoral cell lines tested. We also performed proteomics and phosphoproteomics to study the alamandine signaling in Mia PaCa-2 and CHO-MrgD. Data suggest that alamandine induces a shift from anaerobic to aerobic metabolism in the tumoral cells, induces a negative regulation of PI3K/AKT/mTOR pathway and activates the transcriptional factor FoxO1; events that could explain, at least partially, the observed antiproliferative effect of alamandine. This study provides for the first time a comprehensive investigation of the alamandine signaling in tumoral (Mia PaCa-2) and nontumoral (CHO-MrgD) cells, highlighting the antiproliferative activity of alamandine/MrgD and its possible antitumoral effect.
Collapse
Affiliation(s)
- Filipe Alex da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella Nunes Melo-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle Gomes Passos-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Walkyria Oliveira Sampaio
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
13
|
Xu H, Lu X, Wang C, Ning J, Chen M, Wang Y, Yuan K. Potential Roles of PTEN on Longevity in Two Closely Related Argopecten Scallops With Distinct Lifespans. Front Physiol 2022; 13:872562. [PMID: 35903068 PMCID: PMC9317058 DOI: 10.3389/fphys.2022.872562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) has been found to regulate longevity through the PI3K/Akt/FoxO pathway and maintenance of genome integrity in worms, flies, and mammals. However, limited information is available on the roles of PTEN in longevity of aquatic animals. Here we extended this paradigm using two closely related Argopecten scallops, Argopecten purpuratus, and Argopecten irradians, with significantly distinct life spans, which are commercially important bivalve species for fishery and aquaculture in China, United States, Peru, and Chile. The ORFs of the ApPTEN and AiPTEN were 1,476 and 1,473 bp, which encoded 491 and 490 amino acids, respectively. There were 48 synonymous and 16 non-synonymous SNPs and one InDel of three nucleotides between ApPTEN and AiPTEN, resulting in variations in 15 amino acids and lack of S453 in AiPTEN. Differences in conformation and posttranslational modification were predicted between ApPTEN and AiPTEN, which may indicate different activities of ApPTEN and AiPTEN. When the animals were subjected to nutrition restriction, the expression of both ApPTEN and AiPTEN was upregulated, with AiPTEN responded faster and more robust than ApPTEN. Ionizing radiation induced significantly elevated expression of ApPTNE but not AiPTEN in the adductor muscle, and the mortality rate of A. purpuratus was significantly lower than that of A. irradians, indicating that ApPTNE may play a protective role by maintaining the genome integrity. RNAi of ApPTNE significantly downregulated the expression of its downstream regulated genes known to favor longevity, such as FoxO, Mn-SOD, and CAT. These results indicated that PTEN may contribute to the longevity of A. purpuratus through regulation of nutrient availability and genomic stability, probably via PI3K/Akt/FoxO pathway. Our study may provide new evidence for understanding of the conservative functions of PTEN in regulation of lifespan in animals and human, and it may also benefit the selection of scallops strains with long lifespan and thus larger size.
Collapse
Affiliation(s)
- Hanzhi Xu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- *Correspondence: Xia Lu,
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yuan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Yuan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Eldeeb MA, Esmaili M, Hassan M, Ragheb MA. The Role of PTEN-L in Modulating PINK1-Parkin-Mediated Mitophagy. Neurotox Res 2022; 40:1103-1114. [PMID: 35699891 DOI: 10.1007/s12640-022-00475-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022]
Abstract
An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, human cells have evolved sophisticated quality control mechanisms to identify and eliminate abnormal dysfunctional mitochondria. One pivotal mitochondrial quality control pathway is PINK1/Parkin-dependent mitophagy which mediates the selective removal of the dysfunctional mitochondria from the cell by autophagy. PTEN-induced putative kinase 1 (PINK1) is a mitochondrial Ser/Thr kinase that was originally identified as a gene responsible for autosomal recessive early-onset Parkinson's disease (PD). Notably, upon failure of mitochondrial import, Parkin, another autosomal-recessive PD gene, is recruited to mitochondria and mediates the autophagic clearance of deregulated mitochondria. Importantly, recruitment of Parkin to damaged mitochondria hinges on the accumulation of PINK1 on the outer mitochondrial membrane (OMM). Normally, PINK1 is imported from the cytosol through the translocase of the outer membrane (TOM) complex, a large multimeric channel responsible for the import of most mitochondrial proteins. After import, PINK1 is rapidly degraded. Thus, at steady-state, PINK1 levels are kept low. However, upon mitochondrial import failure, PINK1 accumulates and forms a high-molecular weight > 700 kDa complex with TOM on the OMM. Thus, PINK1 functions as sensor, tagging dysfunctional mitochondria for Parkin-mediated mitophagy. Although much has been learned about the function of PINK1 in mitophagy, the biochemical and structural basis of negative regulation of PINK1 operation and functions is far from clear. Recent work unveiled new players as PTEN-l as negative regulator of PINK1 function. Herein, we review key aspects of mitophagy and PINK1/Parkin-mediated mitophagy with highlighting the role of negative regulation of PINK1 function and presenting some of the key future directions in PD cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute McGill University, Montreal, QC, Canada. .,Department of Chemistry, Biochemistry Division, Cairo University, Giza, Egypt.
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marwa Hassan
- Department of Chemistry, Biochemistry Division, Cairo University, Giza, Egypt
| | - Mohamed A Ragheb
- Department of Chemistry, Biochemistry Division, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Vadakumchery A, Faraidun H, Ayoubi OE, Outaleb I, Schmid V, Abdelrasoul H, Amendt T, Khadour A, Setz C, Göhring K, Lodd K, Hitzing C, Alkhatib A, Bilal M, Benckendorff J, Al Shugri AK, Brakebusch CH, Engels N, Datta M, Hobeika E, Alsadeq A, Jumaa H. The Small GTPase RHOA Links SLP65 Activation to PTEN Function in Pre B Cells and Is Essential for the Generation and Survival of Normal and Malignant B Cells. Front Immunol 2022; 13:842340. [PMID: 35371049 PMCID: PMC8965026 DOI: 10.3389/fimmu.2022.842340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.
Collapse
Affiliation(s)
| | - Hemin Faraidun
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Omar El Ayoubi
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Issame Outaleb
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Vera Schmid
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hend Abdelrasoul
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Timm Amendt
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Corinna Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Göhring
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Karoline Lodd
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Christoffer Hitzing
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alabbas Alkhatib
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Mayas Bilal
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Cord Herbert Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany.,Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Laminarin Alleviates the Ischemia/Reperfusion Injury in PC12 Cells via Regulation of PTEN/PI3K/AKT Pathway. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/9999339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the protective effect of laminarin on PC12 cells damaged by oxygen glucose deprivation/reoxygenation (OGD/R) and its molecular mechanism. Methods. PC12 cells in the logarithmic phase were randomly divided into the control group, OGD/R group, and OGD/R+laminarin (0.5, 2.5, and 5 μg/ml) group. CCK-8 activity assay kit was used to detect cell viability. ELISA kit was performed to examine the levels of proinflammatory factors (TNF-α, IL-1β, and IL-6) and oxidative stress markers (ROS, LDH, and MPO). In addition, flow cytometry was employed to determine cell cycle and apoptosis. The expression of cell proliferation-related proteins (PCNA and Ki67), apoptosis-related proteins (Bcl-2, Bax, and Caspase-3), and PTEN/PI3K/AKT pathway-related proteins was evaluated by Western blot. Results. Compared with the control group, the cell viability was decreased significantly in the OGD/R group. CCK-8 results showed that laminarin could attenuate the damage of PC12 cell viability induced by OGD/R in a concentration-dependent manner. Meanwhile, the highest concentration of 5 μg/ml laminarin could significantly promote the viability of PC12 cells and the expression of PCNA and Ki67 than the OGD/R group. Additionally, ELISA assays showed that laminarin significantly inhibited the expression of proinflammatory factors (TNF-α, IL-1β, and IL-6) and the levels of oxidative stress markers (ROS, LDH, and MPO). Flow cytometry results demonstrated that laminarin promoted the cell cycle. And laminin upregulated the expression of apoptotic protein Bcl-2, while downregulated the expression of apoptotic proteins Bax and Caspase-3. Finally, laminarin significantly suppressed the expression of PTEN and facilitated the expression of PI3K and p-AKT compared to the OGD/R group. Conclusion. Laminarin could alleviate the OGD/R-induced PC12 cell neuronal injury via promoting cell activity and cycle and inhibiting inflammation, oxidative stress, and apoptosis. The mechanism may be related to the downregulation of PTEN protein and the activation of the PI3K/AKT pathway.
