1
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
2
|
Gao WQ, Ma J, Sun LL, Li Q, Zhu RY, Jin J. Paclitaxel-mediated human aryl hydrocarbon receptor mRNA translation by an internal ribosomal entry site-dependent mechanism. Oncol Rep 2017; 38:3211-3219. [PMID: 29048649 DOI: 10.3892/or.2017.5958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known in mediating the toxicities of dioxins and dioxin-like compounds. AHR is activated by a variety of endogenous ligands and participating in tumor development. Thus, it will provide a new approach for cancer prevention and treatment to study the translation mechanism of AHR in tumor cells. In this study, we show that the 5'-untranslated region (UTR) of AHR mRNA contains an internal ribosome entry site (IRES). After mapping the entire AHR 5'-UTR, we determined that the full-length 5'-UTR is indispensable for the highest IRES activity. Interestingly, we found that AHR expression is induced in ovarian (A2780), breast (MDA-MB231), hepatic (Bel7402) and colorectal cancer cells (SW620) by chemotherapeutic drug paclitaxel (PTX) through IRES-dependent translation mechanism. Moreover, IRES activity is increased in the PTX-resistant ovarian cancer cells in which AHR protein expression was also enhanced. These results strongly suggest an important role for AHR IRES-dependent translation mechanism in cancer cell response to paclitaxel treatment.
Collapse
Affiliation(s)
- Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jing Ma
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liu-Liu Sun
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
3
|
Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci U S A 2017; 114:1045-1050. [PMID: 28096332 DOI: 10.1073/pnas.1616112114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleolus, a dynamic nuclear compartment long regarded as the cell ribosome factory, is emerging as an important player in the regulation of cell survival and recovery from stress. In larger eukaryotes, the stress-induced transcriptional response is mediated by a family of heat-shock transcription factors. Among these, HSF1, considered the master regulator of stress-induced transcriptional responses, controls the expression of cytoprotective heat shock proteins (HSPs), molecular chaperones/cochaperones constituting a major component of the cell protein quality control machinery essential to circumvent stress-induced degradation and aggregation of misfolded proteins. Herein we identify human NF-κB repressing factor (NKRF) as a nucleolar HSP essential for nucleolus homeostasis and cell survival under proteotoxic stress. NKRF acts as a thermosensor translocating from the nucleolus to the nucleoplasm during heat stress; nucleolar pools are replenished during recovery upon HSF1-mediated NKRF resynthesis. Silencing experiments demonstrate that NKRF is an unconventional HSP crucial for correct ribosomal RNA (rRNA) processing and preventing aberrant rRNA precursors and discarded fragment accumulation. These effects are mediated by NKRF interaction with the 5'-to-3' exoribonuclease XRN2, a key coordinator of multiple pre-rRNA cleavages, driving mature rRNA formation and discarded rRNA decay. Under stress conditions, NKRF directs XRN2 nucleolus/nucleoplasm trafficking, controlling 5'-to-3' exoribonuclease nucleolar levels and regulating rRNA processing. Our study reveals a different aspect of rRNA biogenesis control in human cells and sheds light on a sophisticated mechanism of nucleolar homeostasis surveillance during stress.
Collapse
|
4
|
Li Q, Gao WQ, Dai WY, Yu C, Zhu RY, Jin J. ATF2 translation is induced under chemotherapeutic drug-mediated cellular stress via an IRES-dependent mechanism in human hepatic cancer Bel7402 cells. Oncol Lett 2016; 12:4795-4802. [PMID: 28105187 DOI: 10.3892/ol.2016.5274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
Activating transcription factor (ATF) 2 is a member of the ATF/cyclic AMP-responsive element binding protein family, which exhibits both oncogenic and tumor-suppressor functions. In our preliminary experiments, it was observed that the expression of the ATF2 protein was induced following treatment with adriamycin (ADR) and paclitaxel (PTX), which may be regulated by internal ribosome entry segment (IRES)-mediated translation. By constructing a bicistronic vector containing the ATF2 5'-untranslated region (UTR), it was demonstrated that the ATF2 5'-UTR contains an IRES and maps a 30-nucleotide (nt) sequence (from nt 299 to nt ~269), which was essential for the IRES activity. The ATF2 IRES activity exhibited significant variation in different cell lines. In addition, it was observed that ADR and PTX also induced ATF2 IRES activity in Bel7402 cells. The present study has demonstrated that ATF2 translation is initiated via IRES, which is upregulated by ADR and PTX, thus suggesting that the regulation of the IRES-dependent translation of ATF2 may be involved in effecting the cancer cell response to chemotherapeutic drugs-mediated cellular stress.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wen-Yan Dai
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chuang Yu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
5
|
Gao W, Li Q, Zhu R, Jin J. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition. Int J Mol Sci 2016; 17:E1174. [PMID: 27447629 PMCID: PMC4964545 DOI: 10.3390/ijms17071174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
The function of ribosome binding protein 1 (RRBP1) is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5' untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5' UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES). Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La), which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5' UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions.
Collapse
Affiliation(s)
- Wenqing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Ruiyu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Rother S, Bartels M, Schweda AT, Resch K, Pallua N, Nourbakhsh M. NF‐κB‐repressing factor phosphorylation regulates transcription elongation
via
its interactions with 5'→3' exoribonuclease 2 and negative elongation factor. FASEB J 2015; 30:174-85. [DOI: 10.1096/fj.15-270256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Sascha Rother
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | - Myriam Bartels
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | | | - Klaus Resch
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn CenterRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen University HospitalAachenGermany
| | - Mahtab Nourbakhsh
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn CenterRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen University HospitalAachenGermany
| |
Collapse
|
7
|
Nucleotide composition of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional mitotic regulon. Mol Cell Biol 2012; 33:307-18. [PMID: 23129811 DOI: 10.1128/mcb.00546-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vast majority of cellular mRNAs initiate their translations through a well-defined mechanism of ribosome recruitment that occurs at the 5'-terminal 7-methylguanosine cap with the help of several canonical protein factors. A subset of cellular and viral mRNAs contain regulatory motifs in their 5' untranslated regions (UTRs), termed internal ribosome entry sites (IRES), that sidestep this canonical mode of initiation. On cellular mRNAs, this mechanism requires IRES trans-acting protein factors (ITAFs) that facilitate ribosome recruitment downstream of the cap. While several ITAFs and their target mRNAs have been empirically identified, the in silico prediction of targets has proved difficult. Here, we report that a high AU content (>60%) of the IRES-containing 5' UTRs serves as an excellent predictor of dependence on NF45, a recently identified ITAF. Moreover, we provide evidence that cells deficient in NF45 ITAF activity exhibit reduced IRES-mediated translation of X-linked inhibitor of apoptosis protein (XIAP) and cellular inhibitor of apoptosis protein 1 (cIAP1) mRNAs that, in turn, leads to dysregulated expression of their respective targets, survivin and cyclin E. This specific defect in IRES translation explains in part the cytokinesis impairment and senescence-like phenotype observed in HeLa cells expressing NF45 RNA interference (RNAi). This study uncovers a novel role for NF45 in regulating ploidy and highlights the importance of IRES-mediated translation in cellular homeostasis.
