1
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
2
|
Dennis AF, Xu Z, Clark DJ. Examining chromatin heterogeneity through PacBio long-read sequencing of M.EcoGII methylated genomes: an m6A detection efficiency and calling bias correcting pipeline. Nucleic Acids Res 2024; 52:e45. [PMID: 38634798 PMCID: PMC11109960 DOI: 10.1093/nar/gkae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Recent studies have combined DNA methyltransferase footprinting of genomic DNA in nuclei with long-read sequencing, resulting in detailed chromatin maps for multi-kilobase stretches of genomic DNA from one cell. Theoretically, nucleosome footprints and nucleosome-depleted regions can be identified using M.EcoGII, which methylates adenines in any sequence context, providing a high-resolution map of accessible regions in each DNA molecule. Here, we report PacBio long-read sequence data for budding yeast nuclei treated with M.EcoGII and a bioinformatic pipeline which corrects for three key challenges undermining this promising method. First, detection of m6A in individual DNA molecules by the PacBio software is inefficient, resulting in false footprints predicted by random gaps of seemingly unmethylated adenines. Second, there is a strong bias against m6A base calling as AT content increases. Third, occasional methylation occurs within nucleosomes, breaking up their footprints. After correcting for these issues, our pipeline calculates a correlation coefficient-based score indicating the extent of chromatin heterogeneity within the cell population for every gene. Although the population average is consistent with that derived using other techniques, we observe a wide range of heterogeneity in nucleosome positions at the single-molecule level, probably reflecting cellular chromatin dynamics.
Collapse
Affiliation(s)
- Allison F Dennis
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuwei Xu
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Dennis AF, Xu Z, Clark DJ. Examining chromatin heterogeneity through PacBio long-read sequencing of M.EcoGII methylated genomes: an m 6A detection efficiency and calling bias correcting pipeline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569045. [PMID: 38076871 PMCID: PMC10705563 DOI: 10.1101/2023.11.28.569045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Recent studies have combined DNA methyltransferase footprinting of genomic DNA in nuclei with long-read sequencing, resulting in detailed chromatin maps for multi-kilobase stretches of genomic DNA from one cell. Theoretically, nucleosome footprints and nucleosome-depleted regions can be identified using M.EcoGII, which methylates adenines in any sequence context, providing a high-resolution map of accessible regions in each DNA molecule. Here we report PacBio long-read sequence data for budding yeast nuclei treated with M.EcoGII and a bioinformatic pipeline which corrects for three key challenges undermining this promising method. First, detection of m6A in individual DNA molecules by the PacBio software is inefficient, resulting in false footprints predicted by random gaps of seemingly unmethylated adenines. Second, there is a strong bias against m6A base calling as AT content increases. Third, occasional methylation occurs within nucleosomes, breaking up their footprints. After correcting for these issues, our pipeline calculates a correlation coefficient-based score indicating the extent of chromatin heterogeneity within the cell population for every gene. Although the population average is consistent with that derived using other techniques, we observe a wide range of heterogeneity in nucleosome positions at the single-molecule level, probably reflecting cellular chromatin dynamics.
Collapse
Affiliation(s)
| | | | - David J. Clark
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
4
|
Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper. Biosens Bioelectron 2022; 214:114502. [DOI: 10.1016/j.bios.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
|
5
|
Singh AK, Schauer T, Pfaller L, Straub T, Mueller-Planitz F. The biogenesis and function of nucleosome arrays. Nat Commun 2021; 12:7011. [PMID: 34853297 PMCID: PMC8636622 DOI: 10.1038/s41467-021-27285-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Numerous chromatin remodeling enzymes position nucleosomes in eukaryotic cells. Aside from these factors, transcription, DNA sequence, and statistical positioning of nucleosomes also shape the nucleosome landscape. The precise contributions of these processes remain unclear due to their functional redundancy in vivo. By incisive genome engineering, we radically decreased their redundancy in Saccharomyces cerevisiae. The transcriptional machinery strongly disrupts evenly spaced nucleosomes. Proper nucleosome density and DNA sequence are critical for their biogenesis. The INO80 remodeling complex helps space nucleosomes in vivo and positions the first nucleosome over genes in an H2A.Z-independent fashion. INO80 requires its Arp8 subunit but unexpectedly not the Nhp10 module for spacing. Cells with irregularly spaced nucleosomes suffer from genotoxic stress including DNA damage, recombination and transpositions. We derive a model of the biogenesis of the nucleosome landscape and suggest that it evolved not only to regulate but also to protect the genome.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Tamás Schauer
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Lena Pfaller
- grid.5252.00000 0004 1936 973XMolecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Tobias Straub
- grid.5252.00000 0004 1936 973XBioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, München, Germany. .,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Shen CH, Allan J. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes. Cells 2021; 10:cells10092239. [PMID: 34571888 PMCID: PMC8469290 DOI: 10.3390/cells10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The compact nucleosomal structure limits DNA accessibility and regulates DNA-dependent cellular activities. Linker histones bind to nucleosomes and compact nucleosomal arrays into a higher-order chromatin structure. Recent developments in high throughput technologies and structural computational studies provide nucleosome positioning at a high resolution and contribute to the information of linker histone location within a chromatosome. However, the precise linker histone location within the chromatin fibre remains unclear. Using monomer extension, we mapped core particle and chromatosomal positions over a core histone-reconstituted, 1.5 kb stretch of DNA from the chicken adult β-globin gene, after titration with linker histones and linker histone globular domains. Our results show that, although linker histone globular domains and linker histones display a wide variation in their binding affinity for different positioned nucleosomes, they do not alter nucleosome positions or generate new nucleosome positions. Furthermore, the extra ~20 bp of DNA protected in a chromatosome is usually symmetrically distributed at each end of the core particle, suggesting linker histones or linker histone globular domains are located close to the nucleosomal dyad axis.