Collapse
|
17
|
Cross-Talking Pathways of Forkhead Box O1 (FOXO1) Are Involved in the Pathogenesis of Alzheimer’s Disease and Huntington’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7619255. [PMID: 35154571 PMCID: PMC8831070 DOI: 10.1155/2022/7619255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and Huntington's disease (HD) are destructive worldwide diseases. Efforts have been made to elucidate the process of these two diseases, yet the pathogenesis remains elusive as it involves a combination of multiple factors, including genetic and environmental ones. To explore the potential role of forkhead box O1 (FOXO1) in the development of AD and HD, we identified 1,853 differentially expressed genes (DEGs) from 19,414 background genes in both the AD&HD/control and FOXO1-low/high groups. Four coexpression modules were predicted by the weighted gene coexpression network analysis (WGCNA), among which blue and turquoise modules had the strongest correlation with AD&HD and high expression of FOXO1. Functional enrichment analysis showed that DEGs in these modules were enriched in phagosome, cytokine-cytokine receptor interaction, cellular senescence, FOXO signaling pathway, pathways of neurodegeneration, GABAergic synapse, and AGE-RAGE signaling pathway in diabetic complications. Furthermore, the cross-talking pathways of FOXO1 in AD and HD were jointly determined in a global regulatory network, such as the FOXO signaling pathway, cellular senescence, and AGE-RAGE signaling pathway in diabetic complications. Based on the performance evaluation of the area under the curve of 85.6%, FOXO1 could accurately predict the onset of AD and HD. We then identified the cross-talking pathways of FOXO1 in AD and HD, respectively. More specifically, FOXO1 was involved in the FOXO signaling pathway and cellular senescence in AD; correspondingly, FOXO1 participated in insulin resistance, insulin, and the FOXO signaling pathways in HD. Next, we use GSEA to validate the biological processes in AD&HD and FOXO1 expression. In GSEA analysis, regulation of protein maturation and regulation of protein processing were both enriched in the AD&HD and FOXO1-high groups, suggesting that FOXO1 may have implications in onset and progression of these two diseases through protein synthesis. Consequently, a high expression of FOXO1 is a potential pathogenic factor in both AD and HD involving mechanisms of the FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cellular senescence. Our findings provide a comprehensive perspective on the molecular function of FOXO1 in the pathogenesis of AD and HD.
Collapse
|
18
|
Fusi L, Paudel R, Meder K, Schlosser A, Schrama D, Goebeler M, Schmidt M. Interaction of transcription factor FoxO3 with histone acetyltransferase complex subunit TRRAP Modulates Gene Expression and Apoptosis. J Biol Chem 2022; 298:101714. [PMID: 35151693 PMCID: PMC8914384 DOI: 10.1016/j.jbc.2022.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/28/2021] [Accepted: 01/19/2022] [Indexed: 11/01/2022] Open
Abstract
Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which—depending on the cellular context—can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain–associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27kip1 and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO–TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences.
Collapse
|
19
|
Clinical Evaluation of FOXO1 as a Tumor Suppressor in Prostate Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:8773423. [PMID: 34552661 PMCID: PMC8452405 DOI: 10.1155/2021/8773423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 01/19/2023]
Abstract
Objective Prostate cancer (PCa) is considered the most serious cancer in the world. Nevertheless, the accuracy of current biomarkers, such as pathological staging, Gleason's score, and serum prostate-specific antigen (PSA) levels, is limited. FOXO1 is a key downstream effector of PTEN and a tumor suppressor in PCA, which has been reported extensively. However, the clinical relevance of FOXO1 in PCa remains unclear. Methods In this study, we first detected its expression in four public databases to explore the clinical role of FOXO1. Verification of the knockdown effect of FOXO1 siRNA was performed by real-time PCR analysis. Changes in cell viability were assessed using cell counting kit-8 (CCK-8) assays. In addition, we verified the effect of FOXO1 on the PCa cell cycle using a cell cycle assay. Results Herein, we found that FOXO1 was significantly downregulated in PCa tissues and was significantly associated with Gleason's score, age, biochemical recurrence (BCR), and lymph node (LN) status, while FOXO1 expression was independent of pathological staging and preoperative PSA levels. The Kaplan-Meier survival analysis showed that PCA patients with high FOXO1 expression were less likely to develop BCR compared with patients with low FOXO1 expression. In terms of function, FOXO1 inhibition significantly promoted the proliferation and cell cycle progression of PCa cells. Conclusions In summary, our study suggests that FOXO1 may be one of the prognostic factors that describe the risk of PCa for BCR. These results suggest that FOXO1 may be a therapeutic target for PCa.
Collapse
|
20
|
Rodríguez-Rodríguez N, Madera-Salcedo IK, Cisneros-Segura JA, García-González HB, Apostolidis SA, Saint-Martin A, Esquivel-Velázquez M, Nguyen T, Romero-Rodríguez DP, Tsokos GC, Alcocer-Varela J, Rosetti F, Crispín JC. Protein phosphatase 2A B55β limits CD8+ T cell lifespan following cytokine withdrawal. J Clin Invest 2021; 130:5989-6004. [PMID: 32750040 DOI: 10.1172/jci129479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
How T cells integrate environmental cues into signals that limit the magnitude and length of immune responses is poorly understood. Here, we provide data that demonstrate that B55β, a regulatory subunit of protein phosphatase 2A, represents a molecular link between cytokine concentration and apoptosis in activated CD8+ T cells. Through the modulation of AKT, B55β induced the expression of the proapoptotic molecule Hrk in response to cytokine withdrawal. Accordingly, B55β and Hrk were both required for in vivo and in vitro contraction of activated CD8+ lymphocytes. We show that this process plays a role during clonal contraction, establishment of immune memory, and preservation of peripheral tolerance. This regulatory pathway may represent an unexplored opportunity to end unwanted immune responses or to promote immune memory.
Collapse
Affiliation(s)
- Noé Rodríguez-Rodríguez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Division of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Iris K Madera-Salcedo
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Alejandro Cisneros-Segura
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - H Benjamín García-González
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sokratis A Apostolidis
- Division of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Abril Saint-Martin
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Marcela Esquivel-Velázquez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tran Nguyen
- Division of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Dámaris P Romero-Rodríguez
- Flow Cytometry Core Facility, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge Alcocer-Varela
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
21
|
New Insights into the Link between Melanoma and Thyroid Cancer: Role of Nucleocytoplasmic Trafficking. Cells 2021; 10:cells10020367. [PMID: 33578751 PMCID: PMC7916461 DOI: 10.3390/cells10020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer remains a major public health concern, mainly because of the incompletely understood dynamics of molecular mechanisms for progression and resistance to treatments. The link between melanoma and thyroid cancer (TC) has been noted in numerous patients. Nucleocytoplasmic transport of oncogenes and tumor suppressor proteins is a common mechanism in melanoma and TC that promotes tumorigenesis and tumor aggressiveness. However, this mechanism remains poorly understood. Papillary TC (PTC) patients have a 1.8-fold higher risk for developing cutaneous malignant melanoma than healthy patients. Our group and others showed that patients with melanoma have a 2.15 to 2.3-fold increased risk of being diagnosed with PTC. The BRAF V600E mutation has been reported as a biological marker for aggressiveness and a potential genetic link between malignant melanoma and TC. The main mechanistic factor in the connection between these two cancer types is the alteration of the RAS-RAF-MEK-ERK signaling pathway activation and translocation. The mechanisms of nucleocytoplasmic trafficking associated with RAS, RAF, and Wnt signaling pathways in melanoma and TC are reviewed. In addition, we discuss the roles of tumor suppressor proteins such as p53, p27, forkhead O transcription factors (FOXO), and NF-KB within the nuclear and cytoplasmic cellular compartments and their association with tumor aggressiveness. A meticulous English-language literature analysis was performed using the PubMed Central database. Search parameters included articles published up to 2021 with keyword search terms melanoma and thyroid cancer, BRAF mutation, and nucleocytoplasmic transport in cancer.
Collapse
|
22
|
Gan L, Gan Z, Dan Y, Li Y, Zhang P, Chen S, Ye Z, Pan T, Wan C, Hu X, Yu Y. Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure-Activity Relationship, and Anticancer Activities. J Med Chem 2021; 64:1018-1036. [PMID: 33423463 DOI: 10.1021/acs.jmedchem.0c01512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 μM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 μg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.