Collapse
|
8
|
Gene expression profile of NFκB repressing factor (NKRF) knockdown cells by microarray analysis. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Reboll MR, Ritter B, Sasse F, Niggemann J, Frank R, Nourbakhsh M. The myxobacterial compounds spirangien a and spirangien M522 are potent inhibitors of IL-8 expression. Chembiochem 2012; 13:409-15. [PMID: 22271561 DOI: 10.1002/cbic.201100635] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 11/07/2022]
Abstract
Elevated expression of interleukin-8 (IL-8) has been implicated in inflammatory diseases, in tumor growth, and in angiogenesis. The aim of this study was to identify natural or synthetic compounds that suppress IL-8 production in response to interleukin-1 (IL-1), the natural inflammatory stimulus of the IL-8 gene. We therefore developed an IL-1-inducible cell-based screening assay by stable integration of an IL-8 reporter gene into HeLa S3 cells. The screening of heterogeneous compound libraries revealed several compounds that displayed an inhibitory effect on the reporter gene expression. Following hit validation, we focused on the most efficient compound, spirangien A, and its chemical derivate spirangien M522. Detailed analysis shows that both compounds are potent inhibitors of the endogenous IL-8 gene transcription. Furthermore, both compounds decelerate the phosphorylation and degradation of IκBα, the key regulator of the IL-1-stimulated NF-κB signaling pathway. Our study has identified the two spirangiens A and M522 as potent inhibitors of IL-1/NF-κB-mediated IL-8 gene expression.
Collapse
Affiliation(s)
- Marc René Reboll
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Burkart C, Fan JB, Zhang DE. Two independent mechanisms promote expression of an N-terminal truncated USP18 isoform with higher DeISGylation activity in the nucleus. J Biol Chem 2011; 287:4883-93. [PMID: 22170061 DOI: 10.1074/jbc.m111.255570] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expression of the ISG15 specific protease USP18 is highly induced by type I interferons. The two main functions of USP18, i.e. its enzymatic activity and down-regulation of type I interferon signaling, are well characterized. However, to date all functional studies focused on full-length USP18. Here, we report that translation of human USP18 is initiated by a rare start codon (CUG). Usage of this non-canonical initiation site with its weak translation initiation efficiency promotes expression of an N-terminal truncated isoform (USP18-sf). In addition, an internal ribosome entry site (IRES) located in the 5'-coding region of USP18 also contributes to translation of USP18-sf. Functionally, both isoforms exhibit enzymatic activity and interfere with type I interferon signaling. However, USP18-sf shows different subcellular distribution compared with the full-length protein and enhanced deISGylation activity in the nucleus. Taken together, we report the existence of an N-terminal truncated isoform of USP18, whose expression is controlled on translational level by two independent mechanisms providing translational flexibility as well as cell type-specific resistance to inhibition of cap-dependent translation.
Collapse
Affiliation(s)
- Christoph Burkart
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
11
|
JKTBP1 Is Involved in Stabilization and IRES-Dependent Translation of NRF mRNAs by Binding to 5′ and 3′ Untranslated Regions. J Mol Biol 2011; 407:492-504. [DOI: 10.1016/j.jmb.2011.01.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/15/2022]
|
12
|
In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Gene Ther 2011; 18:631-6. [PMID: 21368899 DOI: 10.1038/gt.2011.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bicistronic vectors are essential to achieve efficient expression of multiple genes in gene therapy protocols and biomedical applications. Internal ribosome entry site (IRES) elements have been utilized to initiate expression of an additional protein from a bicistronic vector. The IRES element commonly used in current bicistronic vectors originates from the encephalomyocarditis virus (EMCV). As IRES-mediated translation is dependent on availability of IRES trans-acting factors, which vary between cell types and species, adequate gene expression from the EMCV IRES element is not always achieved. To identify a novel IRES element that mediates gene expression consistently with a higher efficiency than the EMCV IRES, we tested 13 bicistronic reporter constructs containing different viral and cellular IRES elements. The in vitro screening in human and mouse fibroblast and hepatocarcinoma cells revealed that the vascular endothelial growth factor and type 1 collagen-inducible protein (VCIP) IRES was the only IRES element that directed translation more efficiently than the EMCV IRES in all cell lines. Furthermore, the VCIP IRES initiated greater reporter expression levels than the EMCV IRES in transfected mouse livers. These results suggest that VCIP-IRES containing vectors improve gene expression compared with those harboring an EMCV-IRES. This could increase the potential benefits of bicistronic vectors for experimental and therapeutic purposes.
Collapse
|
13
|
Nehlsen K, Schucht R, da Gama-Norton L, Krömer W, Baer A, Cayli A, Hauser H, Wirth D. Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol 2009; 9:100. [PMID: 20003421 PMCID: PMC2804664 DOI: 10.1186/1472-6750-9-100] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 12/14/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. Further, this allows to evaluate the impact of chromosomal surroundings on distinct vector constructs. RESULTS We explored antibody expression upon targeting diverse expression constructs into previously tagged loci in CHO-K1 and HEK293 cells that exhibit high reporter gene expression. These loci were selected by random transfer of reporter cassettes and subsequent screening. Both, retroviral infection and plasmid transfection with eGFP or antibody expression cassettes were employed for tagging. The tagged cell clones were screened for expression and single copy integration. Cell clones producing > 20 pg/cell in 24 hours could be identified. Selected integration sites that had been flanked with heterologous recombinase target sites (FRTs) were targeted by Flp recombinase mediated cassette exchange (RMCE). The results give proof of principle for consistent protein expression upon RMCE. Upon targeting antibody expression cassettes 90-100% of all resulting cell clones showed correct integration. Antibody production was found to be highly consistent within the individual cell clones as expected from their isogenic nature. However, the nature and orientation of expression control elements revealed to be critical. The impact of different promoters was examined with the tag-and-targeting approach. For each of the chosen promoters high expression sites were identified. However, each site supported the chosen promoters to a different extent, indicating that the strength of a particular promoter is dominantly defined by its chromosomal context. CONCLUSION RMCE provides a powerful method to specifically design vectors for optimized gene expression with high accuracy. Upon considering the specific requirements of chromosomal sites this method provides a unique tool to exploit such sites for predictable expression of biotechnologically relevant proteins such as antibodies.
Collapse
|
14
|
Nehlsen K, Herrmann S, Zauers J, Hauser H, Wirth D. Toxin-antitoxin based transgene expression in mammalian cells. Nucleic Acids Res 2009; 38:e32. [PMID: 20007149 PMCID: PMC2836568 DOI: 10.1093/nar/gkp1140] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term, recombinant gene expression in mammalian cells depends on the nature of the transgene integration site and its inherent properties to modulate transcription (epigenetic effects). Here we describe a method by which high transgene expression is achieved and stabilized in extensively proliferating cultures. The method is based on strict co-expression of the transgene with an antitoxin in cells that express the respective toxin. Since the strength of antitoxin expression correlates with an advantage for cell growth, the cells with strong antitoxin expression are enriched over time in cultures of heterogeneous cells. This principle was applied to CHO cell lines that conditionally express the toxin kid and that are transduced to co-express the antitoxin kis together with different transgenes of interest. Cultivation of pools of transfectants that express the toxin steadily increase their transgene expression within several weeks to reach a maximum that is up to 120-fold over the initial status. In contrast, average transgene expression drops in the absence of toxin expression. Together, we show that cells conditionally expressing kid can be employed to create overexpressing cells by a simple coupling of kis to the transgene of interest, without further manipulation and in absence of selectable drugs.
