1
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
3
|
Identification of a Novel Enhancer/Chromatin Opening Element Associated with High-Level γ-Globin Gene Expression. Mol Cell Biol 2018; 38:MCB.00197-18. [PMID: 30012865 PMCID: PMC6146835 DOI: 10.1128/mcb.00197-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
The organization of the five β-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5′ end, followed by the two fetal γ-globin genes, and with the adult β- and δ-globin genes being located at the 3′ end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS). The organization of the five β-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5′ end, followed by the two fetal γ-globin genes, and with the adult β- and δ-globin genes being located at the 3′ end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS). This site is occupied by transcription factors USF1, USF2, EGR1, MafK, and NF-E2 in the human erythroleukemia cell line K562 and exhibits histone modifications typical for enhancers. We generated a synthetic zinc finger (ZF) DNA-binding domain targeting the HBG-4kb HS (HBG-4kb ZF). The HBG-4kb ZF interacted with the target site in vitro and in the context of cells with a high affinity and specificity. Direct delivery of the HBG-4kb ZF to K562 and primary human erythroid cells caused a reduction in γ-globin gene expression which was associated with decreased binding of transcription factors and active histone marks at and downstream of the HS. The data demonstrate that the HBG-4kb HS is important for fetal globin production and suggest that it may act by opening chromatin in a directional manner.
Collapse
|
4
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 2018; 32:42-57. [PMID: 29378788 PMCID: PMC5828394 DOI: 10.1101/gad.308619.117] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/21/2017] [Indexed: 12/03/2022]
Abstract
Here, Mikhaylichenko et al. investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. The authors demonstrate that while the timing of enhancer transcription is correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers and conclude that this is likely an inherent sequence property of the elements themselves. Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio–temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.
Collapse
Affiliation(s)
- Olga Mikhaylichenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Vladyslav Bondarenko
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Dermot Harnett
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Ignacio E Schor
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Matilda Males
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| |
Collapse
|
6
|
Hu T, Pi W, Zhu X, Yu M, Ha H, Shi H, Choi JH, Tuan D. Long non-coding RNAs transcribed by ERV-9 LTR retrotransposon act in cis to modulate long-range LTR enhancer function. Nucleic Acids Res 2017; 45:4479-4492. [PMID: 28132025 PMCID: PMC5416847 DOI: 10.1093/nar/gkx055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
LTR retrotransposons are repetitive DNA elements comprising ∼10% of the human genome. However, LTR sequences are disproportionately present in human long, non-coding RNAs (lncRNAs). Whether and how the LTR lncRNAs serve biological functions are largely unknown. Here we show that in primary human erythroblasts, lncRNAs transcribed from the LTR retrotransposons of ERV-9 human endogenous retrovirus activated transcription of key erythroid genes and modulated ex vivo erythropoiesis. To dissect the functional mechanism of ERV-9 lncRNAs, we performed genome-wide RNA and ChIRP analyses before and after global knockdown or locus-specific deletion of ERV-9 lncRNAs in human erythroblasts carrying ∼4000 copies of the ERV-9 LTRs and in transgenic mouse erythroblasts carrying a single copy of the primate-specific ERV-9 LTR in the 100 kb human β-globin gene locus. We found that ERV-9 lncRNAs acted in cis to stabilize assembly of the ERV-9 LTR enhancer complex and facilitate long-range LTR enhancer function in activating transcription of downstream, cis-linked globin genes. Our findings suggested that LTR lncRNAs transcribed from many of the 4000 copies of ERV-9 LTR retrotransposons acted by a similar cis mechanism to modulate LTR enhancer function in activating transcription of downstream genes critical to cellular processes including erythropoiesis.
Collapse
Affiliation(s)
- Tianxiang Hu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Miao Yu
- Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hongseok Ha
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Jeong-Hyeon Choi
- Department of Biostatics and Epidemiology, Augusta University, Augusta, GA 30912, USA
| | - Dorothy Tuan
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
8
|
Forsdyke DR. Self/Not-Self? Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Sherrill-Mix S, Ocwieja KE, Bushman FD. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 2015; 12:79. [PMID: 26377088 PMCID: PMC4574318 DOI: 10.1186/s12977-015-0205-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. Results Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms. Conclusions Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Karen E Ocwieja
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death. Cell Death Differ 2015; 23:64-75. [PMID: 26024393 DOI: 10.1038/cdd.2015.68] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/04/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression.
Collapse
|
11
|
Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci Rep 2015; 35:BSR20140126. [PMID: 25588787 PMCID: PMC4370096 DOI: 10.1042/bsr20140126] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. Chromatin looping between enhancer and promoter was generated after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of enhancer RNAs was increased in concomitant with the increase of chromatin looping in this locus.
Collapse
|
12
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Dabke P, Colah RB, Ghosh K, Nadkarni A. Effect of a group of genetic markers around the 5' regulatory regions of the β globin gene cluster linked to high HbF on the clinical severity of β thalassemia. Blood Cells Mol Dis 2012; 50:156-60. [PMID: 23211376 DOI: 10.1016/j.bcmd.2012.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/30/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
The clinical and hematological course of β thalassemia intermedia is influenced by a number of genetic factors which play a role in increasing fetal haemoglobin levels. Several polymorphisms located in the promoters of β and γ globin gene are involved in influencing the disease severity. Our objective was to study the effect of cis-DNA haplotypes, motifs, or polymorphisms (Pre G γ globin gene haplotypes, Aγ-δ intergenic region haplotypes XmnI and (AT)(x)(T)(y) polymorphisms, β-LCR HS2 and HS3 site motifs) that may contribute to higher HbF levels and a milder clinical course. We found that a combination of T haplotype of the Aγ-δ intergenic region, TAG Pre-Gγ haplotype, presence of the XmnI polymorphism along with the (AT)(9)(T)(5) motif constitutes a topography that co-relates with raised HbF levels which may contribute in ameliorating the disease severity.
