1
|
Zhu R, Ni J, Ren J, Li D, Xu J, Yu X, Ma YJ, Kou L. Transcriptomic era of cancers in females: new epigenetic perspectives and therapeutic prospects. Front Oncol 2024; 14:1464125. [PMID: 39605897 PMCID: PMC11598703 DOI: 10.3389/fonc.2024.1464125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
In the era of transcriptomics, the role of epigenetics in the study of cancers in females has gained increasing recognition. This article explores the impact of epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA, on cancers in females, including breast, cervical, and ovarian cancers (1). Our findings suggest that these epigenetic markers not only influence tumor onset, progression, and metastasis but also present novel targets for therapeutic intervention. Detailed analyses of DNA methylation patterns have revealed aberrant events in cancer cells, particularly promoter region hypermethylation, which may lead to silencing of tumor suppressor genes. Furthermore, we examined the complex roles of histone modifications and long non-coding RNAs in regulating the expression of cancer-related genes, thereby providing a scientific basis for developing targeted epigenetic therapies. Our research emphasizes the importance of understanding the functions and mechanisms of epigenetics in cancers in females to develop effective treatment strategies. Future therapeutic approaches may include drugs targeting specific epigenetic markers, which could not only improve therapeutic outcomes but also enhance patient survival and quality of life. Through these efforts, we aim to offer new perspectives and hope for the prevention, diagnosis, and treatment of cancers in females.
Collapse
Affiliation(s)
- Runhe Zhu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Ni
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayin Ren
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongye Li
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Xu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinru Yu
- The Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luan Kou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
2
|
Daly AE, Schiffman A, Hoffmann A, Smale ST. Examining NF-κB genomic interactions by ChIP-seq and CUT&Tag. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607521. [PMID: 39185161 PMCID: PMC11343132 DOI: 10.1101/2024.08.11.607521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
An understanding of the mechanisms and logic by which transcription factors coordinate gene regulation requires delineation of their genomic interactions at a genome-wide scale. Chromatin immunoprecipitation-sequencing (ChIP-seq) and more recent techniques, including CUT&Tag, typically reveal thousands of genomic interactions by transcription factors, but without insight into their functional roles. Due to cost and time considerations, optimization of ChIP experimental conditions is typically carried out only with representative interaction sites rather than through genome-wide analyses. Here, we describe insights gained from the titration of two chemical crosslinking reagents in genome-wide ChIP-seq experiments examining two members of the NF-κB family of transcription factors: RelA and c-Rel. We also describe a comparison of ChIP-seq and CUT&Tag. Our results highlight the large impact of ChIP-seq experimental conditions on the number of interactions detected, on the enrichment of consensus and non-consensus DNA motifs for the factor, and on the frequency with which the genomic interactions detected are located near potential target genes. We also found considerable consistency between ChIP-seq and CUT&Tag results, but with a substantial fraction of genomic interactions detected with only one of the two techniques. Together, the results demonstrate the dramatic impact of experimental conditions on the results obtained in a genome-wide analysis of transcription factor binding, highlighting the need for further scrutiny of the functional significance of these condition-dependent differences.
Collapse
Affiliation(s)
- Allison E. Daly
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Allison Schiffman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Stephen T. Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. Author Correction: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2024; 43:886. [PMID: 38347304 PMCID: PMC10907575 DOI: 10.1038/s44318-024-00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Affiliation(s)
- Adrian P Bracken
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Diego Pasini
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Maria Capra
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141, Milan, Italy
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Elena Prosperini
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Elena Colli
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Kristian Helin
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141, Milan, Italy.
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
4
|
Parlayan C, Sahin Y, Altan Z, Arman K, Ikeda MA, Saadat KASM. ARID3A regulates autophagy related gene BECN1 expression and inhibits proliferation of osteosarcoma cells. Biochem Biophys Res Commun 2021; 585:89-95. [PMID: 34801937 DOI: 10.1016/j.bbrc.2021.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor which has unclear pathobiology. Hence, enlightening the exact molecular mechanism underlying osteosarcoma progression is crucial for developing new treatment strategies. One member of the ARID family of DNA binding proteins is ARID3A that is implicated in osteosarcoma pathogenesis. ARID3A could bind E2F1 and regulate the transcription of E2F1 targets. At the same time, BECN1 is a well-characterized autophagy regulator gene that is a direct target of E2F1. The present study aimed to investigate the effect of ARID3A on the expression of BECN1 in osteosarcoma cells. First, we determined gene expression levels of ARID3A, BECN1, and E2F1 in U-2 OS by qPCR and confirmed with online datasets from GEO database. In addition, the prognostic value of these genes was also evaluated from Kaplan-Meier plotter database. Next, ARID3A was overexpressed and silenced in order to investigate the effect of ARID3A on BECN1 expression and proliferation of U-2 OS cells. Our results demonstrated that BECN1 was negatively correlated with E2F1 and positively correlated with ARID3A based on initial expression and prognostic effect in OS. Overexpression of ARID3A upregulated BECN1 while silenced ARID3A downregulated BECN1 expression in U-2 OS cells. Additionally, silencing of ARID3A promoted colony formation and proliferation, whereas overexpression of ARID3A suppressed colony formation and proliferation of U-2 OS cells. Taken together, these results indicate that ARID3A could function as tumor suppressor and affect the expression level of BECN1 in U-2 OS cells.
