1
|
Tian M, Lu Z, Luo J, Han H, Wen D, Zhao M, Zhu Z, Hua H. Analysis of the roles of MAD proteins in the wing dimorphism of Nilaparvata lugens. INSECT SCIENCE 2025; 32:515-529. [PMID: 38961475 DOI: 10.1111/1744-7917.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Wing dimorphism in Nilaparvata lugens is controlled by the insulin-like growth factor 1 (IGF-1) signaling - Forkhead transcription factors (IIS-FoxO) pathway. However, the role of this signal in the wing development program remains largely unclear. Here, we identified 2 R-SMAD proteins, NlMAD1 and NlMAD2, in the brown planthopper (BPH) transcriptome, derived from the intrinsic transforming growth factor-β pathway of insect wing development. Both proteins share high sequence similarity and conserved domains. Phylogenetic analysis placed them in the R-SMAD group and revealed related insect orthologs. The expression of Nlmad1 was elevated in the late instar stages of the macropterous BPH strain. Nlmad1 knockdown in nymphs results in malformed wings and reduced wing size in adults, which affects the forewing membrane. By contrast, Nlmad2 expression was relatively consistent across BPH strains and different developmental stages. Nlmad2 knockdown had a milder effect on wing morphology and mainly affected forewing veins and cuticle thickness in the brachypterous strain. NlMAD1 functions downstream of the IIS-FoxO pathway by mediating the FoxO-regulated vestigial transcription and wing morph switching. Inhibiting Nlmad1 partially reversed the long-winged phenotype caused by NlFoxO knockdown. These findings indicate that NlMAD1 and NlMAD2 play distinct roles in regulating wing development and morph differentiation in BPH. Generally, NlMAD1 is a key mediator of the IIS-FoxO pathway in wing morph switching.
Collapse
Affiliation(s)
- Miaomiao Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeiwei Lu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiguang Luo
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agro-Products), Hainan Academy of Agricultural Sciences, Hainan, China
| | - Huilin Han
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Wang Y, Yu T, Zhao Z, Li X, Song Y, He Y, Zhou Y, Li P, An L, Wang F. SMAD4 Limits PARP1 dependent DNA Repair to Render Pancreatic Cancer Cells Sensitive to Radiotherapy. Cell Death Dis 2024; 15:818. [PMID: 39528473 PMCID: PMC11555233 DOI: 10.1038/s41419-024-07210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Dysregulation of SMAD4 (i.e. somatic mutation) is strongly associated with poor pancreatic ductal adenocarcinoma (PDAC) prognosis, yet the molecular mechanisms remain underlying this relationship obscure. Previously, we discovered that SMAD4 mutation renders pancreatic cancer resistant to radiotherapy via promotion of autophagy. In the current work, we observed a downregulation of the protein level of SMAD4 in PDAC as compared with adjacent normal tissue, and that such SMAD4low PDAC failed to benefit from chemotherapy. Furthermore, we observed that SMAD4 depletion dramatically enhanced DNA repair capacity in response to irradiation (IR) or a radiomimetic chemical. Interestingly, we found the radiomimetic chemical having induced a robust translocation of SMAD4 into the nucleus, where a direct interaction was shown to occur between the MH1 domain of SMAD4 and the DBD domain of PARP1. Functionally, the SMAD4-PARP1 interaction was found to perturb the recruitment of PARP1 to DNA damage sites. Accordingly, the combination of olaparib and radiotherapy was indicated in vivo and in vitro to specifically reduce the growth of SMAD4-deficient PDAC by attenuating PARP1 activity. Collectively, our results revealed a novel molecular mechanism for the involvement of the SMAD4-PARP1 interaction in DNA repair with a vital role in radiotherapy response in PDAC. Based on our set of findings, our findings offer a new combined therapeutic strategy for SMAD4 deficient PDAC that can significantly reduce pancreatic cancer radiotherapy resistance.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Tianyu Yu
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
| | - Zhangting Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yiran Song
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
| | - Yazhi He
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
3
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-induced modulation of TGF-β signaling cascade in mouse fibroblasts: insights into cardiotoxicity mechanisms. Sci Rep 2023; 13:18944. [PMID: 37919370 PMCID: PMC10622533 DOI: 10.1038/s41598-023-46216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Conner Patricelli
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
| | - Parker Lehmann
- Idaho College of Osteopathic Medicine, Meridian, ID, 83642-8046, USA
| | - Julia Thom Oxford
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, 83725-1512, USA
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725-1511, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA.
| |
Collapse
|
5
|
Patricelli C, Lehmann P, Oxford JT, Pu X. Doxorubicin-Induced Modulation of TGF-β Signaling Cascade in Mouse Fibroblasts: Insights into Cardiotoxicity Mechanisms. RESEARCH SQUARE 2023:rs.3.rs-3186393. [PMID: 37546862 PMCID: PMC10402200 DOI: 10.21203/rs.3.rs-3186393/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-β) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-β signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-β inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-β1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs. Moreover, we observed that DOX inhibited the TGF-β1 induced expression of BMP1 in NIH3T3 cells, while BMP1 levels remained high in CFs, and that TGF-β1 induces the phosphorylation of SMAD2 in both NIH3T3 cells and CFs. While DOX treatment diminished the extent of phosphorylation, the reduction did not reach statistical significance. DOX also inhibited the TGF-β1 induced expression of COL1 in NIH3T3 cells and CFs. Finally, DOX inhibited the TGF-β1 induced expression of Atf4 and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-β signaling pathway. Understanding the underlying mechanisms of the ability of DOX to modulate gene expression and signaling pathways in fibroblasts holds promise for future development of targeted therapeutic strategies to mitigate DOX-induced cardiotoxicity specifically affecting CFs.
Collapse
|
6
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|
7
|
Hurwitz E, Parajuli P, Ozkan S, Prunier C, Nguyen TL, Campbell D, Friend C, Bryan AA, Lu TX, Smith SC, Razzaque MS, Xu K, Atfi A. Antagonism between Prdm16 and Smad4 specifies the trajectory and progression of pancreatic cancer. J Cell Biol 2023; 222:e202203036. [PMID: 36828547 PMCID: PMC9999015 DOI: 10.1083/jcb.202203036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023] Open
Abstract
The transcription factor Prdm16 functions as a potent suppressor of transforming growth factor-beta (TGF-β) signaling, whose inactivation is deemed essential to the progression of pancreatic ductal adenocarcinoma (PDAC). Using the KrasG12D-based mouse model of human PDAC, we surprisingly found that ablating Prdm16 did not block but instead accelerated PDAC formation and progression, suggesting that Prdm16 might function as a tumor suppressor in this malignancy. Subsequent genetic experiments showed that ablating Prdm16 along with Smad4 resulted in a shift from a well-differentiated and confined neoplasm to a highly aggressive and metastatic disease, which was associated with a striking deviation in the trajectory of the premalignant lesions. Mechanistically, we found that Smad4 interacted with and recruited Prdm16 to repress its own expression, therefore pinpointing a model in which Prdm16 functions downstream of Smad4 to constrain the PDAC malignant phenotype. Collectively, these findings unveil an unprecedented antagonistic interaction between the tumor suppressors Smad4 and Prdm16 that functions to restrict PDAC progression and metastasis.