Collapse
Affiliation(s)
- Pooja Dabke
- National Institute of Immunohaematology (ICMR), 13th Floor, New Multistoried Building, K.E.M. Hospital Campus, Parel, Mumbai 4000 12, India
| | | | | | | |
Collapse
|
14
|
Ross KA. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 2011; 9:12. [PMID: 21291537 PMCID: PMC3048570 DOI: 10.1186/1741-7015-9-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. METHODS A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. RESULTS Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. CONCLUSIONS The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
The locus control region of the MHC class II promoter acts as a repressor element, the activity of which is inhibited by CIITA. Mol Immunol 2009; 47:825-32. [PMID: 19897249 DOI: 10.1016/j.molimm.2009.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/30/2009] [Indexed: 11/22/2022]
Abstract
The closest region of the promoter of MHC II genes and particularly three conserved boxes (X, Y and S) are fundamental for the transcriptional regulation. A second set of conserved sequences is present approximately 1200-1500 bp upstream in opposite orientation. In transient transfection experiments in IFN-gamma-treated macrophages and in B lymphocytes, we determined the expression of a fragment of 2035 bp of the I-Abeta gene, which contains the upstream boxes. Mutation of the distal boxes increased induction, thereby suggesting a repressive effect on transcription. In vitro, the proximal and distal ends of I-Abeta promoter were ligated in the presence of nuclear extracts from untreated macrophages but not when the extracts were obtained from IFN-gamma-stimulated cells. The mutation of distal or proximal boxes resulted in a decrease in the ligation assay. The addition of recombinant CIITA to untreated nuclear extracts decreased the capacity of the promoter to be ligated. Finally, we observed increased capacity to ligate the promoter in extracts from B cells lacking CIITA, but not from B cells lacking RFXANK. These results allow us to postulate a model where the proteins in the proximal and distal conserved sequences interact. When CIITA is induced, these proteins make an enhanceosome, allowing chromatin to open and initiate transcription.
Collapse
|
16
|
Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 2: retroviral symbiosis. J R Soc Med 2009; 102:324-31. [PMID: 19679734 DOI: 10.1258/jrsm.2009.090183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Frank P Ryan
- Sheffield Primary Care Trust and Department of Animal and Plant Sciences, Sheffield University, Sheffield, UK.
| |
Collapse
|
17
|
Okamura E, Matsuzaki H, Campbell AD, Engel JD, Fukamizu A, Tanimoto K. All of the human beta-type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice. FASEB J 2009; 23:4335-43. [PMID: 19690216 DOI: 10.1096/fj.09-137778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In primitive erythroid cells of human beta-globin locus transgenic mice (TgM), the locus control region (LCR)-proximal epsilon- and gamma-globin genes are transcribed, whereas the distal delta- and beta-globin genes are silent. It is generally accepted that the beta-globin gene is competitively suppressed by gamma-globin gene expression at this developmental stage. Previously, however, we observed that epsilon-globin gene expression was severely attenuated when its distance from the LCR was extended, implying that beta-globin gene might also be silenced because of its great distance from the LCR. Here, to clarify the beta-globin gene silencing mechanism, we established TgM lines carrying either gamma- or epsilon- plus gamma-globin promoter deletions, without significantly altering the distance between the beta-globin gene and the LCR. Precocious expression of delta- and beta-globin genes was observed in primitive erythroid cells of mutant, but not wild-type TgM, which was most evident when both the epsilon and gamma promoters were deleted. Thus, we clearly demonstrated that the repression of the delta- and beta-globin genes in primitive erythroid cells is dominated by competitive silencing by the epsilon- and gamma-globin gene promoters, and that epsilon- and the other beta-like globin genes might be activated by two distinct mechanisms by the LCR.
Collapse
Affiliation(s)
- Eiichi Okamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Sgourou A, Routledge S, Spathas D, Athanassiadou A, Antoniou MN. Physiological levels of HBB transgene expression from S/MAR element-based replicating episomal vectors. J Biotechnol 2009; 143:85-94. [DOI: 10.1016/j.jbiotec.2009.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/22/2009] [Accepted: 06/16/2009] [Indexed: 01/29/2023]
|
19
|
Expression of Pit-1 in nonsomatotrope cell lines induces human growth hormone locus control region histone modification and hGH-N transcription. J Mol Biol 2009; 390:26-44. [PMID: 19427323 DOI: 10.1016/j.jmb.2009.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The POU domain transcription factor Pit-1 is expressed in somatotropes, lactotropes, and thyrotropes of the anterior pituitary. Pit-1 is essential for the establishment of these lineages during development and regulates the expression of genes encoding the peptide hormones secreted by each cell type, including the growth hormone gene expressed in somatotropes. In contrast to rodent growth hormone loci, the human growth hormone (hGH) locus is regulated by a distal locus control region (LCR), which is required in cis for the proper expression of the hGH gene cluster in transgenic mice. The hGH LCR mediates a domain of histone acetylation targeted to the hGH locus that is associated with distal hGH-N activation, and the discrete determinants of this activity coincide with DNaseI hypersensitive site (HS) I of the LCR. The identification of three in vitro Pit-1 binding sites within the HS-I region suggested a model in which Pit-1 binding at HS-I initiates the chromatin modification mechanism associated with hGH LCR activity. To test this hypothesis directly and to determine whether Pit-1 expression is sufficient to confer hGH locus histone acetylation and activate hGH-N transcription from an inactive locus, we expressed Pit-1 in nonpituitary cell types. We show that Pit-1 expression established a domain of histone hyperacetylation at the LCR and hGH-N promoter in these cells similar to that observed in pituitary chromatin. This was accompanied by the activation of hGH-N transcription and an increase in intergenic and CD79b transcripts proximal to HS-I. These effects were coincident with Pit-1 occupancy at HS-I and the hGH-N promoter and were observed irrespective of the basal histone modification status of HS-I in the heterologous cell line. These findings are consistent with a role for Pit-1 as an initiating factor in hGH locus activation during somatotrope ontogeny, acting through binding sites at HS-I of the hGH LCR.