Collapse
Affiliation(s)
- Cuneyd Parlayan
- Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Yunus Sahin
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| | - Zekiye Altan
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| | - Kaifee Arman
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, H2W1R7, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Masa-Aki Ikeda
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Khandakar A S M Saadat
- Department of Medical Biology, Faculty of Medicine, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
5
|
Ziegler DV, Huber K, Fajas L. The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers (Basel) 2021; 14:cancers14010153. [PMID: 35008317 PMCID: PMC8750274 DOI: 10.3390/cancers14010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Autophagy is an intracellular catabolic program regulated by multiple external and internal cues. A large amount of evidence unraveled that cell-cycle regulators are crucial in its control. This review highlights the interplay between cell-cycle regulators, including cyclin-dependent kinase inhibitors, cyclin-dependent kinases, and E2F factors, in the control of autophagy all along the cell cycle. Beyond the intimate link between cell cycle and autophagy, this review opens therapeutic perspectives in modulating together these two aspects to block cancer progression. Abstract In the past decade, cell cycle regulators have extended their canonical role in cell cycle progression to the regulation of various cellular processes, including cellular metabolism. The regulation of metabolism is intimately connected with the function of autophagy, a catabolic process that promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection, autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer. As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during tumor development and progression remains highly context-dependent. Recently, multiple articles has suggested the importance of various cell cycle regulators in the modulation of autophagic processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors, are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight the importance of autophagy in cancer progression, we finally evoke new perspectives in therapeutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize antitumor efficacy.
Collapse
|
6
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
7
|
Smallegan MJ, Shehata S, Spradlin SF, Swearingen A, Wheeler G, Das A, Corbet G, Nebenfuehr B, Ahrens D, Tauber D, Lennon S, Choi K, Huynh T, Wieser T, Schneider K, Bradshaw M, Basken J, Lai M, Read T, Hynes-Grace M, Timmons D, Demasi J, Rinn JL. Genome-wide binding analysis of 195 DNA binding proteins reveals "reservoir" promoters and human specific SVA-repeat family regulation. PLoS One 2021; 16:e0237055. [PMID: 34166368 PMCID: PMC8224974 DOI: 10.1371/journal.pone.0237055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
A key aspect in defining cell state is the complex choreography of DNA binding events in a given cell type, which in turn establishes a cell-specific gene-expression program. Here we wanted to take a deep analysis of DNA binding events and transcriptional output of a single cell state (K562 cells). To this end we re-analyzed 195 DNA binding proteins contained in ENCODE data. We used standardized analysis pipelines, containerization, and literate programming with R Markdown for reproducibility and rigor. Our approach validated many findings from previous independent studies, underscoring the importance of ENCODE's goals in providing these reproducible data resources. We also had several new findings including: (i) 1,362 promoters, which we refer to as 'reservoirs,' that are defined by having up to 111 different DNA binding-proteins localized on one promoter, yet do not have any expression of steady-state RNA (ii) Reservoirs do not overlap super-enhancer annotations and distinct have distinct properties from super-enhancers. (iii) The human specific SVA repeat element may have been co-opted for enhancer regulation and is highly transcribed in PRO-seq and RNA-seq. Collectively, this study performed by the students of a CU Boulder computational biology class (BCHM 5631 -Spring 2020) demonstrates the value of reproducible findings and how resources like ENCODE that prioritize data standards can foster new findings with existing data in a didactic environment.
Collapse
Affiliation(s)
- Michael J. Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (MS); (JR)
| | - Soraya Shehata
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Savannah F. Spradlin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Alison Swearingen
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Graycen Wheeler
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Arpan Das
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Giulia Corbet
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Benjamin Nebenfuehr
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Daniel Ahrens
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Devin Tauber
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Shelby Lennon
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Kevin Choi
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Thao Huynh
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Tom Wieser
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Kristen Schneider
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Michael Bradshaw
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Biochemistry 5631 Spring 2020, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Joel Basken
- Arpeggio Biosciences, Boulder, Colorado, United States of America
| | - Maria Lai
- Arpeggio Biosciences, Boulder, Colorado, United States of America
| | - Timothy Read
- Arpeggio Biosciences, Boulder, Colorado, United States of America
| | - Matt Hynes-Grace
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Dan Timmons
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jon Demasi
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - John L. Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Molecular and Cellular Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (MS); (JR)
| |
Collapse
|
8
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
9
|
Xu Q, Li Y, Zheng Y, Chen Y, Xu X, Wang M. Clostridium difficile toxin B-induced colonic inflammation is mediated by the FOXO3/PPM1B pathway in fetal human colon epithelial cells. Am J Transl Res 2020; 12:6204-6219. [PMID: 33194024 PMCID: PMC7653611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Clostridium difficile (C. difficile) toxin B (TcdB) is as an inflammatory enterotoxin that accounts for manifestations of widespread healthcare-associated C. difficile infection, including colonic inflammation. The present work explored the molecular mechanism by which TcdB activates innate immunity and stimulates pro-inflammatory cytokine release. Fetal human colon epithelial cells (FHCs) were treated with recombinant TcdB protein. Cell growth inhibition and apoptosis were measured with Cell Counting Kit-8 and Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit, respectively. Flow cytometry analysis was also performed. Inflammatory cytokine induction was determined with enzykeme-linked immunosorbent assay analyses. Protein expression was assessed by western blot analysis. Gene overexpression and knockdown were performed with lentiviral transduction. Real-time quantitative polymerase chain reaction was used to examine gene expression. Dual-luciferase reporter assays and chromatin immunoprecipitation were implemented to explore transcriptional regulation. Mouse colon tissues were analyzed with hematoxylin and eosin staining. The results show that TcdB-induced cell growth and apoptosis and enhanced expression of interleukin-6 and tumor necrosis factor alpha in FHCs. We identified protein phosphatase magnesium-dependent 1B (PPM1B) as the key mediator promoting the phosphorylation of nuclear factor-κB p65, which accounted for the increase in pro-inflammatory cytokines. The findings demonstrate that PPM1B expression is directly regulated by the AKT/FOXO3 signaling pathway in FHCs. We confirmed the molecular mechanism with in vivo studies using a mouse model infected with C. difficile and treated with a phosphoinositide 3-kinase/AKT signaling inhibitor. In conclusion, TcdB induces inflammation in human colon epithelial cells by regulating the AKT/FOXO3/PPM1B pathway.
