1
|
Guichardaz M, Bottini S, Balmas E, Bertero A. Overcoming the Silencing of Doxycycline-Inducible Promoters in hiPSC-derived Cardiomyocytes. OPEN RESEARCH EUROPE 2024; 4:266. [PMID: 39926351 PMCID: PMC11803382 DOI: 10.12688/openreseurope.19024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/11/2025]
Abstract
Background Human induced pluripotent stem cells (hiPSCs) are pivotal for studying human development, modeling diseases, and advancing regenerative medicine. Effective control of transgene expression is crucial to achieve temporal and quantitative precision in all of these contexts. The doxycycline (dox)-inducible OPTi-OX system, which integrates the Tet-On 3G transactivator and dox-responsive transgene at the hROSA26 and AAVS1 genomic safe harbors (GSHs), respectively, offers a promising solution. Yet, transgene silencing, particularly in hiPSC-derived cardiomyocytes (hiPSC-CMs), limits its utility. Methods To address this, we evaluated strategies to enhance dox-inducible transgene expression. We compared two promoters, TRE3VG and T11, for activity and stability, and investigated the addition of a Ubiquitous Chromatin Opening Element (UCOE) to reduce silencing. We also tested relocating the transgene cassette to the CLYBL GSH, and employed sodium butyrate (SB), a histone deacetylase inhibitor, to restore promoter activity. Transgene expression was assessed via flow cytometry and real-time quantitative PCR. Results TRE3VG exhibited higher activity than T11, but both were prone to silencing. UCOE did not enhance promoter activity in hiPSCs, but modestly reduced silencing in hiPSC-CMs. Targeting the CLYBL locus improved promoter activity compared to AAVS1 in both hiPSCs and hiPSC-CMs. SB restored activity in silenced inducible promoters within hiPSC-CMs, but compromised hiPSC viability. Unexpectedly, Tet-On 3G was silenced in some clones and could not be reactivated by SB. Conclusions These findings underscore the need for integrating multiple strategies, including careful GSH selection, improved cassette design, epigenetic modulation, and clone screening, to develop robust dox-inducible systems that retain functionality during hiPSC differentiation.
Collapse
Affiliation(s)
- Michelle Guichardaz
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| |
Collapse
|
2
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
3
|
Ordoñez R, Zhang W, Ellis G, Zhu Y, Ashe HJ, Ribeiro-Dos-Santos AM, Brosh R, Huang E, Hogan MS, Boeke JD, Maurano MT. Genomic context sensitizes regulatory elements to genetic disruption. Mol Cell 2024; 84:1842-1854.e7. [PMID: 38759624 PMCID: PMC11104518 DOI: 10.1016/j.molcel.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Weimin Zhang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Gwen Ellis
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Hannah J Ashe
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | | | - Ran Brosh
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Megan S Hogan
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Ordoñez R, Zhang W, Ellis G, Zhu Y, Ashe HJ, Ribeiro-dos-Santos AM, Brosh R, Huang E, Hogan MS, Boeke JD, Maurano MT. Genomic context sensitizes regulatory elements to genetic disruption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.02.547201. [PMID: 37781588 PMCID: PMC10541140 DOI: 10.1101/2023.07.02.547201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Enhancer function is frequently investigated piecemeal using truncated reporter assays or single deletion analysis. Thus it remains unclear to what extent enhancer function at native loci relies on surrounding genomic context. Using the Big-IN technology for targeted integration of large DNAs, we analyzed the regulatory architecture of the murine Igf2/H19 locus, a paradigmatic model of enhancer selectivity. We assembled payloads containing a 157-kb functional Igf2/H19 locus and engineered mutations to genetically direct CTCF occupancy at the imprinting control region (ICR) that switches the target gene of the H19 enhancer cluster. Contrasting activity of payloads delivered at the endogenous Igf2/H19 locus or ectopically at Hprt revealed that the Igf2/H19 locus includes additional, previously unknown long-range regulatory elements. Exchanging components of the Igf2/H19 locus with the well-studied Sox2 locus showed that the H19 enhancer cluster functioned poorly out of context, and required its native surroundings to activate Sox2 expression. Conversely, the Sox2 locus control region (LCR) could activate both Igf2 and H19 outside its native context, but its activity was only partially modulated by CTCF occupancy at the ICR. Analysis of regulatory DNA actuation across different cell types revealed that, while the H19 enhancers are tightly coordinated within their native locus, the Sox2 LCR acts more independently. We show that these enhancer clusters typify broader classes of loci genome-wide. Our results show that unexpected dependencies may influence even the most studied functional elements, and our synthetic regulatory genomics approach permits large-scale manipulation of complete loci to investigate the relationship between locus architecture and function.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- These authors contributed equally
| | - Weimin Zhang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- These authors contributed equally
| | - Gwen Ellis
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Present address: Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Hannah J. Ashe
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Present address: School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | - Ran Brosh
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Present address: Highmark Health, Pittsburgh, PA 15222, USA
| | - Megan S. Hogan
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Present address: Neochromosome Inc., Long Island City, NY 11101, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Department of Biochemistry Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Matthew T. Maurano
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Lead contact
| |
Collapse
|
5
|
Xu X, Yang L, Deng X, Xiao Q, Huang X, Wang C, Zhou Y, Luo X, Zhang Y, Xu X, Qin Q, Liu S. Expression and localization of HPG axis-related genes in Carassius auratus with different ploidy. Front Endocrinol (Lausanne) 2024; 15:1336679. [PMID: 38410696 PMCID: PMC10894961 DOI: 10.3389/fendo.2024.1336679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction In the Dongting water system, the Carassius auratus (Crucian carp) complex is characterized by the coexistence of diploid forms (2n=100, 2nCC) and polyploidy forms. The diploid (2nCC) and triploid C.auratus (3n=150, 3nCC) had the same fertility levels, reaching sexual maturity at one year. Methods The nucleotide sequence, gene expression, methylation, and immunofluorescence of the gonadotropin releasing hormone 2(Gnrh2), Gonadotropin hormone beta(Gthβ), and Gonadotropin-releasing hormone receptor(Gthr) genes pivotal genes of the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Results The analysis results indicated that Gnrh2, follicle-stimulating hormone receptor(Fshr), and Lethal hybrid rescue(Lhr) genes increased the copy number and distinct structural differentiation in 3nCC compared to that in 2nCC. The transcript levels of HPG axis genes in 3nCC were higher than 2nCC (P<0.05), which could promote the production and secretion of sex steroid hormones conducive to the gonadal development of 3nCC. Meanwhile, the DNA methylation levels in the promoter regions of the HPG axis genes were lower in 3nCC than in 2nCC. These results suggested that methylation of the promoter region had a potential regulatory effect on gene expression after triploidization. Immunofluorescence showed that the localization of the Fshβ, Lhβ, and Fshr genes between 3nCC and 2nCC remained unchanged, ensuring the normal expression of these genes at the corresponding sites after triploidization. Discussion Relevant research results provide cell and molecular biology evidence for normal reproductive activities such as gonad development and gamete maturation in triploid C. auratus, and contribute to further understanding of the genetic basis for fertility restoration in triploid C. auratus.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qingwen Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yue Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiang Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuxin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Hunan Yuelu Mountain Science and Technology Co., Ltd., for Aquatic Breeding, Changsha, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
Liu M, Luo J, Feng H, Li J, Zhang X, Zhao P, Fei P. Decrease of FZD4 exon 1 methylation in probands from FZD4-associated FEVR family of phenotypic heterogeneity. Front Med (Lausanne) 2022; 9:976520. [PMID: 36353221 PMCID: PMC9638120 DOI: 10.3389/fmed.2022.976520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an important cause of childhood blindness and is clinically characterized by phenotypic heterogeneity. FEVR patients harboring the same genetic mutation vary widely in disease severity. The purpose of this study was to explore non-genetic factors that regulate FEVR phenotypic heterogeneity. We detected methylation levels of 21 CpG sites located at the FZD4 exon 1 region of 11 probands, 12 asymptomatic/paucisymptomatic carriers and 11 non-carriers from 10 unrelated FZD4-associated FEVR families using bisulfite amplicon sequencing (BSAS). Our results showed reduced methylation level of FZD4 exon 1 in probands, suggesting that FZD4 exon 1 methylation level may be negatively linked with FEVR disease severity. It provided a new research direction for follow-up research, helping us better understand the complexity of the FEVR-causing mechanism.