Collapse
|
20
|
Evidence for a bigenic chromatin subdomain in regulation of the fetal-to-adult hemoglobin switch. Mol Cell Biol 2008; 29:1635-48. [PMID: 19114559 DOI: 10.1128/mcb.01735-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During development, human beta-globin locus regulation undergoes two critical switches, the embryonic-to-fetal and fetal-to-adult hemoglobin switches. To define the role of the fetal (A)gamma-globin promoter in switching, human beta-globin-YAC transgenic mice were produced with the (A)gamma-globin promoter replaced by the erythroid porphobilinogen deaminase (PBGD) promoter (PBGD(A)gamma-YAC). Activation of the stage-independent PBGD(A)gamma-globin strikingly stimulated native (G)gamma-globin expression at the fetal and adult stages, identifying a fetal gene pair or bigenic cooperative mechanism. This impaired fetal silencing severely suppressed both delta- and beta-globin expression in PBGD(A)gamma-YAC mice from fetal to neonatal stages and altered kinetics and delayed switching of adult beta-globin. This regulation evokes the two human globin switching patterns in the mouse. Both patterns of DNA demethylation and chromatin immunoprecipitation analysis correlated with gene activation and open chromatin. Locus control region (LCR) interactions detected by chromosome conformation capture revealed distinct spatial fetal and adult LCR bigenic subdomains. Since both intact fetal promoters are critical regulators of fetal silencing at the adult stage, we concluded that fetal genes are controlled as a bigenic subdomain rather than a gene-autonomous mechanism. Our study also provides evidence for LCR complex interaction with spatial fetal or adult bigenic functional subdomains as a niche for transcriptional activation and hemoglobin switching.
Collapse
|
21
|
Abstract
The developmental changes in expression of the beta like genes from embryonic to adult stages of human life are controlled at least partially at the level of the promoter sequences of these genes and their binding factors, and competition for promoter specific interactions with the locus control region (LCR). In recent years, the control of beta globin genes has also been investigated at the level of chromatin structure involving the chemical modification of histones and their remodelling by DNA dependent ATPases (SMARCA) containing protein complexes. The role of intergenic RNA is also being investigated with renewed interest. Although a wealth of information on the structure/function relationship of the LCR and globin promoters has been gathered over more than two decades, the fundamental nature of the control of these genes at the molecular level is still not completely understood. In the following pages, we intend to briefly describe the progress made in the field and discuss future directions.
Collapse
Affiliation(s)
- Milind C Mahajan
- Department of Human Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
22
|
Shimotsuma M, Matsuzaki H, Tanabe O, Campbell AD, Engel JD, Fukamizu A, Tanimoto K. Linear distance from the locus control region determines epsilon-globin transcriptional activity. Mol Cell Biol 2007; 27:5664-72. [PMID: 17548470 PMCID: PMC1952132 DOI: 10.1128/mcb.00602-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancer elements modulate promoter activity over vast chromosomal distances, and mechanisms that ensure restrictive interactions between promoters and enhancers are critical for proper control of gene expression. The human beta-globin locus control region (LCR) activates expression of five genes in erythroid cells, including the proximal embryonic epsilon- and the distal adult beta-globin genes. To test for possible distance sensitivity of the genes to the LCR, we extended the distance between the LCR and genes by 2.3 kbp within the context of a yeast artificial chromosome, followed by the generation of transgenic mice (TgM). In these TgM lines, epsilon-globin gene expression decreased by 90%, while the more distantly located gamma- or beta-globin genes were not affected. Remarkably, introduction of a consensus EKLF binding site into the epsilon-globin promoter rendered its expression distance insensitive; when tested in an EKLF-null genetic background, expression of the mutant epsilon-globin gene was severely compromised. Thus, the epsilon-globin gene differs in its distance sensitivity to the LCR from the other beta-like globin genes, which is, at least in part, determined by the transcription factor EKLF.
Collapse
Affiliation(s)
- Motoshi Shimotsuma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhao H, Friedman RD, Fournier REK. The locus control region activates serpin gene expression through recruitment of liver-specific transcription factors and RNA polymerase II. Mol Cell Biol 2007; 27:5286-95. [PMID: 17526725 PMCID: PMC1952087 DOI: 10.1128/mcb.00176-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human serine protease inhibitor (serpin) gene cluster at 14q32.1 comprises 11 serpin genes, many of which are expressed specifically in hepatic cells. Previous studies identified a locus control region (LCR) upstream of the human alpha1-antitrypsin (alpha1AT) gene that is required for gene activation, chromatin remodeling, and histone acetylation throughout the proximal serpin subcluster. Here we show that the LCR interacts with multiple liver-specific transcription factors, including hepatocyte nuclear factor 3beta (HNF-3beta), HNF-6alpha, CCAAT/enhancer binding protein alpha (C/EBPalpha), and C/EBPbeta. RNA polymerase II is also recruited to the locus through the LCR. Nongenic transcription at both the LCR and an upstream regulatory region was detected, but the deletion of the LCR abolished transcription at both sites. The deletion of HNF-3 and HNF-6 binding sites within the LCR reduced histone acetylation at both the LCR and the upstream regulatory region and decreased the transcription of the alpha1AT, corticosteroid binding globulin, and protein Z-dependent protease inhibitor genes. These results suggest that the LCR activates genes in the proximal serpin subcluster by recruiting liver-specific transcription factors and components of the general transcription machinery to regulatory regions upstream of the alpha1AT gene.
Collapse
Affiliation(s)
- Hui Zhao
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
24
|
Rybtsova N, Leimgruber E, Seguin-Estévez Q, Dunand-Sauthier I, Krawczyk M, Reith W. Transcription-coupled deposition of histone modifications during MHC class II gene activation. Nucleic Acids Res 2007; 35:3431-41. [PMID: 17478518 PMCID: PMC1904273 DOI: 10.1093/nar/gkm214] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5' end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Reith
- *To whom correspondence should be addressed. Tel: +41 22 379 56 66; Fax: +41 22 379 57 46;
| |
Collapse
|
25
|
Vernimmen D, Gobbi MD, Sloane-Stanley JA, Wood WG, Higgs DR. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J 2007; 26:2041-51. [PMID: 17380126 PMCID: PMC1852780 DOI: 10.1038/sj.emboj.7601654] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/16/2007] [Indexed: 12/16/2022] Open
Abstract
To understand how mammalian genes are regulated from their natural chromosomal environment, we have analysed the molecular events occurring throughout a 150 kb chromatin segment containing the alpha globin gene locus as it changes from a poised, silent state in erythroid progenitors, to the fully activated state in late, erythroid cells. Active transcription requires the late recruitment of general transcription factors, mediator and Pol II not only to the promoter but also to its remote regulatory elements. Natural mutants of the alpha cluster show that whereas recruitment of the pre-initiation complex to the upstream elements occurs independently, recruitment to the promoter is largely dependent on the regulatory elements. An improved, quantitative chromosome conformation capture analysis demonstrates that this recruitment is associated with a conformational change, in vivo, apposing the promoter with its remote regulators, consistent with a chromosome looping mechanism. These findings point to a general mechanism by which a gene can be held in a poised state until the appropriate stage for expression, coordinating the level and timing of gene expression during terminal differentiation.