Collapse
Affiliation(s)
- K Nehlsen
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
15
|
Nishijo K, Hosoyama T, Bjornson CRR, Schaffer BS, Prajapati SI, Bahadur AN, Hansen MS, Blandford MC, McCleish AT, Rubin BP, Epstein JA, Rando TA, Capecchi MR, Keller C. Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J 2009; 23:2681-90. [PMID: 19332644 DOI: 10.1096/fj.08-128116] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bioluminescent reporter genes are sensitive in situ tools for following disease progression in preclinical models, albeit they are subject to scattering and absorption in deep tissues. We have generated a bicistronic Cre/LoxP reporter mouse line that pairs the expression of firefly luciferase with quantifiable expression of a human placental alkaline phosphatase that is secreted into the serum (SeAP). With the use of this dual-modality bioreporter with a novel, inducible Pax7-CreER line for tracking muscle satellite cells, we demonstrate the longitudinal kinetics of muscle stem cell turnover, accounting for a doubling of the signal from satellite cell and progeny every 3.93 wk in the transition from adolescence to early adulthood. We also show that this dual-modality bioreporter can be incorporated in preclinical cancer models, whereby SeAP activity is reflective of tumor burden. Thus, this dual bioreporter permits both spatial localization and accurate quantification of biological processes in vivo even when the tissue of interest is deep within the animal.
Collapse
Affiliation(s)
- Koichi Nishijo
- Greehey Children's Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vismara G, Simonini F, Onesto E, Bignamini M, Miceli V, Martini L, Poletti A. Androgens inhibit androgen receptor promoter activation in motor neurons. Neurobiol Dis 2009; 33:395-404. [DOI: 10.1016/j.nbd.2008.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/17/2008] [Accepted: 11/14/2008] [Indexed: 11/25/2022] Open
|
17
|
Ul-Hussain M, Dermietzel R, Zoidl G. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein. BMC Mol Biol 2008; 9:92. [PMID: 18947383 PMCID: PMC2579433 DOI: 10.1186/1471-2199-9-92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/23/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Connexin55.5 (Cx55.5) is a gap junction protein with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the receptor-horizontal cell complex in form of hemichannels where light-dependent plasticity occurs. This connexin is the first example of a gap junction protein processed to form two protein isoforms from a monocistronic message by an IRES mediated process. The nuclear occurrence of a carboxy-terminal fragment of this protein provides evidence that this gap junction protein may participate in a putative cytoplasmic to nuclear signal transfer. RESULTS We characterized the IRES element of Cx55.5 in terms of sequence elements necessary for its activity and protein factor(s), which may play a role for its function. Two stretches of polypyrimidine tracts designated PPT1 and PPT2 which influence the IRES activity of this neuronal gap junction protein were identified. Selective deletion of PPT1 results in an appreciable decrease of the IRES activity, while the deletion of PPT2 results in a complete loss. RNA-EMSA and UV-cross linking experiments showed that protein complexes bind to this IRES element, of which the polypyrimidine tract binding protein (PTB) was identified as one of the interacting partners with influence on IRES activity. These results indicate that PTB conveys a role in the regulation of the IRES activity of Cx55.5. CONCLUSION Our findings indicate that the activity of the IRES element of the neuronal gap junction protein Cx55.5 is subject of regulation through flanking polypyrimidine tracts, and that the non-canonical trans-activation factor PTB plays an essential role in this process. This observation is of considerable importance and may provide initial insight into molecular-functional relationships of electrical coupling in horizontal cells.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
18
|
Contribution of internal initiation to translation of cellular mRNAs containing IRESs. Biochem Soc Trans 2008; 36:694-7. [DOI: 10.1042/bst0360694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A broad range of cellular stresses lead to the inhibition of translation. Despite this, some cellular mRNAs are selectively translated under these conditions. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired. However, in spite of a large number of reports focused on the investigation of the regulation of IRES (internal ribosome entry site) activity in different tissues and under various stresses, only rarely is the real efficiency of IRES-driven translation in comparison with cap-dependent translation evaluated. When precisely measured, the efficiencies of candidate IRESs in most cases appeared to be very low and not sufficient to compensate for the reduction of cap-dependent initiation under stresses. The usually low efficiency of internal initiation of translation is inconsistent with postulated biological roles of IRESs.
Collapse
|
19
|
D'Aiuto L, Robison CS, Gigante M, Nwanegbo E, Shaffer B, Sukhwani M, Castro CA, Chaillet JR. Human IL-12 p40 as a reporter gene for high-throughput screening of engineered mouse embryonic stem cells. BMC Biotechnol 2008; 8:52. [PMID: 18522747 PMCID: PMC2442052 DOI: 10.1186/1472-6750-8-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Establishing a suitable level of exogenous gene expression in mammalian cells in general, and embryonic stem (ES) cells in particular, is an important aspect of understanding pathways of cell differentiation, signal transduction and cell physiology. Despite its importance, this process remains challenging because of the poor correlation between the presence of introduced exogenous DNA and its transcription. Consequently, many transfected cells must be screened to identify those with an appropriate level of expression. To improve the screening process, we investigated the utility of the human interleukin 12 (IL-12) p40 cDNA as a reporter gene for studies of mammalian gene expression and for high-throughput screening of engineered mouse embryonic stem cells. RESULTS A series of expression plasmids were used to study the utility of IL-12 p40 as an accurate reporter of gene activity. These studies included a characterization of the IL-12 p40 expression system in terms of: (i) a time course of IL-12 p40 accumulation in the medium of transfected cells; (ii) the dose-response relationship between the input DNA and IL-12 p40 mRNA levels and IL-12 p40 protein secretion; (iii) the utility of IL-12 p40 as a reporter gene for analyzing the activity of cis-acting genetic elements; (iv) expression of the IL-12 p40 reporter protein driven by an IRES element in a bicistronic mRNA; (v) utility of IL-12 p40 as a reporter gene in a high-throughput screening strategy to identify successful transformed mouse embryonic stem cells; (vi) demonstration of pluripotency of IL-12 p40 expressing ES cells in vitro and in vivo; and (vii) germline transmission of the IL-12 p40 reporter gene. CONCLUSION IL-12 p40 showed several advantages as a reporter gene in terms of sensitivity and ease of the detection procedure. The IL-12 p40 assay was rapid and simple, in as much as the reporter protein secreted from the transfected cells was accurately measured by ELISA using a small aliquot of the culture medium. Remarkably, expression of Il-12 p40 does not affect the pluripotency of mouse ES cells. To our knowledge, human IL-12 p40 is the first secreted reporter protein suitable for high-throughput screening of mouse ES cells. In comparison to other secreted reporters, such as the widely used alkaline phosphatase (SEAP) reporter, the IL-12 p40 reporter system offers other real advantages.