Collapse
Affiliation(s)
- Chang-Hui Shen
- Biology Department, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
- Biochemistry and Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-718-982-3998; Fax: +1-718-982-3852
| | - James Allan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK;
| |
Collapse
|
7
|
The N-Terminal Tail of Histone H3 Regulates Copper Homeostasis in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:MCB.00210-20. [PMID: 33257505 DOI: 10.1128/mcb.00210-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
Copper homeostasis is crucial for various cellular processes. The balance between nutritional and toxic copper levels is maintained through the regulation of its uptake, distribution, and detoxification via antagonistic actions of two transcription factors, Ace1 and Mac1. Ace1 responds to toxic copper levels by transcriptionally regulating detoxification genes CUP1 and CRS5 Cup1 metallothionein confers protection against toxic copper levels. CUP1 gene regulation is a multifactorial event requiring Ace1, TATA-binding protein (TBP), chromatin remodeler, acetyltransferase (Spt10), and histones. However, the role of histone H3 residues has not been fully elucidated. To investigate the role of the H3 tail in CUP1 transcriptional regulation, we screened the library of histone mutants in copper stress. We identified mutations in H3 (K23Q, K27R, K36Q, Δ5-16, Δ13-16, Δ13-28, Δ25-28, Δ28-31, and Δ29-32) that reduce CUP1 expression. We detected reduced Ace1 occupancy across the CUP1 promoter in K23Q, K36Q, Δ5-16, Δ13-28, Δ25-28, and Δ28-31 mutations correlating with the reduced CUP1 transcription. The majority of these mutations affect TBP occupancy at the CUP1 promoter, augmenting the CUP1 transcription defect. Additionally, some mutants displayed cytosolic protein aggregation upon copper stress. Altogether, our data establish previously unidentified residues of the H3 N-terminal tail and their modifications in CUP1 regulation.
Collapse
|
8
|
Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. Int J Mol Sci 2020; 21:ijms21218278. [PMID: 33167354 PMCID: PMC7663833 DOI: 10.3390/ijms21218278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.
Collapse
|
9
|
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. BIOLOGY 2020; 9:biology9080190. [PMID: 32722483 PMCID: PMC7466152 DOI: 10.3390/biology9080190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.
Collapse
|
10
|
Chereji RV, Eriksson PR, Ocampo J, Prajapati HK, Clark DJ. Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation. Genome Res 2019; 29:1985-1995. [PMID: 31511305 PMCID: PMC6886500 DOI: 10.1101/gr.249326.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
DNA accessibility is thought to be of major importance in regulating gene expression. We test this hypothesis using a restriction enzyme as a probe of chromatin structure and as a proxy for transcription factors. We measured the digestion rate and the fraction of accessible DNA at almost all genomic AluI sites in budding yeast and mouse liver nuclei. Hepatocyte DNA is more accessible than yeast DNA, consistent with longer linkers between nucleosomes, suggesting that nucleosome spacing is a major determinant of accessibility. DNA accessibility varies from cell to cell, such that essentially no sites are accessible or inaccessible in every cell. AluI sites in inactive mouse promoters are accessible in some cells, implying that transcription factors could bind without activating the gene. Euchromatin and heterochromatin have very similar accessibilities, suggesting that transcription factors can penetrate heterochromatin. Thus, DNA accessibility is not likely to be the primary determinant of gene regulation.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter R Eriksson
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Josefina Ocampo
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hemant K Prajapati
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Fuse T, Yanagida A, Shimizu M. The Yeast Minichromosome System Consisting of Highly Positioned Nucleosomes in Vivo. Biol Pharm Bull 2019; 42:289-294. [DOI: 10.1248/bpb.b18-00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University
| |
Collapse
|
12
|
Mehta GD, Ball DA, Eriksson PR, Chereji RV, Clark DJ, McNally JG, Karpova TS. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Mol Cell 2018; 72:875-887.e9. [PMID: 30318444 DOI: 10.1016/j.molcel.2018.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
It is unknown how the dynamic binding of transcription factors (TFs) is molecularly linked to chromatin remodeling and transcription. Using single-molecule tracking (SMT), we show that the chromatin remodeler RSC speeds up the search process of the TF Ace1p for its response elements (REs) at the CUP1 promoter. We quantified smFISH mRNA data using a gene bursting model and demonstrated that RSC regulates transcription bursts of CUP1 only by modulating TF occupancy but does not affect initiation and elongation rates. We show by SMT that RSC binds to activated promoters transiently, and based on MNase-seq data, that RSC does not affect the nucleosomal occupancy at CUP1. Therefore, transient binding of Ace1p and rapid bursts of transcription at CUP1 may be dependent on short repetitive cycles of nucleosome mobilization. This type of regulation reduces the transcriptional noise and ensures a homogeneous response of the cell population to heavy metal stress.
Collapse
Affiliation(s)
- Gunjan D Mehta
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Ball
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Eriksson
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Razvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - James G McNally
- Institute for Soft Matter and Functional Materials, Helmholtz Center Berlin, Berlin 12489, Germany
| | - Tatiana S Karpova
- CCR/LRBGE Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Chereji RV, Ramachandran S, Bryson TD, Henikoff S. Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol 2018; 19:19. [PMID: 29426353 PMCID: PMC5807854 DOI: 10.1186/s13059-018-1398-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
We developed a chemical cleavage method that releases single nucleosome dyad-containing fragments, allowing us to precisely map both single nucleosomes and linkers with high accuracy genome-wide in yeast. Our single nucleosome positioning data reveal that nucleosomes occupy preferred positions that differ by integral multiples of the DNA helical repeat. By comparing nucleosome dyad positioning maps to existing genomic and transcriptomic data, we evaluated the contributions of sequence, transcription, and histones H1 and H2A.Z in defining the chromatin landscape. We present a biophysical model that neglects DNA sequence and shows that steric occlusion suffices to explain the salient features of nucleosome positioning.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Srinivas Ramachandran
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Terri D Bryson
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
14
|
Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo. PLoS One 2017; 12:e0186974. [PMID: 29073207 PMCID: PMC5658119 DOI: 10.1371/journal.pone.0186974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.