Collapse
|
7
|
Bachmann C, Franchini M, Van den Bersselaar LR, Kruijt N, Voermans NC, Bouman K, Kamsteeg EJ, Knop KC, Ruggiero L, Santoro L, Nevo Y, Wilmshurst J, Vissing J, Sinnreich M, Zorzato D, Muntoni F, Jungbluth H, Zorzato F, Treves S. Targeted transcript analysis in muscles from patients with genetically diverse congenital myopathies. Brain Commun 2022; 4:fcac224. [PMID: 36196089 PMCID: PMC9525005 DOI: 10.1093/braincomms/fcac224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital myopathies are a group of early onset muscle diseases of variable severity often with characteristic muscle biopsy findings and involvement of specific muscle types. The clinical diagnosis of patients typically relies on histopathological findings and is confirmed by genetic analysis. The most commonly mutated genes encode proteins involved in skeletal muscle excitation–contraction coupling, calcium regulation, sarcomeric proteins and thin–thick filament interaction. However, mutations in genes encoding proteins involved in other physiological functions (for example mutations in SELENON and MTM1, which encode for ubiquitously expressed proteins of low tissue specificity) have also been identified. This intriguing observation indicates that the presence of a genetic mutation impacts the expression of other genes whose product is important for skeletal muscle function. The aim of the present investigation was to verify if there are common changes in transcript and microRNA expression in muscles from patients with genetically heterogeneous congenital myopathies, focusing on genes encoding proteins involved in excitation–contraction coupling and calcium homeostasis, sarcomeric proteins, transcription factors and epigenetic enzymes. Our results identify RYR1, ATPB2B and miRNA-22 as common transcripts whose expression is decreased in muscles from congenital myopathy patients. The resulting protein deficiency may contribute to the muscle weakness observed in these patients. This study also provides information regarding potential biomarkers for monitoring disease progression and response to pharmacological treatments in patients with congenital myopathies.
Collapse
Affiliation(s)
- Christoph Bachmann
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Martina Franchini
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Luuk R Van den Bersselaar
- Department of Anesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital , Nijmegen , The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nick Kruijt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center , Nijmegen , The Netherlands
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Clinical Genetics, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre , Nijmegen , The Netherlands
| | - Karl Christian Knop
- Muskelhistologisches Labor, Neurologische Abteilung, Asklepios Klinik St. Georg , Lohmuehlenstraße 5, Hamburg 20099 , Germany
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Via Pansini 5, Napoli 80131 , Italy
| | - Lucio Santoro
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Via Pansini 5, Napoli 80131 , Italy
| | - Yoram Nevo
- Institute of Neurology, Schneider Children’s Medical Center of Israel , Petah Tiqva , Israel
| | - Jo Wilmshurst
- Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town , Cape Town , South Africa
| | - John Vissing
- Department of Neurology, section 8077, Rigshospitalet, University of Copenhagen , Blegdamsvej 9, Copenhagen DK-2100 , Denmark
| | - Michael Sinnreich
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
| | - Daniele Zorzato
- GKT School of Medical Education, King’s College London , Hodgkin Building, Newcomen Street, London SE1 1UL , UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL, Institute of Child Health , London , UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre , London , UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children’s Hospital, St. Thomas’ Hospital , London , UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London , London , UK
- Randall Center for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King’s College , London , UK
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Life Science and Biotechnology, University of Ferrara , Via Borsari 46, Ferrara 44100 , Italy
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Neurology, Basel University Hospital , Hebelstrasse 20, Basel 4031 , Switzerland
- Department of Life Science and Biotechnology, University of Ferrara , Via Borsari 46, Ferrara 44100 , Italy
| |
Collapse
|
8
|
TRIM27 Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:910-923. [PMID: 33251042 PMCID: PMC7666371 DOI: 10.1016/j.omtn.2020.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
In the current study, we aimed to explore the correlation between TRIM27 and breast cancer prognosis, as well as the functions of TRIM27 in breast cancer and their underlying mechanisms. Bioinformatics analyses were used to examine the correlation between TRIM27 and breast cancer prognosis. Moreover, TRIM27 knockdown and overexpression in breast cancer cells were performed to investigate its functions in breast cancer. Tamoxifen (TAM) was applied to evaluate the influence of TRIM27 on chemoresistance of breast cancer cells, while co-immunoprecipitation (coIP) was performed to identify the E3 ubiquitin ligase capability of TRIM27. High expression of TRIM27 was found in non-triple-negative breast cancer (non-TNBC) tumor tissues and was positively correlated with the mortality of non-TNBC patients. Moreover, TRIM27 could suppress non-TNBC cell apoptosis and senescence, promote cell viability and tumor growth, counteract the anti-cancer effects of TAM, and mediate ubiquitination of p21. In addition, EP300 could enhance the expression of TRIM27 and its transcription promoter H3K27ac. TRIM27, through ubiquitination of p21, might serve as a prognostic biomarker for non-TNBC prognosis. TRIM27 functions as a novel oncogene in non-TNBC cellular processes, especially suppressing cell senescence and interfering with non-TNBC chemoresistance.
Collapse
|
9
|
Singh R, Chandel S, Dey D, Ghosh A, Roy S, Ravichandiran V, Ghosh D. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40:BSR20202160. [PMID: 32815547 PMCID: PMC7494983 DOI: 10.1042/bsr20202160] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes and its related complications are increasing significantly globally. Collected evidence suggested that several genetic and environmental factors contribute to diabetes mellitus. Associated complications such as retinopathy, neuropathy, nephropathy and other cardiovascular complications are a direct result of diabetes. Epigenetic factors include deoxyribonucleic acid (DNA) methylation and histone post-translational modifications. These factors are directly related with pathological factors such as oxidative stress, generation of inflammatory mediators and hyperglycemia. These result in altered gene expression and targets cells in the pathology of diabetes mellitus without specific changes in a DNA sequence. Environmental factors and malnutrition are equally responsible for epigenetic states. Accumulated evidence suggested that environmental stimuli alter the gene expression that result in epigenetic changes in chromatin. Recent studies proposed that epigenetics may include the occurrence of 'metabolic memory' found in animal studies. Further study into epigenetic mechanism might give us new vision into the pathogenesis of diabetes mellitus and related complication thus leading to the discovery of new therapeutic targets. In this review, we discuss the possible epigenetic changes and mechanism that happen in diabetes mellitus type 1 and type 2 separately. We highlight the important epigenetic and non-epigenetic therapeutic targets involved in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| |
Collapse
|
10
|
Deodati A, Inzaghi E, Cianfarani S. Epigenetics and In Utero Acquired Predisposition to Metabolic Disease. Front Genet 2020; 10:1270. [PMID: 32082357 PMCID: PMC7000755 DOI: 10.3389/fgene.2019.01270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
Epidemiological evidence has shown an association between prenatal malnutrition and a higher risk of developing metabolic disease in adult life. An inadequate intrauterine milieu affects both growth and development, leading to a permanent programming of endocrine and metabolic functions. Programming may be due to the epigenetic modification of genes implicated in the regulation of key metabolic mechanisms, including DNA methylation, histone modifications, and microRNAs (miRNAs). The expression of miRNAs in organs that play a key role in metabolism is influenced by in utero programming, as demonstrated by both experimental and human studies. miRNAs modulate multiple pathways such as insulin signaling, immune responses, adipokine function, lipid metabolism, and food intake. Liver is one of the main target organs of programming, undergoing structural, functional, and epigenetic changes following the exposure to a suboptimal intrauterine environment. The focus of this review is to provide an overview of the effects of exposure to an adverse in utero milieu on epigenome with a focus on the molecular mechanisms involved in liver programming.