Collapse
Affiliation(s)
- Douglas Vernimmen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Marco De Gobbi
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Jacqueline A Sloane-Stanley
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - William G Wood
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
26
|
Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev 2007; 21:11-42. [PMID: 17210785 DOI: 10.1101/gad.1484207] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A large portion of the eukaryotic genome is transcribed as noncoding RNAs (ncRNAs). While once thought of primarily as "junk," recent studies indicate that a large number of these RNAs play central roles in regulating gene expression at multiple levels. The increasing diversity of ncRNAs identified in the eukaryotic genome suggests a critical nexus between the regulatory potential of ncRNAs and the complexity of genome organization. We provide an overview of recent advances in the identification and function of eukaryotic ncRNAs and the roles played by these RNAs in chromatin organization, gene expression, and disease etiology.
Collapse
|
27
|
Kim A, Kiefer CM, Dean A. Distinctive signatures of histone methylation in transcribed coding and noncoding human beta-globin sequences. Mol Cell Biol 2006; 27:1271-9. [PMID: 17158930 PMCID: PMC1800709 DOI: 10.1128/mcb.01684-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The establishment of epigenetic marks, such as methylation on histone tails, is mechanistically linked to RNA polymerase II within active genes. To explore the interplay between these modifications in transcribed noncoding as well as coding sequences, we analyzed epigenetic modification and chromatin structure at high resolution across 300 kb of human chromosome 11, including the beta-globin locus which is extensively transcribed in intergenic regions. Monomethylated H3K4, K9, and K36 were broadly distributed, while hypermethylated forms appeared to different extents across the region in a manner reflecting transcriptional activity. The trimethylation of H3K4 and H3K9 correlated within the most highly transcribed sequences. The H3K36me3 mark was more broadly detected in transcribed coding and noncoding sequences, suggesting that K36me3 is a stable mark on sequences transcribed at any level. Most epigenetic and chromatin structural features did not undergo transitions at the presumed borders of the globin domain where the insulator factor CTCF interacts, raising questions about the function of the borders.
Collapse
Affiliation(s)
- AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan 609-735, South Korea.
| | | | | |
Collapse
|
28
|
Lee Y, Ise T, Ha D, Saint Fleur A, Hahn Y, Liu XF, Nagata S, Lee B, Bera TK, Pastan I. Evolution and expression of chimeric POTE-actin genes in the human genome. Proc Natl Acad Sci U S A 2006; 103:17885-90. [PMID: 17101985 PMCID: PMC1693842 DOI: 10.1073/pnas.0608344103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously described a primate-specific gene family, POTE, that is expressed in many cancers but in a limited number of normal organs. The 13 POTE genes are dispersed among eight different chromosomes and evolved by duplications and remodeling of the human genome from an ancestral gene, ANKRD26. Based on sequence similarity, the POTE gene family members can be divided into three groups. By genome database searches, we identified an actin retroposon insertion at the carboxyl terminus of one of the ancestral POTE paralogs. By Northern blot analysis, we identified the expected 7.5-kb POTE-actin chimeric transcript in a breast cancer cell line. The protein encoded by the POTE-actin transcript is predicted to be 120 kDa in size. Using anti-POTE mAbs that recognize the amino-terminal portion of the POTE protein, we detected the 120-kDa POTE-actin fusion protein in breast cancer cell lines known to express the fusion transcript. These data demonstrate that insertion of a retroposon produced an altered functional POTE gene. This example indicates that new functional human genes can evolve by insertion of retroposons.
Collapse
Affiliation(s)
- Yoomi Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Tomoko Ise
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Duc Ha
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ashley Saint Fleur
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Yoonsoo Hahn
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Satoshi Nagata
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| |
Collapse
|
29
|
Ho Y, Elefant F, Liebhaber SA, Cooke NE. Locus control region transcription plays an active role in long-range gene activation. Mol Cell 2006; 23:365-75. [PMID: 16885026 DOI: 10.1016/j.molcel.2006.05.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/09/2006] [Accepted: 05/31/2006] [Indexed: 11/19/2022]
Abstract
Activation of eukaryotic genes often relies on remote chromatin determinants. How these determinants function remains poorly understood. The hGH gene is activated by a 5'-remote locus control region (LCR). Pituitary-specific DNase I hypersensitive site I (HSI), the dominant hGH LCR element, is separated from the hGH-N promoter by a 14.5 kb span that encompasses the B-lymphocyte-specific CD79b gene. Here, we describe a domain of noncoding Pol II transcription in pituitary somatotropes that includes the hGH LCR and adjacent CD79b locus. This entire "LCR domain of transcription" is HSI [corrected] dependent and terminates 3' to CD79b, leaving a gap in transcription between this domain and the target hGH-N promoter. Insertion of a Pol II terminator within the LCR blocks CD79b transcription and represses hGH-N expression. These data document an essential role for LCR transcription in long-range control, link "bystander"CD79b transcription to this process, and support a unique model for locus activation.
Collapse
Affiliation(s)
- Yugong Ho
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
30
|
de Andrade TG, Peterson KR, Cunha AF, Moreira LS, Fattori A, Saad STO, Costa FF. Identification of novel candidate genes for globin regulation in erythroid cells containing large deletions of the human β-globin gene cluster. Blood Cells Mol Dis 2006; 37:82-90. [PMID: 16952470 DOI: 10.1016/j.bcmd.2006.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/01/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The genetic mechanisms underlying the continued expression of the gamma-globin genes during the adult stage in deletional hereditary persistence of fetal hemoglobin (HPFH) and deltabeta-thalassemias are not completely understood. Herein, we investigated the possible involvement of transcription factors, using the suppression subtractive hybridization (SSH) method as an initial screen to identify differentially expressed transcripts in reticulocytes from a normal and a HPFH-2 subject. Some of the detectable transcripts may participate in globin gene regulation. Quantitative real-time PCR (qRT-PCR) experiments confirmed the downregulation of ZHX2, a transcriptional repressor, in two HPFH-2 subjects and in a carrier of the Sicilian deltabeta-thalassemia trait. The chromatin remodeling factors ARID1B and TSPYL1 had a very similar pattern of expression with an incremental increase in HPFH and decreased expression in deltabeta-thalassemia. These differences suggest a mechanism to explain the heterocellular and pancellular distribution of fetal hemoglobin in deltabeta-thalassemia and deletional HPFH, respectively. Interestingly, alpha-globin mRNA levels were decreased, similar to beta-globin in all reticulocyte samples analyzed.