Collapse
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koji Katsumata
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koya Morohoshi
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Panday A, Grove A. The high mobility group protein HMO1 functions as a linker histone in yeast. Epigenetics Chromatin 2016; 9:13. [PMID: 27030801 PMCID: PMC4812653 DOI: 10.1186/s13072-016-0062-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background Eukaryotic chromatin consists of nucleosome core particles connected by linker DNA of variable length. Histone H1 associates with the linker DNA to stabilize the higher-order chromatin structure and to modulate the ability of regulatory factors to access their nucleosomal targets. In Saccharomyces cerevisiae, the protein with greatest sequence similarity to H1 is Hho1p. However, during vegetative growth, hho1∆ cells do not show any discernible cell growth defects or the changes in bulk chromatin structure that are characteristic of chromatin from multicellular eukaryotes in which H1 is depleted. In contrast, the yeast high mobility group (HMGB) protein HMO1 has been reported to compact chromatin, as evidenced by increased nuclease sensitivity in hmo1∆ cells. HMO1 has an unusual domain architecture compared to vertebrate HMGB proteins in that the HMG domains are followed by a lysine-rich extension instead of an acidic domain. We address here the hypothesis that HMO1 serves the role of H1 in terms of chromatin compaction and that this function requires the lysine-rich extension. Results We show here that HMO1 fulfills this function of a linker histone. For histone H1, chromatin compaction requires its basic C-terminal domain, and we find that the same pertains to HMO1, as deletion of its C-terminal lysine-rich extension renders chromatin nuclease sensitive. On rDNA, deletion of both HMO1 and Hho1p is required for significantly increased nuclease sensitivity. Expression of human histone H1 completely reverses the nuclease sensitivity characteristic of chromatin isolated from hmo1∆ cells. While chromatin remodeling events associated with repair of DNA double-strand breaks occur faster in the more dynamic chromatin environment created by the hmo1 deletion, expression of human histone H1 results in chromatin remodeling and double-strand break repair similar to that observed in wild-type cells. Conclusion Our data suggest that S. cerevisiae HMO1 protects linker DNA from nuclease digestion, a property also characteristic of mammalian linker histone H1. Notably, association with HMO1 creates a less dynamic chromatin environment that depends on its lysine-rich domain. That HMO1 has linker histone function has implications for investigations of chromatin structure and function as well as for evolution of proteins with roles in chromatin compaction.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
16
|
Cole HA, Cui F, Ocampo J, Burke TL, Nikitina T, Nagarajavel V, Kotomura N, Zhurkin VB, Clark DJ. Novel nucleosomal particles containing core histones and linker DNA but no histone H1. Nucleic Acids Res 2015; 44:573-81. [PMID: 26400169 PMCID: PMC4737182 DOI: 10.1093/nar/gkv943] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/09/2015] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.
Collapse
Affiliation(s)
- Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Josefina Ocampo
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara L Burke
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatiana Nikitina
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - V Nagarajavel
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naoe Kotomura
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor B Zhurkin
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Liu J, Martin-Yken H, Bigey F, Dequin S, François JM, Capp JP. Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions. Genome Biol Evol 2015; 7:969-84. [PMID: 25762217 PMCID: PMC4419794 DOI: 10.1093/gbe/evv047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The increase in phenotypic variability through gene expression noise is proposed to be an evolutionary strategy in selective environments. Differences in promoter-mediated noise between Saccharomyces cerevisiae strains could have been selected for thanks to the benefit conferred by gene expression heterogeneity in the stressful conditions, for instance, those experienced by industrial strains. Here, we used a genome-wide approach to identify promoters conferring high noise levels in the industrial wine strain EC1118. Many promoters of genes related to environmental factors were identified, some of them containing genetic variations compared with their counterpart in the laboratory strain S288c. Each variant of eight promoters has been fused to yeast-Enhanced Green Fluorescent Protein and integrated in the genome of both strains. Some industrial variants conferred higher expression associated, as expected, with lower noise, but other variants either increased or decreased expression without modifying variability, so that they might exhibit different levels of transcriptional-mediated noise at equal mean. At different induction conditions giving similar expression for both variants of the CUP1 promoter, we indeed observed higher noise with the industrial variant. Nevertheless, this difference was only observed in the industrial strain, revealing epistasis in the generation of promoter-mediated noise. Moreover, the increased expression variability conferred by this natural yeast promoter variant provided a clear benefit in the face of an environmental stress. Thus, modulation of gene expression noise by a combination of promoter modifications and trans-influences might be a possible adaptation mechanism in yeast.
Collapse
Affiliation(s)
- Jian Liu
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Hélène Martin-Yken
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Frédéric Bigey
- INRA, UMR 1083 Sciences Pour l'Œnologie, Montpellier, France
| | - Sylvie Dequin
- INRA, UMR 1083 Sciences Pour l'Œnologie, Montpellier, France
| | - Jean-Marie François
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Jean-Pascal Capp
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| |
Collapse
|
18
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
19
|
Wimalarathna RN, Pan PY, Shen CH. Co-dependent recruitment of Ino80p and Snf2p is required for yeast CUP1 activation. Biochem Cell Biol 2014; 92:69-75. [DOI: 10.1139/bcb-2013-0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In yeast, Ace1p-dependent induction of CUP1 is responsible for protecting cells from copper toxicity. Although the mechanism of yeast CUP1 induction has been studied intensively, it is still uncertain which chromatin remodelers are involved in CUP1 transcriptional activation. Here, we show that yeast cells are inviable in the presence of copper when either chromatin remodeler, Ino80p or Snf2p, is not present. This inviability is due to the lack of CUP1 expression in ino80Δ and snf2Δ cells. Subsequently, we observe that both Ino80p and Snf2p are present at the promoter and they are responsible for recruiting chromatin remodeling activity to the CUP1 promoter under induced conditions. These results suggest that they directly participate in CUP1 transcriptional activation. Furthermore, the codependent recruitment of both INO80 and SWI/SNF depends on the presence of the transcriptional activator, Ace1p. We also demonstrate that both remodelers are required to recruit RNA polymerase II and targeted histone acetylation, indicating that remodelers are recruited to the CUP1 promoter before RNA polymerase II and histone acetylases. These observations provide evidence for the mechanism of CUP1 induction. As such, we propose a model that describes novel insight into the order of events in CUP1 activation.