Collapse
Affiliation(s)
- Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Alexander J, Findlay GM, Kircher M, Shendure J. Concurrent genome and epigenome editing by CRISPR-mediated sequence replacement. BMC Biol 2019; 17:90. [PMID: 31739790 PMCID: PMC6862751 DOI: 10.1186/s12915-019-0711-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent advances in genome editing have facilitated the direct manipulation of not only the genome, but also the epigenome. Genome editing is typically performed by introducing a single CRISPR/Cas9-mediated double-strand break (DSB), followed by non-homologous end joining (NHEJ)- or homology-directed repair-mediated repair. Epigenome editing, and in particular methylation of CpG dinucleotides, can be performed using catalytically inactive Cas9 (dCas9) fused to a methyltransferase domain. However, for investigations of the role of methylation in gene silencing, studies based on dCas9-methyltransferase have limited resolution and are potentially confounded by the effects of binding of the fusion protein. As an alternative strategy for epigenome editing, we tested CRISPR/Cas9 dual cutting of the genome in the presence of in vitro methylated exogenous DNA, with the aim of driving replacement of the DNA sequence intervening the dual cuts via NHEJ. RESULTS In a proof of concept at the HPRT1 promoter, successful replacement events with heavily methylated alleles of a CpG island resulted in functional silencing of the HPRT1 gene. Although still limited in efficiency, our study demonstrates concurrent epigenome and genome editing in a single event. CONCLUSIONS This study opens the door to investigations of the functional consequences of methylation patterns at single CpG dinucleotide resolution. Our results furthermore support the conclusion that promoter methylation is sufficient to functionally silence gene expression.
Collapse
Affiliation(s)
- Jes Alexander
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory M Findlay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Thakur A, Wong JCH, Wang EY, Lotto J, Kim D, Cheng JC, Mingay M, Cullum R, Moudgil V, Ahmed N, Tsai SH, Wei W, Walsh CP, Stephan T, Bilenky M, Fuglerud BM, Karimi MM, Gonzalez FJ, Hirst M, Hoodless PA. Hepatocyte Nuclear Factor 4-Alpha Is Essential for the Active Epigenetic State at Enhancers in Mouse Liver. Hepatology 2019; 70:1360-1376. [PMID: 30933372 PMCID: PMC6773525 DOI: 10.1002/hep.30631] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC). In mice lacking HNF4A protein in hepatocytes, we observed a decrease in both H3K27ac and hydroxymethylation at regions bound by HNF4A. Mechanistically, HNF4A-associated hydroxymethylation (5hmC) requires its interaction with ten-eleven translocation methylcytosine dioxygenase 3 (TET3), a protein responsible for oxidation from 5mC to 5hmC. Furthermore, HNF4A regulates TET3 expression in liver by directly binding to an enhancer region. Conclusion: In conclusion, we identified that HNF4A is required for the active epigenetic state at enhancers that amplifies transcription of genes in hepatocytes.
Collapse
Affiliation(s)
- Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Medical Genetics, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Jasper C. H. Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Y. Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Donghwan Kim
- Center of Cancer Research, National Cancer Institute, Bethesda MD 2089
| | - Jung-Chien Cheng
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Matthew Mingay
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Vaishali Moudgil
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Nafeel Ahmed
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Shu-Huei Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Colum P. Walsh
- Genomic Medicine Research Group, Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK
| | - Tabea Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Misha Bilenky
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Bettina M. Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Biosciences, University of Oslo, Oslo, Norway, 0316
| | | | - Frank J. Gonzalez
- Center of Cancer Research, National Cancer Institute, Bethesda MD 2089
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada,Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Medical Genetics, University of British Columbia, Vancouver, Canada, V6T 1Z4,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada, V6T 1Z4
| |
Collapse
|
13
|
Gödecke N, Zha L, Spencer S, Behme S, Riemer P, Rehli M, Hauser H, Wirth D. Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation. Nucleic Acids Res 2017; 45:e147. [PMID: 28934472 PMCID: PMC5766184 DOI: 10.1093/nar/gkx601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Faithful expression of transgenes in cell cultures and mice is often challenged by locus dependent epigenetic silencing. We investigated silencing of Tet-controlled expression cassettes within the mouse ROSA26 locus. We observed pronounced DNA methylation of the Tet promoter concomitant with loss of expression in mES cells as well as in differentiated cells and transgenic animals. Strikingly, the ROSA26 promoter remains active and methylation free indicating that this silencing mechanism specifically affects the transgene, but does not spread to the host's chromosomal neighborhood. To reactivate Tet cassettes a synthetic fusion protein was constructed and expressed in silenced cells. This protein includes the enzymatic domains of ten eleven translocation methylcytosine dioxygenase 1 (TET-1) as well as the Tet repressor DNA binding domain. Expression of the synthetic fusion protein and Doxycycline treatment allowed targeted demethylation of the Tet promoter in the ROSA26 locus and in another genomic site, rescuing transgene expression in cells and transgenic mice. Thus, inducible, reversible and site-specific epigenetic modulation is a promising strategy for reactivation of silenced transgene expression, independent of the integration site.
Collapse
Affiliation(s)
- Natascha Gödecke
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Lisha Zha
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Shawal Spencer
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Sara Behme
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Pamela Riemer
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Michael Rehli
- University Hospital, Dept. Internal Medicine III, Regensburg, Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research, Dept. of Scientific Strategy, Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany.,Hannover Medical School, Experimental Hematology, Hannover, Germany
| |
Collapse
|
14
|
Sormani G, Haerter JO, Lövkvist C, Sneppen K. Stabilization of epigenetic states of CpG islands by local cooperation. MOLECULAR BIOSYSTEMS 2017; 12:2142-6. [PMID: 26923344 DOI: 10.1039/c6mb00044d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation of CpG sites is an important epigenetic mark in mammals. Active promoters are often associated with unmethylated CpG sites, whereas methylated CpG sites correlate with silenced promoters. Methylation of CpG sites must be generally described as a dynamical process that is mediated by methylation enzymes, such as DNMT1 and DNMT3a/b. However, there are several models of how CpG sites can be protected from methylation and thereby remain unmethylated. In this paper we examine the combination of both: the positive feedbacks of DNA methylation and a short range counterpart which in turn protects-and thereby maintains-the unmethylated state. The emergent dynamics is provided by collaborative, re-enforcing feedbacks in favor of methylated CpG islands and cooperative protection of one CpG site by another in favor of unmethylated CpG sites. Our results suggest that this synthesis of mechanisms provides equally robust maintenance of both the unmethylated and methylated states of CpG islands.