Collapse
Affiliation(s)
- Eric Hurwitz
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Parash Parajuli
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Seval Ozkan
- Cancer Institute, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Celine Prunier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Thien Ly Nguyen
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Deanna Campbell
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Creighton Friend
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Allyn Austin Bryan
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Ting-Xuan Lu
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Keli Xu
- Cancer Institute, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
8
|
Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M, Chao YC, Surdo NC, Koschinski A, Hu J, Scholten A, Heck AJ, Ercu M, Sholokh A, Park KC, Klussmann E, Meraviglia V, Bellin M, Zanivan S, Hester S, Mohammed S, Zaccolo M. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ Res 2023; 132:828-848. [PMID: 36883446 PMCID: PMC10045983 DOI: 10.1161/circresaha.122.321448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Katharina Schleicher
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Duangnapa Kovanich
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
- Centre for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Thailand (D.K.)
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Milda Folkmanaite
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Nicoletta C. Surdo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Now with Neuroscience Institute, National Research Council of Italy (CNR), Padova (N.C.S.)
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Jianshu Hu
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Maria Ercu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
- Department of Biology, University of Padua, Italy (M.B.)
- Veneto Institute of Molecular Medicine, Padua, Italy (M.B.)
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom (S.Z.)
- Institute of Cancer Sciences, University of Glasgow, United Kingdom (S.Z.)
| | - Svenja Hester
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre (M.Z.)
| |
Collapse
|
9
|
Wang Z, Chen J, Wang S, Sun Z, Lei Z, Zhang HT, Huang J. RGS6 suppresses TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4. Cell Death Dis 2022; 13:656. [PMID: 35902557 PMCID: PMC9334288 DOI: 10.1038/s41419-022-05093-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Regulator of G-protein signaling 6 (RGS6) is a newly discovered tumor suppressor that has been shown to be protective in development of various cancers such as breast cancer and bladder cancer. But the mechanisms underlying these tumor-suppressing functions of RGS6 are not fully understood. Here, we discover a novel function of RGS6 in suppressing TGF-β-induced epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) cells and in vivo NSCLC metastasis. Using both bioinformatics and experimental tools, we showed that RGS6 was downregulated in lung cancer tissues compared to noncancerous counterparts, and low expression of RGS6 was associated with poor survival of lung cancer patients. Overexpression of RGS6 suppressed TGF-β-induced EMT in vitro and TGF-β-promoted metastasis in vivo, by impairing gene expression of downstream effectors induced by the canonical TGF-β-SMAD signaling. The ability of RGS6 to suppress TGF-β-SMAD-mediated gene expression relied on its binding to SMAD4 to prevent complex formation between SMAD4 and SMAD2/3, but independent of its regulation of the G-protein signaling. Interaction between RGS6 and SMAD4 caused less nuclear entry of p-SMAD3 and SMAD4, resulting in inefficient SMAD3-mediated gene expression. Taken together, our findings reveal a novel and noncanonical role of RGS6 in regulation of TGF-β-induced EMT and metastasis of NSCLC and identify RGS6 as a prognostic marker and a potential novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Zhao Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Jun Chen
- grid.263761.70000 0001 0198 0694Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Shengjie Wang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.89957.3a0000 0000 9255 8984Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000 China
| | - Zelong Sun
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China
| | - Zhe Lei
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Hong-Tao Zhang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| | - Jie Huang
- grid.263761.70000 0001 0198 0694Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,grid.263761.70000 0001 0198 0694Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123 China ,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123 China
| |
Collapse
|
10
|
Igalouzene R, Hernandez-Vargas H, Benech N, Guyennon A, Bauché D, Barrachina C, Dubois E, Marie JC, Soudja SM. SMAD4 TGF-β–independent function preconditions naive CD8+ T cells to prevent severe chronic intestinal inflammation. J Clin Invest 2022; 132:151020. [PMID: 35426367 PMCID: PMC9012287 DOI: 10.1172/jci151020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
SMAD4, a mediator of TGF-β signaling, plays an important role in T cells to prevent inflammatory bowel disease (IBD). However, the precise mechanisms underlying this control remain elusive. Using both genetic and epigenetic approaches, we revealed an unexpected mechanism by which SMAD4 prevents naive CD8+ T cells from becoming pathogenic for the gut. Prior to the engagement of the TGF-β receptor, SMAD4 restrains the epigenetic, transcriptional, and functional landscape of the TGF-β signature in naive CD8+ T cells. Mechanistically, prior to TGF-β signaling, SMAD4 binds to promoters and enhancers of several TGF-β target genes, and by regulating histone deacetylation, suppresses their expression. Consequently, regardless of a TGF-β signal, SMAD4 limits the expression of TGF-β negative feedback loop genes, such as Smad7 and Ski, and likely conditions CD8+ T cells for the immunoregulatory effects of TGF-β. In addition, SMAD4 ablation conferred naive CD8+ T cells with both a superior survival capacity, by enhancing their response to IL-7, as well as an enhanced capacity to be retained within the intestinal epithelium, by promoting the expression of Itgae, which encodes the integrin CD103. Accumulation, epithelial retention, and escape from TGF-β control elicited chronic microbiota-driven CD8+ T cell activation in the gut. Hence, in a TGF-β–independent manner, SMAD4 imprints a program that preconditions naive CD8+ T cell fate, preventing IBD.
Collapse
Affiliation(s)
- Ramdane Igalouzene
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Nicolas Benech
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Alexandre Guyennon
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - David Bauché
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Célia Barrachina
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien C. Marie
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Saïdi M’Homa Soudja
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| |
Collapse
|
11
|
Guglielmi L, Heliot C, Kumar S, Alexandrov Y, Gori I, Papaleonidopoulou F, Barrington C, East P, Economou AD, French PMW, McGinty J, Hill CS. Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nat Commun 2021; 12:6374. [PMID: 34737283 PMCID: PMC8569018 DOI: 10.1038/s41467-021-26486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional effector SMAD4 is a core component of the TGF-β family signaling pathways. However, its role in vertebrate embryo development remains unresolved. To address this, we deleted Smad4 in zebrafish and investigated the consequences of this on signaling by the TGF-β family morphogens, BMPs and Nodal. We demonstrate that in the absence of Smad4, dorsal/ventral embryo patterning is disrupted due to the loss of BMP signaling. However, unexpectedly, Nodal signaling is maintained, but lacks robustness. This Smad4-independent Nodal signaling is sufficient for mesoderm specification, but not for optimal endoderm specification. Furthermore, using Optical Projection Tomography in combination with 3D embryo morphometry, we have generated a BMP morphospace and demonstrate that Smad4 mutants are morphologically indistinguishable from embryos in which BMP signaling has been genetically/pharmacologically perturbed. Smad4 is thus differentially required for signaling by different TGF-β family ligands, which has implications for diseases where Smad4 is mutated or deleted.