Collapse
Affiliation(s)
- Tiago Gomes de Andrade
- Institute of Medical and Biological Sciences, Federal University of Alagoas, Maceió, AL, Brazil.
| | | | | | | | | | | | | |
Collapse
|
31
|
Xiang P, Fang X, Yin W, Barkess G, Li Q. Non-coding transcripts far upstream of the epsilon-globin gene are distinctly expressed in human primary tissues and erythroleukemia cell lines. Biochem Biophys Res Commun 2006; 344:623-30. [PMID: 16620781 DOI: 10.1016/j.bbrc.2006.03.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/28/2006] [Indexed: 11/25/2022]
Abstract
Non-coding exons of epsilon-globin mRNA originating within the 236 kb upstream region of the epsilon-globin gene were identified in human primary tissues and K562 cells. One predominant type of upstream epsilon mRNA, which originated in the -76 kb region 5' to the epsilon gene, was present in human primary tissues, whereas 11 other isoforms were identified in K562 cells. Fragment from the -76 kb region possessed promoter activity and a prominent DNase I hypersensitive site was formed in the region approximately 2 kb 5' to the -76 kb promoter in human fetal liver, but not in K562 cells. The promoter activity in the -236 kb region resided in a retrotransposon in K562 cells. A DNase I hypersensitive site was formed at the -236 kb promoter in K562 cells, but not in human fetal liver. We discussed these results in the context of intergenic transcription and chromatin opening in the beta-globin gene cluster.
Collapse
Affiliation(s)
- Ping Xiang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
32
|
Papachatzopoulou A, Kourakli A, Makropoulou P, Kakagianne T, Sgourou A, Papadakis M, Athanassiadou A. Genotypic heterogeneity and correlation to intergenic haplotype within high HbF beta-thalassemia intermedia. Eur J Haematol 2006; 76:322-30. [PMID: 16519704 DOI: 10.1111/j.1600-0609.2005.00618.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES A molecular study was carried out of beta-thalassemia intermedia patients, compound heterozygotes for mutations usually found in beta-thalassemia major, with high levels of HbF in the absence of hereditary persistence of fetal hemoglobin (HPFH) syndrome. Our objective was to locate cis-DNA structures, DNA haplotypes, motifs, or polymorphisms that may correlate with the presence of high HbF. METHODS Allele-specific oligonucleotide (ASO) hybridization was used for the detection of mutations and restriction fragment length polymorphism (RFLP) analysis and automated sequencing for motifs, haplotypes, and polymorphisms. Southern blot was used for investigating alpha-thalassemia and/or alpha- or gamma-globin genes triplications. RNA extracted from burst forming unit-erythroid (BFU-e) colonies of peripheral blood mononuclear cell cultures was used in reverse transcriptase-polymerase chain reaction (RT-PCR) to investigate intergenic transcription. RESULTS We established that (i) the combination: T haplotype of the Agamma-delta-globin intergenic region, the motif (TA)9N10(TA)10 in the HS2 site of locus control region (LCR), and TAG pre-Ggamma haplotype is sufficient but not necessary for high HbF, (ii) the genetic determinant(s) for high HbF involves an element associated with this combination and must be present in the specific R haplotype occurring in beta-thalassemia intermedia and (iii) the genetic determinant(s) for high HbF does not involve the abolition of intergenic transcription in the Agamma-delta-globin intergenic region. CONCLUSIONS The genetic determinant(s) of high HbF in the absence of HPFH is linked to intergenic haplotype T and does not disrupt intergenic transcription.
Collapse
|
33
|
Forsdyke DR. Self/Not-Self? Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Dye MJ, Gromak N, Haussecker D, West S, Proudfoot NJ. Turnover and function of noncoding RNA polymerase II transcripts. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:275-84. [PMID: 17381307 DOI: 10.1101/sqb.2006.71.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the past few years, especially since the discovery of RNA interference (RNAi), our understanding of the role of RNA in gene expression has undergone a significant transformation. This change has been brought about by growing evidence that RNA is more complex and transcription more promiscuous than has previously been thought. Many of the new transcripts are of so-called noncoding RNA (ncRNA); i.e., RNA that does not code for proteins such as mRNA, or intrinsic parts of the cellular machinery such as the highly structured RNA components of ribosomes (rRNA) and the small nuclear RNA (snRNA) components of the splicing machinery. It is becoming increasingly apparent that ncRNAs have very important roles in gene expression. This paper focuses on work from our laboratory in which we have investigated the roles and turnover of ncRNA located within the gene pre-mRNA, which we refer to as intragenic ncRNA. Also discussed are some investigations of intergenic ncRNA transcription and how these two classes of ncRNA may interrelate.