Collapse
Affiliation(s)
- Giulia Sormani
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Jan O Haerter
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Cecilia Lövkvist
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Neary JL, Perez SM, Peterson K, Lodge DJ, Carless MA. Comparative analysis of MBD-seq and MeDIP-seq and estimation of gene expression changes in a rodent model of schizophrenia. Genomics 2017; 109:204-213. [PMID: 28365388 PMCID: PMC5526217 DOI: 10.1016/j.ygeno.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Abstract
We conducted a comparative study of multiplexed affinity enrichment sequence methodologies (MBD-seq and MeDIP-seq) in a rodent model of schizophrenia, induced by in utero methylazoxymethanol acetate (MAM) exposure. We also examined related gene expression changes using a pooled sample approach. MBD-seq and MeDIP-seq identified 769 and 1771 differentially methylated regions (DMRs) between F2 offspring of MAM-exposed rats and saline control rats, respectively. The assays showed good concordance, with ~56% of MBD-seq-detected DMRs being identified by or proximal to MeDIP-seq DMRs. There was no significant overlap between DMRs and differentially expressed genes, suggesting that DNA methylation regulatory effects may act upon more distal genes, or are too subtle to detect using our approach. Methylation and gene expression gene ontology enrichment analyses identified biological processes important to schizophrenia pathophysiology, including neuron differentiation, prepulse inhibition, amphetamine response, and glutamatergic synaptic transmission regulation, reinforcing the utility of the MAM rodent model for schizophrenia research.
Collapse
Affiliation(s)
- Jennifer L Neary
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Stephanie M Perez
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Kara Peterson
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Daniel J Lodge
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
16
|
Li B, Lu W, Qu J, Zhang Y, Wan X. DICER1 regulates endometrial carcinoma invasion via histone acetylation and methylation. J Cancer 2017; 8:933-939. [PMID: 28529604 PMCID: PMC5436244 DOI: 10.7150/jca.17435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecologic malignancy, but molecular mechanisms of the development and progression of EC remain unclear. Here we showed that the expression of DICER1 was negatively associated with the level of histone methylation, histone acetylation and PRC2 components SUZ12 and EZH2 in EC cells. In addition, knockdown of DICER1 significantly downregulated miR-200b and let-7i, which may then regulate their targets SUZ12 and EZH2. Furthermore, knockdown of DICER1 remarkably suppressed the expression of epithelial cell marker E-cadherin, induced the expression of mesenchymal cell marker Vimentin, and promoted the invasion of EC cells. In conclusion, our data suggest that DICER1 suppresses SUZ12 and EZH2 via affecting their upstream miRNA synthesis, and inhibits epithelial-mesenchymal transition(EMT) and invasion of EC cells via histone modification.
Collapse
Affiliation(s)
- Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai, P.R. China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai, P.R. China
| | - Junjie Qu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai, P.R. China
| | - Yongli Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai, P.R. China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, School of Medicine, Shanghai, P.R. China
| |
Collapse
|
17
|
Greenberg MVC, Glaser J, Borsos M, Marjou FE, Walter M, Teissandier A, Bourc'his D. Transient transcription in the early embryo sets an epigenetic state that programs postnatal growth. Nat Genet 2016; 49:110-118. [PMID: 27841881 DOI: 10.1038/ng.3718] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The potential for early embryonic events to program epigenetic states that influence adult physiology remains an important question in health and development. Using the imprinted Zdbf2 locus as a paradigm for the early programming of phenotypes, we demonstrate here that chromatin changes that occur in the pluripotent embryo can be dispensable for embryogenesis but instead signal essential regulatory information in the adult. The Liz (long isoform of Zdbf2) transcript is transiently expressed in early embryos and embryonic stem cells (ESCs). This transcription locally promotes de novo DNA methylation upstream of the Zdbf2 promoter, which antagonizes Polycomb-mediated repression of Zdbf2. Strikingly, mouse embryos deficient for Liz develop normally but fail to activate Zdbf2 in the postnatal brain and show indelible growth reduction, implying a crucial role for a Liz-dependent epigenetic switch. This work provides evidence that transcription during an early embryonic timeframe can program a stable epigenetic state with later physiological consequences.
Collapse
Affiliation(s)
| | - Juliane Glaser
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Máté Borsos
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | | | - Marius Walter
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Aurélie Teissandier
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,École des Mines, Paris, France
| | - Déborah Bourc'his
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| |
Collapse
|
18
|
Elshenawy S, Simmons R. Maternal obesity and prenatal programming. Mol Cell Endocrinol 2016; 435:2-6. [PMID: 27392495 DOI: 10.1016/j.mce.2016.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Obesity is a significant and increasing public health concern in the United States and worldwide. Clinical and epidemiological evidence clearly shows that genetic and environmental factors contribute to the increased susceptibility of humans to obesity and its associated comorbidities; the interplay of these factors is explained by the concept of epigenetics. The impact of maternal obesity goes beyond the newborn period; fetal programming during the critical window of pregnancy, can have long term detrimental effects on the offspring as well as future generations. Emerging evidence is uncovering a link between the clinical and molecular findings in the offspring with epigenetic changes in the setting of maternal obesity. Research targeted towards reducing the transgenerational propagation and developmental programming of obesity is vital in reducing the increasing rates of disease.
Collapse
Affiliation(s)
- Summer Elshenawy
- Children's Hospital of Philadelphia, 3516 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rebecca Simmons
- Perelman School of Medicine at University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis 2016; 8:30-43. [DOI: 10.1017/s2040174416000507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of Developmental Origins of Health and Disease (DOHaD) seeks to understand the relationships between early-life environmental exposures and long-term health and disease. Until recently, the molecular mechanisms underlying these phenomena were poorly understood; however, epigenetics has been proposed to bridge the gap between the environment and phenotype. Epigenetics involves the study of heritable changes in gene expression, which occur without changes to the underlying DNA sequence. Different types of epigenetic modifications include DNA methylation, post-translational histone modifications and non-coding RNAs. Increasingly, changes to the epigenome have been associated with early-life exposures in both humans and animal models, offering both an explanation for how the environment may programme long-term health, as well as molecular changes that could be developed as biomarkers of exposure and/or future disease. As such, epigenetic studies in DOHaD hold much promise; however, there are a number of factors which should be considered when designing and interpreting such studies. These include the impact of the genome on the epigenome, the tissue-specificity of epigenetic marks, the stability (or lack thereof) of epigenetic changes over time and the importance of associating epigenetic changes with changes in transcription or translation to demonstrate functional consequences. In this review, we discuss each of these key concepts and provide practical strategies to mitigate some common pitfalls with the aim of providing a useful guide for future epigenetic studies in DOHaD.
Collapse
|
20
|
Kong L, Tan L, Lv R, Shi Z, Xiong L, Wu F, Rabidou K, Smith M, He C, Zhang L, Qian Y, Ma D, Lan F, Shi Y, Shi YG. A primary role of TET proteins in establishment and maintenance of De Novo bivalency at CpG islands. Nucleic Acids Res 2016; 44:8682-8692. [PMID: 27288448 PMCID: PMC5062965 DOI: 10.1093/nar/gkw529] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 06/01/2016] [Indexed: 12/15/2022] Open
Abstract
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.