Collapse
Affiliation(s)
- Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Claire Heliot
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sunil Kumar
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Yuriy Alexandrov
- Advanced Light Microscopy, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Philip East
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew D Economou
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Paul M W French
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - James McGinty
- Department of Physics, Imperial College London, SW7 2AZ, London, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
12
|
Wang X, Liu T, Huang Y, Dai Y, Lin H. Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis. Open Biol 2021; 11:210043. [PMID: 34753319 PMCID: PMC8580444 DOI: 10.1098/rsob.210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an abnormal healing process that only repairs the structure of an organ after injury and does not address damaged functions. The pathogenesis of fibrosis is multifactorial and highly complex; numerous signalling pathways are involved in this process, with the transforming growth factor-β (TGF-β) signalling pathway playing a central role. TGF-β regulates the generation of myofibroblasts and the epithelial-mesenchymal transition by regulating transcription and translation of downstream genes and precisely regulating fibrogenesis. The TGF-β signalling pathway can be modulated by various post-translational modifications, of which SUMOylation has been shown to play a key role. In this review, we focus on the function of SUMOylation in canonical and non-canonical TGF-β signalling and its role in fibrosis, providing promising therapeutic strategies for fibrosis.
Collapse
Affiliation(s)
- Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Ting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifeng Dai
- Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
13
|
Lanauze CB, Sehgal P, Hayer K, Torres-Diz M, Pippin JA, Grant SFA, Thomas-Tikhonenko A. Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4-LEF1 Binding. Mol Cancer Res 2021; 19:823-833. [PMID: 33608451 PMCID: PMC8137583 DOI: 10.1158/1541-7786.mcr-20-0721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/05/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
About 10% to 30% of patients with colorectal cancer harbor either loss of or missense mutations in SMAD4, a critical component of the TGFβ signaling pathway. The pathophysiologic function of missense mutations in Smad4 is not fully understood. They usually map to the MH2 domain, specifically to residues that are involved in heterodimeric complex formation with regulatory Smads (such as Smad2/3) and ensuing transcriptional activation. These detrimental effects suggest that SMAD4 missense mutations can be categorized as loss-of-function. However, they tend to cluster in a few hotspots, which is more consistent with them acting by a gain-of-function mechanism. In this study, we investigated the functional role of Smad4 R361 mutants by re-expressing two R361 Smad4 variants in several Smad4-null colorectal cancer cell lines. As predicted, R361 mutations disrupted Smad2/3-Smad4 heteromeric complex formation and abolished canonical TGFβ signaling. In that, they were similar to SMAD4 loss. However, RNA sequencing and subsequent RT-PCR assays revealed that Smad4mut cells acquired a gene signature associated with enhanced Lef1 protein function and increased Wnt signaling. Mechanistically, Smad4 mutant proteins retained binding to Lef1 protein and drove a commensurate increase in downstream Wnt signaling as measured by TOP/FOP luciferase assay and Wnt-dependent cell motility. Consistent with these findings, human colorectal cancers with SMAD4 missense mutations were less likely to acquire activating mutations in the key Wnt pathway gene CTNNB1 (encoding β-catenin) than colorectal cancers with truncating SMAD4 nonsense mutations. IMPLICATIONS: Our studies suggest that in colorectal cancer hotspot mutations in Smad4 confer enhanced Wnt signaling and possibly heightened sensitivity to Wnt pathway inhibitors. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/823/F1.large.jpg.
Collapse
Affiliation(s)
- Claudia B Lanauze
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priyanka Sehgal
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
| | - Katharina Hayer
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
- Department of Biomedical & Health Informatics, Children's Hospital of Philadelphia
| | - Manuel Torres-Diz
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania
| | - James A Pippin
- Division of Human Genetics, Children's Hospital of Philadelphia, Pennsylvania
| | - Struan F A Grant
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Human Genetics, Children's Hospital of Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Pathobiology, Children's Hospital of Philadelphia, Pennsylvania.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Wan R, Feng J, Tang L. Consequences of Mutations and Abnormal Expression of SMAD4 in Tumors and T Cells. Onco Targets Ther 2021; 14:2531-2540. [PMID: 33888990 PMCID: PMC8054659 DOI: 10.2147/ott.s297855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
SMAD4 is a typical tumor suppressor in the TGF-β signaling pathway. In human cancers, SMAD4 is frequently mutated and inactivated. In recent years, the consequences of mutations and inactivation of SMAD4 are gradually becoming clearer. Most of the mutations have negative consequences and reduce the chances of survival of their carriers. Loss of SMAD4 functions due to mutations or abnormal expression can suppress the inhibition of tumor growth and support the tumor progression. Functions of SMAD4 and its variants in T cells are being studied extensively, to better understand the SMAD4 functions in T cells. In this review, we mainly discuss the recently reported consequences of mutations and abnormal expression of SMAD4 in tumors, and the effects of loss, deficiency or mutation of SMAD4 and its T cells, to show the use of SMAD4 mutations in cancer diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Jianguo Feng
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| |
Collapse
|
15
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
16
|
Bajusz C, Kristó I, Abonyi C, Venit T, Vedelek V, Lukácsovich T, Farkas A, Borkúti P, Kovács Z, Bajusz I, Marton A, Vizler C, Lipinszki Z, Sinka R, Percipalle P, Vilmos P. The nuclear activity of the actin-binding Moesin protein is necessary for gene expression in Drosophila. FEBS J 2021; 288:4812-4832. [PMID: 33606336 DOI: 10.1111/febs.15779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.
Collapse
Affiliation(s)
- Csaba Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csilla Abonyi
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Tomáš Venit
- Biology Program, Science Division, New York University Abu Dhabi, UAE
| | | | | | - Attila Farkas
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Péter Borkúti
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Zoltán Kovács
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Izabella Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Annamária Marton
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Lendület Laboratory of Cell Cycle Regulation, ELKH, Biological Research Centre, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, UAE.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Péter Vilmos
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| |
Collapse
|
17
|
Smad4 regulates the nuclear translocation of Nkx2-5 in cardiac differentiation. Sci Rep 2021; 11:3588. [PMID: 33574455 PMCID: PMC7878807 DOI: 10.1038/s41598-021-82954-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Bmp plays an important role in cardiomyocyte differentiation, but the function of Smad4 in Bmp signaling remains elusive. Here, we show that disruption of the Smad4 gene in cardiac progenitors expressing Sfrp5 led to embryonic lethality with hypoplastic heart formation. Although the expression of Nkx2-5 is regulated by Bmp signaling, expression of Nkx2-5 was weakly detected in the mutant heart. However, the nuclear translocation of Nkx2-5 was impaired. Expression of CK2 or PP1, which could alter the phosphorylation status of the NLS of Nkx2-5, was not affected, but Nkx2-5 was found to bind to Smad4 by co-immunoprecipitation experiments. Introduction of Smad4 into cells derived from Smad4 conditional knockout embryonic hearts restored the nuclear localization of Nkx2-5, and exogenous Nkx2-5 failed to translocate into the nucleus of Smad4-depleted fibroblasts. These results suggest that Smad4 plays an essential role in cardiomyocyte differentiation by controlling not only transcription but also the nuclear localization of Nkx2-5.