Collapse
Affiliation(s)
- Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Ying Li
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan UniversityShanghai 200040, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning CommisionShanghai 200040, China
| |
Collapse
|
10
|
Martínez-Zamudio RI, Roux PF, de Freitas JANLF, Robinson L, Doré G, Sun B, Belenki D, Milanovic M, Herbig U, Schmitt CA, Gil J, Bischof O. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol 2020; 22:842-855. [PMID: 32514071 PMCID: PMC7899185 DOI: 10.1038/s41556-020-0529-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Senescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) 'pioneers' the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications.
Collapse
Affiliation(s)
- Ricardo Iván Martínez-Zamudio
- Institut Pasteur, Paris, France
- INSERM U993, Paris, France
- Center for Cell Signaling, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School of Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA
| | - Pierre-François Roux
- Institut Pasteur, Paris, France
- INSERM U993, Paris, France
- Johnson & Johnson, Upstream Skin Research, Issy-les-Moulineaux, France
| | | | - Lucas Robinson
- Institut Pasteur, Paris, France
- INSERM U993, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Gregory Doré
- Institut Pasteur, Paris, France
- INSERM U993, Paris, France
| | - Bin Sun
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Dimitri Belenki
- Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, Charité-University Medical Center, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maja Milanovic
- Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, Charité-University Medical Center, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Berlin, Germany
| | - Utz Herbig
- Center for Cell Signaling, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School of Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA
| | - Clemens A Schmitt
- Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, Charité-University Medical Center, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Berlin, Germany
- Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Bischof
- Institut Pasteur, Paris, France.
- INSERM U993, Paris, France.
| |
Collapse
|
11
|
Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020; 175:34-49. [PMID: 32428566 DOI: 10.1016/j.biochi.2020.04.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Beclin 1 a yeast Atg6/VPS30 orthologue has a significant role in autophagy process (Macroautophagy) and protein sorting. The function of beclin 1 depends on the interaction with several autophagy-related genes (Atgs) and other proteins during the autophagy process. The role mediated by beclin 1 is controlled by various conditions and factors. Beclin 1 is regulated at the gene and protein levels by different factors. These regulations could subsequently alter the beclin 1 induced autophagy process. Therefore, it is important to study the components of beclin 1 interactome and factors affecting its expression. Expression of this gene is differentially regulated under different conditions in different cells or tissues. So, the regulation part is important to study as beclin 1 is one of the candidate genes involved in diseases related to autophagy dysfunction. This review focuses on the functions of beclin 1, its interacting partners, regulations at gene and protein level, and the role of beclin 1 interactome in relation to various diseases along with the recent developments in the field.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India.
| |
Collapse
|
12
|
Stevens LM, Zhang Y, Volnov Y, Chen G, Stein DS. Isolation of secreted proteins from Drosophila ovaries and embryos through in vivo BirA-mediated biotinylation. PLoS One 2019; 14:e0219878. [PMID: 31658274 PMCID: PMC6816556 DOI: 10.1371/journal.pone.0219878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
The extraordinarily strong non-covalent interaction between biotin and avidin (kD = 10-14-10-16) has permitted this interaction to be used in a wide variety of experimental contexts. The Biotin Acceptor Peptide (BAP), a 15 amino acid motif that can be biotinylated by the E. coli BirA protein, has been fused to proteins-of-interest, making them substrates for in vivo biotinylation. Here we report on the construction and characterization of a modified BirA bearing signals for secretion and endoplasmic reticulum (ER) retention, for use in experimental contexts requiring biotinylation of secreted proteins. When expressed in the Drosophila female germline or ovarian follicle cells under Gal4-mediated transcriptional control, the modified BirA protein could be detected and shown to be enzymatically active in ovaries and progeny embryos. Surprisingly, however, it was not efficiently retained in the ER, and instead appeared to be secreted. To determine whether this secreted protein, now designated secBirA, could biotinylate secreted proteins, we generated BAP-tagged versions of two secreted Drosophila proteins, Torsolike (Tsl) and Gastrulation Defective (GD), which are normally expressed maternally and participate in embryonic pattern formation. Both Tsl-BAP and GD-BAP were shown to exhibit normal patterning activity. Co-expression of Tsl-BAP together with secBirA in ovarian follicle cells resulted in its biotinylation, which permitted its isolation from both ovaries and progeny embryos using Avidin-coupled affinity matrix. In contrast, co-expression with secBirA in the female germline did not result in detectable biotinylation of GD-BAP, possibly because the C-terminal location of the BAP tag made it inaccessible to BirA in vivo. Our results indicate that secBirA directs biotinylation of proteins bound for secretion in vivo, providing access to powerful experimental approaches for secreted proteins-of-interest. However, efficient biotinylation of target proteins may vary depending upon the location of the BAP tag or other structural features of the protein.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuan Zhang
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri Volnov
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Geng Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - David S. Stein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
13
|
Sun D. Chromatin Immunoprecipitation Assay to Analyze the Effect of G-Quadruplex Interactive Agents on the Binding of RNA Polymerase II and Transcription Factors to a Target Promoter Region. Methods Mol Biol 2019; 2035:233-242. [PMID: 31444753 DOI: 10.1007/978-1-4939-9666-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Growing evidence suggests the existence of G-quadruplexes and their involvement in transcriptional regulation of many human genes, including VEGF. These studies also provide strong evidence that G-quadruplex structures are stabilized by binding to small molecules, resulting in the modulation of the transcription of genes whose promoters form G-quadruplexes. Here, we describe a chromatin immunoprecipitation (ChIP) assay to determine whether G-quadruplex-interactive agents influence the recruitment of cellular transcription factors, such as Sp1, nucleolin, or hnRNP-K to target genes that contain potential G-quadruplex (G4)-forming sequences in their promoters, subsequently modulating the occupancy of RNA Pol II on the same promoter region.