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Cell Biology and Physiology, Pittsburgh Development Center, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ul-Hussain M, Zoidl G, Klooster J, Kamermans M, Dermietzel R. IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro. BMC Mol Biol 2008; 9:52. [PMID: 18505575 PMCID: PMC2435236 DOI: 10.1186/1471-2199-9-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 05/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes of the interneuronal coupling mediated by electrical synapse proteins in response to light adaptation and receptive field shaping are a paramount feature in the photoreceptor/horizontal cell/bipolar cell (PRC/HC/BPC) complex of the outer retina. The regulation of these processes is not fully understood at the molecular level but they may require information transfer to the nucleus by locally generated messengers. Electrical synapse proteins may comprise a feasible molecular determinant in such an information-laden signalling pathway. RESULTS Connexin55.5 (Cx55.5) is a connexin with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the PRC/HC/BPC complex in form of hemichannels where light-dependent plasticity occurs. Here we provide evidence for the generation of a carboxy-terminal domain of Cx55.5. The protein product is translated from the Cx55.5 mRNA by internal translation initiation from an in-frame ATG codon involving a putative internal ribosome entry site (IRES) element localized in the coding region of Cx55.5. This protein product resembling an 11 kDa domain of Cx55.5 is partially located in the nucleus in vivo and in vitro. CONCLUSION Our results demonstrate the generation of a second protein from the coding region of Cx55.5 by an IRES mediated process. The nuclear occurrence of a fraction of this protein provides first evidence that this electrical synapse protein may participate in a putative cytoplasmic to nuclear signal transfer. This suggests that Cx55.5 could be involved in gene regulation making structural plasticity at the PRC/HC/BPC complex feasible.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, University Street 150, D-44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
21
|
Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc Natl Acad Sci U S A 2008; 105:4733-8. [PMID: 18326627 DOI: 10.1073/pnas.0710650105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A growing number of cellular mRNAs are thought to possess internal ribosome entry sites (IRESs), sequences that permit translation of a transcript independent of its 5' end and cap structure. Although dicistronic assays are the canonical method of testing sequences for IRES activity, they may produce false-positive results if unanticipated monocistronic RNAs arise from the dicistronic construct used. Using a dicistronic reporter system and a green fluorescent protein-tagged retrovirus to evaluate six previously reported cellular IRESs, we found that four contain 3' splice sites whose activity was required for apparent IRES function and which resulted in formation of monocistronic transcripts by splicing. Bioinformatic analysis revealed that the 3' splice sites identified in three of these putative IRESs are used in their native mRNAs and that the fourth is likely an artifactual sequence created during cDNA cloning. Our findings demonstrate a need for reexamination of other reported cellular IRESs by using careful RNA structural analysis to rule out splicing as the source of perceived IRES activity.
Collapse
|
22
|
Li X, Leder P. Identifying genes preferentially expressed in undifferentiated embryonic stem cells. BMC Cell Biol 2007; 8:37. [PMID: 17725840 PMCID: PMC1995199 DOI: 10.1186/1471-2121-8-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 08/28/2007] [Indexed: 12/28/2022] Open
Abstract
Background The mechanism involved in the maintenance and differentiation of embryonic stem (ES) cells is incompletely understood. Results To address this issue, we have developed a retroviral gene trap vector that can target genes expressed in undifferentiated ES cells. This gene trap vector harbors both GFP and Neo reporter genes. G-418 drug resistance was used to select ES clones in which the vector was integrated into transcriptionally active loci. This was then followed by GFP FACS profiling to identify ES clones with reduced GFP fluorescence and, hence, reduced transcriptional activity when ES cells differentiate. Reduced expression of the GFP reporter in six of three hundred ES clones in our pilot screening was confirmed to be down-regulated by Northern blot analysis during ES cell differentiation. These six ES clones represent four different genes. Among the six integration sites, one was at Zfp-57 whose gene product is known to be enriched in undifferentiated ES cells. Three were located in an intron of a novel isoform of CSL/RBP-Jkappa which encodes the key transcription factor of the LIN-12/Notch pathway. Another was inside a gene that may encode noncoding RNA transcripts. The last integration event occurred at a locus that may harbor a novel gene. Conclusion Taken together, we demonstrate the use of a novel retroviral gene trap vector in identifying genes preferentially expressed in undifferentiated ES cells.
Collapse
Affiliation(s)
- Xiajun Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Philip Leder
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Dhar D, Roy S, Das S. Translational control of the interferon regulatory factor 2 mRNA by IRES element. Nucleic Acids Res 2007; 35:5409-21. [PMID: 17698501 PMCID: PMC2018642 DOI: 10.1093/nar/gkm524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translational control represents an important mode of regulation of gene expression under stress conditions. We have studied the translation of interferon regulatory factor 2 (IRF2) mRNA, a negative regulator of transcription of interferon-stimulated genes and demonstrated the presence of internal ribosome entry site (IRES) element in the 5′UTR of IRF2 RNA. Various control experiments ruled out the contribution of leaky scanning, cryptic promoter activity or RNA splicing in the internal initiation of IRF2 RNA. It seems IRF2-IRES function is not sensitive to eIF4G cleavage, since its activity was only marginally affected in presence of Coxsackievirus 2A protease. Interferon α treatment did not affect the IRF2-IRES activity or the protein level significantly. Also, in cells treated with tunicamycin [an agent causing endoplasmic reticulum (ER) stress], the IRF2-IRES activity and the protein levels were unaffected, although the cap-dependent translation was severely impaired. Analysis of the cellular protein binding with the IRF2-IRES suggests certain cellular factors, which might influence its function under stress conditions. Interestingly, partial knockdown of PTB protein significantly inhibited the IRF2-IRES function. Taken together, it appears that IRF2 gene expression during stress condition is controlled by the IRES element, which in turn influences the cellular response.
Collapse
Affiliation(s)
| | | | - Saumitra Das
- *To whom correspondence should be addressed. +91 80 293 2886+91 80 360 2697
| |
Collapse
|
24
|
Reboll MR, Oumard A, Gazdag AC, Renger I, Ritter B, Schwarzer M, Hauser H, Wood M, Yamada M, Resch K, Nourbakhsh M. NRF IRES activity is mediated by RNA binding protein JKTBP1 and a 14-nt RNA element. RNA (NEW YORK, N.Y.) 2007; 13:1328-40. [PMID: 17592041 PMCID: PMC1924892 DOI: 10.1261/rna.545407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mRNA of human NF-kappaB repressing factor (NRF) contains a long 5'-untranslated region (UTR) that directs ribosomes to the downstream start codon by a cap-independent mechanism. Comparison of the nucleotide (nt) sequences of human and mouse NRF mRNAs reveals a high degree of identity throughout a fragment of 150 nt proximal to the start codon. Here, we show that this region constitutes a minimal internal ribosome entry segment (IRES) module. Enzymatic RNA structure analysis reveals a secondary structure model of the NRF IRES module. Point mutation analysis of the module determines a short, 14-nt RNA element (nt 640-653) as a mediator of IRES function. Purification of IRES binding cellular proteins and subsequent ESI/MS/MS sequence analysis led to identification of the RNA-binding protein, JKTBP1. EMSA experiments show that JKTBP1 binds upstream to the 14-nt RNA element in the NRF IRES module (nt 579-639). Over-expression of JKTBP1 significantly enhances activity of the NRF IRES module in dicistronic constructs. Moreover, siRNA experiments demonstrate that down-regulation of endogenous JKTBP1 decreases NRF IRES activity and the level of endogenous NRF protein. The data of this study show that JKTBP1 and the 14-nt element act independently to mediate NRF IRES activity.