Collapse
|
18
|
Gori I, George R, Purkiss AG, Strohbuecker S, Randall RA, Ogrodowicz R, Carmignac V, Faivre L, Joshi D, Kjær S, Hill CS. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. eLife 2021; 10:e63545. [PMID: 33416497 PMCID: PMC7834018 DOI: 10.7554/elife.63545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-β signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-β responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-β-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.
Collapse
Affiliation(s)
- Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Roger George
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrew G Purkiss
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Rebecca A Randall
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Roksana Ogrodowicz
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | | | - Laurence Faivre
- INSERM - Université de Bourgogne UMR1231 GAD, FHU-TRANSLADDijonFrance
| | - Dhira Joshi
- Peptide Chemistry Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Svend Kjær
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
19
|
Park D, Yoon G, Kim E, Lee T, Kim K, Lee PCW, Chang E, Choi S. Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling. EMBO Rep 2020; 21:e48693. [PMID: 32103600 PMCID: PMC7202204 DOI: 10.15252/embr.201948693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor Smad4, a key mediator of the TGF-β/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-β/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-β/BMP signals. Wip1 restrains TGF-β-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Dong‐Seok Park
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Gang‐Ho Yoon
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun‐Young Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Taehyeong Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Kyuhee Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Peter CW Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun‐Ju Chang
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| | - Sun‐Cheol Choi
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
20
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
21
|
Yu H, Wang Y, Jin C, Liu Y, He Y, Zhang Q. The functional differentiation of four smad4 paralogs in TGF-β signaling pathway of Japanese flounder (Paralichthys olivaceus). Cell Signal 2020; 71:109601. [PMID: 32184196 DOI: 10.1016/j.cellsig.2020.109601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
As a classical signaling pathway, transforming growth factor β (TGF-β) has been studied in various animals for more than decade years. However, the members of TGF-β were markedly expanded in teleost specific third and fourth rounds of whole genome duplication (WGD). Here, four smad4s named Posmad4a, Posmad4b, Posmad4c and Posmad4d were identified in Japanese flounder. Our study showed that four flounder smad4s had distinct properties in terms of their protein structure, expression pattern, protein interaction and subcellular localization. PoSMAD4a/b were mainly located in the cytoplasm, and could co-localize in the nucleus with PoSMAD3a after TGF-β activator stimulation. PoSMAD4c was mainly located in nucleus, whereas PoSMAD4d distributed in the whole cell. Both PoSMAD4c and PoSMAD4d could co-localize in the nucleus with PoSMAD3b after TGF-β activator stimulation. Furthermore, Posmad4c responded most strongly to TGF-β signal stimulation. Dual-luciferase reporter assay also showed that Posmad4c could specifically up-regulate the TGF-β signal luciferase reporter gene, Posmad4b could enhance Wnt signal luciferase reporter gene, while both Posmad4b and Posmad4d could markedly up-regulate Notch signal reporter gene. All results indicated that Posmad4a/b/c/d had significantly functional differences among TGF-β, Notch and Wnt signaling pathways. Our study provided important understanding to the biology of smad4s and its pathway crosstalk in teleost.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, Shandong, China.
| |
Collapse
|
22
|
Wan R, Xu X, Ma L, Chen Y, Tang L, Feng J. Novel Alternatively Spliced Variants of Smad4 Expressed in TGF-β-Induced EMT Regulating Proliferation and Migration of A549 Cells. Onco Targets Ther 2020; 13:2203-2213. [PMID: 32210586 PMCID: PMC7073448 DOI: 10.2147/ott.s247015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is a worldwide malignance threatening human life. TGF-β/Smad signaling is known to regulate cell proliferation, differentiation, migration and growth. As the only co-Smad playing crucial roles in TGF-β signaling, Smad4 is reported to be frequently mutated or to occur as alternatively spliced in tumor cells. Smad4 was reported to be involved in the TGF-β-induced EMT process. However, whether the alternative splicing occurs in the TGF-β-induced EMT process in NSCLC was not clear. METHODS In our current study, we explored the alternative splicing of Smad4 during the process of TGF-β-induced EMT in A549 cells. 10 ng/mL TGF-β was used to induce EMT. Then, nest-PCR and agarose electrophoresis were performed to detect the expression of Smad4 variants and sequencing to get the variant DNA sequences. For recombinant expression of variants of Smad4 in A549 cells, we used lentiviral variants to infect cells. In order to explore the effects of variants on the proliferation and migration of A549 cells, the MTT assay, colony formation assay and wound-healing assay were done. The effects of variants on E-cad and VIM protein expression were explored through Western blot. RESULTS There were several novel gene fragments expressed in TGF-β-induced A549 cells, and the sequencing results showed that they were indeed the Smad4 variants that were not reported. For recombinant expression of Smad4 variants in A549 cells, we found that they have significant effects on the proliferation and migration of cells, and also regulated the E-cad and VIM protein expression. CONCLUSION Our results indicated that novel Smad4 variants were expressed in TGF-β-induced EMT process. The functional study showed that these novel variants regulate cell proliferation and migration and affect E-cad and VIM protein expression, showing the potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| |
Collapse
|
23
|
Ginkgolic Acid, a SUMO-1 Inhibitor, Inhibits the Progression of Oral Squamous Cell Carcinoma by Alleviating SUMOylation of SMAD4. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:86-99. [PMID: 31970286 PMCID: PMC6965518 DOI: 10.1016/j.omto.2019.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/07/2019] [Indexed: 12/30/2022]
Abstract
Small ubiquitin-related modifiers (SUMO) represent a class of ubiquitin-like proteins that are conjugated, like ubiquitin, by a set of enzymes to form cellular regulatory proteins, and play key roles in the control of cell proliferation, differentiation, and apoptosis. We found that ginkgolic acid (GA) can significantly reduce cell vitality in a dose- and time-dependent manner and can also accelerate cyto-apoptosis in both Tca8113 and Cal-27 cells. Migration and wound-healing assays were executed to determine the anti-migration effect of GA in oral squamous cell carcinoma (OSCC) cell lines. GA represses transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) markers in OSCC cell lines. This investigation is the first evidence that GA suppresses TGF-β1-induced SUMOylation of SMAD4. We show that GA affects the phosphorylation of SMAD2/3 protein and the release of SMAD4. In the xenograft mouse model, the OSCC progression was reduced by GA, effectively suppressing the growth of tumors. In addition, siSMAD4 improved cell migration and viability, which was inhibited by GA in Tca8113 cells. GA suppresses tumorigenicity and tumor progression of OSCC through inhibition of TGF-β1-induced enhancement of SUMOylation of SMAD4. Thus, GA could be a promising therapeutic for OSCC.
Collapse
|
24
|
Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat Cell Biol 2019; 21:1518-1531. [PMID: 31792383 DOI: 10.1038/s41556-019-0423-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes) and Brachyury, which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor β (TGF-β)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury.
Collapse
|
25
|
Li Y, Luo W, Yang W. Nuclear Transport and Accumulation of Smad Proteins Studied by Single-Molecule Microscopy. Biophys J 2019; 114:2243-2251. [PMID: 29742417 DOI: 10.1016/j.bpj.2018.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation.