Collapse
Affiliation(s)
- Roshini N. Wimalarathna
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, NY 10016, USA
| | - Po Yun Pan
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA
| | - Chang-Hui Shen
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| |
Collapse
|
20
|
Cole HA, Nagarajavel V, Clark DJ. Perfect and imperfect nucleosome positioning in yeast. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:639-43. [PMID: 22306662 PMCID: PMC3358424 DOI: 10.1016/j.bbagrm.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 11/17/2022]
Abstract
Numerous studies of nucleosome positioning have shown that nucleosomes almost invariably adopt one of several alternative overlapping positions on a short DNA fragment in vitro. We define such a set of overlapping positions as a "position cluster", and the 5S RNA gene positioning sequence is presented as an example. The notable exception is the synthetic 601-sequence, which can position a nucleosome perfectly in vitro, though not in vivo. Many years ago, we demonstrated that nucleosome position clusters are present on the CUP1 and HIS3 genes in native yeast chromatin. Recently, using genome-wide paired-end sequencing of nucleosomes, we have shown that position clusters are the general rule in yeast chromatin, not the exception. We argue that, within a cell population, one of several alternative nucleosomal arrays is formed on each gene. We show how position clusters and alternative arrays can give rise to typical nucleosome occupancy profiles, and that position clusters are disrupted by transcriptional activation. The centromeric nucleosome is a rare example of perfect positioning in vivo. It is, however, a special case, since it contains the centromeric histone H3 variant instead of normal H3. Perfect positioning might be due to centromeric sequence-specific DNA binding proteins. Finally, we point out that the existence of position clusters implies that the putative nucleosome code is degenerate. We suggest that degeneracy might be a crucial point in the debate concerning the code. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Hope A. Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda MD
| | - V. Nagarajavel
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda MD
| | - David J. Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda MD
| |
Collapse
|
21
|
Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation. Biochem Biophys Res Commun 2012; 422:658-63. [PMID: 22609398 DOI: 10.1016/j.bbrc.2012.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 11/22/2022]
Abstract
The relationship among transcriptional activators, nucleosome repositioning activity and transcription machinery at the yeast CUP1 gene was addressed. CUP1 encodes a cysteine-rich, copper-binding metallothionein that protects cells against copper toxicity through its ability to sequester copper. The induction of CUP1 requires the presence of Ace1p and the binding of Ace1p at the CUP1 promoter during activation provides evidence that Ace1p is directly involved in CUP1 induction. Furthermore, transcriptional activation of CUP1 resulted in nucleosome repositioning at the CUP1 promoter and sequences further downstream in the coding region, suggesting a gene-wide chromatin remodeling activity. Such remodeling activity depends on the presence of transcription activator Ace1p. The recruitment of RNA polymerase II also requires the presence of Ace1p. Therefore, these observations provide insight into the molecular mechanism of CUP1 activation.
Collapse
|
22
|
Abstract
The DNA of eukaryotic cells is packaged into chromatin by histone proteins, which play a central role in regulating access to genetic information. The nucleosome core is the basic structural unit of chromatin: it is composed of an octamer of the four major core histones (two molecules each of H2A, H2B, H3, and H4), around which are wrapped ∼1.75 negative superhelical turns of DNA, a total of 145-147bp. Nucleosome cores are regularly spaced along the DNA in vivo, separated by linker DNA. Nucleosomes are compact structures capable of blocking access to the DNA that they contain. For example, they may prevent the binding of transcription factors to their cognate sites. It is therefore very important to obtain quantitative information on the positions of nucleosomes with respect to regulatory regions in vivo. The advent of high-throughput sequencing methods has revolutionized this field. We describe the use and advantages of paired-end sequencing to map nucleosomal DNA obtained by micrococcal nuclease digestion of budding yeast nuclei. This approach provides high-quality genome-wide nucleosome occupancy and position maps.
Collapse
Affiliation(s)
- Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
23
|
Cole HA, Howard BH, Clark DJ. Activation-induced disruption of nucleosome position clusters on the coding regions of Gcn4-dependent genes extends into neighbouring genes. Nucleic Acids Res 2011; 39:9521-35. [PMID: 21880600 PMCID: PMC3239181 DOI: 10.1093/nar/gkr643] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have used paired-end sequencing of yeast nucleosomal DNA to obtain accurate genomic maps of nucleosome positions and occupancies in control cells and cells treated with 3-aminotriazole (3AT), an inducer of the transcriptional activator Gcn4. In control cells, 3AT-inducible genes exhibit a series of distinct nucleosome occupancy peaks. However, the underlying position data reveal that each nucleosome peak actually consists of a cluster of mutually exclusive overlapping positions, usually including a dominant position. Thus, each nucleosome occupies one of several possible positions and consequently, different cells have distinct local chromatin structures. Induction results in a major disruption of nucleosome positioning, sometimes with altered spacing and a dramatic loss of occupancy over the entire gene, often extending into a neighbouring gene. Nucleosome-depleted regions are generally unaffected. Genes repressed by 3AT show the same changes, but in reverse. We propose that yeast genes exist in one of several alternative nucleosomal arrays, which are disrupted by activation. We conclude that activation results in gene-wide chromatin remodelling and that this remodelling can even extend into the chromatin of flanking genes.
Collapse
Affiliation(s)
- Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Building 6A, Room 2A14, 6 Center Dr, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
24
|
Abstract
The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena.
Collapse
|
25
|
Abstract
Nucleosome positioning has been the subject of intense study for many years. The properties of micrococcal nuclease, the enzyme central to these studies, are discussed. The various methods used to determine nucleosome positions in vitro and in vivo are reviewed critically. These include the traditional low resolution method of indirect end-labelling, high resolution methods such as primer extension, monomer extension and nucleosome sequencing, and the high throughput methods for genome-wide analysis (microarray hybridisation and parallel sequencing). It is established that low resolution mapping yields an averaged chromatin structure, whereas high resolution mapping reveals the weighted superposition of all the chromatin states in a cell population. Mapping studies suggest that yeast DNA contains information specifying the positions of nucleosomes and that this code is made use of by the cell. It is proposed that the positioning code facilitates nucleosome spacing by encoding information for multiple alternative overlapping nucleosomal arrays. Such a code might facilitate the shunting of nucleosomes from one array to another by ATP-dependent chromatin remodelling machines.
Collapse
Affiliation(s)
- David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 6A, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Esposito M, Konarzewska P, Odeyale O, Shen CH. Gene-wide histone acetylation at the yeast INO1 requires the transcriptional activator Ino2p. Biochem Biophys Res Commun 2010; 391:1285-90. [DOI: 10.1016/j.bbrc.2009.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
|
27
|
Zawadzki KA, Morozov AV, Broach JR. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:3503-13. [PMID: 19494041 DOI: 10.1091/mbc.e09-02-0111] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.
Collapse
Affiliation(s)
- Karl A Zawadzki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
28
|
Ford J, Odeyale O, Eskandar A, Kouba N, Shen CH. A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun 2007; 361:974-9. [PMID: 17681272 PMCID: PMC2034749 DOI: 10.1016/j.bbrc.2007.07.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 01/27/2023]
Abstract
Transcriptional activation in yeast INO1 chromatin was studied using the indirect end-labeling technique. INO1 chromatin is organized into an ordered, overlapping nucleosomal array under repressing conditions. Nucleosome positions were only disrupted at the promoter region under inducing conditions in the presence of SWI/SNF and INO80. Mutants lacking either remodeler demonstrated identical positioning patterns as the wild type under repressing conditions. This indicates that these two remodelers are responsible and essential for local nucleosomal mobilization at the INO1 promoter. The area of local nucleosome movement is consistent with the previously identified region of histone deacetylation activity. In light of these findings, we suggest that nucleosomes subject to local mobilization are also targets for local histone modifications.