Collapse
Affiliation(s)
- Marc René Reboll
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Baird SD, Lewis SM, Turcotte M, Holcik M. A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 2007; 35:4664-77. [PMID: 17591613 PMCID: PMC1950536 DOI: 10.1093/nar/gkm483] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 01/01/2023] Open
Abstract
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5'UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5'UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function.
Collapse
Affiliation(s)
- Stephen D. Baird
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Stephen M. Lewis
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Marcel Turcotte
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Martin Holcik
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| |
Collapse
|
26
|
Yamaguchi K, Itoh K, Masuda T, Umemura A, Baum C, Itoh Y, Okanoue T, Fujita J. In vivo selection of transduced hematopoietic stem cells and little evidence of their conversion into hepatocytes in vivo. J Hepatol 2006; 45:681-7. [PMID: 16837099 DOI: 10.1016/j.jhep.2006.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/29/2006] [Accepted: 04/14/2006] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS FMEV-type retroviral vector provides high transgene expression in hepatocytes and hematopoietic stem cells (HSCs). Here, we examined whether these vectors could provide a sufficient drug-resistance gene expression in HSCs and whether transduced HSCs could differentiate into hepatocytes in vivo. METHODS The CD45(+)/Lin(-) cells were transduced in vitro by FMEV-type vectors containing human O(6)-methylguanine-DNA methyltransferase (MGMT)/reporter genes and transferred into recipient mice. After the treatment with temozolomide and O(6)-benzylguanine (TMZ/BG) in vivo, we analyzed the transgene expression in peripheral blood cells by flow-cytometry. Immunohistochemistry was performed on the liver slices in partial hepatectomized recipient mice. RESULTS After TMZ/BG treatment, transduced host cells were enriched in recipient mice. In the liver, we observed the efficient transgene expression in many small cells along sinusoids. However, only few large cells in hepatic lobules expressed albumin. They also expressed both a transgene and a recipient marker gene, suggesting the fusion of donor HSCs with recipient hepatocytes. CONCLUSIONS This vector expressed a drug-resistance gene in HSCs highly enough to protect them from the drugs. But, the conversion of HSCs into hepatocytes in vivo might be a rare event in this model.
Collapse
Affiliation(s)
- Kanji Yamaguchi
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
28
|
Kozak M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 2005; 33:6593-602. [PMID: 16314320 PMCID: PMC1298923 DOI: 10.1093/nar/gki958] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/26/2005] [Indexed: 01/27/2023] Open
Abstract
This review takes a second look at a set of mRNAs that purportedly employ an alternative mechanism of initiation when cap-dependent translation is reduced during mitosis or stress conditions. A closer look is necessary because evidence cited in support of the internal initiation hypothesis is often flawed. When putative internal ribosome entry sequences (IRESs) are examined more carefully, they often turn out to harbor cryptic promoters or splice sites. This undermines the dicistronic assay, wherein IRES activity is measured by the ability to support translation of the 3' cistron. Most putative IRESs still have not been checked carefully to determine whether the dicistronic vector produces only the intended dicistronic mRNA. The widespread use of the pRF vector is a major problem because this vector, which has Renilla luciferase as the 5' cistron and firefly luciferase as the 3' cistron, has been found to generate spliced transcripts. RNA transfection assays could theoretically circumvent these problems, but most candidate IRESs score very weakly in that test. The practice of calling even very weak results 'positive' is one of the problems discussed herein. The extremely low efficiency of putative IRESs is inconsistent with their postulated biological roles.'
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Abstract
Fragile X syndrome (FXS) is caused by the transcriptional silencing of the Fmr1 gene, which encodes a protein (FMRP) that can act as a translational suppressor in dendrites, and is characterized by a preponderance of abnormally long, thin and tortuous dendritic spines. According to a current theory of FXS, the loss of FMRP expression leads to an exaggeration of translation responses linked to group I metabotropic glutamate receptors. Such responses are involved in the consolidation of a form of long-term depression that is enhanced in Fmr1 knockout mice and in the elongation of dendritic spines, resembling synaptic phenotypes over-represented in fragile X brain. These observations place fragile X research at the heart of a long-standing issue in neuroscience. The consolidation of memory, and several distinct forms of synaptic plasticity considered to be substrates of memory, requires mRNA translation and is associated with changes in spine morphology. A recent convergence of research on FXS and on the involvement of translation in various forms of synaptic plasticity has been very informative on this issue and on mechanisms underlying FXS. Evidence suggests a general relationship in which the receptors that induce distinct forms of efficacy change differentially regulate translation to produce unique spine shapes involved in their consolidation. We discuss several potential mechanisms for differential translation and the notion that FXS represents an exaggeration of one 'channel' in a set of translation-dependent consolidation responses.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
30
|
Nishimura K, Ueda K, Guwanan E, Sakakibara S, Do E, Osaki E, Yada K, Okuno T, Yamanishi K. A posttranscriptional regulator of Kaposi's sarcoma-associated herpesvirus interacts with RNA-binding protein PCBP1 and controls gene expression through the IRES. Virology 2004; 325:364-78. [PMID: 15246275 DOI: 10.1016/j.virol.2004.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/11/2004] [Accepted: 04/23/2004] [Indexed: 11/23/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8, HHV-8) belongs to the gamma-herpesvirus subfamily. The KSHV ORF57 gene is thought to be a homolog of posttranscriptional regulators that are conserved in the herpesvirus family and are essential for replication. We generated specific monoclonal antibodies (mAbs) against the ORF57 protein that detected the 51-kDa protein expressed in the nucleus of KSHV-infected cells. We also found that the ORF57 protein interacted with poly(rC)-binding protein 1 (PCBP1), a cellular RNA-binding, posttranscriptional regulator. ORF57's interaction with PCBP1 enhanced the activity of not only poliovirus internal ribosome-entry site (IRES)-dependent translation but also X-linked inhibitor of apoptosis (XIAP) and KSHV vFLIP IRES. Actually, when ORF57 expression was induced by the expression of replication and transcription activator (RTA) in KSHV-infected cells, the expression of XIAP was enhanced. These results suggest that ORF57 binds to PCBP1 as a functional partner for posttranscriptional regulation and is involved in the regulation of the expression of both cellular and viral genes through IRESs.
Collapse
Affiliation(s)
- Ken Nishimura
- Department of Microbiology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Niedick I, Froese N, Oumard A, Mueller PP, Nourbakhsh M, Hauser H, Köster M. Nucleolar localization and mobility analysis of the NF-κB repressing factor NRF. J Cell Sci 2004; 117:3447-58. [PMID: 15226370 DOI: 10.1242/jcs.01129] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
NF-κB plays a central role in mediating pathogen and cytokine-stimulated gene transcription. NF-κB repressing factor (NRF) has been shown to interact with specific negative regulatory DNA elements (NRE) to mediate transcriptional repression by inhibition of the NF-κB activity at certain promoters. mRNA ablation experiments demonstrated that the trans-acting NRF protein is involved in constitutive but not post-stimulated silencing of IFN-β, IL-8 and iNOS genes by binding to cis-acting NRE elements in their promoters.