Collapse
Affiliation(s)
- Linling Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zongjie Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanrong Dan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yaowei Li
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peiming Zhang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shanwen Chen
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zaijun Ye
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Pan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chunmei Wan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Hu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Yu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Xu J, Wang K, Zhang Z, Xue D, Li W, Pan Z. The Role of Forkhead Box Family in Bone Metabolism and Diseases. Front Pharmacol 2021; 12:772237. [PMID: 35153742 PMCID: PMC8832510 DOI: 10.3389/fphar.2021.772237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (Fox) family, an evolutionarily conserved family of transcription factors carrying the "Forkhead" motif, plays an indispensable role in human health and disease. Fox family genes are involved in cell differentiation, proliferation and apoptosis, embryonic development, aging, glucose and lipid metabolism, and immune regulation. The regulatory role of the Fox family in the context of bone metabolism and orthopedic diseases is an emerging research hotspot. In this review, we highlight the major molecular mechanisms underlying the regulatory role of Fox factors in bone metabolism, bone development, bone homeostasis, and bone diseases associated with inhibition or upregulation of Fox factors. In addition, we discuss the emerging evidence in the realm of Fox factor-based therapeutics.
Collapse
Affiliation(s)
- Jianxiang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Deting Xue, ; Weixu Li, ; Zhijun Pan,
| |
Collapse
|
24
|
Abdalla BA, Chen X, Li K, Chen J, Yi Z, Zhang X, Li Z, Nie Q. Control of preadipocyte proliferation, apoptosis and early adipogenesis by the forkhead transcription factor FoxO6. Life Sci 2020; 265:118858. [PMID: 33290791 DOI: 10.1016/j.lfs.2020.118858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 01/02/2023]
Abstract
AIMS Previous studies have shown that the forkhead transcription factor FoxO6 involved in memory consolidation and hepatic glucose homeostasis. Here we asked whether chicken FoxO6 may regulate preadipocyte proliferation, apoptosis and early adipogenesis. MAIN METHODS Overexpression and knockdown of FoxO6 were performed and evaluated through cell proliferation methods, Oil-Red-O staining, and specific marker expression. Chromatin immunoprecipitation (ChIP) assay was performed to confirm cyclin G2 (CCNG2) as a direct target gene of FoxO6. KEY FINDINGS FoxO6 is ubiquitously expressed in different chicken tissues and highly expressed in liver, abdominal fat, and preadipocytes in cultured cell. FoxO6 overexpression decreased preadipocyte proliferation by causing G1-phase cell-cycle arrest, whereas inhibition of FoxO6 showed the opposite effects. Overexpression or knockdown of FoxO6 significantly altered the mRNA and protein levels of cell-cycle related markers, such as CCNG2, cyclin dependent kinase inhibitor 1B (CDKN1B), cyclin dependent kinase inhibitor 1A (CDKN1A) and cyclin D2 (CCND2). During preadipocyte proliferation, FoxO6 targets and induces expression of CCNG2, as confirmed by ChIP assay and qPCR. In addition, FoxO6 induces preadipocyte apoptosis through increasing the protein expression levels of cleaved caspase-3 and cleaved caspase-8. Moreover, FoxO6 at the early stage of adipogenesis suppressed mRNA and protein levels of the key early regulators of adipogenesis, such as PPARγ and C/EBPα. SIGNIFICANCE The results demonstrate that FoxO6 controls preadipocyte proliferation, apoptosis and early adipogenesis, and point to new approaches for further studies related to obesity.
Collapse
Affiliation(s)
- Bahareldin Ali Abdalla
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiaolan Chen
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Kan Li
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jie Chen
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhenhua Yi
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhenhui Li
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Qinghua Nie
- College of Animal Science & Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
25
|
Mehrpouri M, Momeny M, Bashash D. Synergistic effects of BKM120 and panobinostat on pre-B acute lymphoblastic cells: an emerging perspective for the simultaneous inhibition of PI3K and HDACs. J Recept Signal Transduct Res 2020; 42:100-108. [PMID: 33969806 DOI: 10.1080/10799893.2020.1853159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reputation of conventional treatment in acute lymphoblastic leukemia (ALL) has recently been questioned due to the considerable increment in the number of relapsed patients. The remarkable role of histone deacetylase (HDAC) enzymes in induction of chemo-resistance has provided an opportunity for HDAC inhibitors to be used as a treatment strategy in ALL; however, the compensatory activation of oncogenic pathways may negatively affect their promising effects. In the present study, we found an attenuating effect for PI3K axis on the anti-leukemic effects of panobinostat in pre-B ALL-derived Nalm-6 cells, as the harnessing of this pathway using BKM120 or CAL-101 resulted in a significant reduction in the number of viable cells as well as the metabolic activity. Moreover, we found the altered expression of p21, p27, c-Myc, and CDK4 upon co-treatment of the cells with panobinostat and BKM120, which was associated with a substantial blockage of cell cycle progression at G2/M phase. The companionship of the PI3K inhibitor with HDAC inhibitor also potentiated panobinostat-induced apoptotic cell death and enhanced the mRNA of Foxo3a and Foxo4. Conclusively, this study sheds light on the adjuvantive effects of BKM120 on panobinostat efficacy and outlined that the simultaneous inhibition of PI3K and HDACs may be a promising therapeutic approach to improve the cure rates of ALL.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Astrocyte elevated gene-1 as a novel therapeutic target in malignant gliomas and its interactions with oncogenes and tumor suppressor genes. Brain Res 2020; 1747:147034. [DOI: 10.1016/j.brainres.2020.147034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
|
27
|
Liu J, Zhang Y, Yu C, Zhang P, Gu S, Wang G, Xiao H, Li S. Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev Res 2020; 82:278-286. [PMID: 33112006 DOI: 10.1002/ddr.21751] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Bladder cancer is one of the most common malignant tumors in the urinary system with high mortality and morbidity. Evidence revealed that bergenin could affect the development of cancer. Here, we aimed to investigate the effect of bergenin on bladder cancer progression and its mechanism. The effect of bergenin on cell function was first detected, followed by assessing the changes of the epithelial-mesenchymal transition (EMT) in bergenin-treated cells. The effect of bergenin on peroxisome proliferator-activated receptor γ (PPARγ)/phosphatase and tensin homolog (PTEN)/Akt signal pathway was measured by Western blotting, followed by the rescue experiments. The results showed that bergenin treatment significantly decreased cell viability and increased G1 phase arrest, accompanied by reduced expression of Ki67, cycling D1, and cycling B1 in bladder cancer cells. Apoptosis was induced by bergenin in bladder cancer cells, as evidenced by increased Bax and cleaved caspase 3 protein levels and decreased Bcl-2 level in bergenin-treated cells. Meanwhile, the inhibition of the invasion, migration, and EMT was also observed in bergenin-treated cells. Mechanism studies showed that bergenin treatment could activate PPARγ/PTEN/Akt signal pathway, as evidence by the increased nucleus PPARγ and phosphatase and tensin homolog (PTEN) expression and decreased Akt expression. Moreover, PPARγ inhibitor administration inverted the effects of bergenin on bladder cancer cell function, including the proliferation, apoptosis, invasion, and migration in bladder cancer cells. Our findings revealed that bergenin could inhibit bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway, indicating that bergenin may be a potential therapeutic medicine for bladder cancer treatment.