Collapse
Affiliation(s)
- Lingchun Kong
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Li Tan
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ruitu Lv
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhennan Shi
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lijun Xiong
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Kimberlie Rabidou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Smith
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Celestine He
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Zhang
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanyan Qian
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Duan Ma
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fei Lan
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yang Shi
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China Division of Newborn Medicine, Children's Hospital Boston and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yujiang Geno Shi
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:645-54. [PMID: 27335754 PMCID: PMC4901937 DOI: 10.3762/bjnano.7.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/21/2016] [Indexed: 05/09/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People’s Hospital, Guiyang 550002, China
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Zhou
- Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 2015; 528:575-9. [PMID: 26675734 DOI: 10.1038/nature16462] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
Eukaryotic transcription factors (TFs) are key determinants of gene activity, yet they bind only a fraction of their corresponding DNA sequence motifs in any given cell type. Chromatin has the potential to restrict accessibility of binding sites; however, in which context chromatin states are instructive for TF binding remains mainly unknown. To explore the contribution of DNA methylation to constrained TF binding, we mapped DNase-I-hypersensitive sites in murine stem cells in the presence and absence of DNA methylation. Methylation-restricted sites are enriched for TF motifs containing CpGs, especially for those of NRF1. In fact, the TF NRF1 occupies several thousand additional sites in the unmethylated genome, resulting in increased transcription. Restoring de novo methyltransferase activity initiates remethylation at these sites and outcompetes NRF1 binding. This suggests that binding of DNA-methylation-sensitive TFs relies on additional determinants to induce local hypomethylation. In support of this model, removal of neighbouring motifs in cis or of a TF in trans causes local hypermethylation and subsequent loss of NRF1 binding. This competition between DNA methylation and TFs in vivo reveals a case of cooperativity between TFs that acts indirectly via DNA methylation. Methylation removal by methylation-insensitive factors enables occupancy of methylation-sensitive factors, a principle that rationalizes hypomethylation of regulatory regions.
Collapse
Affiliation(s)
- Silvia Domcke
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.,University of Basel, Faculty of Sciences, Petersplatz 1, CH 4003 Basel, Switzerland
| | - Anaïs Flore Bardet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland
| | - Paul Adrian Ginno
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland
| | - Dominik Hartl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.,University of Basel, Faculty of Sciences, Petersplatz 1, CH 4003 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, Maulbeerstrasse 66, CH 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.,University of Basel, Faculty of Sciences, Petersplatz 1, CH 4003 Basel, Switzerland
| |
Collapse
|
23
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2015; 575:584-99. [PMID: 26428312 DOI: 10.1016/j.gene.2015.09.061] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
24
|
Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015; 93:511-21. [PMID: 26369706 DOI: 10.1139/bcb-2015-0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.
Collapse
Affiliation(s)
- Tasnim Dayeh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| |
Collapse
|
25
|
Shin J, Ming GL, Song H. DNA modifications in the mammalian brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0512. [PMID: 25135973 DOI: 10.1098/rstb.2013.0512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.
Collapse
Affiliation(s)
- Jaehoon Shin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Schübeler D. ESCI award lecture: regulation, function and biomarker potential of DNA methylation. Eur J Clin Invest 2015; 45:288-93. [PMID: 25608229 DOI: 10.1111/eci.12403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Abstract
Methylation of DNA and modifications of histones have emerged as intricately involved in gene regulation as they cross-talk and respond in multiple ways to the activity of transcription factors. Measuring these epigenome components has become a powerful tool to identify regulatory principles and biomarkers that predict cellular state during development or disease. Here, I will focus on DNA methylation as a reversible epigenetic modification of DNA that has been studied in great detail at the level of the genome. Recent advances in sequencing have identified unexpected dynamics of this modification, which are tightly linked to gene regulation. Understanding how DNA methylation patterns are read and how they contribute to regulation will be critical to interpret and utilize genomic maps of DNA methylation. As these patterns are dynamic during cellular differentiation and perturbed in disease, they present an opportunity to use DNA methylation as a biomarker.
Collapse
Affiliation(s)
- Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland
| |
Collapse
|
27
|
Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell 2014; 55:319-31. [PMID: 25038413 PMCID: PMC4104113 DOI: 10.1016/j.molcel.2014.06.029] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/04/2014] [Accepted: 06/18/2014] [Indexed: 01/16/2023]
Abstract
Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the “2i” signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation. smFISH in ESCs reveals two transcriptional states and highly stochastic expression Live-cell expression dynamics reveal the in situ transition rates between states DNA methylation regulates state-switching dynamics “2i” signaling inhibitors impact both gene expression noise and state transitions
Collapse
Affiliation(s)
- Zakary S Singer
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - John Yong
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julia Tischler
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jamie A Hackett
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alphan Altinok
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Biological Network Modeling Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Azim Surani
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Long Cai
- Program in Biochemistry and Molecular Biophysics and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Howard Hughes Medical Institute and Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
28
|
The role of DNA methylation: a challenge for the DOHaD paradigm in going beyond the historical debate. J Dev Orig Health Dis 2014; 6:2-4. [DOI: 10.1017/s2040174414000464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A heritage of considerable research into such phenomena as parental imprinting and carcinogenesis is an almost axiomatic association of the DNA methylation epigenetic mark with the silencing of gene expression. However, the increasing technical resolution afforded by burgeoning -omics technologies reveals that a more elaborate interaction may exist between DNA methylation, within sub-regions of gene structure and/or specific dinucleotide sites, and levels of gene activity. Furthermore, seminal observations from the field of DOHaD, which clearly define the alignment of sequential epigenetic modifications and gene activity appear not to support a strictly causal relationship between DNA methylation and gene silencing. The temporal element implicit within DOHaD studies provides a useful framework within which to further explore the role of epigenetic mechanisms and in particular perhaps, to address the question of ‘deterministic intent’ when implicating the epigenetic regulation of gene activity in the manifestation of phenotype.
Collapse
|
29
|
Lai J, Yang F, Zhang W, Wang Y, Xu J, Song W, Huang G, Gu J, Guan X. TAp73 and ΔNp73 have opposing roles in 5-aza-2'-deoxycytidine-induced apoptosis in breast cancer cells. Mol Cells 2014; 37:605-12. [PMID: 25134538 PMCID: PMC4145372 DOI: 10.14348/molcells.2014.0154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022] Open
Abstract
The p73 gene contains an extrinsic P1 promoter and an intrinsic P2 promoter, controlling the transcription of the pro-apoptotic TAp73 isoform and the anti-apoptotic ΔΝp73 isoform, respectively. The DNA methylation status of both promoters act equally in the epigenetic transcriptional regulation of their relevant isoforms. The aim of this study was to analyze the different effects of these p73 isoforms in 5-aza-2'-deoxycytidine (5-aza-dC)-induced apoptosis in breast cancer cells. We investigated the effects of the DNA demethylation agent, 5-aza-dC, on the T-47D breast cancer cell line, and evaluated the methylation status of the p73 promoters and expression of TAp73 and ΔNp73. Furthermore, we assessed the expression of p53 and p73 isoforms in 5-aza-dC-treated T-47D cells and p53 knockout cells. 5-aza-dC induced significant anti-tumor effects in T-47D cells, including inhibition of cell viability, G1 phase arrest and apoptosis. This was associated with p73 promoter demethylation and a concomitant increase in TAp73 mRNA and protein expression. In contrast, the methylation status of promoter P2 was not associated with ΔNp73 mRNA or protein levels. Furthermore, demethylation of P2 failed to inhibit the expression of ΔNp73 with 5-aza-dC in the p53 knockdown cell model. Our study suggests that demethylation of the P1 and P2 promoters has opposite effects on the expression of p73 isoforms, namely up-regulation of TAp73 and down-regulation of ΔΝp73. We also demonstrate that p53 likely contributes to 5-aza-dC-induced ΔNp73 transcriptional inactivation in breast cancer cells.
Collapse
Affiliation(s)
- Jing Lai
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, 510282,
China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002,
China
| | - Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002,
China
| | - Yanru Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, 510282,
China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002,
China
| | - Wei Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, 510282,
China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002,
China
| | - Jun Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002,
China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou, 510282,
China
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002,
China
| |
Collapse
|
30
|
Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet 2014; 45 Suppl 1:25-39. [PMID: 24990393 DOI: 10.1111/age.12168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/30/2022]
Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes.