We have examined the subcellular localization and mobility of the NRF protein. Since neither tagging nor overexpression perturbs NRF localization the GFP-tagged protein was used for detailed localization and mobility studies. Owing to an N-terminal nuclear localization sequence, all NRF fragments that contain this signal show a constitutive nuclear accumulation. C-terminal NRF fragments also localize to the nucleus although no canonical NLS motifs were detected. Full-length NRF is highly enriched in nucleoli and only a small fraction of NRF is found in the nucleoplasm and cytoplasm. This relationship was found to be independent of the protein expression rate. FRAP analysis proved to be a sensitive method to determine protein mobility and made it possible to differentiate between the NRF protein fragments. Nucleolar localization correlated inversely with mobility. The data demonstrate that a series of neighboring fragments in a large central domain of the protein contribute to the strong nucleolar affinity. These properties were not altered by viral infection or LPS treatment. Several sequence motifs for RNA binding were predicted by computer-mediated databank searches. We found that NRF binds to double stranded RNA (dsRNA). This property mapped to several NRF fragments which correlate with the nucleolar affinity domain. Since treatment with actinomycin D releases NRF from nucleoli the identified RNA binding motifs might act as nucleolar localization signals.
Collapse
Affiliation(s)
- Ina Niedick
- Department of Gene Regulation and Differentiation, German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Richtsteiger R, Henke-Gendo C, Schmidtke M, Harste G, Heim A. Quantitative multiplex real-time PCR for the sensitive detection of interferon beta gene induction and viral suppression of interferon beta expression. Cytokine 2004; 24:190-200. [PMID: 14596815 DOI: 10.1016/j.cyto.2003.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interferon-beta (IFN-beta) protein and activity can be detected by enzyme immunoassays and biological assays. However, precise quantification of low IFN-beta mRNA concentrations, which is advantageous for investigating IFN-beta gene expression in small tissue samples or during the early stage of a virus infection, remains a challenge. Therefore, we established a quantitative real-time PCR (qPCR) for IFN-beta and the housekeeping gene porphobilinogen deanimase (PBGD) in separated assays as well as in a multiplex procedure. Sensitivity for both the templates was less than 20 copies with an intra- and interassay variability of less than 5%. IFN-beta qPCR was utilized to optimize IFN-beta induction with dsRNA polyinosic-polycytidylic acid (poly I:C), delivered by a liposomal transfection agent for reproducible but low, non-cell-toxic IFN-beta concentrations. For studying coxsackievirus B3 (CVB3) interference with IFN-beta expression, CVB3 infected fibroblasts were induced with poly I:C. A significant reduction of IFN-beta mRNA but not PBGD mRNA was demonstrated 5 h after CVB3 infection, indicating a specific inhibition of IFN-beta expression by CVB3 on the mRNA level, in addition to previously reported effects on the translation/post-translation level. In conclusion, sensitive IFN-beta/PBGD multiplex qPCR proved to be a useful tool to study viral interaction with IFN-beta expression.
Collapse
|
33
|
Chappell SA, Edelman GM, Mauro VP. Biochemical and functional analysis of a 9-nt RNA sequence that affects translation efficiency in eukaryotic cells. Proc Natl Acad Sci U S A 2004; 101:9590-4. [PMID: 15210968 PMCID: PMC470719 DOI: 10.1073/pnas.0308759101] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We previously identified an internal ribosome entry site (IRES) within the 5' leader of the mRNA encoding the Gtx homeodomain protein and showed that shorter nonoverlapping segments of this 5' leader could enhance the translation of a second cistron in a dicistronic mRNA. One of these segments was 9 nt in length, and when multiple copies of this IRES module were linked together, IRES activity was greatly enhanced. To further expand the potential uses of these synthetic constructs and facilitate analyses of the mechanism by which they affect translation, we show here that an IRES containing five linked copies of the 9-nt sequence can also enhance translation in the 5' leader of a monocistronic mRNA. Moreover, a search for interactions of the IRES module with cellular factors revealed specific binding to 40S ribosomal subunits but not to other cellular components. Based on the results of earlier studies suggesting that this sequence could bind to a complementary segment of 18S rRNA, we tested various sequences for possible links between the length of the complementary match, their binding to ribosomes, and their influence on translational efficiency. We found that the length of the complementary match was directly correlated with the ability of RNA probes to bind to ribosomes. In addition, translation was maximally enhanced ( approximately 8-fold) by a 7-nt segment of the 9-nt element; the enhancement declined progressively as the complementary stretches became progressively longer or shorter. The results suggest that the Gtx 9-nt sequence affects translation efficiency by a mechanism that involves base pairing to 18S rRNA.
Collapse
Affiliation(s)
- Stephen A Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Fischer P, Lehmann U, Sobota RM, Schmitz J, Niemand C, Linnemann S, Haan S, Behrmann I, Yoshimura A, Johnston JA, Müller-Newen G, Heinrich PC, Schaper F. The role of the inhibitors of interleukin-6 signal transduction SHP2 and SOCS3 for desensitization of interleukin-6 signalling. Biochem J 2004; 378:449-60. [PMID: 14611646 PMCID: PMC1223960 DOI: 10.1042/bj20030893] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 11/10/2003] [Accepted: 11/11/2003] [Indexed: 01/06/2023]
Abstract
The immediate early response of cells treated with IL-6 (interleukin-6) is the activation of the signal transducer and activator of transcription (STAT)3. The Src homology domain 2 (SH2)-containing protein tyrosine phosphatase SHP2 and the feedback inhibitor SOCS3 (suppressor of cytokine signalling) are potent inhibitors of IL-6 signal transduction. Impaired function of SOCS3 or SHP2 leads to enhanced and prolonged IL-6 signalling. The inhibitory function of both proteins depends on their recruitment to the tyrosine motif 759 within glycoprotein gp130. In contrast to inactivation, desensitization of signal transduction is regarded as impaired responsiveness due to prestimulation. Usually, after activation the sensing receptor becomes inactivated by modifications such as phosphorylation, internalization or degradation. We designed an experimental approach which allows discrimination between desensitization and inactivation of IL-6 signal transduction. We observed that pre-stimulation with IL-6 renders cells less sensitive to further stimulation with IL-6. After several hours, the cells become sensitive again. We show that not only signal transduction through previously activated receptors is affected by desensitization but signalling through receptors which were not targeted by the first stimulation was also attenuated ( trans -desensitization). Interestingly, in contrast to inhibition, desensitization does not depend on the presence of functional SHP2. Furthermore, cells lacking SOCS3 show constitutive STAT3 activation which is not affected by pre-stimulation with IL-6. All these observations suggest that desensitization and inhibition of signalling are mechanistically distinct.
Collapse
Affiliation(s)
- Patrick Fischer
- Department of Biochemistry, Faculty of Medicine, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krueger C, Schmidt A, Danke C, Hillen W, Berens C. Transactivator mutants with altered effector specificity allow selective regulation of two genes by tetracycline variants. Gene 2004; 331:125-31. [PMID: 15094198 DOI: 10.1016/j.gene.2004.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/27/2004] [Accepted: 02/04/2004] [Indexed: 11/20/2022]
Abstract
A set of Tet repressor (TetR) based eukaryotic transactivators that respond to 4-de(dimethylamino)-6-deoxy-6-demethyl-tetracycline (cmt3) but no longer to tetracycline (tc) is presented. The novel transactivators exhibit high activation in absence of an effector and a 200-fold reduction of reporter gene activity in the presence of cmt3. The most cmt3-sensitive mutant was coexpressed with a tc-responsive Tet transregulator harbouring an altered DNA recognition specificity. Use of cmt3 and tc yields independent control of expression of two genes in the same cell without crosstalk.