Collapse
Affiliation(s)
- Junjiang Liu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Yunxia Zhang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Chunhong Yu
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Panying Zhang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Shouyi Gu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Gang Wang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Helong Xiao
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Shoubin Li
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
28
|
Gheghiani L, Shang S, Fu Z. Targeting the PLK1-FOXO1 pathway as a novel therapeutic approach for treating advanced prostate cancer. Sci Rep 2020; 10:12327. [PMID: 32704044 PMCID: PMC7378169 DOI: 10.1038/s41598-020-69338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/10/2020] [Indexed: 02/04/2023] Open
Abstract
The forkhead box protein O1 (FOXO1) is considered to be a key tumor suppressor due to its involvement in a broad range of cancer-related functions, including cellular differentiation, apoptosis, cell cycle arrest, and DNA damage. Given that inactivation of FOXO1 has been reported in many types of human cancer, we sought to investigate whether restoration of the pro-apoptotic activity of FOXO1 may be used as a new promising strategy for cancer treatment. Our previous study revealed that Polo-like kinase 1 (PLK1), a serine/threonine kinase that is essential for cell cycle progression, is a novel and major regulator of FOXO1 in the late phases of the cell cycle. Here, we provided evidence that PLK1-dependent phosphorylation of FOXO1 induces its nuclear exclusion and negatively regulates FOXO1's transcriptional activity in prostate cancer (PCa). Blocking the PLK1-dependant phosphorylation of FOXO1 restored the pro-apoptotic function of FOXO1 in PCa. Combining PLK1 inhibition with nocodazole (to induce mitotic arrest) had synergistic antitumor effects in vitro, with minimal effect on normal prostate epithelial cells. These findings shed light on a novel approach to reactivate apoptotic pathways in advanced PCa and support targeting PLK1-FOXO1 pathways as a novel approach for treating advanced PCa.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Shengzhe Shang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
29
|
Yoon SY, Kim R, Jang H, Shin DH, Lee JI, Seol D, Lee DR, Chang EM, Lee WS. Peroxisome Proliferator-Activated Receptor Gamma Modulator Promotes Neonatal Mouse Primordial Follicle Activation In Vitro. Int J Mol Sci 2020; 21:ijms21093120. [PMID: 32354153 PMCID: PMC7247159 DOI: 10.3390/ijms21093120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is known as a regulator of cellular functions, including adipogenesis and immune cell activation. The objectives of this study were to investigate the expression of PPARγ and identify the mechanism of primordial follicle activation via PPARγ modulators in mouse ovaries. We first measured the gene expression of PPARγ and determined its relationship with phosphatase and tensin homolog (PTEN), protein kinase B (AKT1), and forkhead box O3a (FOXO3a) expression in neonatal mouse ovaries. We then incubated neonatal mouse ovaries with PPARγ modulators, including rosiglitazone (a synthetic agonist of PPARγ), GW9662 (a synthetic antagonist of PPARγ), and cyclic phosphatidic acid (cPA, a physiological inhibitor of PPARγ), followed by transplantation into adult ovariectomized mice. After the maturation of the transplanted ovaries, primordial follicle growth activation, follicle growth, and embryonic development were evaluated. Finally, the delivery of live pups after embryo transfer into recipient mice was assessed. While PPARγ was expressed in ovaries from mice of all ages, its levels were significantly increased in ovaries from 20-day-old mice. In GW9662-treated ovaries in vitro, PTEN levels were decreased, AKT was activated, and FOXO3a was excluded from the nuclei of primordial follicles. After 1 month, cPA-pretreated, transplanted ovaries produced the highest numbers of oocytes and polar bodies, exhibited the most advanced embryonic development, and had the greatest blastocyst formation rate compared to the rosiglitazone- and GW9662-pretreated groups. Additionally, the successful delivery of live pups after embryo transfer into the recipient mice transplanted with cPA-pretreated ovaries was confirmed. Our study demonstrates that PPARγ participates in primordial follicle activation and development, possibly mediated in part by the PI3K/AKT signaling pathway. Although more studies are required, adapting these findings for the activation of human primordial follicles may lead to treatments for infertility that originates from poor ovarian reserves.
Collapse
Affiliation(s)
- Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Ran Kim
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
- Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Korea
| | - Hyunmee Jang
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
| | - Dong Hyuk Shin
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
| | - Jin Il Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
| | - Dongwon Seol
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea
| | - Eun Mi Chang
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
- Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Korea
- Correspondence: (E.M.C.); (W.S.L.); Tel.: +82-2-3468-3410 (E.M.C.); +82-2-3468-3406 (W.S.L.); Fax: +82-2-558-1119 (E.M.C. & W.S.L.)
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Korea
- Department of Obstetrics and Gynecology, CHA University, Seoul 06125, Korea
- Correspondence: (E.M.C.); (W.S.L.); Tel.: +82-2-3468-3410 (E.M.C.); +82-2-3468-3406 (W.S.L.); Fax: +82-2-558-1119 (E.M.C. & W.S.L.)
| |
Collapse
|
30
|
Tao Y, Liang B. PTEN mutation: A potential prognostic factor associated with immune infiltration in endometrial carcinoma. Pathol Res Pract 2020; 216:152943. [PMID: 32279917 DOI: 10.1016/j.prp.2020.152943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endometrial carcinoma (EC) is a genetic disease, normally accompanied by gene mutations or abnormal expression patterns. However, PTEN mutation and its prognostic value in EC remained debated. Meanwhile, the distribution of PTEN mutation, as well as its correlation with clinical characteristics and tumor immune infiltrating cells, is still poorly understood. METHODS We conducted a comprehensive analysis of PTEN mutation based on The Cancer Genome Atlas (TCGA) database, including 525 uterine corpus endometrial carcinoma (UCEC) samples. We analyzed the frequency of PTEN mutation, distribution of PTEN mutation in different clinical characteristics, the prognostic value of PTEN mutation, and the correlation with tumor immune infiltrating cells in tumor microenvironment. RESULTS PTEN mutation was detected in 65.5﹪of total EC samples. PTEN mutation was significantly associated with age, histological type, clinical stage, and grade. In addition, the patients with PTEN mutation showed a significantly prolonged overall survival (OS) time and disease free survival (DFS) time compared with EC patients without PTEN mutation in entire group, training group, and validation group. Multivariate Cox regression analyses suggested that PTEN mutation was an independent prognostic factor in DFS. Moreover, the percentages of Tregs (P = 0.014) and M1 macrophages (P = 0.013) were significantly different in PTEN mutation group and non-mutation group. CONCLUSION PTEN mutation was correlated with favorable prognosis in EC patients. In addition, PTEN mutation was found to be associated with immune infiltrating cells in tumor microenvironment. Taken together, these findings suggested that PTEN could be regarded a potential predictive and therapeutic target for EC.
Collapse
Affiliation(s)
- Ye Tao
- Bioinformatics of Department, Key laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, China
| | - Bin Liang
- Bioinformatics of Department, Key laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, China.
| |
Collapse
|
31
|
Monzón-Casanova E, Matheson LS, Tabbada K, Zarnack K, Smith CWJ, Turner M. Polypyrimidine tract-binding proteins are essential for B cell development. eLife 2020; 9:e53557. [PMID: 32081131 PMCID: PMC7058386 DOI: 10.7554/elife.53557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a RNA-binding protein (RBP) expressed throughout B cell development. Deletion of Ptbp1 in mouse pro-B cells results in upregulation of PTBP2 and normal B cell development. We show that PTBP2 compensates for PTBP1 in B cell ontogeny as deletion of both Ptbp1 and Ptbp2 results in a complete block at the pro-B cell stage and a lack of mature B cells. In pro-B cells PTBP1 ensures precise synchronisation of the activity of cyclin dependent kinases at distinct stages of the cell cycle, suppresses S-phase entry and promotes progression into mitosis. PTBP1 controls mRNA abundance and alternative splicing of important cell cycle regulators including CYCLIN-D2, c-MYC, p107 and CDC25B. Our results reveal a previously unrecognised mechanism mediated by a RBP that is essential for B cell ontogeny and integrates transcriptional and post-translational determinants of progression through the cell cycle.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Louise S Matheson
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| | - Kristina Tabbada
- Next Generation Sequencing Facility, The Babraham InstituteCambridgeUnited Kingdom
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| |
Collapse
|
32
|
Tirtei E, Cereda M, De Luna E, Quarello P, Asaftei SD, Fagioli F. Omic approaches to pediatric bone sarcomas. Pediatr Blood Cancer 2020; 67:e28072. [PMID: 31736201 DOI: 10.1002/pbc.28072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, next-generation sequencing technologies have improved our ability to assess biological aspects, at genomic and transcriptomic levels, on a large scale- and have been increasingly used for the management of adult cancers. However, their efficacy and feasibility within pediatrics is still under investigation. "Omic" approaches represent an opportunity to understand the oncogenic mechanisms driving the onset and progression of bone sarcoma and improve the clinical management of young patients with bone sarcomas. This review focuses on the current genomic and transcriptomic characteristics of managing pediatric patients, affected by Ewing sarcoma and osteosarcoma.