Collapse
Affiliation(s)
- Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, AZ, USA.
- BIO5 Institute, Tucson, AZ, USA.
- Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
14
|
Lee M, Gudas LJ, Saavedra HI. Detection of E2F-DNA Complexes Using Chromatin Immunoprecipitation Assays. Methods Mol Biol 2018; 1726:143-151. [PMID: 29468550 PMCID: PMC6070307 DOI: 10.1007/978-1-4939-7565-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chromatin immunoprecipitation (ChIP), originally developed by John T. Lis and David Gilmour in 1984, has been useful to detect DNA sequences where protein(s) of interest bind. ChIP is comprised of several steps: (1) cross-linking of proteins to target DNA sequences, (2) breaking genomic DNA into 300-1000 bp pieces by sonication or nuclease digestion, (3) immunoprecipitation of protein bound to target DNA with an antibody, (4) reverse cross-linking between target DNA and the bound protein to liberate the DNA fragments, and (5) amplification of target DNA fragment by PCR. Since then, the technology has evolved significantly to allow not only amplifying target sequences by PCR, but also sequencing all DNA fragment bound to a target protein, using a variant of the approach called the ChIP-seq technique (1). Another variation, the ChIP-on-ChIP, allows the detection of protein complexes bound to specific DNA sequences (2).
Collapse
Affiliation(s)
- Miyoung Lee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY, USA
| | - Harold I Saavedra
- Pharmacology Division, Department of Basic Sciences, Ponce Health Sciences University, Ponce, Puerto Rico.
| |
Collapse
|
15
|
Nuñez-Hernandez DM, Felix-Portillo M, Peregrino-Uriarte AB, Yepiz-Plascencia G. Cell cycle regulation and apoptosis mediated by p53 in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. CHEMOSPHERE 2018; 190:253-259. [PMID: 28992477 DOI: 10.1016/j.chemosphere.2017.09.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Although hypoxic aquatic environments cause negative effects on shrimp, these animals can withstand somewhat hypoxia, but the cellular mechanisms underlying this capacity are still poorly understood. In humans, mild hypoxia causes the induction of many proteins to allow cell survival. In contrast, apoptosis is induced during severe hypoxia leading to cell death. p53 is a key transcription factor that determines cells fate towards cell cycle arrest or induction of apoptosis in humans. The aim of this work was to study the role of p53 in cell cycle regulation and apoptosis in response to hypoxia in hepatopancreas of the white shrimp Litopenaeus vannamei. p53 was silenced by RNAi and afterwards the shrimp were exposed to hypoxia. Cdk-2 was used as indicator of cell cycle progression while caspase-3 expression and caspase activity were analyzed as indicators of apoptosis. p53 levels in hepatopancreas were significantly higher at 48 h after hypoxic treatment. Increased expression levels of Cdk-2 were found in p53-silenced shrimp after 24 and 48 h in the normoxic treatments as well as 48 h after hypoxia, indicating a possible role of p53 in cell cycle regulation. In response to hypoxia, unsilenced shrimp showed an increase in caspase-3 expression levels, however an increase was also observed in caspase activity at 24 h of normoxic conditions in p53-silenced shrimps. Taken together these results indicate the involvement of p53 in regulation of cell cycle and apoptosis in the white shrimp in response to hypoxia.
Collapse
Affiliation(s)
- Dahlia M Nuñez-Hernandez
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Monserrath Felix-Portillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua, Chihuahua, 33820, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C. P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
16
|
García-Sánchez A, Marqués-García F. Review of Methods to Study Gene Expression Regulation Applied to Asthma. Methods Mol Biol 2017; 1434:71-89. [PMID: 27300532 DOI: 10.1007/978-1-4939-3652-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Gene expression regulation is the cellular process that controls, increasing or decreasing, the expression of gene products (RNA or protein). A complex set of interactions between genes, RNA molecules, protein, and other components determined when and where specific genes are activated and the amount of protein or RNA produced. Here, we focus on several methods to study gene regulation applied to asthma and allergic research such as: Western Blot to identify and quantify proteins, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to study protein interactions with nucleic acids, and RNA interference (RNAi) by which gene expression could be silenced.
Collapse
Affiliation(s)
- Asunción García-Sánchez
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain. .,Salamanca Institute for Biomedical Research (IBSAL), UniversityHospital of Salamanca, Salamanca, Spain.
| | - Fernando Marqués-García
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Zhang P, Rojas A, Blechacz B. Analysis of the c-KIT Ligand Promoter Using Chromatin Immunoprecipitation. J Vis Exp 2017. [PMID: 28715365 DOI: 10.3791/55689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multiple cellular processes, including DNA replication and repair, DNA recombination, and gene expression, require interactions between proteins and DNA. Therefore, DNA-protein interactions regulate multiple physiological, pathophysiological, and biological functions, such as cell differentiation, cell proliferation, cell cycle control, chromosome stability, epigenetic gene regulation, and cell transformation. In eukaryotic cells, the DNA interacts with histone and nonhistone proteins and is condensed into chromatin. Several technical tools can be used to analyze DNA-protein interactions, such as the Electrophoresis (gel) Mobility Shift Assay (EMSA) and DNase I footprinting. However, these techniques analyze the protein-DNA interaction in vitro, not within the cellular context. Chromatin immunoprecipitation (ChIP) is a technique that captures proteins at their specific DNA binding sites, thereby allowing for the identification of DNA-protein interactions within their chromatin context. It is done by fixation of the DNA-protein interaction, followed by immunoprecipitation of the protein of interest. Subsequently, the genomic site that the protein was bound to is characterized. Here, we describe and discuss ChIP and demonstrate its analytical value for the identification of the Transforming Growth Factor-β (TGF-β)-induced binding of the transcription factor SMAD2 to SMAD Binding Elements (SBE) within the promoter region of the tyrosine-protein kinase Kit (c-KIT) receptor ligand Stem Cell Factor (SCF).