Collapse
Affiliation(s)
- Jason Ford
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Oluwafemi Odeyale
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Antonious Eskandar
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Nafila Kouba
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Chang-Hui Shen
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
- Institute for Macromolecular Assemblies, City University of New York, Staten Island, New York 10314, USA
- To whom correspondence should be addressed. Phone: 718-982-3998. Fax: (718) 982-3852. E-mail:
| |
Collapse
|
29
|
Jimeno-González S, Gómez-Herreros F, Alepuz PM, Chávez S. A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region. Mol Cell Biol 2006; 26:8710-21. [PMID: 17000768 PMCID: PMC1636840 DOI: 10.1128/mcb.01129-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FACT complex stimulates transcription elongation on nucleosomal templates. In vivo experiments also involve FACT in the reassembly of nucleosomes traversed by RNA polymerase II. Since several features of chromatin organization vary throughout the genome, we wondered whether FACT is equally required for all genes. We show in this study that the in vivo depletion of Spt16, one of the subunits of Saccharomyces cerevisiae FACT, strongly affects transcription of three genes, GAL1, PHO5, and Kluyveromyces lactis LAC4, which exhibit positioned nucleosomes at their transcribed regions. In contrast, showing a random nucleosome structure, YAT1 and Escherichia coli lacZ are only mildly influenced by Spt16 depletion. We also show that the effect of Spt16 depletion on GAL1 expression is suppressed by a histone mutation and that the insertion of a GAL1 fragment, which allows the positioning of two nucleosomes, at the 5' end of YAT1 makes the resulting transcription unit sensitive to Spt16 depletion. These results indicate that FACT requirement for transcription depends on the chromatin organization of the 5' end of the transcribed region.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Avda. Reina Mercedes 6, 41012-Seville, Spain
| | | | | | | |
Collapse
|
30
|
Kim Y, McLaughlin N, Lindstrom K, Tsukiyama T, Clark DJ. Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene. Mol Cell Biol 2006; 26:8607-22. [PMID: 16982689 PMCID: PMC1636772 DOI: 10.1128/mcb.00678-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effects of transcriptional activation on the chromatin structure of the Saccharomyces cerevisiae HIS3 gene were addressed by mapping the precise positions of nucleosomes in uninduced and induced chromatin. In the absence of the Gcn4p activator, the HIS3 gene is organized into a predominant nucleosomal array. In wild-type chromatin, this array is disrupted, and several alternative overlapping nucleosomal arrays are formed. The disruption of the predominant array also requires the SWI/SNF remodeling machine, indicating that the SWI/SNF complex plays an important role in nucleosome mobilization over the entire HIS3 gene. The Isw1 remodeling complex plays a more subtle role in determining nucleosome positions on HIS3, favoring positions different from those preferred by the SWI/SNF complex. Both the SWI/SNF and Isw1 complexes are constitutively present in HIS3 chromatin, although Isw1 tends to be excluded from the HIS3 promoter. Despite the apparent disorder of HIS3 chromatin generated by the formation of multiple nucleosomal arrays, nucleosome density profiles indicate that some long-range order is always present. We propose that Gcn4p stimulates nucleosome mobilization over the entire HIS3 gene by the SWI/SNF complex. We suggest that the net effect of interplay among remodeling machines at HIS3 is to create a highly dynamic chromatin structure.
Collapse
Affiliation(s)
- Yeonjung Kim
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Tong W, Kulaeva OI, Clark DJ, Lutter LC. Topological analysis of plasmid chromatin from yeast and mammalian cells. J Mol Biol 2006; 361:813-22. [PMID: 16890953 DOI: 10.1016/j.jmb.2006.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/23/2006] [Accepted: 07/07/2006] [Indexed: 12/01/2022]
Abstract
Yeast has proven to be a powerful system for investigation of chromatin structure. However, the extent to which yeast chromatin can serve as a model for mammalian chromatin is limited by the significant number of differences that have been reported. To further investigate the structural relationship between the two chromatins, we have performed a DNA topological analysis of pRSSVO, a 5889 base-pair plasmid that can replicate in either yeast or mammalian cells. When grown in mammalian cells, pRSSVO contains an average of 33 negative supercoils, consistent with one nucleosome per 181 bp. This is close to the measured nucleosome repeat length of 190 bp. However, when grown in yeast cells, pRSSVO contains an average of only 23 negative supercoils, which is indicative of only one nucleosome per 256 bp. This is dramatically different from the measured nucleosome repeat length of 165 bp. To account for these observations, we suggest that yeast chromatin is composed of relatively short ordered arrays of nucleosomes with a repeat of 165 bp, separated by substantial gaps, possibly corresponding to regulatory regions.
Collapse
Affiliation(s)
- Wilbur Tong
- Molecular Biology Research Program, Henry Ford Hospital, Floor 5D, One Ford Place, Detroit, MI 48202-3450, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Studies of histone modification patterns and their role in gene regulation have led to the proposal that there is a "histone code." We have developed a method for nucleosome immunoprecipitation that can precisely identify the specific nucleosomes that carry a posttranslational modification of interest. The process involves the isolation and micrococcal nuclease digestion of minichromosomes to generate nucleosome core particles. These are then used in immunoprecipitation reactions with an antibody directed against the histone modification of interest. Subsequently, nucleosome core particle DNA is purified and end labeled. The original locations of the nucleosomes in the immunoprecipitate can be determined at low resolution (using a modified Southern blot hybridization procedure) or at maximal resolution (using the monomer extension method). Using the latter method, the positions of specific nucleosomes that carry the posttranslational modification of interest can be identified precisely. This method is sensitive, provides maximal resolution, and is inexpensive. The approach described here may serve as a paradigm for the study of histone-modifying patterns.
Collapse
Affiliation(s)
- David J Clark
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
33
|
Abstract
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.