Collapse
Affiliation(s)
- Christel Krueger
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
36
|
Lodhi KM, Ozdener MH, Shayiq RM. The upstream open reading frame mediates constitutive effects on translation of cytochrome p-450c27 from the seventh in-frame AUG codon in rat liver. J Biol Chem 2003; 278:40647-57. [PMID: 12909643 DOI: 10.1074/jbc.m302081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 2.3-kb mRNA that codes for cytochrome P-450c27 (CYP27) has an unexpectedly long 5'-untranslated region (UTR) that holds six AUGs, leading to several upstream open reading frames (uORFs). The initiation of translation from the seventh AUG forms a putative 55-kDa precursor, which is processed in mitochondria to form a 52-kDa mature protein. The first three AUGs form fully overlapping uORF1, uORF2, and uORF3 that are in-frame with the seventh AUG and next two form fully overlapping uORF4 and uORF5 that are out-of-frame with the seventh AUG. Although not recognized by the scanning ribosomes under normal conditions, the sixth in-frame AUG forms a putative 57-kDa extension of the main open reading frame. The purpose of this study was to identify the elements in the 5'-UTR that direct CYP27 mRNA translation exclusively from the seventh AUG. Expression of 5' deletion mutants in COS cells reveal that the intact 5'-UTR not only directs the initiation of translation from the seventh AUG but also acts as a negative regulator. A 2-kb deletion mutant that lacks uORF1 initiates translation equally from the sixth and the seventh AUGs, forming both 57- and 55-kDa precursor proteins with a 2-fold increase in rate of translation. However, induction in translation does not affect the levels of the mature 52-kDa form in mitochondria but causes accumulation of the precursor form in cytosol not seen in COS cells transfected with wild-type cDNA. Mutation of the stop codon that terminates uORF1 completely shifts the initiation of translation from the seventh to the first AUG, forming a 67-kDa precursor that is processed into a 52-kDa mature protein in mitochondria. Confirmation of the bicistronic nature of CYP27 mRNA by epitope mapping of uORF1 suggests that translation of CYP27 mRNA from the seventh AUG is directed and regulated by uORF1 expression.
Collapse
Affiliation(s)
- Khalid M Lodhi
- Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Martin Fussenegger
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, Switzerland.
| | | |
Collapse
|
38
|
Lang KJD, Kappel A, Goodall GJ. Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 2002; 13:1792-801. [PMID: 12006670 PMCID: PMC111144 DOI: 10.1091/mbc.02-02-0017] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
HIF-1alpha is the regulated subunit of the HIF-1 transcription factor, which induces transcription of a number of genes involved in the cellular response to hypoxia. The HIF-1alpha protein is rapidly degraded in cells supplied with adequate oxygen but is stabilized in hypoxic cells. Using polysome profile analysis, we found that translation of HIF-1alpha mRNA in NIH3T3 cells is spared the general reduction in translation rate that occurs during hypoxia. To assess whether the 5'UTR of the HIF-1alpha mRNA contains an internal ribosome entry site (IRES), we constructed a dicistronic reporter with the HIF-1alpha 5'UTR inserted between two reporter coding regions. We found that the HIF-1alpha 5'UTR promoted translation of the downstream reporter, indicating the presence of an IRES. The IRES had activity comparable to that of the well-characterized c-myc IRES. IRES activity was not affected by hypoxic conditions that caused a reduction in cap-dependent translation, and IRES activity was less affected by serum-starvation than was cap-dependent translation. These data indicate that the presence of an IRES in the HIF-1alpha 5'UTR allows translation to be maintained under conditions that are inhibitory to cap-dependent translation.
Collapse
Affiliation(s)
- Kenneth J D Lang
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|
39
|
Morley SJ. The regulation of eIF4F during cell growth and cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:1-37. [PMID: 11575157 DOI: 10.1007/978-3-662-09889-9_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
40
|
Uhlmann-Schiffler H, Rössler OG, Stahl H. The mRNA of DEAD box protein p72 is alternatively translated into an 82-kDa RNA helicase. J Biol Chem 2002; 277:1066-75. [PMID: 11675387 DOI: 10.1074/jbc.m107535200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p68 and p72 are two highly related DEAD box proteins with similar biochemical activities in the nucleus of vertebrate cells; it is unknown whether they have redundant or differential in vivo functions. We report on a third member of this subfamily that is alternatively expressed from p72 mRNA. A detailed analysis of HeLa p72 mRNA was performed. It has an overall length of more than 5 kb and contains a 0.75-kb 5'-untranslated region and a 3'-untranslated region of 2.5 kb. Its open reading frame extends to nucleotide -243 upstream of the first in-frame AUG (A in the AUG triplet is +1) which serves as the p72 translation initiator codon. We provide evidence that alternative translation at a non-AUG within the extra coding region of this mRNA yields an 82-kDa protein (p82). Immunological studies substantiate that p82 is a naturally existing p72 variant and that both proteins are expressed at similar concentrations. p82 purified from HeLa cells is an ATP-dependent RNA helicase with biochemical properties almost identical to those of p72.
Collapse
Affiliation(s)
- Heike Uhlmann-Schiffler
- Fachbereich Medizinische Biochemie und Molekularbiologie, Fachrichtung Theoretische Medizin, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | |
Collapse
|
41
|
Kim YK, Back SH, Rho J, Lee SH, Jang SK. La autoantigen enhances translation of BiP mRNA. Nucleic Acids Res 2001; 29:5009-16. [PMID: 11812831 PMCID: PMC97601 DOI: 10.1093/nar/29.24.5009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Revised: 10/25/2001] [Accepted: 10/25/2001] [Indexed: 01/17/2023] Open
Abstract
Translational initiation of the human BiP mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region (5'-UTR). In order to understand the mechanism of the IRES-dependent translation of BiP mRNA, cellular proteins interacting with the BiP IRES were investigated. La autoantigen, which augments the translation of polioviral mRNA and hepatitis C viral mRNA, bound specifically to the second half of the 5'-UTR of the BiP IRES and enhanced translation of BiP mRNA in both in vitro and in vivo assays. This finding suggests that cellular and viral IRESs containing very different RNA sequences may share a common mechanism of translation.