Collapse
Affiliation(s)
- Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Wangxi Luo
- Department of Biology, Temple University, Philadelphia, Pennsylvania
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Zi Z. Molecular Engineering of the TGF-β Signaling Pathway. J Mol Biol 2019; 431:2644-2654. [PMID: 31121181 DOI: 10.1016/j.jmb.2019.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Transforming growth factor beta (TGF-β) is an important growth factor that plays essential roles in regulating tissue development and homeostasis. Dysfunction of TGF-β signaling is a hallmark of many human diseases. Therefore, targeting TGF-β signaling presents broad therapeutic potential. Since the discovery of the TGF-β ligand, a collection of engineered signaling proteins have been developed to probe and manipulate TGF-β signaling responses. In this review, we highlight recent progress in the engineering of TGF-β signaling for different applications and discuss how molecular engineering approaches can advance our understanding of this important pathway. In addition, we provide a future outlook on the opportunities and challenges in the engineering of the TGF-β signaling pathway from a quantitative perspective.
Collapse
Affiliation(s)
- Zhike Zi
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
27
|
Wang L, Jiang P, He Y, Hu H, Guo Y, Liu X, Qiu H, Ma Q, Ouyang F. A novel mechanism of Smads/miR-675/TGFβR1 axis modulating the proliferation and remodeling of mouse cardiac fibroblasts. J Cell Physiol 2019; 234:20275-20285. [PMID: 30953355 DOI: 10.1002/jcp.28628] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblasts (CFs) can over-proliferate during the progression of cardiac fibrosis, accompanied by a net accumulation of extracellular matrix proteins. Based on the profibrotic actions of transforming growth factor beta 1 (TGFβ1), investigating the mechanisms of TGFβ1 function in CFs may provide new directions to treatment for cardiac fibrosis. microRNAs (miRNAs) could control CFs proliferation or remodeling via binding to 3'-untranslated region of messenger RNA (mRNA) to negatively regulate gene expression. In the present study, we downloaded several microarray analyses results from GEO attempting to identify miRNAs and possible downstream targets that may be involved in TGF-β1 function in CFs and to detect the cellular and molecular functions of the identified miRNA-mRNA axis. Here, we identified miR-675 as a downregulated miRNA by TGFβ1 by bioinformatics analyses and experimental verification. Upon TGFβ1 stimulation, the protein levels of Α-SMAΑ-SMA, collagen I, and POSTN, and the secreted collagen in the cell culture supernatant significantly increased, whereas the miR-675 expression decreased. Smads mediate TGFβ1-induced suppression on miR-675 via binding miR-675 promoter region. miR-675 overexpression could inhibit, whereas miR-675 inhibition could enhance TGFβ1-induced mouse CFs (MCF) remodeling and proliferation. TGFβ receptor 1 (TGFβR1), a critical receptor in TGFβ1/Smad signaling, is a direct downstream target of miR-675. TGFβR1 overexpression significantly reverses the effect of miR-675 overexpression on MCF remodeling and proliferation. In summary, miR-675 targets TGFβR1 to attenuate TGFβ1-induced MCF remodeling and proliferation. We demonstrate a novel mechanism of the Smads/miR-675/TGFβR1 axis modulating TGFβ1-induced MCF remodeling and proliferation.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Jiang
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Yi He
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Hongyu Hu
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Yuan Guo
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Xiangyang Liu
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Haihua Qiu
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Qilin Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, the Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
28
|
Cheng Q, Shi YJ, Li Z, Kang H, Xiang Z, Kong LF. FAST1 promotes the migration and invasion of colorectal cancer cells. Biochem Biophys Res Commun 2018; 509:407-413. [PMID: 30594391 DOI: 10.1016/j.bbrc.2018.12.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND The forkhead activin signal transducer 1 (FAST1) is involved in several oncogenic signaling pathways and its abnormal expression has been discovered in some cancers. Yet the role of FAST1 in colorectal cancer (CRC) remains largely unclear. Therefore, the goal of this study was to explore the function of FAST1 in CRC. METHODS In this study, we analyzed FAST1 expression and its relationship with clinicopathological parameters and prognostic significance in CRC via immunohistochemistry analysis. The effects and mechanisms of FAST1 on cell proliferation, migration and invasion were explored in vitro and in vivo. RESULTS We found that increased FAST1 as an independent prognostic factor was positively associated with TNM stage and pathological grade in CRC. FAST1 overexpression promoted the CRC cell proliferation, migration and invasion in vivo. Furthermore, mechanistic studies implicated that FAST1 enhanced the pulmonary metastasis of CRC cells through down-regulating E-cadherin levels. CONCLUSIONS In summary, FAST1 was significantly associated with CRC progression and could serve as an independent prognostic factor. FAST1 may be potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qiong Cheng
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yu-Jie Shi
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hong Kang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Zheng Xiang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ling-Fei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
29
|
Park JS, Kim M, Song NJ, Kim JH, Seo D, Lee JH, Jung SM, Lee JY, Lee J, Lee YS, Park KW, Park SH. A Reciprocal Role of the Smad4-Taz Axis in Osteogenesis and Adipogenesis of Mesenchymal Stem Cells. Stem Cells 2018; 37:368-381. [PMID: 30444564 PMCID: PMC7379966 DOI: 10.1002/stem.2949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-β signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.
Collapse
Affiliation(s)
- Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jun-Hyeong Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jae Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jaewon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Youn Sook Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
30
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
31
|
Ullah I, Liao Y, Wan R, Tang L, Feng J. Alternative Splicing of SMAD4 and Its Function in HaCaT Cells in Response to UVB Irradiation. J Cancer 2018; 9:3177-3186. [PMID: 30210641 PMCID: PMC6134820 DOI: 10.7150/jca.24756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Alternative splicing is one of the most common mechanisms of human gene regulation and plays a crucial role in increasing the diversity of functional proteins. Many diseases are linked to alternative splicing, especially cancer. SMAD4 is a member of the SMAD family and plays a critical role in mediating of TGF-β signal transduction and gene regulatory events. Smad4 is a tumour suppressor and acts as a shuttling protein between nucleus and cytoplasm. The splicing variants of Smad4 have been found in many cancers. The present study performed nested PCR to detect alternative splicing of Smad4 in HaCaT cells lines in response to UVB irradiation. The UVB induced a novel Smad4B isoform that led to decrease the Smad4 expression. The hnRNPA1 splicing factor is responsible for Smad4 alternative splicing in response to UVB. The UVB increased the expression of SF2 and hnRNPA1 Splicing factors. The hnRNPA1 overexpression induced Smad4B by regulating Smad4 alternative splicing. The Smad4B isoform supported the function of Smad4 full length in UVB resistance with certain limitation. The western blot analyses showed that the overexpressed Smad4 full length significantly increased N-cadherin expression while Smad4B overexpression decreased the expression the N-cadherin (P<0.05). Furthermore, overexpression of the isoform in HaCaT cells decreased cell invasion as compared to Smad4 full-length overexpression. These results will be helpful to understand the importance of Smad4 alternative splicing in skin tumorigenesis.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Liao
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
32
|
Strasen J, Sarma U, Jentsch M, Bohn S, Sheng C, Horbelt D, Knaus P, Legewie S, Loewer A. Cell-specific responses to the cytokine TGFβ are determined by variability in protein levels. Mol Syst Biol 2018; 14:e7733. [PMID: 29371237 PMCID: PMC5787704 DOI: 10.15252/msb.20177733] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The cytokine TGFβ provides important information during embryonic development, adult tissue homeostasis, and regeneration. Alterations in the cellular response to TGFβ are involved in severe human diseases. To understand how cells encode the extracellular input and transmit its information to elicit appropriate responses, we acquired quantitative time-resolved measurements of pathway activation at the single-cell level. We established dynamic time warping to quantitatively compare signaling dynamics of thousands of individual cells and described heterogeneous single-cell responses by mathematical modeling. Our combined experimental and theoretical study revealed that the response to a given dose of TGFβ is determined cell specifically by the levels of defined signaling proteins. This heterogeneity in signaling protein expression leads to decomposition of cells into classes with qualitatively distinct signaling dynamics and phenotypic outcome. Negative feedback regulators promote heterogeneous signaling, as a SMAD7 knock-out specifically affected the signal duration in a subpopulation of cells. Taken together, we propose a quantitative framework that allows predicting and testing sources of cellular signaling heterogeneity.