Collapse
Affiliation(s)
- M J Dye
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Abstract
Enhancers can activate their target genes over large linear distances. Insulators can delimit the influence of an enhancer to an appropriate target. There are a number of intertwined mechanisms by which the regulatory functions of enhancers and insulators might be carried out at the level of the chromatin fiber. Recent evidence suggests that both enhancers and insulators participate in higher-order organization of chromatin in the nucleus and in localization of their regulated sequences to both subnuclear structures and compartments. Novel experimental approaches are helping to reveal the mechanisms underlying nuclear organization of developmentally regulated genes.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
36
|
Szutorisz H, Dillon N, Tora L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 2005; 30:593-9. [PMID: 16126390 DOI: 10.1016/j.tibs.2005.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/04/2005] [Accepted: 08/16/2005] [Indexed: 11/23/2022]
Abstract
Activation of eukaryotic genes requires a tight temporal control of trans-acting-factor binding to different types of sequence elements. General transcription factors (GTFs) have a central role in the regulation of RNA polymerase II (Pol II) function because they are involved in the initiation of transcription at all class II promoters. Recent studies have shown that GTFs and Pol II are recruited to enhancer elements and that this binding is an early event in gene activation. We propose that an important role of some enhancers is to function as nucleation centres for the assembly of the pre-initiation complex to regulate the timing of gene activation during development, differentiation and the cell cycle.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
37
|
Haussecker D, Proudfoot NJ. Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster. Mol Cell Biol 2005; 25:9724-33. [PMID: 16227618 PMCID: PMC1265824 DOI: 10.1128/mcb.25.21.9724-9733.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/02/2005] [Accepted: 08/07/2005] [Indexed: 11/20/2022] Open
Abstract
The widespread occurrence of intergenic transcription in eukaryotes is increasingly evident. Intergenic transcription in the beta-globin gene cluster has been described in murine and human cells, and models for a role in gene and chromatin activation have been proposed. In this study, we analyze intergenic transcription and the chromatin state throughout the human beta-globin gene cluster and find that the data are not consistent with such activation-linked models. Thus, intergenic transcript levels correlate with neither chromatin activation nor globin gene expression. Instead, we find that intergenic transcripts of the beta-globin gene cluster are specifically upregulated in Dicer-deficient cells. This is accompanied by a shift towards more activated chromatin as indicated by changes in histone tail modifications. Our results strongly implicate RNA interference (RNAi)-related mechanisms in regulating intergenic transcription in the human beta-globin gene cluster and further suggest that RNAi-dependent chromatin silencing in vertebrates is not restricted to the centromeres.
Collapse
Affiliation(s)
- Dirk Haussecker
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
38
|
Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 2005; 110:342-52. [PMID: 16093686 DOI: 10.1159/000084966] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 01/07/2004] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are present in all organisms and nearly half of the human and mouse genome is derived from ancient transpositions. This fact alone suggests that TEs have played a major role in genome organization and evolution. Studies undertaken over the last two decades or so clearly show that TEs of various kinds have played an important role in organism evolution. Here we review the impact TEs have on the evolution of gene regulation and gene function with an emphasis on humans. Understanding the mechanisms resulting in genomic change is central to our understanding of gene regulation, genetic disease and genome evolution. Full comprehension of these biological processes is not possible without an in depth knowledge of how TEs impact upon the genome.
Collapse
Affiliation(s)
- P Medstrand
- Department of Cell and Molecular Biology, Biomedical Centre, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
39
|
Sproul D, Gilbert N, Bickmore WA. The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 2005; 6:775-81. [PMID: 16160692 DOI: 10.1038/nrg1688] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Much of what we know about the chromatin-based mechanisms that regulate gene expression in mammals has come from the study of what are, paradoxically, atypical genes. These are clusters of structurally and/or functionally related genes that are coordinately regulated during development, or between different cell types. Can unravelling the mechanisms of gene regulation at these gene clusters help us to understand how other genes are controlled? Moreover, can it explain why there is clustering of apparently unrelated genes in mammalian genomes?
Collapse
Affiliation(s)
- Duncan Sproul
- Chromosomes and Gene Expression Section, Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | | | | |
Collapse
|
40
|
Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P. Developmental regulation of the beta-globin gene locus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:183-206. [PMID: 15881896 DOI: 10.1007/3-540-27310-7_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The beta-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, transacting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The human globin genes are among the most extensively characterized in the human genome, yet the details of the molecular events regulating normal human hemoglobin switching and the potential reactivation of fetal hemoglobin in adult hematopoietic cells remain elusive. Recent discoveries demonstrate physical interactions between the beta locus control region and the downstream structural gamma- and beta-globin genes, and with transcription factors and chromatin remodeling complexes. These interactions all play roles in globin gene expression and globin switching at the human beta-globin locus. If the molecular events in hemoglobin switching were better understood and fetal hemoglobin could be more fully reactivated in adult cells, the insights obtained might lead to new approaches to the therapy of sickle cell disease and beta thalassemia by identifying specific new targets for molecular therapies.
Collapse
Affiliation(s)
- Arthur Bank
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
42
|
Wegel E, Shaw P. Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 2005; 114:331-7. [PMID: 16075283 DOI: 10.1007/s00412-005-0015-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 12/12/2022]
Abstract
Chromatin in the interphase nucleus is dynamic, decondensing where genes are activated and condensing where they are silenced. Local chromatin remodelling to a more open structure during gene activation is followed by changes in nucleosome distribution through the action of the transcriptional machinery. This leads to chromatin expansion and looping out of whole genomic regions. Such chromatin loops can extend beyond the chromosome territory. As several studies point to the location of transcription sites inside chromosome territories as well as at their periphery, extraterritorial loops cannot simply be a mechanism for making transcribed genes accessible to the transcriptional machinery and must occur for other reasons. The level of decondensation within an activated region varies greatly and probably depends on the density of activated genes and the number of engaged RNA polymerases. Genes that are silenced during development form a more closed chromatin structure. Specific histone modifications are correlated with gene activation and silencing, and silenced genes may become associated with heterochromatin protein 1 homologues or with polycomb group complexes. Several levels of chromatin packaging are found in the nucleus relating to the different functions of and performed by active genes; euchromatic and heterochromatic regions and the models explaining higher-order chromatin structure are still disputed.
Collapse
Affiliation(s)
- Eva Wegel
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | |
Collapse
|
43
|
Feng YQ, Warin R, Li T, Olivier E, Besse A, Lobell A, Fu H, Lin CM, Aladjem MI, Bouhassira EE. The human beta-globin locus control region can silence as well as activate gene expression. Mol Cell Biol 2005; 25:3864-74. [PMID: 15870261 PMCID: PMC1087713 DOI: 10.1128/mcb.25.10.3864-3874.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using recombinase-mediated cassette exchange to test multiple transgenes at the same site of integration, we demonstrate a novel chromatin context-dependent silencer activity of the beta-globin locus control region (LCR). This silencer activity requires DNase I hypersensitive sites HS2 and HS3 but not HS4. After silencing, the silenced cassettes adopt a typical closed chromatin conformation (histone H3 and H4 deacetylation, histone H3-K4 methylation, DNA methylation, and replication in late S phase). In the absence of the LCR at the same site of integration, the chromatin remains decondensed. We demonstrate that the LCR is necessary but not sufficient to trigger these chromatin changes. We also provide evidence that this novel silencing activity is caused by transcriptional interference triggered by activation of transcription in the flanking sequences by the LCR.