Collapse
Affiliation(s)
- Ji-Ping Z Wang
- Department of Statistics, 2006 Sheridan Road, Evanston, IL 60208, USA.
| | | |
Collapse
|
34
|
Eriksson PR, Mendiratta G, McLaughlin NB, Wolfsberg TG, Mariño-Ramírez L, Pompa TA, Jainerin M, Landsman D, Shen CH, Clark DJ. Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol Cell Biol 2005; 25:9127-37. [PMID: 16199888 PMCID: PMC1265784 DOI: 10.1128/mcb.25.20.9127-9137.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast SPT10 gene encodes a putative histone acetyltransferase (HAT) implicated as a global transcription regulator acting through basal promoters. Here we address the mechanism of this global regulation. Although microarray analysis confirmed that Spt10p is a global regulator, Spt10p was not detected at any of the most strongly affected genes in vivo. In contrast, the presence of Spt10p at the core histone gene promoters in vivo was confirmed. Since Spt10p activates the core histone genes, a shortage of histones could occur in spt10Delta cells, resulting in defective chromatin structure and a consequent activation of basal promoters. Consistent with this hypothesis, the spt10Delta phenotype can be rescued by extra copies of the histone genes and chromatin is poorly assembled in spt10Delta cells, as shown by irregular nucleosome spacing and reduced negative supercoiling of the endogenous 2mum plasmid. Furthermore, Spt10p binds specifically and highly cooperatively to pairs of upstream activating sequence elements in the core histone promoters [consensus sequence, (G/A)TTCCN(6)TTCNC], consistent with a direct role in histone gene regulation. No other high-affinity sites are predicted in the yeast genome. Thus, Spt10p is a sequence-specific activator of the histone genes, possessing a DNA-binding domain fused to a likely HAT domain.
Collapse
Affiliation(s)
- Peter R Eriksson
- Laboratory of Molecular Growth Regulation, National Instistute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ercan S, Reese JC, Workman JL, Simpson RT. Yeast recombination enhancer is stimulated by transcription activation. Mol Cell Biol 2005; 25:7976-87. [PMID: 16135790 PMCID: PMC1234320 DOI: 10.1128/mcb.25.18.7976-7987.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae mating type switching is a gene conversion event that exhibits donor preference. MATa cells choose HMLalpha for recombination, and MATalpha cells choose HMRa. Donor preference is controlled by the recombination enhancer (RE), located between HMLalpha and MATa on the left arm of chromosome III. A number of a-cell specific noncoding RNAs are transcribed from the RE locus. Mcm1 and Fkh1 regulate RE activity in a cells. Here we show that Mcm1 binding is required for both the transcription of the noncoding RNAs and Fkh1 binding. This requirement can be bypassed by inserting another promoter into the RE. Moreover, the insertion of this promoter increases donor preference and opens the chromatin structure around the conserved domains of RE. Additionally, we determined that the level of Fkh1 binding positively correlates with the level of donor preference. We conclude that the role of Mcm1 in RE is to open chromatin around the conserved domains and activate transcription; this facilitates Fkh1 binding and the level of this binding determines the level of donor preference.
Collapse
Affiliation(s)
- Sevinc Ercan
- Stowers Institute for Medical Research, 1000 East 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
36
|
García I, Gonzalez R, Gómez D, Scazzocchio C. Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. EUKARYOTIC CELL 2004; 3:144-56. [PMID: 14871945 PMCID: PMC499541 DOI: 10.1128/ec.3.1.144-156.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prnD-prnB intergenic region regulates the divergent transcription of the genes encoding proline oxidase and the major proline transporter. Eight nucleosomes are positioned in this region. Upon induction, the positioning of these nucleosomes is lost. This process depends on the specific transcriptional activator PrnA but not on the general GATA factor AreA. Induction of prnB but not prnD can be elicited by amino acid starvation. A specific nucleosomal pattern in the prnB proximal region is associated with this process. Under conditions of induction by proline, metabolite repression depends on the presence of both repressing carbon (glucose) and nitrogen (ammonium) sources. Under these repressing conditions, partial nucleosomal positioning is observed. This depends on the CreA repressor's binding to two specific cis-acting sites. Three conditions (induction by the defective PrnA80 protein, induction by amino acid starvation, and induction in the presence of an activated CreA) result in similar low transcriptional activation. Each results in a different nucleosome pattern, which argues strongly for a specific effect of each signal on nucleosome positioning. Experiments with trichostatin A suggest that both default nucleosome positioning and partial positioning under induced-repressed conditions depend on deacetylated histones.
Collapse
Affiliation(s)
- Irene García
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621, 91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
37
|
Kuo HC, Moore JD, Krebs JE. Histone H2A and Spt10 cooperate to regulate induction and autoregulation of the CUP1 metallothionein. J Biol Chem 2004; 280:104-11. [PMID: 15501826 DOI: 10.1074/jbc.m411437200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential cellular cofactor that becomes toxic at high levels. Copper homeostasis is tightly regulated by opposing mechanisms that control copper import, export, and copper binding capacity within the cell. High levels of copper induce the expression of metallothioneins, small sulfhydryl-rich proteins with high metal binding capabilities that serve as neutralizers of toxic levels of metals. In yeast, the CUP1 gene encodes a copper metallothionein that is strongly induced in response to metals and other stress and is subsequently rapidly down-regulated. Activation of CUP1 is mediated by the copper-responsive transcriptional activator AceI, and also requires the histone acetylase Spt10 for full induction. We have examined the role of histone H2A in the normal regulation of the CUP1 gene. We have shown that specific H2A mutations in combination with spt10 deletions result in aberrant regulation of CUP1 expression. Certain lysine mutations in H2A alleviate the transcriptional defect in spt10 Delta strains, though CUP1 activation is still delayed in these mutants; however, CUP1 shutdown is normal. In contrast, serine mutations in H2A prevent CUP1 shutdown when combined with spt10 deletions. In addition, swi/snf mutants exhibit both impaired CUP1 induction and failure to shut down CUP1 normally. Finally, different Spt10-dependent histone acetylation events correlate with induction and shutdown. Taken together, these data indicate that CUP1 transcriptional shutdown, like induction, is an active process controlled by the chromatin structure of the gene. These results provide new insights for the role of chromatin structure in metal homeostasis.