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center
| | - Andres Rojas
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center
| | - Boris Blechacz
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center;
| |
Collapse
|
18
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
19
|
RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with HNF4 and SHP. Sci Rep 2017; 7:41452. [PMID: 28128295 PMCID: PMC5269733 DOI: 10.1038/srep41452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
Multifunctional RNA helicase DDX3 participates in HCV infection, one of the major causes of hepatic steatosis. Here, we investigated the role of DDX3 in hepatic lipid metabolism. We found that HCV infection severely reduced DDX3 expression. Analysis of intracellular triglyceride and secreted ApoB indicated that lipid accumulations were increased while ApoB secretion were decreased in DDX3 knockdown HuH7 and HepG2 cell lines. Down-regulation of DDX3 significantly decreased protein and transcript expression of microsomal triglyceride transfer protein (MTP), a key regulator of liver lipid homeostasis. Moreover, DDX3 interacted with hepatocyte nuclear factor 4 (HNF4) and small heterodimer partner (SHP), and synergistically up-regulated HNF4-mediated transactivation of MTP promoter via its ATPase activity. Further investigation revealed that DDX3 interacted with CBP/p300 and increased the promoter binding affinity of HNF4 by enhancing HNF4 acetylation. Additionally, DDX3 partially relieved the SHP-mediated suppression on MTP promoter by competing with SHP for HNF4 binding which disrupted the inactive HNF4/SHP heterodimer while promoted the formation of the active HNF4 homodimer. Collectively, these results imply that DDX3 regulates MTP gene expression and lipid homeostasis through interplay with HNF4 and SHP, which may also reveal a novel mechanism of HCV-induced steatosis.
Collapse
|
20
|
Muñiz LC, Molina CA. The transcriptional repressor ICER binds to multiple loci throughout the genome. Biochem Biophys Res Commun 2016; 478:1462-5. [PMID: 27590584 DOI: 10.1016/j.bbrc.2016.08.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/26/2016] [Indexed: 11/27/2022]
Abstract
The events culminating in ovulation are controlled by the cyclical actions of hormones such as Follical Stimulating Hormone (FSH) and Luteinizing Hormone (LH). The secondary messenger, cyclic AMP (cAMP) conveys the intracellular activity of these hormones. It is well established that a family of transcription factors facilitate cAMP mediated gene expression, yet it remains unknown how these factors directly affect ovulation. One of these factors, Inducible cAMP Early Repressor (ICER) has been implicated in the transcriptional regulation of cAMP inducible genes during folliculogenesis and ovulation. In order to better determine the role of ICER in ovarian function we have identified novel targets using a genome-wide approach. Using a modification of the chromatin immunoprecipitation (ChIP) assay we directly cloned and sequenced the immunoprecipitated ICER-associated DNAs from an immortalized mouse granulose cell line (GRMO2). The analysis of the immunoprecipitated DNA fragments has revealed that ICER's binding to DNA has the following distribution; 16% within the promoter region, 31% within an intron, 14% were not within a gene, 6% were within 20 kb of a promoter and 3% were within the 3' end of genes.
Collapse
Affiliation(s)
- Luis C Muñiz
- Department of Biochemistry and Molecular Biology, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Carlos A Molina
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
21
|
Li Z, Wang Y, Kong L, Yue Z, Ma Y, Chen X. Expression of ADAM12 is regulated by E2F1 in small cell lung cancer. Oncol Rep 2016; 34:3231-7. [PMID: 26503019 DOI: 10.3892/or.2015.4317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Our previous study reported that ADAM12 was highly expressed in small cell lung cancer (SCLC) and could be an effective marker for diagnosis and prognosis. Yet, the reason for the high expression of ADAM12 in SCLC requires further elucidation. Transcription factor E2F1 has been receiving increasing attention due to the complexity and diversity of its function in cancer. In the present study, the expression of ADAM12 was significantly decreased following silencing of E2F1 expression by siRNA, thus indicating that E2F1 may regulate the expression of ADAM12 at the level of transcription. Chromatin immunoprecipitation-to-sequence analysis identified three binding sites for E2F1 in the locus for ADAM12. They were Chr10: 128010444-128011026, located in the intron of ADAM12, named seq0; Chr10: 128076927‑128078127, located in the promoter of ADAM12, named seq1; and Chr10: 128086195‑128086876, located in the upstream 20 kb from the transcription start site of ADAM12, named: seq2. Dual‑luciferase reporter experiments revealed that seq1 not seq0 and seq2 was able to promote the expression of luciferase. Notably, co-transfection of E2F1 significantly increased the activity of seq1 not seq0 and seq2, but quantitative polymerase chain reaction results showed that seq0, seq1 and seq2 could recruit E2F1, indicating that the influence of E2F1 in regulating the expression of ADAM12 was complex. Sequence analysis clarified that seq1 was a part of the ADAM12 promoter, yet the functions of seq0 and seq2 were unknown. Fusion fragments containing seq0-seq1 or seq2-seq1 were analyzed in luciferase constructs. Compared with seq1 alone, the activities of these fusion fragments were non-significantly reduced. The activities of fusion fragments were significantly decreased following co-transfection with E2F1. Thus, the present findings support the conclusion that the E2F1 transcription factor regulates the expression of ADAM12 by binding differential cis-acting elements.