Collapse
Affiliation(s)
- Jette Strasen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Marcel Jentsch
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Caibin Sheng
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel Horbelt
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Alexander Loewer
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany .,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
33
|
Liarte S, Bernabé-García Á, Armero-Barranco D, Nicolás FJ. Microscopy Based Methods for the Assessment of Epithelial Cell Migration During In Vitro Wound Healing. J Vis Exp 2018. [PMID: 29364245 DOI: 10.3791/56799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell migration is a mandatory aspect for wound healing. Creating artificial wounds on research animal models often results in costly and complicated experimental procedures, while potentially lacking in precision. In vitro culture of epithelial cell lines provides a suitable platform for researching the cell migratory behavior in wound healing and the impact of treatments on these cells. The physiology of epithelial cells is often studied in non-confluent conditions; however, this approach may not resemble natural wound healing conditions. Disrupting the epithelium integrity by mechanical means generates a realistic model, but may impede the application of molecular techniques. Consequently, microscopy based techniques are optimal for studying epithelial cell migration in vitro. Here we detail two specific methods, the artificial wound scratch assay and the artificial migration front assay, that can obtain quantitative and qualitative data, respectively, on the migratory performance of epithelial cells.
Collapse
Affiliation(s)
- Sergio Liarte
- Laboratorio de Oncología Molecular y TGF-β, IMIB-Arrixaca
| | | | | | | |
Collapse
|
34
|
García-Vizcaíno EM, Liarte S, Alonso-Romero JL, Nicolás FJ. Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription. Cell Commun Signal 2017; 15:50. [PMID: 29187201 PMCID: PMC5706420 DOI: 10.1186/s12964-017-0205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background The simplicity of Transforming Growth Factor ß (TGFβ) signaling pathway, linear and non-amplified, hardly sustains its variety of responses. This is often justified by the complex regulation showed by Smad proteins, TGFβ signaling intracellular transducers, object of post-translational modifications that modulate TGFβ-dependent transcription. Protein acetylation is emerging as a compelling mechanism affecting the activities of significant transcription factors, including p53, FOXO or NF-kB. Smad proteins might be controlled by this mechanism, implying that accessory factors capable of altering Smads-transcriptional complexes acetylation status and hence regulate TGFβ responses remain to be identified. Understanding this interaction may help in the assessment of TGFβ signaling outcomes, extending from healthy physiology to pathological conditions and cancer. Methods A two-hybrid chimera interacting system allowed to identify Sirt1, a NAD+ dependent type III histone deacetylase, as a novel Smad2 interactor. Several well stablished cellular models were applied to characterize this interaction by means of co-immunoprecipitation of tagged proteins and immuno-fluorescence staining. The occurrence of the interaction at Smad2 driven transcriptomic complexes was studied by means of DNA-pull-down and chromatin immunoprecipitation (ChIP), while its effects were assessed by protein over-expression and siRNA applied into a TGFβ-dependent reporter gene assay. Results The interaction was confirmed and observed to be enhanced upon Smad2 acetylation, a known feature of active and nuclear Smad2. However, Sirt1 did not play a major role in Smad2 deacetylation. Anti-Sirt1 ChIP showed increased recovery of promoter regions corresponding to Smad2-driven genes after TGFβ-stimulation, while its occurrence at Smad2-dependent transcriptomic complexes on DNA was found to effectively modulate gene expression. Conclusions Sirt1 presence on Smad2-driven TGFβ-dependent regulatory elements was detected and found to increase after TGFβ treatment. Moreover, Sirt1 overexpression resulted in a decrease of the activity of a Smad2-driven TGFβ-dependent reporter gene, while Sirt1 interference increased its activity. This would confirm the relevance of the discovered Sirt1-Smad2 interaction for the regulation of TGFβ-dependent gene transcription. Electronic supplementary material The online version of this article (10.1186/s12964-017-0205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva María García-Vizcaíno
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain
| | - José Luis Alonso-Romero
- Servicio de Oncología, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
35
|
Jia X, Shanmugam C, Paluri RK, Jhala NC, Behring MP, Katkoori VR, Sugandha SP, Bae S, Samuel T, Manne U. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer. Oncotarget 2017; 8:20198-20212. [PMID: 28423626 PMCID: PMC5386755 DOI: 10.18632/oncotarget.15560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
Background Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Methods Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. Results LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. Conclusions LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival.
Collapse
Affiliation(s)
- Xu Jia
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chandrakumar Shanmugam
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Current address: Department of Pathology, ESIC Medical College and Hospital, Sanathnagar, Hyderabad, Telangana, India
| | - Ravi K Paluri
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nirag C Jhala
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Current address: Pathology & Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | - Michael P Behring
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Venkat R Katkoori
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Current address: Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| | - Shajan P Sugandha
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sejong Bae
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Temesgen Samuel
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Jiang R, Ding L, Zhou J, Huang C, Zhang Q, Jiang Y, Liu J, Yan Q, Zhen X, Sun J, Yan G, Sun H. Enhanced HOXA10 sumoylation inhibits embryo implantation in women with recurrent implantation failure. Cell Death Discov 2017; 3:17057. [PMID: 29018572 PMCID: PMC5632741 DOI: 10.1038/cddiscovery.2017.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
HOXA10 has emerged as an important molecular marker of endometrial receptivity. Recurrent implantation failure (RIF) after in vitro fertilization-embryo transplantation (IVF-ET) treatment is associated with impaired endometrial receptivity, but the exact underlying mechanism of this phenomenon remains elusive. Here we found that HOXA10 was modified by small ubiquitin like-modifier 1 (SUMO1) at the evolutionarily conserved lysine 164 residue. Sumoylation inhibited HOXA10 protein stability and transcriptional activity without affecting its subcellular localization. SUMO1-modified HOXA10 expression was decreased in estradiol- and progesterone-treated Ishikawa cells. Sumoylation inhibited the accelerant role of HOXA10 in BeWo spheroid and mouse embryo attachment to Ishikawa cells. Importantly, aberrantly high SUMO1-HOXA10 expression was detected in mid-secretory endometria of women with RIF compared with that of the control fertile women. Together, our results suggest that HOXA10 sumoylation impairs the process of embryo implantation in vitro and takes part in the development of RIF.