Collapse
Affiliation(s)
- Y K Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
42
|
Schneider R, Agol VI, Andino R, Bayard F, Cavener DR, Chappell SA, Chen JJ, Darlix JL, Dasgupta A, Donzé O, Duncan R, Elroy-Stein O, Farabaugh PJ, Filipowicz W, Gale M, Gehrke L, Goldman E, Groner Y, Harford JB, Hatzglou M, He B, Hellen CU, Hentze MW, Hershey J, Hershey P, Hohn T, Holcik M, Hunter CP, Igarashi K, Jackson R, Jagus R, Jefferson LS, Joshi B, Kaempfer R, Katze M, Kaufman RJ, Kiledjian M, Kimball SR, Kimchi A, Kirkegaard K, Koromilas AE, Krug RM, Kruys V, Lamphear BJ, Lemon S, Lloyd RE, Maquat LE, Martinez-Salas E, Mathews MB, Mauro VP, Miyamoto S, Mohr I, Morris DR, Moss EG, Nakashima N, Palmenberg A, Parkin NT, Pe'ery T, Pelletier J, Peltz S, Pestova TV, Pilipenko EV, Prats AC, Racaniello V, Read GS, Rhoads RE, Richter JD, Rivera-Pomar R, Rouault T, Sachs A, Sarnow P, Scheper GC, Schiff L, Schoenberg DR, Semler BL, Siddiqui A, Skern T, Sonenberg N, Sossin W, Standart N, Tahara SM, Thomas AA, Toulmé JJ, Wilusz J, Wimmer E, Witherell G, Wormington M. New ways of initiating translation in eukaryotes. Mol Cell Biol 2001; 21:8238-46. [PMID: 11710333 PMCID: PMC99989 DOI: 10.1128/mcb.21.23.8238-8246.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Hennecke M, Kwissa M, Metzger K, Oumard A, Kröger A, Schirmbeck R, Reimann J, Hauser H. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001; 29:3327-34. [PMID: 11504870 PMCID: PMC55851 DOI: 10.1093/nar/29.16.3327] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2001] [Revised: 07/02/2001] [Accepted: 07/02/2001] [Indexed: 11/14/2022] Open
Abstract
In addition to the cap-dependent mechanism, eukaryotic initiation of translation can occur by a cap-independent mechanism which directs ribosomes to defined start codons enabled by internal ribosome entry site (IRES) elements. IRES elements from poliovirus and encephalomyocarditis virus are often used to construct bi- or oligocistronic expression vectors to co-express various genes from one mRNA. We found that while cap-dependent translation initiation from bicistronic mRNAs remains comparable to monocistronic expression, internal initiation mediated by these viral IRESs is often very inefficient. Expression of bicistronic expression vectors containing the hepatitis B virus core antigen (HBcAg) together with various cytokines in the second cistron of bicistronic mRNAs gave rise to very low levels of the tested cytokines. On the other hand, the HBcAg was well expressed when positioned in the second cistron. This suggests that the arrangement of cistrons in a bicistronic setting is crucial for IRES-dependent translation of the second cistron. A systematic examination of expression of reporter cistrons from bicistronic mRNAs with respect to position was carried out. Using the dual luciferase assay system we show that the composition of reading frames on a bicistronic mRNA and the order in which they are arranged define the strength of IRES-dependent translation. Although the cellular environment and the nature of the IRES element influence translation strength the dominant determinant is the nature and the arrangement of cistrons on the mRNA.
Collapse
Affiliation(s)
- M Hennecke
- Department of Gene Regulation and Differentiation, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
45
|
Martínez-Salas E, Ramos R, Lafuente E, López de Quinto S. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 2001; 82:973-984. [PMID: 11297672 DOI: 10.1099/0022-1317-82-5-973] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain1
| | - Ricardo Ramos
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain1
| | - Esther Lafuente
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain1
| | - Sonia López de Quinto
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain1
| |
Collapse
|
46
|
Affiliation(s)
- M Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
47
|
Giraud S, Greco A, Brink M, Diaz JJ, Delafontaine P. Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. J Biol Chem 2001; 276:5668-75. [PMID: 11063741 DOI: 10.1074/jbc.m005928200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin-like growth factor I receptor (IGF-IR) is a heterotetrameric receptor mediating the effects of insulin-like growth I and other growth factors. This receptor is encoded by an mRNA containing an unusually long, G-C-rich, and highly structured 5' untranslated region. Using bicistronic constructs, we demonstrated here that the 5' untranslated region of the IGF-IR allows translation initiation by internal ribosome entry and therefore constitutes an internal ribosome entry site. In vitro cross-linking revealed that this internal ribosome entry site binds a protein of 57 kDa. Immunoprecipitation of UV cross-linked proteins proved that this protein was the polypyrimidine tract-binding protein, a well known regulator of picornavirus mRNA translation. The efficiency of translation of the endogenous IGF-IR mRNA is not affected by rapamycin, which is a potent inhibitor of cap-dependent translation. This result provides evidence that the endogenous IGF-IR mRNA is translated, at least in part, through a cap-independent mechanism. This is the first report of a growth factor receptor containing sequence elements that allow translation initiation to occur by internal initiation. Because the IGF-IR has a pivotal function in the cell cycle, this mechanism of translation regulation could play a crucial role in the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- S Giraud
- Division of Cardiology, University Hospital of Geneva, Rue Micheli-du-Crest 24, 1211 Geneva 14, Switzerland and the INSERM Unité 369, Faculté de Médecine Lyon RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
48
|
Owens GC, Chappell SA, Mauro VP, Edelman GM. Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides. Proc Natl Acad Sci U S A 2001; 98:1471-6. [PMID: 11171975 PMCID: PMC29281 DOI: 10.1073/pnas.98.4.1471] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sequences that control translation of mRNA may play critical roles in regulating protein levels. One such element is the internal ribosome entry site (IRES). We previously showed that a 9-nt segment in the 5' leader sequence of the mRNA encoding Gtx homeodomain protein could function as an IRES. To identify other short sequences with similar properties, we designed a selection procedure that uses a retroviral vector to express dicistronic mRNAs encoding enhanced green and cyan fluorescent proteins as the first and second cistrons, respectively. Expression of the second cistron was dependent upon the intercistronic sequences and was indicative of IRES activity. B104 cells were infected with two retroviral libraries that contained random sequences of 9 or 18 nt in the intercistronic region. Cells expressing both cistrons were sorted, and sequences recovered from selected cells were reassayed for IRES activity in a dual luciferase dicistronic mRNA. Two novel IRESes were identified by this procedure, and both contained segments with complementarity to 18S rRNA. When multiple copies of either segment were linked together, IRES activities were dramatically enhanced. Moreover, these synthetic IRESes were differentially active in various cell types. These properties are similar to those of the previously identified 9-nt IRES module from Gtx mRNA. These results provide further evidence that short nucleotide sequences can function as IRESes and support the idea that some cellular IRESes may be composed of shorter functional modules. The ability to identify IRES modules with specific expression properties may be useful in the design of vectors for biotechnology and gene therapy.
Collapse
Affiliation(s)
- G C Owens
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
49
|
Holcik M, Sonenberg N, Korneluk RG. Internal ribosome initiation of translation and the control of cell death. Trends Genet 2000; 16:469-73. [PMID: 11050335 DOI: 10.1016/s0168-9525(00)02106-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of cellular stresses lead to the inhibition of cap-dependent translation. Some mRNAs, however, are translated by a cap-independent mechanism, mediated by ribosome binding to internal ribosome entry site (IRES) elements located in the 5' untranslated region. Interestingly, IRES elements are found in the mRNAs of several survival factors, oncogenes and proteins crucially involved in the control of apoptosis. These mRNAs are translated under a variety of stress conditions, including hypoxia, serum deprivation, irradiation and apoptosis. Thus, IRES-mediated translational control might have evolved to regulate cellular responses in acute but transient stress conditions that would otherwise lead to cell death.
Collapse
Affiliation(s)
- M Holcik
- Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, ON, K1H 8L1, Ottawa, Canada.
| | | | | |
Collapse
|