Collapse
Affiliation(s)
- D A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
31
|
Laker RC, Lillard TS, Okutsu M, Zhang M, Hoehn KL, Connelly JJ, Yan Z. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 2014; 63:1605-11. [PMID: 24430439 PMCID: PMC5860829 DOI: 10.2337/db13-1614] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abnormal conditions during early development adversely affect later health. We investigated whether maternal exercise could protect offspring from adverse effects of a maternal high-fat diet (HFD) with a focus on the metabolic outcomes and epigenetic regulation of the metabolic master regulator, peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α). Female C57BL/6 mice were exposed to normal chow, an HFD, or an HFD with voluntary wheel exercise for 6 weeks before and throughout pregnancy. Methylation of the Pgc-1α promoter at CpG site -260 and expression of Pgc-1α mRNA were assessed in skeletal muscle from neonatal and 12-month-old offspring, and glucose and insulin tolerance tests were performed in the female offspring at 6, 9, and 12 months. Hypermethylation of the Pgc-1α promoter caused by a maternal HFD was detected at birth and was maintained until 12 months of age with a trend of reduced expression of Pgc-1α mRNA (P = 0.065) and its target genes. Maternal exercise prevented maternal HFD-induced Pgc-1α hypermethylation and enhanced Pgc-1α and its target gene expression, concurrent with amelioration of age-associated metabolic dysfunction at 9 months of age in the offspring. Therefore, maternal exercise is a powerful lifestyle intervention for preventing maternal HFD-induced epigenetic and metabolic dysregulation in the offspring.
Collapse
Affiliation(s)
- Rhianna C. Laker
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Travis S. Lillard
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Mitsuharu Okutsu
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Mei Zhang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Kyle L. Hoehn
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Jessica J. Connelly
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA
- Corresponding authors: Jessica J. Connelly, , and Zhen Yan,
| | - Zhen Yan
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA
- Corresponding authors: Jessica J. Connelly, , and Zhen Yan,
| |
Collapse
|
32
|
Deodati A, Inzaghi E, Liguori A, Puglianiello A, Germani D, Brufani C, Fintini D, Cappa M, Barbetti F, Cianfarani S. IGF2 methylation is associated with lipid profile in obese children. Horm Res Paediatr 2014; 79:361-7. [PMID: 23774180 DOI: 10.1159/000351707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/28/2013] [Indexed: 11/19/2022] Open
Abstract
AIM Our aim was to investigate the relationships between the degree of IGF2 methylation and the metabolic status in obese children and adolescents. SUBJECTS AND METHODS Eighty-five obese subjects aged 11.6 ± 2.1 years were studied. Anthropometry, metabolic parameters, blood pressure and body composition were assessed. DNA methylation analysis was performed by restriction enzyme digestion assay. The study population was subdivided into two groups according to the percentage of IGF2 cytidine-guanosine (CpG) island methylation. RESULTS Twenty-two subjects showed intermediate methylation (a percentage of CpG site methylation comprised between 10 and 60%), 56 were hypomethylated (percentage of methylation lower than 10%), and only 1 showed a high rate of hypermethylation (percentage of methylation above 60%). Children with intermediate methylation showed significantly higher levels of triglycerides (107.6 ± 41.99 vs. 76.6 ± 30.18 mg/dl, p < 0.005) and a higher triglyceride/high-density lipoprotein-cholesterol ratio (2.23 ± 0.98 vs. 1.79 ± 0.98, p < 0.02) compared with hypomethylated children. CONCLUSIONS These preliminary findings show for the first time a relationship between IGF2 methylation pattern and lipid profile in obese children. Although the correlation does not imply causation, if our findings are confirmed in further studies, IGF2 methylation might represent an epigenetic marker of metabolic risk.
Collapse
Affiliation(s)
- Annalisa Deodati
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Modified lentiviral LTRs allow Flp recombinase-mediated cassette exchange and in vivo tracing of "factor-free" induced pluripotent stem cells. Mol Ther 2014; 22:919-28. [PMID: 24434935 DOI: 10.1038/mt.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.
Collapse
|
34
|
Ma K, Song Y, Yang X, Zhang Z, Zhang D. Variation in genomic methylation in natural populations of chinese white poplar. PLoS One 2013; 8:e63977. [PMID: 23704963 PMCID: PMC3660595 DOI: 10.1371/journal.pone.0063977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/07/2013] [Indexed: 11/29/2022] Open
Abstract
Background It is thought that methylcytosine can be inherited through meiosis and mitosis, and that epigenetic variation may be under genetic control or correlation may be caused by neutral drift. However, DNA methylation also varies with tissue, developmental stage, and environmental factors. Eliminating these factors, we analyzed the levels and patterns, diversity and structure of genomic methylcytosine in the xylem of nine natural populations of Chinese white poplar. Principal Findings On average, the relative total methylation and non-methylation levels were approximately 26.567% and 42.708% (P<0.001), respectively. Also, the relative CNG methylation level was higher than the relative CG methylation level. The relative methylation/non-methylation levels were significantly different among the nine natural populations. Epigenetic diversity ranged from 0.811 (Gansu) to 1.211 (Shaanxi), and the coefficients of epigenetic differentiation (GST = 0.159) were assessed by Shannon’s diversity index. Co-inertia analysis indicated that methylation-sensitive polymorphism (MSP) and genomic methylation pattern (CG-CNG) profiles gave similar distributions. Using a between-group eigen analysis, we found that the Hebei and Shanxi populations were independent of each other, but the Henan population intersected with the other populations, to some degree. Conclusions Genome methylation in Populus tomentosa presented tissue-specific characteristics and the relative 5′-CCGG methylation level was higher in xylem than in leaves. Meanwhile, the genome methylation in the xylem shows great epigenetic variation and could be fixed and inherited though mitosis. Compared to genetic structure, data suggest that epigenetic and genetic variation do not completely match.
Collapse
Affiliation(s)
- Kaifeng Ma
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhiyi Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. FOOD SCIENCE AND HUMAN WELLNESS 2013. [DOI: 10.1016/j.fshw.2013.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Michael IP, Monetti C, Chiu AC, Zhang P, Baba T, Nishino K, Agha-Mohammadi S, Woltjen K, Sung HK, Nagy A. Highly efficient site-specific transgenesis in cancer cell lines. Mol Cancer 2012; 11:89. [PMID: 23231822 PMCID: PMC3537676 DOI: 10.1186/1476-4598-11-89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/06/2012] [Indexed: 01/13/2023] Open
Abstract
Background Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI) for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. Methods According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. Results Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate format. Conclusions The novel PhiC31-IMSI system described in this study represents a powerful tool that can facilitate the characterization of cancer-related genes.