Collapse
|
22
|
Ambigapathy G, Zheng Z, Keifer J. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning. Epigenetics 2016; 10:981-93. [PMID: 26336984 DOI: 10.1080/15592294.2015.1090072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- a Neuroscience Group; Basic Biomedical Sciences; University of South Dakota; Sanford School of Medicine ; Vermillion , SD USA
| | - Zhaoqing Zheng
- a Neuroscience Group; Basic Biomedical Sciences; University of South Dakota; Sanford School of Medicine ; Vermillion , SD USA
| | - Joyce Keifer
- a Neuroscience Group; Basic Biomedical Sciences; University of South Dakota; Sanford School of Medicine ; Vermillion , SD USA
| |
Collapse
|
23
|
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 17:579-91. [PMID: 27105109 PMCID: PMC4990393 DOI: 10.1080/15384047.2016.1167291] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the main component of the polycomb-repressive complex 2 (PRC2), is involved in melanoma progression and metastasis. Novel drugs that target and reverse such epigenetic changes may find a way into the management of patients with advanced melanoma. We provide a comprehensive up-to-date review of the role and biology of EZH2 on gene transcription, senescence/apoptosis, melanoma microenvironment, melanocyte stem cells, the immune system, and micro RNA. Furthermore, we discuss EZH2 inhibitors as potential anti-cancer therapy.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura F. Hutchins
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C. Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
24
|
Aldiri I, Ajioka I, Xu B, Zhang J, Chen X, Benavente C, Finkelstein D, Johnson D, Akiyama J, Pennacchio LA, Dyer MA. Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma. Development 2016; 142:4092-106. [PMID: 26628093 PMCID: PMC4712833 DOI: 10.1242/dev.124800] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulate retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms. Summary: The SWI/SNF protein Brg1 controls cell cycle length, cell cycle exit and cell survival, and is required for cell differentiation and retinal lamination, in the developing mouse retina.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Claudia Benavente
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Akiyama
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Len A Pennacchio
- Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA 94701, USA Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
25
|
Marchesi I, Bagella L. Targeting Enhancer of Zeste Homolog 2 as a promising strategy for cancer treatment. World J Clin Oncol 2016; 7:135-148. [PMID: 27081636 PMCID: PMC4826959 DOI: 10.5306/wjco.v7.i2.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/20/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Polycomb group proteins represent a global silencing system involved in development regulation. In specific, they regulate the transition from proliferation to differentiation, contributing to stem-cell maintenance and inhibiting an inappropriate activation of differentiation programs. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, which induces transcriptional inhibition through the tri-methylation of histone H3, an epigenetic change associated with gene silencing. EZH2 expression is high in precursor cells while its level decreases in differentiated cells. EZH2 is upregulated in various cancers with high levels associated with metastatic cancer and poor prognosis. Indeed, aberrant expression of EZH2 causes the inhibition of several tumor suppressors and differentiation genes, resulting in an uncontrolled proliferation and tumor formation. This editorial explores the role of Polycomb repressive complex 2 in cancer, focusing in particular on EZH2. The canonical function of EZH2 in gene silencing, the non-canonical activities as the methylation of other proteins and the role in gene transcriptional activation, were summarized. Moreover, mutations of EZH2, responsible for an increased methyltransferase activity in cancer, were recapitulated. Finally, various drugs able to inhibit EZH2 with different mechanism were described, specifically underscoring the effects in several cancers, in order to clarify the role of EZH2 and understand if EZH2 blockade could be a new strategy for developing specific therapies or a way to increase sensitivity of cancer cells to standard therapies.
Collapse
|
26
|
Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, Wang F, Wang GH, Qin ZH, Hu LF, Liu CF. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 2015; 11:2057-2073. [PMID: 26649942 PMCID: PMC4824582 DOI: 10.1080/15548627.2015.1100930] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD.
Collapse
Affiliation(s)
- Jian-Da Wang
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China.,b Institute of Neuroscience; Soochow University ; Suzhou , China.,c Department of Pediatrics ; Second Affiliated Hospital; School of Medicine, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Yu-Lan Cao
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China.,b Institute of Neuroscience; Soochow University ; Suzhou , China
| | - Qian Li
- b Institute of Neuroscience; Soochow University ; Suzhou , China.,d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Ya-Ping Yang
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China
| | - Mengmeng Jin
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China
| | - Dong Chen
- d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Fen Wang
- b Institute of Neuroscience; Soochow University ; Suzhou , China
| | - Guang-Hui Wang
- d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Zheng-Hong Qin
- d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Li-Fang Hu
- b Institute of Neuroscience; Soochow University ; Suzhou , China.,d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Chun-Feng Liu
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China.,b Institute of Neuroscience; Soochow University ; Suzhou , China
| |
Collapse
|
27
|
Korah J, Canaff L, Lebrun JJ. The Retinoblastoma Tumor Suppressor Protein (pRb)/E2 Promoter Binding Factor 1 (E2F1) Pathway as a Novel Mediator of TGFβ-induced Autophagy. J Biol Chem 2015; 291:2043-54. [PMID: 26598524 DOI: 10.1074/jbc.m115.678557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
TGFβ is a multifunctional cytokine that regulates cell proliferation, cell immortalization, and cell death, acting as a key homeostatic mediator in various cell types and tissues. Autophagy is a programmed mechanism that plays a pivotal role in controlling cell fate and, consequently, many physiological and pathological processes, including carcinogenesis. Although autophagy is often considered a pro-survival mechanism that renders cells viable in stressful conditions and thus might promote tumor growth, emerging evidence suggests that autophagy is also a tumor suppressor pathway. The relationship between TGFβ signaling and autophagy is context-dependent and remains unclear. TGFβ-mediated activation of autophagy has recently been suggested to contribute to the growth inhibitory effect of TGFβ in hepatocarcinoma cells. In the present study, we define a novel process of TGFβ-mediated autophagy in cancer cell lines of various origins. We found that autophagosome initiation and maturation by TGFβ is dependent on the retinoblastoma tumor suppressor protein/E2 promoter binding factor (pRb/E2F1) pathway, which we have previously established as a critical signaling axis leading to various TGFβ tumor suppressive effects. We further determined that TGFβ induces pRb/E2F1-dependent transcriptional activation of several autophagy-related genes. Together, our findings reveal that TGFβ induces autophagy through the pRb/E2F1 pathway and transcriptional activation of autophagy-related genes and further highlight the central relevance of the pRb/E2F1 pathway downstream of TGFβ signaling in tumor suppression.