Collapse
Affiliation(s)
- Yong-Qing Feng
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Plant KE, Dye MJ, Lafaille C, Proudfoot NJ. Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human Ggamma-globin gene. Mol Cell Biol 2005; 25:3276-85. [PMID: 15798211 PMCID: PMC1069604 DOI: 10.1128/mcb.25.8.3276-3285.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human gamma-globin genes form part of a 5-kb tandem duplication within the beta-globin gene cluster on chromosome 11. Despite a high degree of identity between the two genes, we show that while the upstream Ggamma-globin gene terminates transcription efficiently, termination in the Agamma gene is inefficient. This is primarily due to the different strengths of the polyA signals of the two genes; Ggamma-globin has a functionally stronger polyA signal than the Agamma gene. The probable cause of this difference in polyA efficiency characteristics lies with a number of base changes which reduce the G/U content of the GU/U-rich region of the Agamma polyA signal relative to that of Ggamma. The 3' flanking regions of the two gamma-globin genes have similar abilities to promote transcription termination. We found no evidence to suggest a cotranscriptional cleavage event, such as that seen in the human beta-globin gene, occurs in either gamma-globin 3' flank. Instead we find evidence that the 3' flank of the Ggamma-globin gene contains multiple weak pause elements which, combined with the strong polyA signal the gene possesses, are likely to cause gradual termination across the 3' flank.
Collapse
Affiliation(s)
- Kathryn E Plant
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
45
|
Szutorisz H, Canzonetta C, Georgiou A, Chow CM, Tora L, Dillon N. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol Cell Biol 2005; 25:1804-20. [PMID: 15713636 PMCID: PMC549375 DOI: 10.1128/mcb.25.5.1804-1820.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation potential of stem cells is determined by the ability of these cells to establish and maintain developmentally regulated gene expression programs that are specific to different lineages. Although transcriptionally potentiated epigenetic states of genes have been described for haematopoietic progenitors, the developmental stage at which the formation of lineage-specific gene expression domains is initiated remains unclear. In this study, we show that an intergenic cis-acting element in the mouse lambda5-VpreB1 locus is marked by histone H3 acetylation and histone H3 lysine 4 methylation at a discrete site in embryonic stem (ES) cells. The epigenetic modifications spread from this site toward the VpreB1 and lambda5 genes at later stages of B-cell development, and a large, active chromatin domain is established in pre-B cells when the genes are fully expressed. In early B-cell progenitors, the binding of haematopoietic factor PU.1 coincides with the expansion of the marked region, and the region becomes a center for the recruitment of general transcription factors and RNA polymerase II. In pre-B cells, E2A also binds to the locus, and general transcription factors are distributed across the active domain, including the gene promoters and the intergenic region. These results suggest that localized epigenetic marking is important for establishing the transcriptional competence of the lambda5 and VpreB1 genes as early as the pluripotent ES cell stage.
Collapse
MESH Headings
- Acetylation
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/physiology
- Basic Helix-Loop-Helix Transcription Factors
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- DNA Topoisomerases, Type I/genetics
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/cytology
- Epigenesis, Genetic/physiology
- Gene Expression Regulation, Developmental/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Histones/metabolism
- Immunoglobulin Light Chains
- Immunoglobulin Light Chains, Surrogate
- Isoenzymes/genetics
- Membrane Glycoproteins/genetics
- Methylation
- Mice
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/metabolism
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription Initiation Site/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Rd., London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Kalmykova AI, Nurminsky DI, Ryzhov DV, Shevelyov YY. Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster. Nucleic Acids Res 2005; 33:1435-44. [PMID: 15755746 PMCID: PMC1062873 DOI: 10.1093/nar/gki281] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, the phenomenon of clustering of co-expressed genes on chromosomes was discovered in eukaryotes. To explore the hypothesis that genes within clusters occupy shared chromatin domains, we performed a detailed analysis of transcription pattern and chromatin structure of a cluster of co-expressed genes. We found that five non-homologous genes (Crtp, Yu, CK2betates, Pros28.1B and CG13581) are expressed exclusively in Drosophila melanogaster male germ-line and form a non-interrupted cluster in the 15 kb region of chromosome 2. The cluster is surrounded by genes with broader transcription patterns. Analysis of DNase I sensitivity revealed 'open' chromatin conformation in the cluster and adjacent regions in the male germ-line cells, where all studied genes are transcribed. In contrast, in somatic tissues where the cluster genes are silent, the domain of repressed chromatin encompassed four out of five cluster genes and an adjacent non-cluster gene CG13589 that is also silent in analyzed somatic tissues. The fifth cluster gene (CG13581) appears to be excluded from the chromatin domain occupied by the other four genes. Our results suggest that extensive clustering of co-expressed genes in eukaryotic genomes does in general reflect the domain organization of chromatin, although domain borders may not exactly correspond to the margins of gene clusters.
Collapse
Affiliation(s)
| | - Dmitry I. Nurminsky
- Department of Anatomy and Cell Biology, Tufts University School of MedicineBoston, MA 02111, USA
| | | | - Yuri Y. Shevelyov
- To whom correspondence should be addressed. Tel: +7 095 1960809; Fax: +7 095 1960221;
| |
Collapse
|
47
|
Krawczyk M, Peyraud N, Rybtsova N, Masternak K, Bucher P, Barras E, Reith W. Long distance control of MHC class II expression by multiple distal enhancers regulated by regulatory factor X complex and CIITA. THE JOURNAL OF IMMUNOLOGY 2004; 173:6200-10. [PMID: 15528357 DOI: 10.4049/jimmunol.173.10.6200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC-II) genes are regulated by an enhanceosome complex containing two gene-specific transcription factors, regulatory factor X complex (RFX) and CIITA. These factors assemble on a strictly conserved regulatory module (S-X-X2-Y) found immediately upstream of the promoters of all classical and nonclassical MHC-II genes as well as the invariant chain (Ii) gene. To identify new targets of RFX and CIITA, we developed a computational approach based on the unique and highly constrained architecture of the composite S-Y motif. We identified six novel S'-Y' modules situated far away from the promoters of known human RFX- and CIITA-controlled genes. Four are situated at strategic positions within the MHC-II locus, and two are found within the Ii gene. These S'-Y' modules function as transcriptional enhancers, are bona fide targets of RFX and CIITA in B cells and IFN-gamma-induced cells, and induce broad domains of histone hyperacetylation. These results reveal a hitherto unexpected level of complexity involving long distance control of MHC-II expression by multiple distal regulatory elements.