Collapse
Affiliation(s)
- Hui-Ching Kuo
- Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508, USA
| | | | | |
Collapse
|
38
|
Valerius O, Brendel C, Wagner C, Krappmann S, Thoma F, Braus GH. Nucleosome position-dependent and -independent activation of HIS7 epression in Saccharomyces cerevisiae by different transcriptional activators. EUKARYOTIC CELL 2004; 2:876-85. [PMID: 14555470 PMCID: PMC219350 DOI: 10.1128/ec.2.5.876-885.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ARO4 and HIS7 are two tandemly orientated genes of Saccharomyces cerevisiae that are transcribed into the same direction. The ARO4 terminator and the HIS7 promoter regions are sensitive to Micrococcus nuclease (Mnase) and separated by a positioned nucleosome. The HIS7 promoter is target for the transcription factors Gcn4p and Bas1p/Bas2p that activate its transcription upon amino acid starvation and purine limitation, respectively. Activation of the HIS7 gene by Gcn4p overexpression but not by Bas1p/Bas2p releases an ordered nucleosome distribution to yield increased Mnase sensitivity throughout the intergenic region. This remodeling is SNF2 dependent but mostly GCN5 independent. Accordingly, SNF2 is necessary for the Gcn4p-mediated transcriptional activation of the HIS7 gene. GCN5 is required for activation upon adenine limitation by Bas1p/Bas2p. Our data suggest that activation of HIS7 transcription by Gcn4p and Bas1p/Bas2p is supported by a nucleosome position-dependent and -independent mechanism, respectively. Whereas Gcn4p activation causes Swi/Snf-mediated remodeling of the nucleosomal architecture at the HIS7 promoter, the Bas1p/Bas2p complex presumably activates in combination with Gcn5p-dependent histone acetylation.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute of Microbiology and Genetics, Georg-August-University, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Kim Y, Shen CH, Clark DJ. Purification and nucleosome mapping analysis of native yeast plasmid chromatin. Methods 2004; 33:59-67. [PMID: 15039088 DOI: 10.1016/j.ymeth.2003.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 10/26/2022] Open
Abstract
There is much evidence indicating the importance in gene regulation of the positions of nucleosomes with respect to DNA sequence. Low resolution chromatin structures have been described for many genes, but there is a dearth of detailed high resolution chromatin structures. In the cases where they are available, high resolution maps have revealed much more complex chromatin structures, with multiple alternative nucleosome positions. The discovery that ATP-dependent chromatin remodelling machines are recruited to genes, with their ability to mobilise nucleosomes on DNA and to alter nucleosomal conformation, emphasises the necessity for obtaining high resolution nucleosome maps, so that the details of these remodelling reactions can be defined in vivo. Here, we describe protocols for purifying plasmid chromatin from cells of the yeast Saccharomyces cerevisiae and for mapping nucleosome positions on the plasmid using the monomer extension mapping method. This method requires purified chromatin, but is capable of mapping relatively long stretches of chromatin in great detail. Typically, it reveals very complex chromatin structures.
Collapse
Affiliation(s)
- Yeonjung Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 50 Room 3148, 50 South Drive MSC 8028, Bethesda, MD 20892-8028, USA
| | | | | |
Collapse
|
40
|
Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics 2003; 270:46-55. [PMID: 12905071 DOI: 10.1007/s00438-003-0895-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 06/30/2003] [Indexed: 10/26/2022]
Abstract
The 5' regulatory region of the cbh2 gene of Hypocrea jecorina contains the cbh2 activating element (CAE) which is essential for induction of cbh2 gene expression by sophorose and cellulose. The CAE consists of two motifs, a CCAAT box on the template strand and a GTAATA box on the coding strand, which cooperate during induction. Northern analyses of cbh2 gene expression has revealed an absolute dependence on induction, but no direct effect of Cre1-mediated carbon catabolite repression. Investigation of the chromatin structure in the wild-type strain showed that, under repressing conditions, there is a nucleosome free region (nfr) around the CAE, which is flanked by strictly positioned nucleosomes. Induction results in a loss of positioning of nucleosomes -1 and -2 downstream of the CAE, thus making the TATA box accessible. Simultaneous mutation of both motifs of the CAE, or of the CCAAT-box alone, also leads to shifting of nucleosome -1, which normally covers the TATA-box under repressing conditions, whereas mutation of the GTAATA element results in a narrowing of the nfr, indicating that the proteins that bind to both motifs in the CAE interact with chromatin, although in different ways. A cellulase-negative mutant strain, which has previously been shown to be altered in protein binding to the CAE, still displayed the induction-specific changes in nucleosome structure, indicating that none of the proteins that directly interact with CAE are affected, and that nucleosome rearrangement and induction of cbh2 expression are uncoupled. Interestingly, the carbon catabolite repressor Cre1 is essential for strict nucleosome positioning in the 5' regulatory sequences of cbh2 under all of the conditions tested, and induction can occur in a promoter that lacks positioned nucleosomes. These data suggest that Cre1, the Hap2/3/5 complex and the GTAATA-binding protein are all involved in nucleosome assembly on the cbh2 promoter, and that the latter two respond to inducing conditions by repositioning nucleosome -1.
Collapse
Affiliation(s)
- S Zeilinger
- Microbial Biochemistry and Gene Technology Department, Institute for Chemical Engineering, Technical University of Vienna, Getreidemarkt 9/166-5, 1060 Wien, Austria.
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Robert T Simpson
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
42
|
Kim Y, Clark DJ. SWI/SNF-dependent long-range remodeling of yeast HIS3 chromatin. Proc Natl Acad Sci U S A 2002; 99:15381-6. [PMID: 12432091 PMCID: PMC137725 DOI: 10.1073/pnas.242536699] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Current models for the role of the SWISNF chromatin remodeling complex in gene regulation are focused on promoters, where the most obvious changes in chromatin structure occur. Here we present evidence that the SWISNF complex is involved in the remodeling of the chromatin structure of an entire gene in vivo. We compared the native chromatin structures of a small yeast plasmid containing the HIS3 gene purified from uninduced and induced cells. Relative to uninduced chromatin, induced chromatin displayed a large reduction in negative supercoiling, a large reduction in sedimentation rate, and increased accessibility to restriction enzymes with sites located both near and far from the HIS3 promoter. These observations indicate that the entire plasmid was remodeled as a result of induction. Loss of supercoiling required the presence of the SWISNF remodeling complex and the activator Gcn4p in vivo. The TATA boxes were not required, suggesting that remodeling was not the result of transcription. The induction-dependent loss of negative supercoiling was not apparent in cells, indicating that the supercoils were lost preferentially from induced chromatin during purification. Thus, induced HIS3 chromatin has a highly labile structure that is revealed as a result of purification. It is concluded that induction of HIS3 creates a domain of labile chromatin structure that extends far beyond the promoter to include the entire gene. We propose that the SWISNF complex is recruited to the HIS3 promoter by Gcn4p and then directs remodeling of a chromatin domain, with important implications for transcription.