Collapse
Affiliation(s)
- Juliana Korah
- From the Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec H4A 3J1, Canada
| | - Lucie Canaff
- From the Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- From the Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
28
|
Yoon JH, Choi WS, Kim O, Choi SS, Lee EK, Nam SW, Lee JY, Park WS. NKX6.3 controls gastric differentiation and tumorigenesis. Oncotarget 2015; 6:28425-28439. [PMID: 26314965 PMCID: PMC4695069 DOI: 10.18632/oncotarget.4952] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/28/2015] [Indexed: 02/06/2023] Open
Abstract
NKX6.3 transcription factor is known to be an important regulator in gastric mucosal epithelial differentiation. The present study aimed to investigate whether NKX6.3 acts as an essential tumor suppressor in gastric carcinogenesis. Absent or reduced protein expression and decreased DNA copy number and mRNA transcript of the NKX6.3 gene were frequently observed in gastric cancers. Overexpression of NKX6.3 in AGSNKX6.3 and MKN1NKX6.3 cells markedly arrested cell proliferation by inhibiting cell cycle progression and induced apoptosis through both death receptor- and mitochondrial-pathways. In addition, stable NKX6.3 transfectants increased the expression of gastric differentiation markers, including SOX2 and Muc5ac, and decreased the expression of intestinal differentiation markers, CDX2 and Muc2. In ChIP-cloning and sequencing analyses, NKX6.3 coordinated a repertoire of target genes, some of which are clearly associated with cell cycle, differentiation and death. In particular, NKX6.3 transcriptional factor was found to bind specifically to the upstream sequences of GKN1, a gastric-specific tumor suppressor, and dramatically increase expression of the latter. Furthermore, there was a positive correlation between NKX6.3 and GKN1 expression in non-cancerous gastric mucosae. Thus, these data suggest that NKX6.3 may control the fate of gastric mucosal cells and function as a gastric tumor suppressor.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Won Suk Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Hwarangro, Nowon-gu, Seoul, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
- Department of Functional RNomics Reasearch Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Jung Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
- Department of Functional RNomics Reasearch Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
- Department of Functional RNomics Reasearch Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Korea
| |
Collapse
|
29
|
Jung YY, Lee YK, Koo JS. The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer. Expert Opin Ther Targets 2015; 20:167-78. [PMID: 26357854 DOI: 10.1517/14728222.2016.1085971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Beclin 1 plays a crucial role in autophagy via the Beclin 1 interactome, and is involved in various biological processes such as protein sorting, chemokinesis, and cell death. Via these biologic functions, Beclin 1 contributes to both tumor suppression and tumor progression. AREAS COVERED Beclin 1 plays a key biologic function on cell homeostasis and affects tumorigenesis. In this review, detailing up-to-date knowledge on the tumorigenic role of Beclin 1, its implication in breast cancer, and its utility as a breast cancer-specific drug target is discussed. EXPERT OPINION Because Beclin 1 is expressed in breast cancer cells, Beclin 1 could be a unique, effective drug target for the prevention and treatment of breast cancer. However, the expression of Beclin 1 varies according to cancer molecular subtypes, and Beclin 1 is involved in both breast cancer suppression and tumor progression; therefore, the decision of using a Beclin 1 inducer or inhibitor should be made based on breast cancer stage and subtype.
Collapse
Affiliation(s)
- Yoon Yang Jung
- a Yonsei University College of Medicine, Severance Hospital, Department of Pathology , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea ;
| | - Yu Kyung Lee
- a Yonsei University College of Medicine, Severance Hospital, Department of Pathology , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea ;
| | - Ja Seung Koo
- a Yonsei University College of Medicine, Severance Hospital, Department of Pathology , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea ;
| |
Collapse
|
30
|
Zhu H, He L. Beclin 1 biology and its role in heart disease. Curr Cardiol Rev 2015; 11:229-37. [PMID: 25373623 PMCID: PMC4558354 DOI: 10.2174/1573403x10666141106104606] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Macroautophagy (hereafter termed autophagy) is a highly evolutionarily conserved pathway that degrades intracellular components such as damaged organelles in lysosome. Autophagy occurs at low basal levels in virtually all types of cells, which is required for the maintenance of cellular homeostasis. Beclin 1 protein, encoded by the beclin 1 gene, plays a central role in the regulation of autophagy. Beclin 1 primarily functions as a scaffolding protein assembling Beclin 1 interactome to regulate Class III PI3K/VPS34 activity, which in turn, tightly controls autophagy at multiple stages. In addition to autophagy, Beclin 1 participates in the regulation of other biological processes such as endocytosis, apoptosis and phagocytosis. Fine-tuning of Beclin 1 protein levels, intracellular localization and the assembly of its interactome is pivotal for the proper execution of these biological functions. Deregulation of Beclin 1 contributes to the pathogenesis of a variety of human diseases. In this review, we summarize biology of Beclin 1 and its role in human pathology, with an emphasis on heart disease.