Collapse
Affiliation(s)
- Elisa Tirtei
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, Italian Institute for Genomic Medicine, Torino, Italy.,Candiolo Cancer Institute, FPO, IRCCS, Turin, Italy
| | - Elvira De Luna
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Quarello
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Sebastian Dorin Asaftei
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Franca Fagioli
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| |
Collapse
|
33
|
Niimi K, Kohara M, Sedoh E, Fukumoto M, Shibata S, Sawano T, Tashiro F, Miyazaki S, Kubota Y, Miyazaki JI, Inagaki S, Furuyama T. FOXO1 regulates developmental lymphangiogenesis by upregulating CXCR4 in the mouse-tail dermis. Development 2020; 147:dev.181545. [PMID: 31852686 DOI: 10.1242/dev.181545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
Lymphangiogenesis plays important roles in normal fetal development and postnatal growth. However, its molecular regulation remains unclear. Here, we have examined the function of forkhead box protein O1 (FOXO1) transcription factor, a known angiogenic factor, in developmental dermal lymphangiogenesis using endothelial cell-specific FOXO1-deficient mice. FOXO1-deficient mice showed disconnected and dilated lymphatic vessels accompanied with increased proliferation and decreased apoptosis in the lymphatic capillaries. Comprehensive DNA microarray analysis of the causes of in vivo phenotypes in FOXO1-deficient mice revealed that the gene encoding C-X-C chemokine receptor 4 (CXCR4) was the most drastically downregulated in FOXO1-deficient primary lymphatic endothelial cells (LECs). CXCR4 was expressed in developing dermal lymphatic capillaries in wild-type mice but not in FOXO1-deficient dermal lymphatic capillaries. Furthermore, FOXO1 suppression impaired migration toward the exogenous CXCR4 ligand, C-X-C chemokine ligand 12 (CXCL12), and coordinated proliferation in LECs. These results suggest that FOXO1 serves an essential role in normal developmental lymphangiogenesis by promoting LEC migration toward CXCL12 and by regulating their proliferative activity. This study provides valuable insights into the molecular mechanisms underlying developmental lymphangiogenesis.
Collapse
Affiliation(s)
- Kenta Niimi
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan.,Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| | - Misaki Kohara
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Eriko Sedoh
- Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| | - Moe Fukumoto
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Satoshi Shibata
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Toshinori Sawano
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Fumi Tashiro
- Department of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Satsuki Miyazaki
- Department of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun-Ichi Miyazaki
- Department of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Science, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Tatsuo Furuyama
- Kagawa Prefectural University of Health Sciences, Hara 281-1, Mure, Takamatsu, Kagawa 761-0123, Japan
| |
Collapse
|
34
|
Cheng ZY, Hsiao YT, Huang YP, Peng SF, Huang WW, Liu KC, Hsia TC, Way TD, Chung JG. Casticin Induces DNA Damage and Affects DNA Repair Associated Protein Expression in Human Lung Cancer A549 Cells (Running Title: Casticin Induces DNA Damage in Lung Cancer Cells). Molecules 2020; 25:E341. [PMID: 31952105 PMCID: PMC7024307 DOI: 10.3390/molecules25020341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Casticin was obtained from natural plants, and it has been shown to exert biological functions; however, no report concerns the induction of DNA damage and repair in human lung cancer cells. The objective of this study was to investigate the effects and molecular mechanism of casticin on DNA damage and repair in human lung cancer A549 cells. Cell viability was determined by flow cytometric assay. The DNA damage was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining and electrophoresis which included comet assay and DNA gel electrophoresis. The protein levels associated with DNA damage and repair were analyzed by western blotting. The expression and translocation of p-H2A.X were observed by confocal laser microscopy. Casticin reduced total viable cell number and induced DNA condensation, fragmentation, and damage in A549 cells. Furthermore, casticin increased p-ATM at 6 h and increased p-ATR and BRCA1 at 6-24 h treatment but decreased p-ATM at 24-48 h, as well as decreased p-ATR and BRCA1 at 48 h. Furthermore, casticin decreased p-p53 at 6-24 h but increased at 48 h. Casticin increased p-H2A.X and MDC1 at 6-48 h treatment. In addition, casticin increased PARP (cleavage) at 6, 24, and 48 h treatment, DNA-PKcs and MGMT at 48 h in A549 cells. Casticin induced the expressions and nuclear translocation of p-H2AX in A549 cells by confocal laser microscopy. Casticin reduced cell number through DNA damage and condensation in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Zheng-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| |
Collapse
|
35
|
Zhao D, Zhang S, Wang X, Gao D, Liu J, Cao K, Chen L, Liu R, Liu J, Long J. ATG7 regulates hepatic Akt phosphorylation through the c-JUN/PTEN pathway in high fat diet-induced metabolic disorder. FASEB J 2019; 33:14296-14306. [PMID: 31645130 DOI: 10.1096/fj.201901414rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Growing evidence has suggested that autophagy-related protein 7 (ATG7) plays an important role in insulin signaling, but the mechanism of ATG7 in hepatic insulin sensitivity is not fully understood. The purpose of the present study is to clarify the underlying molecular mechanisms of ATG7 in obesity development. Serum and liver samples from mice fed a high fat diet (HFD) were evaluated for metabolic profile data and ATG expressions during obesity development. We found that compared with other ATGs, ATG7 expression increased earlier with lower hepatic insulin sensitivity in the 4-wk HFD-fed mice. For in vitro analyses, silencing ATG7 significantly up-regulated insulin-stimulated phosphorylation of protein kinase B (Akt) and down-regulated phosphatase and tension homolog deleted on chromosome ten (PTEN) in HepG2 cells. Replenishing PTEN to ATG7-silenced hepatocytes restored the phosphorylated Akt level. Furthermore, ATG7 silencing led to higher c-JUN expression, which transcriptionally reduced PTEN expression. These results reveal a novel mechanism by which ATG7 regulates Akt phosphorylation via the c-JUN/PTEN pathway at the early stage of HFD-induced metabolic disorder.-Zhao, D., Zhang, S., Wang, X., Gao, D., Liu, J., Cao, K., Chen, L., Liu, R., Liu, J., Long, J. ATG7 regulates hepatic Akt phosphorylation through the c-JUN/PTEN pathway in high fat diet-induced metabolic disorder.
Collapse
Affiliation(s)
- Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xueqiang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dan Gao
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Allegra A, Innao V, Allegra AG, Leanza R, Musolino C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:689-698. [PMID: 31543372 DOI: 10.1016/j.clml.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The correct localization of molecules between nucleus and cytoplasm is fundamental for cellular homeostasis and is controlled by a bidirectional transport system. Exportin 1 (XPO1) regulates the passage of numerous cancer-related proteins. In this review, we summarize the development of a novel class of antitumor agents, known as selective inhibitors of nuclear export (SINEs). We report results of preclinical studies and clinical trials, and discuss the mechanism of action of SINEs and their effects in multiple myeloma, non-Hodgkin lymphomas, lymphoblastic leukemia, and acute and chronic myeloid leukemia. In the future, the numerous experimental studies currently underway will allow us to define the role of SINEs and will possibly permit these substances to be introduced into daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
37
|
Chen B, Guo L, Chen X, El-Senousey HK, Ma M, Jebessa E, Nie Q. Cellular function of chicken FOXO3 and its associations with chicken growth. Poult Sci 2019; 98:5109-5117. [PMID: 31265733 DOI: 10.3382/ps/pez397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
FOXO3 belongs to the Forkhead O transcription factor family and it is an important gene in multiple biological processes, such as cell cycle control, cell proliferation, cell apoptosis, human longevity, and oxidative stress. Previous studies have shown that FOXO3 is associated with skeletal muscle growth and adipose development in mammals. However, the sequence of chicken FOXO3 is still incomplete and the cellular functions of FOXO3 in chickens are poorly understood. Thus, we obtained the full-length sequence of chicken FOXO3 by 5' rapid amplification of cDNA ends (5' RACE) and the phylogenetic tree showed that the chicken FOXO3 sequence was homologous with those in other species. Flow cytometry analysis and 5-ethynyl-2'-deoxyuridine assays showed that FOXO3 repressed cellular proliferation and induced apoptosis in a chicken hepatocellular carcinoma cell line (LMH). Mutations were screened in the second exon of FOXO3 and 13 synonymous single nucleotide polymorphisms were found in the test population. Further analysis showed that rs317670452 and rs15379317 were associated with many growth and carcass traits, such as the body weight at different ages and breast muscle weight. Our results indicate that chicken FOXO3 has similar cellular functions to those found in mammals and it is significantly associated with chicken growth.