Collapse
Affiliation(s)
- Yeonjung Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 50, Room 3148, National Institutes of Health, Bethesda, MD 20892-8028, USA
| | | |
Collapse
|
43
|
Shen CH, Leblanc BP, Neal C, Akhavan R, Clark DJ. Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. Mol Cell Biol 2002; 22:6406-16. [PMID: 12192040 PMCID: PMC135642 DOI: 10.1128/mcb.22.18.6406-6416.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between chromatin remodeling and histone acetylation at the yeast CUP1 gene was addressed. CUP1 encodes a metallothionein required for cell growth at high copper concentrations. Induction of CUP1 with copper resulted in targeted acetylation of both H3 and H4 at the CUP1 promoter. Nucleosomes containing upstream activating sequences and sequences farther upstream were the targets for H3 acetylation. Targeted acetylation of H3 and H4 required the transcriptional activator (Ace1p) and the TATA boxes, suggesting that targeted acetylation occurs when TATA-binding protein binds to the TATA box or at a later stage in initiation. We have shown previously that induction results in nucleosome repositioning over the entire CUP1 gene, which requires Ace1p but not the TATA boxes. Therefore, the movement of nucleosomes occurring on CUP1 induction is independent of targeted acetylation. Targeted acetylation of both H3 and H4 also required the product of the SPT10 gene, which encodes a putative histone acetylase implicated in regulation at core promoters. Disruption of SPT10 was lethal at high copper concentrations and correlated with slower induction and reduced maximum levels of CUP1 mRNA. These observations constitute evidence for a novel mechanism of chromatin activation at CUP1, with a major role for the TATA box.
Collapse
Affiliation(s)
- Chang-Hui Shen
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-8028, USA
| | | | | | | | | |
Collapse
|
44
|
Badi L, Barberis A. The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex. Nucleic Acids Res 2002; 30:1306-15. [PMID: 11884627 PMCID: PMC101354 DOI: 10.1093/nar/30.6.1306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activation of transcription in eukaryotes requires the concerted action of numerous components of the RNA polymerase II transcriptional apparatus. The degree of dependence on many of these components varies from gene to gene and it is still largely unknown how the requirement for any particular component is determined at any given gene. We show that removal of Gal11 from the yeast transcription complex can affect activation from the CUP1 UAS in a manner dependent on its genomic context. Our results indicate a novel function for the CUP1 upstream repeated element (CURE) located upstream of the CUP1 UAS at the naturally multimerized CUP1 locus. The presence of CURE endowed the CUP1 UAS with a reduced susceptibility to the effects of deleting Gal11. Similar results were obtained with the Srb/mediator subunit Srb5. Restoration of activation from the CUP1 promoter to wild-type levels by the CURE correlated with changes in the accessibility of local chromatin to nucleases. The CURE sequence may serve to protect the stress-inducible CUP1 UAS-promoter elements against reduced activation that may result from crippled transcription complexes under stress conditions.
Collapse
Affiliation(s)
- Laura Badi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
45
|
Abstract
Here, we show that a nucleosome obstructing transcription from the IFN-beta promoter slides in vivo in response to virus infection, thus exposing the previously masked TATA box and the initiation site, a requirement for transcriptional activation. Our experiments also revealed that this mode of chromatin remodeling is a two-step reaction. First, the enhanceosome recruits the SWI/SNF chromatin-remodeling complex that modifies the nucleosome to allow binding of TBP. Second, DNA bending is induced by TBP binding, and the nucleosome slides to a new position. Experiments with other DNA binding proteins demonstrated a strong correlation between the ability to bend DNA and nucleosome sliding, suggesting that the sliding is induced by the bend.
Collapse
Affiliation(s)
- S Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
46
|
Shen CH, Clark DJ. DNA sequence plays a major role in determining nucleosome positions in yeast CUP1 chromatin. J Biol Chem 2001; 276:35209-16. [PMID: 11461917 DOI: 10.1074/jbc.m104733200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of DNA sequence in determining nucleosome positions in vivo was investigated by comparing the positions adopted by nucleosomes reconstituted on a yeast plasmid in vitro using purified core histones with those in native chromatin containing the same DNA, described previously. Nucleosomes were reconstituted on a 2.5 kilobase pair DNA sequence containing the yeast TRP1ARS1 plasmid with CUP1 as an insert (TAC-DNA). Multiple, alternative, overlapping nucleosome positions were mapped on TAC-DNA. For the 58 positioned nucleosomes identified, the relative positioning strengths and the stabilities to salt and temperature were determined. These positions were, with a few exceptions, identical to those observed in native, remodeled TAC chromatin containing an activated CUP1 gene. Only some of these positions are utilized in native, unremodeled chromatin. These observations suggest that DNA sequence is likely to play a very important role in positioning nucleosomes in vivo. We suggest that events occurring in yeast CUP1 chromatin determine which positions are occupied in vivo and when they are occupied.
Collapse
Affiliation(s)
- C H Shen
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
47
|
Koch KA, Allard S, Santoro N, Côté J, Thiele DJ. The Candida glabrata Amt1 copper-sensing transcription factor requires Swi/Snf and Gcn5 at a critical step in copper detoxification. Mol Microbiol 2001; 40:1165-74. [PMID: 11401720 DOI: 10.1046/j.1365-2958.2001.02458.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Candida glabrata rapidly autoactivates transcription of the AMT1 gene in response to potentially toxic copper levels through the copper-inducible binding of the Amt1 transcription factor to a metal response element (MRE) within a positioned nucleosome. Our previous studies have characterized the role of a 16 bp homopolymeric dA:dT DNA structural element in facilitating rapid Amt1 access to the AMT1 promoter nucleosomal MRE. In this study, we have used the genetically more facile yeast Saccharomyces cerevisiae to identify additional cellular factors that are important for promoting rapid autoactivation of the AMT1 gene in response to toxic copper levels. We demonstrate that the Swi/Snf nucleosome remodelling complex and the histone acetyltransferase Gcn5 are both essential for AMT1 gene autoregulation, and that the requirement for these chromatin remodelling factors is target gene specific. Chromatin accessibility measurements performed in vitro and in vivo indicate that part of the absolute requirement for these factors is derived from their involvement in facilitating nucleosomal access to the AMT1 promoter MRE. Additionally, these data implicate the involvement of Swi/Snf and Gcn5 at multiple levels of AMT1 gene autoregulation.
Collapse
Affiliation(s)
- K A Koch
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | |
Collapse
|
48
|
Current awareness on yeast. Yeast 2001; 18:577-84. [PMID: 11284013 DOI: 10.1002/yea.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|