Collapse
Affiliation(s)
- Iacovos P Michael
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiaomeng X, Ming Z, Jiezhi M, Xiaoling F. Aberrant histone acetylation and methylation levels in woman with endometriosis. Arch Gynecol Obstet 2012; 287:487-94. [PMID: 23080547 DOI: 10.1007/s00404-012-2591-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/01/2012] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the alterations in histone modifications in woman with endometriosis. METHODS Global histone H3/H4 acetylation and H3K4/H3K9 methylation in eutopic and ectopic endometrium from 15 endometriosis patients were assayed using the EpiQuik global histone H3/H4 acetylation and H3K4/H3K9 methylation assay kits. Quantitative real-time reverse transcriptase-polymerase chain reaction was applied to measure mRNA levels of 12 members of histone-related chromatin modifier genes. RESULTS Histone H4 hypoacetylation was detected both in eutopic and ectopic endometrium. There were no difference between patients with endometriosis and controls on global levels of H3 acetylation. Furthermore, global histone H3K4 hypomethylation and H3K9 hypomethylation were detected both in ectopic and eutopic endometrium (p < 0.001), and in ectopic endometrium (p < 0.001), respectively. SIRT1 mRNA level was significantly decreased in eutopic endometrium, while mRNA levels of HDAC1, SUV39H1, SUV39H2 and G9a were significantly downregulated in ectopic endometrium. HDAC2 mRNA level was significantly increased in eutopic endometrium. PCAF mRNA level was significantly increased in ectopic endometrium. CONCLUSIONS Aberrant histone modification may play an important role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Xia Xiaomeng
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha 410011, Hunan, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Zhang LJ, Pan B, Chen B, Zhang XF, Liang GJ, Feng YN, Wang LQ, Ma JM, Li L, Shen W. Expression and epigenetic dynamics of transcription regulator Lhx8 during mouse oogenesis. Gene 2012; 506:1-9. [PMID: 22796561 DOI: 10.1016/j.gene.2012.06.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/23/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
The spatial and temporal specific activation and inhibition of numerous genes are required for successful oogenesis which is precisely regulated by germ cell-related transcription factors, and appropriate epigenetic modifications, including DNA methylation, histone modification and other mechanisms that closely regulate the functional exertion of these transcription factors. In this study, we characterized the correlation between the expression and epigenetic dynamics of Lhx8, a germ cell specific transcription factor during mouse oogenesis. Immunohistochemistry, quantitative PCR and western blots were performed to localize and quantify the expressional characteristics of Lhx8 in oocytes of 13.5 dpc (day post coitum), 17.5 dpc, 0 dpp (day post partum), 3 dpp, 7 dpp and 14 dpp. The results showed that LHX8 protein was located in the nucleus of oocytes, and increasingly expressed during primordial follicle activation. Sequencing of bisulfite-converted genomic DNAs revealed that the methylation dynamics of Lhx8-3' was highly changeable but almost no change occurred in Lhx8-5'. ChIP-QPCR analysis showed that histone H3 acetylation of Lhx8 was also increased during primordial follicle assembly and activation. In conclusion, Lhx8 expression is related with the activation of primordial follicles, which is highly correlated with the demethylation of Lhx8-3' untranslated region and the high acetylation of histone H3.
Collapse
Affiliation(s)
- Lian-Jun Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
DNA methylation represents a form of genome annotation that mediates gene repression by serving as a maintainable mark that can be used to reconstruct silent chromatin following each round of replication. During development, germline DNA methylation is erased in the blastocyst, and a bimodal pattern is established anew at the time of implantation when the entire genome gets methylated while CpG islands are protected. This brings about global repression and allows housekeeping genes to be expressed in all cells of the body. Postimplantation development is characterized by stage- and tissue-specific changes in methylation that ultimately mold the epigenetic patterns that define each individual cell type. This is directed by sequence information in DNA and represents a secondary event that provides long-term expression stability. Abnormal methylation changes play a role in diseases, such as cancer or fragile X syndrome, and may also occur as a function of aging or as a result of environmental influences.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel.
| | | |
Collapse
|
40
|
Molfese DL. Advancing neuroscience through epigenetics: molecular mechanisms of learning and memory. Dev Neuropsychol 2012; 36:810-27. [PMID: 21978007 DOI: 10.1080/87565641.2011.606395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Humans share 96% of our 30,000 genes with Chimpanzees. The 1,200 genes that differ appear at first glance insufficient to describe what makes us human and them apes. However, we are now discovering that the mechanisms that regulate how genes are expressed tell a much richer story than our DNA alone. Sections of our DNA are constantly being turned on or off, marked for easy access, or secluded and hidden away, all in response to ongoing cellular activity. In the brain, neurons encode information-in effect memories-at the cellular level. Yet while memories may last a lifetime, neurons are dynamic structures. Every protein in the synapse undergoes some form of turnover, some with half-lives of only hours. How can a memory persist beyond the lifetimes of its constitutive molecular building blocks? Epigenetics-changes in gene expression that do not alter the underlying DNA sequence-may be the answer. In this article, epigenetic mechanisms including DNA methylation and acetylation or methylation of the histone proteins that package DNA are described in the context of animal learning. Through the interaction of these modifications a "histone code" is emerging wherein individual memories leave unique memory traces at the molecular level with distinct time courses. A better understanding of these mechanisms has implications for treatment of memory disorders caused by normal aging or diseases including schizophrenia, Alzheimer's, depression, and drug addiction.
Collapse
Affiliation(s)
- David L Molfese
- Department of Psychology, University of Houston, Houston, Texas 77204-5022, USA.
| |
Collapse
|
41
|
Abstract
The link between an adverse intrauterine environment and the development of disease later in life has been observed in offspring of pregnancies complicated by obesity and diabetes, but the molecular mechanisms underlying this phenomenon are unknown. In this review, we highlight recent publications exploring the role of gestational diabetes mellitus in the programming of disease in the offspring. We also review recent publications aiming to identify mechanisms responsible for the "programming effect" that results from exposure to diabetes in utero. Finally, we highlight research on the role of epigenetic regulation of gene expression in an animal model of uteroplacental insufficiency where the offspring develop diabetes as a model by which an exposure to the mother can alter epigenetic modifications that affect expression of key genes and ultimately lead to the development of diabetes in the offspring.
Collapse
Affiliation(s)
- Sara E Pinney
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
42
|
Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D. Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 2011; 43:1091-7. [PMID: 21964573 DOI: 10.1038/ng.946] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/25/2011] [Indexed: 12/12/2022]
Abstract
Cytosine methylation is a repressive, epigenetically propagated DNA modification. Although patterns of DNA methylation seem tightly regulated in mammals, it is unclear how these are specified and to what extent this process entails genetic or epigenetic regulation. To dissect the role of the underlying DNA sequence, we sequentially inserted over 50 different DNA elements into the same genomic locus in mouse stem cells. Promoter sequences of approximately 1,000 bp autonomously recapitulated correct DNA methylation in pluripotent cells. Moreover, they supported proper de novo methylation during differentiation. Truncation analysis revealed that this regulatory potential is contained within small methylation-determining regions (MDRs). MDRs can mediate both hypomethylation and de novo methylation in cis, and their activity depends on developmental state, motifs for DNA-binding factors and a critical CpG density. These results demonstrate that proximal sequence elements are both necessary and sufficient for regulating DNA methylation and reveal basic constraints of this regulation.