Collapse
Affiliation(s)
- Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qiang Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
37
|
Castellanos G, Bernabé-García Á, Moraleda JM, Nicolás FJ. Amniotic membrane application for the healing of chronic wounds and ulcers. Placenta 2017; 59:146-153. [PMID: 28413063 DOI: 10.1016/j.placenta.2017.04.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Wound healing usually follows a predictable sequence and prognosis of events. Its evolutionary process is the result of a complicated interaction between patient-related factors, the wound, the treatment used and the skills and knowledge of the professionals who treat them. Only through a meticulous initial assessment of the wound is it possible to identify the factors that contribute to its complexity. The challenge for professionals will be to implement efficient therapies at the right time and in the most cost-efficient way in order to reduce associated problems, treat the symptoms and expectations of the patients and achieve adequate wound healing whenever possible. This is particularly evident in big chronic wounds with considerable tissue loss, which become senescent in the process of inflammation or proliferation losing the ability to epithelialize. Generally, chronic wounds do not respond to current treatments, therefore they need special interventions. AM is a tissue of particular interest as a biological dressing and it has well-documented reepithelialization effects which are in part related to its capacity to synthesize and release biological active factors. Our studies have demonstrated that amniotic membrane (AM) is able to induce epithelialization in chronic wounds that were unable to epithelialize. AM induces several signaling pathways that are involved in cell migration and/or proliferation. Additionally, AM is able to selectively antagonize the anti-proliferative effect of transforming growth factor-ß (TGF-β) by modifying the genetic program that TGF-β induces on keratinocytes. The combined effect of AM on keratinocytes, promoting cell proliferation/migration and antagonizing the effect of TGF-β is the perfect combination, allowing chronic wounds to move out of their non-healing state and progress into epithelialization.
Collapse
Affiliation(s)
- Gregorio Castellanos
- Surgery Service, Virgen de La Arrixaca University Clinical Hospital, El Palmar, Murcia, Spain
| | - Ángel Bernabé-García
- Molecular Oncology and TGF-ß, Research Unit, Virgen de La Arrixaca University Hospital, El Palmar, Murcia, Spain
| | - José M Moraleda
- Cell Therapy Unit, Virgen de La Arrixaca University Clinical Hospital, El Palmar, Murcia, Spain
| | - Francisco J Nicolás
- Molecular Oncology and TGF-ß, Research Unit, Virgen de La Arrixaca University Hospital, El Palmar, Murcia, Spain.
| |
Collapse
|
38
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
39
|
Coster AD, Thorne CA, Wu LF, Altschuler SJ. Examining Crosstalk among Transforming Growth Factor β, Bone Morphogenetic Protein, and Wnt Pathways. J Biol Chem 2016; 292:244-250. [PMID: 27895117 PMCID: PMC5217683 DOI: 10.1074/jbc.m116.759654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
The integration of morphogenic signals by cells is not well understood. A growing body of literature suggests increasingly complex coupling among classically defined pathways. Given this apparent complexity, it is difficult to predict where, when, or even whether crosstalk occurs. Here, we investigated pairs of morphogenic pathways, previously reported to have multiple points of crosstalk, which either do not share (TGFβ and Wnt/β-catenin) or share (TGFβ and bone morphogenetic protein (BMP)) core signaling components. Crosstalk was measured by the ability of one morphogenic pathway to cross-activate core transcription factors and/or target genes of another morphogenic pathway. In contrast to previous studies, we found a surprising absence of crosstalk between TGFβ and Wnt/β-catenin. Further, we did not observe expected cross-pathway inhibition in between TGFβ and BMP, despite the fact that both use (or could compete) for the shared component SMAD4. Critical to our assays was a separation of timescales, which helped separate crosstalk due to initial signal transduction from subsequent post-transcriptional feedback events. Our study revealed fewer (and different) inter-morphogenic pathway crosstalk connections than expected; even pathways that share components can be insulated from one another.
Collapse
Affiliation(s)
- Adam D Coster
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Curtis A Thorne
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and
| | - Lani F Wu
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and .,the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Steven J Altschuler
- From the Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and .,the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
40
|
Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase. Sci Rep 2016; 6:32628. [PMID: 27595937 PMCID: PMC5011643 DOI: 10.1038/srep32628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/11/2016] [Indexed: 12/25/2022] Open
Abstract
Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression.
Collapse
|
41
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Bayramov AV, Eroshkin FM, Borodulin AV, Martynova NY, Ermakova GV, Zaraisky AG. Secreted protein Noggin4 participates in the formation of forebrain structures in Xenopus laevis by inhibiting the Wnt/beta-catenin signaling pathway. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Eroshkin FM, Fedina NV, Martynova NY, Bayramov AV, Zaraisky AG. [The Point Mutation in NOGGIN2 Protein That Enhances Its Ability to Bind Activin]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:749-51. [PMID: 27125031 DOI: 10.1134/s1068162015060059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier we have revealed the ability of Noggin family proteins to bind a member of the TUF-β superfamily, ActivinB, and to repress the Activin-dependent Smad2 signaling cascade. In the present work we have characterized a mutant of the Xenopus laevis Noggin2, bearing the substitution W203R. We have shown that this point mutation enhances the affinity of Noggin2 to ActivinB, while weakens its affinity to BMP. Consistently, we have shown that W203 R mutant inhibits Smad2 signaling cascade more efficiently than the wild-type Noggin2. Interestingly, the mutation of human Noggin in the homologous position is associated with hereditary anomalies. The revealed effects of W203R substitution in Noggin2 demonstrate promising potential of such mutagenesis for generation of Noggin variants with enhanced affinity to different members of the TGF-β superfamily.
Collapse
|
44
|
Zhao M, Shi Y, He M, Huang X, Wang Q. PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata. BMC DEVELOPMENTAL BIOLOGY 2016; 16:9. [PMID: 27113217 PMCID: PMC4845351 DOI: 10.1186/s12861-016-0110-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/20/2016] [Indexed: 01/24/2023]
Abstract
Background Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2 signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling pathway in mammals, and some genomic data show SMAD4’s involvment in BMP signaling in invertbrates, but whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested. Results In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata. Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences. Conclusions Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P. fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl oyster.