Collapse
Affiliation(s)
- Biao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | | | - Manting Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
38
|
Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review. Int J Mol Sci 2019; 20:ijms20194720. [PMID: 31548505 PMCID: PMC6801789 DOI: 10.3390/ijms20194720] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Ovarian follicle pool depletion, infertility, and premature menopause are all known sequelae of cancer treatment that negatively impact the quality of life of young cancer survivors. The mechanisms involved in this undesired iatrogenic ovarian damage have been intensively studied, but many of them remain unclear. Several chemotherapeutic drugs have been shown to induce direct and indirect DNA-damage and/or cellular stress, which are often followed by apoptosis and/or autophagy. Damage to the ovarian micro-vessel network induced by chemotherapeutic agents also seems to contribute to ovarian dysfunction. Another proposed mechanism behind ovarian follicle pool depletion is the overactivation of primordial follicles from the quiescent pool; however, current experimental data are inconsistent regarding these effects. There is great interest in characterizing the mechanisms involved in ovarian damage because this might lead to the identification of potentially protective substances as possible future therapeutics. Research in this field is still at an experimental stage, and further investigations are needed to develop effective and individualized treatments for clinical application. This review provides an overview of the current knowledge and the proposed hypothesis behind chemotherapy-induced ovarian damage, as well as current knowledge on possible co-treatments that might protect the ovary and the follicles from such damages.
Collapse
|
39
|
Ma L, Yan Y, Bai Y, Yang Y, Pan Y, Gang X, Karnes RJ, Zhang J, Lv Q, Wu Q, Huang H. Overcoming EZH2 Inhibitor Resistance by Taxane in PTEN-Mutated Cancer. Am J Cancer Res 2019; 9:5020-5034. [PMID: 31410199 PMCID: PMC6691386 DOI: 10.7150/thno.34700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Rationale: The Polycomb group (PcG) protein EZH2 is implicated in cancer progression due to its frequent overexpression in many cancer types and therefore is a promising therapeutic target. Forkhead box transcription factor-1 (FOXO1) is a tumor suppressor that is often transcriptionally downregulated in human cancers such as prostate cancer although the underlying regulatory mechanisms remain elusive. Methods: Analysis of EZH2 ChIP-seq and ChIP-on-chip data in various cell types was performed. ChIP-qPCR, RT-qPCR, and western blot analyses were conducted to determine the mechanism by which EZH2 represses FOXO1 expression. Immunohistochemistry was employed to assess the correlation between EZH2 and FOXO1 protein expression in prostate cancer patient specimens. In vitro MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and animal experiments were performed to determine the anti-cancer efficacy of EZH2 inhibitor alone or in combination of docetaxel, a chemotherapy agent of the taxane family, and dependency of the efficacy on FOXO1 expression. Results: We demonstrated that EZH2 binds to the FOXO1 gene promoter. EZH2 represses FOXO1 gene expression at the transcriptional level. EZH2 protein level inversely correlated with FOXO1 protein expression in prostate cancer patient specimens. This repression requires the methyltransferase activity and the functional PRC2 complex. While effectively inducing loss of viability of PTEN-positive 22Rv1 prostate cancer cells, EZH2 inhibitor failed to inhibit growth of PTEN-negative C4-2 prostate cancer cells. Co-treatment with docetaxel overcame EZH2 inhibitor resistance in PTEN-negative cancer cells in vitro and in mice. This effect was largely mediated by docetaxel-induced nuclear localization and activation of FOXO1. Conclusions: This study identifies FOXO1 as a bona fide repression target of EZH2 and an essential mediator of EZH2 inhibition-induced cell death. Our findings suggest that EZH2 repression of FOXO1 can be targeted by EZH2 inhibitor as a monotherapy for PTEN-proficient cancers or in combination with taxane for treatment of cancers with PTEN mutation or deletion.
Collapse
|
40
|
Chattergoon NN. Thyroid hormone signaling and consequences for cardiac development. J Endocrinol 2019; 242:T145-T160. [PMID: 31117055 PMCID: PMC6613780 DOI: 10.1530/joe-18-0704] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
The fetal heart undergoes its own growth and maturation stages all while supplying blood and nutrients to the growing fetus and its organs. Immature contractile cardiomyocytes proliferate to rapidly increase and establish cardiomyocyte endowment in the perinatal period. Maturational changes in cellular maturation, size and biochemical capabilities occur, and require, a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. Thyroid hormone has long been known to be important for neuronal development, but also for fetal size and survival. Fetal circulating 3,5,3'-triiodothyronine (T3) levels surge near term in mammals and are responsible for maturation of several organ systems, including the heart. Growth factors like insulin-like growth factor-1 stimulate proliferation of fetal cardiomyocytes, while thyroid hormone has been shown to inhibit proliferation and drive maturation of the cells. Several cell signaling pathways appear to be involved in this complicated and coordinated process. The aim of this review was to discuss the foundational studies of thyroid hormone physiology and the mechanisms responsible for its actions as we speculate on potential fetal programming effects for cardiovascular health.
Collapse
Affiliation(s)
- Natasha N Chattergoon
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
41
|
Zhang L, Lian R, Zhao J, Feng X, Ye R, Pan L, Wu J, Li M, Huan Y, Cai J. IGFBP7 inhibits cell proliferation by suppressing AKT activity and cell cycle progression in thyroid carcinoma. Cell Biosci 2019; 9:44. [PMID: 31183073 PMCID: PMC6555742 DOI: 10.1186/s13578-019-0310-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid cancer is the most common malignant endocrine tumor and is classified into papillary thyroid cancer (PTC), follicular thyroid cancer (FTC) and anaplastic thyroid cancer (ATC), which have substantially different characteristics. Insulin-like growth factor binding protein 7 (IGFBP7) has recently been recognized as a tumor suppressor in many cancer types. However, the expression pattern of IGFBP7 and its biological function in various types of thyroid carcinoma remain poorly understood. Results We found that the protein levels of IGFBP7 in FTC and ATC tissues were significantly lower or even absent compared with those in normal thyroid, benign thyroid adenoma and classical PTC tissues. Moreover, overexpression of IGFBP7 in two undifferentiated ATC cell lines, ARO and FRO, and one differentiated FTC cell line, WRO, significantly inhibited cell proliferation in vitro. In vivo experiments revealed that ectopic IGFBP7 expression markedly suppressed growth of tumor xenografts derived from these thyroid cancer cell lines, while IGFBP7 silencing accelerated tumor growth. At the mechanistic level, overexpression of IGFBP7 dramatically suppressed phosphorylation-mediated activation and kinase activity of AKT, causing an upregulation of cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p21Cip1 and induction of G1/S cell cycle arrest, while silencing IGFBP7 exerted the opposite effects. Conclusions IGFBP7 expression is decreased or even absent in FTC and ATC. Acting as a cell cycle repressor, IGFBP7 plays an important tumor-suppressive role in human thyroid cancer, especially in FTC and ATC subtypes and may represent a promising biomarker and therapeutic target for human thyroid cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13578-019-0310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Zhang
- 1Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou, 510080 Guangdong China.,2Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Rong Lian
- 1Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou, 510080 Guangdong China.,2Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Jingjing Zhao
- 3Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China.,4NHC Key Laboratory on Assisted Circulation of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Xianming Feng
- 1Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou, 510080 Guangdong China.,2Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Runyi Ye
- 5Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Lingxiao Pan
- 6Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 Guangdong China
| | - Jueheng Wu
- 1Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou, 510080 Guangdong China.,2Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Mengfeng Li
- 1Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou, 510080 Guangdong China.,2Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Yongbo Huan
- 7State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510000 Guangdong China
| | - Junchao Cai
- 1Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, 74 Zhongshan Er Road, Guangzhou, 510080 Guangdong China
| |
Collapse
|
42
|
Yeh SJ, Chang CA, Li CW, Wang LHC, Chen BS. Comparing progression molecular mechanisms between lung adenocarcinoma and lung squamous cell carcinoma based on genetic and epigenetic networks: big data mining and genome-wide systems identification. Oncotarget 2019; 10:3760-3806. [PMID: 31217907 PMCID: PMC6557199 DOI: 10.18632/oncotarget.26940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant type of lung cancer in the world. Lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC) are subtypes of NSCLC. We usually regard them as different disease due to their unique molecular characteristics, distinct cells of origin and dissimilar clinical response. However, the differences of genetic and epigenetic progression mechanism between LADC and LSCC are complicated to analyze. Therefore, we applied systems biology approaches and big databases mining to construct genetic and epigenetic networks (GENs) with next-generation sequencing data of LADC and LSCC. In order to obtain the real GENs, system identification and system order detection are conducted on gene regulatory networks (GRNs) and protein-protein interaction networks (PPINs) for each stage of LADC and LSCC. The core GENs were extracted via principal network projection (PNP). Based on the ranking of projection values, we got the core pathways in respect of KEGG pathway. Compared with the core pathways, we found significant differences between microenvironments, dysregulations of miRNAs, epigenetic modifications on certain signaling transduction proteins and target genes in each stage of LADC and LSCC. Finally, we proposed six genetic and epigenetic multiple-molecule drugs to target essential biomarkers in each progression stage of LADC and LSCC, respectively.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-An Chang