Collapse
Affiliation(s)
- Florian Lienert
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Chen C, Zhao M, Yin N, He B, Wang B, Yuan Y, Yu F, Hu J, Yin B, Lu Q. Abnormal histone acetylation and methylation levels in esophageal squamous cell carcinomas. Cancer Invest 2011; 29:548-56. [PMID: 21843048 DOI: 10.3109/07357907.2011.597810] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To investigate whether alterations in histone modifications occur in esophageal squamous cell carcinoma (ESCC), we measured histone H3/ H4 acetylation and H3K4/H3K27 methylation levels, as well as the expression of chromatin modifier genes in tumor and healthy esophageal tissue from ESCC patients. We found evidence of global H3 and H4 hypoacetylation, H3K4 and H3K27 hypermethylation in ESCC tissue. Both H3 hypoacetylation and H3K27 hypermethylation correlated with the severity and histological differentiation of the tumor, and H3K4 hypermethylation also correlated with tumor differentiation. Our results suggest that aberrant histone modifications may play an important role in the development and progression of ESCC.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Komori HK, LaMere SA, Torkamani A, Hart GT, Kotsopoulos S, Warner J, Samuels ML, Olson J, Head SR, Ordoukhanian P, Lee PL, Link DR, Salomon DR. Application of microdroplet PCR for large-scale targeted bisulfite sequencing. Genome Res 2011; 21:1738-45. [PMID: 21757609 DOI: 10.1101/gr.116863.110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytosine methylation of DNA CpG dinucleotides in gene promoters is an epigenetic modification that regulates gene transcription. While many methods exist to interrogate methylation states, few current methods offer large-scale, targeted, single CpG resolution. We report an approach combining bisulfite treatment followed by microdroplet PCR with next-generation sequencing to assay the methylation state of 50 genes in the regions 1 kb upstream of and downstream from their transcription start sites. This method yielded 96% coverage of the targeted CpGs and demonstrated high correlation between CpG island (CGI) DNA methylation and transcriptional regulation. The method was scaled to interrogate the methylation status of 77,674 CpGs in the promoter regions of 2100 genes in primary CD4 T cells. The 2100 gene library yielded 97% coverage of all targeted CpGs and 99% of the target amplicons.
Collapse
Affiliation(s)
- H Kiyomi Komori
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Herrera LA, Prada D, Andonegui MA, Dueñas-González A. The epigenetic origin of aneuploidy. Curr Genomics 2011; 9:43-50. [PMID: 19424483 PMCID: PMC2674307 DOI: 10.2174/138920208783884883] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
Theodore Boveri, eminent German pathologist, observed aneuploidy in cancer cells more than a century ago and suggested that cancer cells derived from a single progenitor cell that acquires the potential for uncontrolled continuous proliferation. Currently, it is well known that aneuploidy is observed in virtually all cancers. Gain and loss of chromosomal material in neoplastic cells is considered to be a process of diversification that leads to survival of the fittest clones. According to Darwin’s theory of evolution, the environment determines the grounds upon which selection takes place and the genetic characteristics necessary for better adaptation. This concept can be applied to the carcinogenesis process, connecting the ability of cancer cells to adapt to different environments and to resist chemotherapy, genomic instability being the driving force of tumor development and progression. What causes this genome instability? Mutations have been recognized for a long time as the major source of genome instability in cancer cells. Nevertheless, an alternative hypothesis suggests that aneuploidy is a primary cause of genome instability rather than solely a simple consequence of the malignant transformation process. Whether genome instability results from mutations or from aneuploidy is not a matter of discussion in this review. It is most likely both phenomena are intimately related; however, we will focus on the mechanisms involved in aneuploidy formation and more specifically on the epigenetic origin of aneuploid cells. Epigenetic inheritance is defined as cellular information—other than the DNA sequence itself—that is heritable during cell division. DNA methylation and histone modifications comprise two of the main epigenetic modifications that are important for many physiological and pathological conditions, including cancer. Aberrant DNA methylation is the most common molecular cancer-cell lesion, even more frequent than gene mutations; tumor suppressor gene silencing by CpG island promoter hypermethylation is perhaps the most frequent epigenetic modification in cancer cells. Epigenetic characteristics of cells may be modified by several factors including environmental exposure, certain nutrient deficiencies, radiation, etc. Some of these alterations have been correlated with the formation of aneuploid cells in vivo. A growing body of evidence suggests that aneuploidy is produced and caused by chromosomal instability. We propose and support in this manuscript that not only genetics but also epigenetics, contribute in a major fashion to aneuploid cell formation.
Collapse
Affiliation(s)
- Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer (UIBC)-Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBM)-Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | |
Collapse
|
46
|
Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF, MeCP1, and hnRNP C1/C2. Mol Cell Biol 2011; 31:3472-84. [PMID: 21690294 DOI: 10.1128/mcb.05587-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional silencing selectively impedes gene expression. Silencing is often accompanied by replication delay and can be prevented by replicator sequences. Here we report a replicator-binding protein complex involved in the prevention of transcriptional silencing. The protein complex interacts with an essential asymmetric region within the human β-globin Rep-P replicator and includes hnRNP C1/C2, SWI/SNF complex, and MeCP1, which are members of the locus control region (LCR)-associated remodeling complex (LARC). Interaction between LARC and Rep-P prevented transcriptional silencing and replication delay. Transgenes that did not contain the asymmetric LARC-binding region of Rep-P replicated late and exhibited stable silencing that could not be affected by a DNA methylation inhibitor. In contrast, transgenes that contain a mutation of the asymmetric region of Rep-P that could not bind LARC exhibited a silent state that could transiently be reactivated by DNA demethylation. The effect of DNA demethylation was transient, and prolonged exposure to a methylation inhibitor induced distinct, stable, methylation-independent silencing. These observations suggest that the interaction of LARC complex with replicators plays a role in preventing gene silencing and provides support for a novel, epigenetic mechanism of resistance to methylation inhibitors.
Collapse
|
47
|
The transposon-driven evolutionary origin and basis of histone deacetylase functions and limitations in disease prevention. Clin Epigenetics 2011; 2:97-112. [PMID: 22704332 PMCID: PMC3365375 DOI: 10.1007/s13148-011-0020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/03/2011] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylases (HDACs) are homologous to prokaryotic enzymes that removed acetyl groups from non-histone proteins before the evolution of eukaryotic histones. Enzymes inherited from prokaryotes or from a common ancestor were adapted for histone deacetylation, while useful deacetylation of non-histone proteins was selectively retained. Histone deacetylation served to prevent transcriptions with pathological consequences, including the expression of viral DNA and the deletion or dysregulation of vital genes by random transposon insertions. Viruses are believed to have evolved from transposons, with transposons providing the earliest impetus of HDAC evolution. Because of the wide range of genes potentially affected by transposon insertions, the range of diseases that can be prevented by HDACs is vast and inclusive. Repressive chromatin modifications that may prevent transcription also include methylation of selective lysine residues of histones H3 and H4 and the methylation of selective DNA cytosines following specific histone lysine methylation. Methylation and acetylation of individual histone residues are mutually exclusive. While transposons were sources of disease to be prevented by HDAC evolution, they were also the source of numerous and valuable coding and regulatory sequences recruited by “molecular domestication.” Those sequences contribute to evolved complex transcription regulation in which components with contradictory effects, such as HDACs and HATs, may be coordinated and complementary. Within complex transcription regulation, however, HDACs remain ineffective as defense against some critical infectious and non-infectious diseases because evolutionary compromises have rendered their activity transient.
Collapse
|
48
|
Rowe HM, Trono D. Dynamic control of endogenous retroviruses during development. Virology 2011; 411:273-87. [PMID: 21251689 DOI: 10.1016/j.virol.2010.12.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 02/07/2023]
Abstract
Close to half of the human genome encompasses mobile genetic elements, most of which are retrotransposons. These genetic invaders are formidable evolutionary forces that have shaped the architecture of the genomes of higher organisms, with some conserving the ability to induce new integrants within their hosts' genome. Expectedly, the control of endogenous retroviruses is tight and multi-pronged. It is most crucially established in the germ line and during the first steps of embryogenesis, primarily through transcriptional mechanisms that have likely evolved under their very pressure, but are now engaged in controlling gene expression at large, notably during early development.
Collapse
Affiliation(s)
- Helen M Rowe
- National Program, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
49
|
Abstract
Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.
Collapse
|
50
|
A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis. Anal Bioanal Chem 2010; 399:3459-64. [DOI: 10.1007/s00216-010-4137-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 02/03/2023]
|