Collapse
Affiliation(s)
- Mi Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Xiande Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qi Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Ishikawa K, Sreekumar PG, Spee C, Nazari H, Zhu D, Kannan R, Hinton DR. αB-Crystallin Regulates Subretinal Fibrosis by Modulation of Epithelial-Mesenchymal Transition. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:859-73. [PMID: 26878210 PMCID: PMC4822331 DOI: 10.1016/j.ajpath.2015.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 10/20/2015] [Accepted: 11/19/2015] [Indexed: 01/18/2023]
Abstract
Subretinal fibrosis is an end stage of neovascular age-related macular degeneration, characterized by fibrous membrane formation after choroidal neovascularization. An initial step of the pathogenesis is an epithelial-mesenchymal transition (EMT) of retinal pigment epithelium cells. αB-crystallin plays multiple roles in age-related macular degeneration, including cytoprotection and angiogenesis. However, the role of αB-crystallin in subretinal EMT and fibrosis is unknown. Herein, we showed attenuation of subretinal fibrosis after regression of laser-induced choroidal neovascularization and a decrease in mesenchymal retinal pigment epithelium cells in αB-crystallin knockout mice compared with wild-type mice. αB-crystallin was prominently expressed in subretinal fibrotic lesions in mice. In vitro, overexpression of αB-crystallin induced EMT, whereas suppression of αB-crystallin induced a mesenchymal-epithelial transition. Transforming growth factor-β2-induced EMT was further enhanced by overexpression of αB-crystallin but was inhibited by suppression of αB-crystallin. Silencing of αB-crystallin inhibited multiple fibrotic processes, including cell proliferation, migration, and fibronectin production. Bone morphogenetic protein 4 up-regulated αB-crystallin, and its EMT induction was inhibited by knockdown of αB-crystallin. Furthermore, inhibition of αB-crystallin enhanced monotetraubiquitination of SMAD4, which can impair its nuclear localization. Overexpression of αB-crystallin enhanced nuclear translocation and accumulation of SMAD4 and SMAD5. Thus, αB-crystallin is an important regulator of EMT, acting as a molecular chaperone for SMAD4 and as its potential therapeutic target for preventing subretinal fibrosis development in neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California; Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | | | - Christine Spee
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Hossein Nazari
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Danhong Zhu
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California
| | - David R Hinton
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California.
| |
Collapse
|
46
|
Eroshkin FM, Nesterenko AM, Borodulin AV, Martynova NY, Ermakova GV, Gyoeva FK, Orlov EE, Belogurov AA, Lukyanov KA, Bayramov AV, Zaraisky AG. Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis. Sci Rep 2016; 6:23049. [PMID: 26973133 PMCID: PMC4789793 DOI: 10.1038/srep23049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins. Using the Fluorescence Recovery After Photobleaching (FRAP) assay and mathematical modelling, we directly estimated the affinity of Noggin4 for Wnt8 in living embryos and determined that Noggin4 fine-tune the Wnt8 posterior-to-anterior gradient. Our results suggest a role for Noggin4 as a unique, freely diffusing, long-range inhibitor of canonical Wnt signalling, thus explaining its ability to promote head development.
Collapse
Affiliation(s)
- Fedor M Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, 1/40, 119991 Moscow, Russia
| | - Alexander V Borodulin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Fatima K Gyoeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
47
|
Shi Y, Zhang H, Han Z, Mi X, Zhang W, Lv M. HBx interacted with Smad4 to deprive activin a growth inhibition function in hepatocyte HL7702 on CRM1 manner. Tumour Biol 2016; 37:3405-15. [PMID: 26449823 DOI: 10.1007/s13277-015-4076-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/13/2015] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) is implicated in the pathogenesis of hepatocellular carcinoma, which has been found to be associated with TGF-beta signaling. Activin A is a TGF-β family cytokine that exhibits cell proliferation inhibition on normal hepatocyte. How HBV-encoded X oncoprotein play in activin's activity on hepatocyte has not been developed. In this study, a nontumor hepatic cell line HL7702 with HBX ectogenic expression has been established. MTT and BrdU assays showed that HBx promoted growth of HL7702 cells in vitro and downregulated activin signaling. Deregulated activin signaling pathway by HBX failed to activate target gene p21/waf1 and p15 transcription. In addition, mammalian two-hybrid and coimmunoprecipitation assays revealed that HBX could directly interact with activin signaling transduction protein Smad4, making activated Smad2/3/4 nucleus translocation suppressed. Furthermore, we detected that leptomycin B, the inhibitor of CRM1 protein, could recover nuclear translocation of endogenous Smads complex in HL7702 with HBX expression, indicating that HBX antagonized Smads nucleus translocation, at least partially, on CRM1-dependent manner. Leptomycin B was found to have antigrowth activity on HBX-expressed HL7702, according to its antitumor function in previous study. Above all, HBX antagonized activin signaling in normal human liver cells by interacting with Smad4 might one of the considerable causes of HBX-induced hepatocyte transformation, which deprived activin's cell growth inhibition function at an early stage of tumorigenesis.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haipeng Zhang
- The First Clinical Medical College of Jilin University, Changchun, People's Republic of China
| | - Zhu Han
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuguang Mi
- Tumor Biological Treatment Center of Jilin Province People's Hospital, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| | - Mingyu Lv
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
48
|
Wang X, Chen E, Tang M, Yang X, Wang Y, Quan Z, Wu X, Luo C. The SMAD2/3 pathway is involved in hepaCAM-induced apoptosis by inhibiting the nuclear translocation of SMAD2/3 in bladder cancer cells. Tumour Biol 2016; 37:10731-43. [DOI: 10.1007/s13277-016-4821-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/08/2016] [Indexed: 11/25/2022] Open
|
49
|
Abstract
The signaling and transport systems of eucaryotic cells are tightly interconnected: intracellular transport along microtubules and microfilaments is required to position signaling-pathway components, while signaling molecules control activity of motor proteins and their interaction with tracks and cargoes. Recent data, however, give evidence that active transport is engaged in signaling as a means of signal transduction. This review focuses on this specific aspect of the interaction of two systems.
Collapse
Affiliation(s)
- F K Gyoeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
50
|
Geng J, Fan J, Ouyang Q, Zhang X, Zhang X, Yu J, Xu Z, Li Q, Yao X, Liu X, Zheng J. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway. Oncotarget 2015; 5:5700-11. [PMID: 25026293 PMCID: PMC4170610 DOI: 10.18632/oncotarget.2144] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is believed to contribute to carcinoma development by increasing cell invasiveness and metastasis and inducing the epithelial-to-mesenchymal transition (EMT). Protein phosphatase PPM1A has been reported to dephosphorylate TGF-β-activated Smad2/3, thus inhibiting the TGF-β signaling pathway. In this study, we investigated the role of PPM1A in bladder cancer. PPM1A protein expression was analyzed in 145 bladder cancer specimens. The loss of PPM1A expression was predictive of poor survival and high muscle-invasiveness. PPM1A was more commonly deficient among muscle-invasive relapse samples compared to primary tumors in twenty paired bladder cancer tissues. Functional studies indicated that blockade of PPM1A through lentivirus-mediated RNA interference significantly promoted urinary bladder cancer (BCa) cell motility, the EMT in vitro and metastasis in vivo, and these effects were dependent on the TGF-β/Smad signaling pathway. The increase in p-Smad2/3 induced by TGF-β1 correlated with the degree of PPM1A depletion in BCa cells, which resulted in an altered expression profile of TGF-β-inducible genes. The correlations between PPM1A and biomarkers related to the TGF-β signaling pathway and tumor invasion were also detected in BCa samples. These results demonstrate that loss of PPM1A is associated with the development of tumor invasion in bladder cancer.
Collapse
Affiliation(s)
- Jiang Geng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Jie Fan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qi Ouyang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Xiaopeng Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiaolong Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zude Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qianyu Li
- Department of Pathology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Fifth People's Hospital, Fudan University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| |
Collapse
|