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Wei Li
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan
| |
Collapse
|
43
|
Weidle UH, Epp A, Birzele F, Brinkmann U. The Functional Role of Prostate Cancer Metastasis-related Micro-RNAs. Cancer Genomics Proteomics 2019; 16:1-19. [PMID: 30587496 DOI: 10.21873/cgp.20108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
The mortality of patients with hormone-resistant prostate cancer can be ascribed to a large degree to metastasis to distant organs, predominantly to the bones. In this review, we discuss the contribution of micro-RNAs (miRs) to the metastatic process of prostate cancer. The criteria for selection of miRs for this review were the availability of preclinical in vivo metastasis-related data in conjunction with prognostic clinical data. Depending on their function in the metastatic process, the corresponding miRs are up- or down-regulated in prostate cancer tissues when compared to matching normal tissues. Up-regulated miRs preferentially target suppressors of cytokine signaling or tumor suppressor-related genes and metastasis-inhibitory transcription factors. Down-regulated miRs promote epithelial-mesenchymal transition or mesenchymal-epithelial transition and diverse pro-metastatic signaling pathways. Some of the discussed miRs exert their function by simultaneously targeting epigenetic pathways as well as cell-cycle-related, anti-apoptotic and signaling-promoting targets. Finally, we discuss potential therapeutic options for the treatment of prostate cancer-related metastases by substitution or inhibition of miRs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexandra Epp
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
44
|
Wu Z, Qiu M, Mi Z, Meng M, Guo Y, Jiang X, Fang J, Wang H, Zhao J, Liu Z, Qian D, Yuan Z. WT1-interacting protein inhibits cell proliferation and tumorigenicity in non-small-cell lung cancer via the AKT/FOXO1 axis. Mol Oncol 2019; 13:1059-1074. [PMID: 30690883 PMCID: PMC6487700 DOI: 10.1002/1878-0261.12462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer‐related death worldwide; hence, it is imperative that the mechanisms underlying the malignant properties of lung cancer be uncovered in order to efficiently treat this disease. Increasing evidence has shown that WT1‐interacting protein (WTIP) plays important roles both physiologically and pathologically in humans; however, the role of WTIP in cancer is unknown. Here, we investigated the role and mechanism of WTIP in cell proliferation and tumorigenesis of non‐small‐cell lung cancer (NSCLC). We report that WTIP is a tumor suppressor in human NSCLC. We found that WTIP expression was significantly reduced in both NSCLC cell lines and clinical specimens compared to that in normal controls; this reduction was largely attributed to promoter hypermethylation. Downregulation of WTIP significantly correlates with poor prognosis and predicts a shorter overall survival and progression‐free survival among NSCLC patients. Moreover, ectopic overexpression of WTIP dramatically inhibits cell proliferation and tumorigenesis in vitro and in vivo; conversely, depletion of WTIP expression shows the opposite effects. Mechanistically, WTIP impairs AKT phosphorylation and activation, leading to enhanced expression and transcriptional activity of FOXO1, which further increases p21Cip1 and p27Kip1, and decreases cyclin D1, which consequently results in cell cycle arrest. Collectively, the results of the current study indicate that WTIP is an important proliferation‐related gene and that WTIP expression may represent a novel prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| | - Minghan Qiu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China.,Department of Oncology, Tianjin Union Medical Center, China
| | - Zeyun Mi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Tianjin Medical University, China
| | - Maobin Meng
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| | - Yu Guo
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangli Jiang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute & Hospital, China
| | | | - Hui Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| | - Jinlin Zhao
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| | - Zhuang Liu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| | - Dong Qian
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, China
| |
Collapse
|
45
|
Jeong B, Park JW, Kim JG, Lee BJ. FOXO1 functions in the regulation of nicotinamide phosphoribosyltransferase (Nampt) expression. Biochem Biophys Res Commun 2019; 511:398-403. [PMID: 30799084 DOI: 10.1016/j.bbrc.2019.02.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
Abstract
Here, we report that Forkhead Box O1 (FOXO1) protein, a tumor suppressor, regulates expression of nicotinamide phosphoribosyltransferase (Nampt) in human breast cancer MCF-7 cells. Nampt plays an important role in the regulation of cell growth, survival, DNA replication and repair, and angiogenesis in tumorigenesis. We revealed that FOXO1 directly inhibits Nampt expression via binding to FOXO1 binding domains in the 5'-flanking region of the nampt gene. Nampt expression was increased by insulin and downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling, which was inhibited by FOXO1 overexpression. Accordingly, we showed that FOXO1 is also involved in insulin signaling-induced cell survival and proliferation in MCF-7 cells. These results suggest that FOXO1 plays an important role in human breast cancer cells by regulating nampt gene expression.
Collapse
Affiliation(s)
- Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea.
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
46
|
Truong TH, Dwyer AR, Diep CH, Hu H, Hagen KM, Lange CA. Phosphorylated Progesterone Receptor Isoforms Mediate Opposing Stem Cell and Proliferative Breast Cancer Cell Fates. Endocrinology 2019; 160:430-446. [PMID: 30597041 PMCID: PMC6349004 DOI: 10.1210/en.2018-00990] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
Progesterone receptors (PRs) are key modifiers of estrogen receptor (ER) target genes and drivers of luminal breast cancer progression. Total PR expression, rather than isoform-specific PR expression, is measured in breast tumors as an indicator of functional ER. We identified phenotypic differences between PR-A and PR-B in luminal breast cancer models with a focus on tumorsphere biology. Our findings indicated that PR-A is a dominant driver of cancer stem cell (CSC) expansion in T47D models, and PR-B is a potent driver of anchorage-independent proliferation. PR-A+ tumorspheres were enriched for aldehyde dehydrogenase (ALDH) activity, CD44+/CD24-, and CD49f+/CD24- cell populations relative to PR-B+ tumorspheres. Progestin promoted heightened expression of known CSC-associated target genes in PR-A+ but not PR-B+ cells cultured as tumorspheres. We report robust phosphorylation of PR-A relative to PR-B Ser294 and found that this residue is required for PR-A-induced expression of CSC-associated genes and CSC behavior. Cells expressing PR-A S294A exhibited impaired CSC phenotypes but heightened anchorage-independent cell proliferation. The PR target gene and coactivator, FOXO1, promoted PR phosphorylation and tumorsphere formation. The FOXO1 inhibitor (AS1842856) alone or combined with onapristone (PR antagonist), blunted phosphorylated PR, and tumorsphere formation in PR-A+ and PR-B+ T47D, MCF7, and BT474 models. Our data revealed unique isoform-specific functions of phosphorylated PRs as modulators of distinct and opposing pathways relevant to mechanisms of late recurrence. A clear understanding of PR isoforms, phosphorylation events, and the role of cofactors could lead to novel biomarkers of advanced tumor behavior and reveal new approaches to pharmacologically target CSCs in luminal breast cancer.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
- Correspondence: Carol A. Lange, PhD, Masonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th Street Southeast, Minneapolis, Minnesota 55455. E-mail:
| |
Collapse
|
47
|
Yu J, Wu X, Yan J, Yu J, Yin T, Dai J, Ma M, Xu T, Yu H, Xu L, Yang L, Cheng Z, Chi Z, Sheng X, Si L, Cui C, Guo J, Kong Y. Potential Mutations in Uveal Melanoma Identified Using Targeted Next-Generation Sequencing. J Cancer 2019; 10:488-493. [PMID: 30719144 PMCID: PMC6360317 DOI: 10.7150/jca.26967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/18/2018] [Indexed: 01/18/2023] Open
Abstract
Background/objective: Uveal melanoma (UM) is the most common intraocular malignancy and has a high tendency to metastasize to the liver. Although primary tumours can be successfully treated, there is currently no effective treatment for metastatic UM. To gain insight into the genetics of UM, we performed the targeted next-generation sequencing (NGS) of UM samples from a non-Caucasian population. Methods: This study included tumour samples and blood samples from 107 UM patients at Peking University Cancer Hospital & Institute. Clinical data were collected. DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) specimens. Using the HaloPlex Target Enrichment System (Agilent Technologies), NGS was performed to investigate mutations in a 35-gene panel composed of cancer-related genes. Results: Recurrent coding mutations were found in the known UM drivers GNAQ and GNA11. FOXO1, PIK3R1 and HIF1A were also found to harbour somatic mutations in more than 20% of patients, a result that may indicate previously undescribed associations between these genes and UM pathogenesis. Patients with HIF1A and FOXO1 mutations exhibited worse overall survival (OS). In multivariate analysis, FOXO1 mutation was an independent prognostic factor for OS (P<0.05) that was associated with an increase in the risk ratio by a factor of 1.35. Notably, we found that HIF1A and FOXO1 mutations were associated with metastatic transformation of UM (P<0.05 and P<0.001, respectively). Conclusion: Our findings from analyses of targeted NGS data shed new light on the molecular genetics of UM and facilitate the exploration of mutations associated with metastatic potential.