Collapse
Affiliation(s)
- Michal Krawczyk
- University of Geneva Medical School, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Ling J, Ainol L, Zhang L, Yu X, Pi W, Tuan D. HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem 2004; 279:51704-13. [PMID: 15465832 DOI: 10.1074/jbc.m404039200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The HS2 enhancer in the beta-globin locus control region regulates transcription of the globin genes 10-50 kb away. How the HS2 enhancer acts over this distance is not clearly understood. Earlier studies show that in erythroid cells the HS2 enhancer initiates synthesis of intergenic RNAs from sites within and downstream of the enhancer, and the enhancer-initiated RNAs are transcribed through the intervening DNA into the cis-linked promoter and gene. To investigate the functional significance of the enhancer-initiated transcription, here we inserted the lac operator sequence in the intervening DNA between the HS2 enhancer and the epsilon-globin promoter in reporter plasmids and integrated the plasmids into erythroid K562 cells expressing the lac repressor protein. We found that the interposed lac operator/repressor complex blocked the elongation of enhancer-initiated transcription through the intervening DNA and drastically reduced HS2 enhancer function as measured by the level of mRNA synthesized from the epsilon-globin promoter. The results indicate that the tracking and transcription mechanism of the HS2 enhancer-assembled transcriptional machinery from the enhancer through the intervening DNA into the cis-linked promoter can mediate enhancer-promoter interaction over a long distance.
Collapse
Affiliation(s)
- Jianhua Ling
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
49
|
Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A, Proudfoot N. Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol 2004; 24:4174-83. [PMID: 15121839 PMCID: PMC400487 DOI: 10.1128/mcb.24.10.4174-4183.2004] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polypyrimidine tract binding protein (PTB) is a major hnRNP protein with multiple roles in mRNA metabolism, including regulation of alternative splicing and internal ribosome entry site-driven translation. We show here that a fourfold overexpression of PTB results in a 75% reduction of mRNA levels produced from transfected gene constructs with different polyadenylation signals (pA signals). This effect is due to the reduced efficiency of mRNA 3' end cleavage, and in vitro analysis reveals that PTB competes with CstF for recognition of the pA signal's pyrimidine-rich downstream sequence element. This may be analogous to its role in alternative splicing, where PTB competes with U2AF for binding to pyrimidine-rich intronic sequences. The pA signal of the C2 complement gene unusually possesses a PTB-dependent upstream sequence, so that knockdown of PTB expression by RNA interference reduces C2 mRNA expression even though PTB overexpression still inhibits polyadenylation. Consequently, we show that PTB can act as a regulator of mRNA expression through both its negative and positive effects on mRNA 3' end processing.
Collapse
Affiliation(s)
- Pedro Castelo-Branco
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Close J, Game L, Clark B, Bergounioux J, Gerovassili A, Thein SL. Genome annotation of a 1.5 Mb region of human chromosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression in adults. BMC Genomics 2004; 5:33. [PMID: 15169551 PMCID: PMC441375 DOI: 10.1186/1471-2164-5-33] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/31/2004] [Indexed: 12/24/2022] Open
Abstract
Background Heterocellular hereditary persistence of fetal hemoglobin (HPFH) is a common multifactorial trait characterized by a modest increase of fetal hemoglobin levels in adults. We previously localized a Quantitative Trait Locus for HPFH in an extensive Asian-Indian kindred to chromosome 6q23. As part of the strategy of positional cloning and a means towards identification of the specific genetic alteration in this family, a thorough annotation of the candidate interval based on a strategy of in silico / wet biology approach with comparative genomics was conducted. Results The ~1.5 Mb candidate region was shown to contain five protein-coding genes. We discovered a very large uncharacterized gene containing WD40 and SH3 domains (AHI1), and extended the annotation of four previously characterized genes (MYB, ALDH8A1, HBS1L and PDE7B). We also identified several genes that do not appear to be protein coding, and generated 17 kb of novel transcript sequence data from re-sequencing 97 EST clones. Conclusion Detailed and thorough annotation of this 1.5 Mb interval in 6q confirms a high level of aberrant transcripts in testicular tissue. The candidate interval was shown to exhibit an extraordinary level of alternate splicing – 19 transcripts were identified for the 5 protein coding genes, but it appears that a significant portion (14/19) of these alternate transcripts did not have an open reading frame, hence their functional role is questionable. These transcripts may result from aberrant rather than regulated splicing.
Collapse
Affiliation(s)
- James Close
- Department of Haematological Medicine, GKT School of Medicine, King's Denmark Hill Campus, Bessemer Road, London, SE5 9PJ, UK
- SANE POWIC, Warneford Hospital, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Laurence Game
- Department of Haematological Medicine, GKT School of Medicine, King's Denmark Hill Campus, Bessemer Road, London, SE5 9PJ, UK
- CSC-IC Microarray Centre, 2nd floor, L-block, Room 221, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Barnaby Clark
- Department of Haematological Medicine, GKT School of Medicine, King's Denmark Hill Campus, Bessemer Road, London, SE5 9PJ, UK
| | - Jean Bergounioux
- Department of Haematological Medicine, GKT School of Medicine, King's Denmark Hill Campus, Bessemer Road, London, SE5 9PJ, UK
- Unité de soins intensif pédiatrique, Hôpital Universitaire Krémlin Bicêtre, 63 av. Gabriel Péri, 94270 Le Krémlin Bicêtre, France
| | - Ageliki Gerovassili
- Department of Haematological Medicine, GKT School of Medicine, King's Denmark Hill Campus, Bessemer Road, London, SE5 9PJ, UK
| | - Swee Lay Thein
- Department of Haematological Medicine, GKT School of Medicine, King's Denmark Hill Campus, Bessemer Road, London, SE5 9PJ, UK
| |
Collapse
|