Collapse
Affiliation(s)
- Jiayi Yu
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Xiaowen Wu
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Junya Yan
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Jinyu Yu
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Ting Yin
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Jie Dai
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Meng Ma
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Tianxiao Xu
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Huan Yu
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Longwen Xu
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Lu Yang
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Zhiyuan Cheng
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Zhihong Chi
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Xinan Sheng
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Lu Si
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Chuanliang Cui
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Jun Guo
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| | - Yan Kong
- Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, No. 52 Fucheng Road, Haidian District, Beijing, China, 100142
| |
Collapse
|
48
|
Tao Z, Feng C, Mao C, Ren J, Tai Y, Guo H, Pu M, Zhou Y, Wang G, Wang M. MiR-4465 directly targets PTEN to inhibit AKT/mTOR pathway-mediated autophagy. Cell Stress Chaperones 2019; 24:105-113. [PMID: 30421325 PMCID: PMC6363616 DOI: 10.1007/s12192-018-0946-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy plays an important role in maintaining cell function. Abnormal autophagy leads to cell dysfunction and is associated with many diseases such as tumors, immunodeficiency diseases, lysosomal storage disorders, and neurodegenerative diseases. Autophagy is precisely regulated, and PTEN plays an important role in regulating autophagy. As noncoding small RNAs, miRNAs play an important role in the fine regulation of cellular processes. However, the mechanism of the miRNA regulation of PTEN-related autophagy has not been fully elucidated. In this study, our results showed that miR-4465 significantly inhibited the expression of PTEN, upregulated phosphorylated AKT, and thereby inhibited autophagy by activating mTOR in HEK293, HeLa, and SH-SY5Y cells. Further studies indicated that miR-4465 reduced PTEN mRNA levels through posttranscriptional regulation via directly targeting the 3'-UTR. Our novel findings provide useful hints for the comprehensive elucidation of the molecular mechanism of miRNA-regulated PTEN-related autophagy and may also provide some new insights for the exploration of miRNAs in the treatment of PTEN-related diseases.
Collapse
Affiliation(s)
- Zhouteng Tao
- Department of Pharmacy, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenxi Feng
- Department of Pharmacy, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, China
| | - Chenmei Mao
- Department of Pharmacy, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huijie Guo
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mei Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Zhou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215021, China
| | - Mei Wang
- Department of Pharmacy, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, China.
| |
Collapse
|
49
|
Duan S, Huang W, Liu X, Liu X, Chen N, Xu Q, Hu Y, Song W, Zhou J. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:304. [PMID: 30518405 PMCID: PMC6282329 DOI: 10.1186/s13046-018-0980-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Background Inosine 5′-monophosphate dehydrogenase type II (IMPDH2) was originally identified as an oncogene in several human cancers. However, the clinical significance and biological role of IMPDH2 remain poorly understood in colorectal cancer (CRC). Methods Quantitative real-time polymerase chain reaction (qPCR), western blotting analysis, the Cancer Genome Atlas (TCGA) data mining and immunohistochemistry were employed to examine IMPDH2 expression in CRC cell lines and tissues. A series of in-vivo and in-vitro assays were performed to demonstrate the function of IMPDH2 and its possible mechanisms in CRC. Results IMPDH2 was upregulated in CRC cells and tissues at both mRNA and protein level. High IMPDH2 expression was closely associated with T stage, lymph node state, distant metastasis, lymphovascular invasion and clinical stage, and significantly correlated with poor survival of CRC patients. Further study revealed that overexpression of IMPDH2 significantly promoted the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of CRC cells in vitro and accelerated xenograft tumour growth in nude mice. On the contrary, knockdown of IMPDH2 achieved the opposite effect. Gene set enrichment analysis (GSEA) showed that the gene set related to cell cycle was linked to upregulation of IMPDH2 expression. Our study verified that overexpressing IMPDH2 could promote G1/S phase cell cycle transition through activation of PI3K/AKT/mTOR and PI3K/AKT/FOXO1 pathways and facilitate cell invasion, migration and EMT by regulating PI3K/AKT/mTOR pathway. Conclusions These results suggest that IMPDH2 plays an important role in the development and progression of human CRC and may serve as a novel prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Wenqing Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xiaoting Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xuming Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Nana Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yukun Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Wen Song
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Suber TL, Nikolli I, O'Brien ME, Londino J, Zhao J, Chen K, Mallampalli RK, Zhao Y. FBXO17 promotes cell proliferation through activation of Akt in lung adenocarcinoma cells. Respir Res 2018; 19:206. [PMID: 30359271 PMCID: PMC6203195 DOI: 10.1186/s12931-018-0910-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/09/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The ubiquitin-proteasome pathway, mediated in part, by ubiquitin E3 ligases, is critical in regulating cellular processes such as cell proliferation, apoptosis, and migration. FBXO17 was recently identified as an F-box protein that targets glycogen synthase kinase-3β to the E3 ubiquitin ligase protein complex for polyubiquitination and proteasomal degradation. Here, we identified that in several lung adenocarcinoma cell lines, FBXO17 cellular protein was detected at relatively high levels, as was expression in a subset of lung cancers. Hence, we investigated the effects of FBXO17 on cell proliferation. METHODS Single cell RNA sequencing analysis was performed on a resection of a non-small cell lung carcinoma tumor to examine FBXO17 expression. Multiple lung cancer cell lines were immunoblotted, and The Cancer Genome Atlas was analyzed to determine if FBXO17 expression was amplified in a subset of lung cancers. A549 cells were transfected with empty vector or FBXO17-V5 plasmid and immunoblotted for Akt pathway mediators including PDK1, ERK1/2, ribosomal protein S6, and CREB. Cell proliferation and viability were analyzed by trypan blue exclusion, BrdU incorporation and an MTS-based fluorometric assay. Studies were also performed after transfecting with sifbxo17. Samples were used in an RNA microarray analysis to evaluate pathways affected by reduced FBXO17 gene expression. RESULTS We observed that overexpression of FBXO17 increased A549 cell proliferation coupled with Akt activation. Ectopically expressed FBXO17 also increased ERK1/2 kinase activation and increased phosphorylation of RPS6, a downstream target of mTOR. We also observed an increased number of cells in S-phase and increased metabolic activity of lung epithelial cells expressing FBXO17. FBXO17 knockdown reduced Akt Ser 473 phosphorylation approaching statistical significance with no effect on Thr 308. However, ERK1/2 phosphorylation, cellular metabolic activity, and overall cell numbers were reduced. When we analyzed RNA profiles of A549 cells with reduced FBXO17 expression, we observed downregulation of several genes associated with cell proliferation and metabolism. CONCLUSIONS These data support a role for FBXO17 abundance, when left unchecked, in regulating cell proliferation and survival through modulation of Akt and ERK kinase activation. The data raise a potential role for the F-box subunit in modulating tumorigenesis.
Collapse
Affiliation(s)
- Tomeka L Suber
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA
| | - Ina Nikolli
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA
| | - Michael E O'Brien
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA
| | - James Londino
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA
| | - Kong Chen
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA
| | - Rama K Mallampalli
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Cell Biology, Physiology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA. .,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA.
| | - Yutong Zhao
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Medicine, Pulmonary, Allergy, & Critical Care Medicine, The University of Pittsburgh, UPMC Montefiore, NW 628, Pittsburgh, PA, 15213, USA.
| |
Collapse
|