Collapse
Affiliation(s)
- Hongxin Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
31
|
Mundade R, Ozer HG, Wei H, Prabhu L, Lu T. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle 2015; 13:2847-52. [PMID: 25486472 PMCID: PMC4614920 DOI: 10.4161/15384101.2014.949201] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many biologically significant processes, such as cell differentiation and cell cycle progression, gene transcription and DNA replication, chromosome stability and epigenetic silencing etc. depend on the crucial interactions between cellular proteins and DNA. Chromatin immunoprecipitation (ChIP) is an important experimental technique for studying interactions between specific proteins and DNA in the cell and determining their localization on a specific genomic locus. In recent years, the combination of ChIP with second generation DNA-sequencing technology (ChIP-seq) allows precise genomic functional assay. This review addresses the important applications of ChIP-seq with an emphasis on its role in genome-wide mapping of transcription factor binding sites, the revelation of underlying molecular mechanisms of differential gene regulation that are governed by specific transcription factors, and the identification of epigenetic marks. Furthermore, we also describe the ChIP-seq data analysis workflow and a perspective for the exciting potential advancement of ChIP-seq technology in the future.
Collapse
Affiliation(s)
- Rasika Mundade
- a Department of Pharmacology and Toxicology ; Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | |
Collapse
|
32
|
Mallei A, Baj G, Ieraci A, Corna S, Musazzi L, Lee FS, Tongiorgi E, Popoli M. Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism. Int J Neuropsychopharmacol 2015; 18:pyv069. [PMID: 26108221 PMCID: PMC4675980 DOI: 10.1093/ijnp/pyv069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/12/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. METHODS In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF(Met) allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. RESULTS BDNF-4 and BDNF-6 transcripts were reduced in BDNF(Met/Met) mice, compared with BDNF(Val/Val) mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNF(Met/Met). The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNF(Met/Met) mice, while no changes were found for BDNF-2 and BDNF-4. CONCLUSIONS Impaired BDNF expression and dendritic targeting in BDNF(Met/Met) mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy (Drs Mallei, Ieraci, Corna, Musazzi, and Popoli); Department of Life Sciences, BRAIN Centre for Neuroscience, University of Trieste, Trieste, Italy (Drs Baj and Tongiorgi); Department of Psychiatry, Weill Cornell Medical College Cornell University, New York, NY (Dr Lee).
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pan CC, Kumar S, Shah N, Bloodworth JC, Hawinkels LJAC, Mythreye K, Hoyt DG, Lee NY. Endoglin Regulation of Smad2 Function Mediates Beclin1 Expression and Endothelial Autophagy. J Biol Chem 2015; 290:14884-92. [PMID: 25931117 DOI: 10.1074/jbc.m114.630178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Autophagy is the targeted degradation of proteins and organelles critical for homeostasis and cell survival. Transforming growth factor β (TGF-β) differentially regulates autophagy in a context-specific manner, although the precise intracellular mechanisms remain less clear. Importantly, how TGF-β controls autophagic responses in endothelial cells (EC) during angiogenesis is unknown. Here we identified endoglin, an EC-specific TGF-β co-receptor essential for angiogenesis, as a key determinant of autophagy. Among the two opposing TGF-β Smad pathways in the EC system (Smad1/5/8 and Smad2/3), we found Smad2 as the major transcriptional regulator of autophagy that targets beclin1 (BECN1) gene expression. Smad2, but not Smad3, acts as a repressor upstream of the BECN1 promoter region. Overall, endoglin promotes autophagy by impeding Smad2 transcriptional repressor activity. Notably, increased beclin1 levels upon Smad2 knockdown directly correlated with enhanced autophagy during angiogenesis. Taken together, these results establish endoglin as a critical mediator of autophagy and demonstrate a new transcriptional mechanism by which Smad2 inhibits angiogenesis.
Collapse
Affiliation(s)
| | - Sanjay Kumar
- From the Division of Pharmacology, College of Pharmacy
| | - Nirav Shah
- From the Division of Pharmacology, College of Pharmacy
| | - Jeffrey C Bloodworth
- Loyola University Medical Center, Loyola University, Maywood, Illinois 60153, and
| | - Lukas J A C Hawinkels
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Dale G Hoyt
- From the Division of Pharmacology, College of Pharmacy
| | - Nam Y Lee
- From the Division of Pharmacology, College of Pharmacy, Davis Heart and Lung Research Institute, and James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
34
|
Chandra V, Bhagyaraj E, Parkesh R, Gupta P. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 2015; 91:429-51. [PMID: 25651938 DOI: 10.1111/brv.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/04/2015] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that maintains the equilibrium between biosynthesis and the recycling of cellular constituents; it is critical for avoiding the pathophysiology that results from imbalance in cellular homeostasis. Recent reports indicate the need for the design of high-throughput screening assays to identify targets and small molecules for autophagy modulation. For such screening, however, a better understanding of the regulation of autophagy is essential. In addition to regulation by various signalling cascades, regulation of gene expression by transcription factors is also critical. This review focuses on the various transcription factors as well as the corresponding signalling molecules that act together to translate the stimuli to effector molecules that up- or downregulate autophagy. This review rationalizes the importance of these transcription factors functioning in tandem with cognate signalling molecules and their interfaces as possible therapeutic targets for more specific pharmacological interventions.
Collapse
Affiliation(s)
- Vemika Chandra
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
35
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2015; 1288:429-46. [PMID: 25827895 DOI: 10.1007/978-1-4939-2474-5_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene, or a variety of genes at the same time. Availability of high quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
36
|
Pfeiffer A, Shi H, Tepperman JM, Zhang Y, Quail PH. Combinatorial complexity in a transcriptionally centered signaling hub in Arabidopsis. MOLECULAR PLANT 2014; 7:1598-1618. [PMID: 25122696 PMCID: PMC4587546 DOI: 10.1093/mp/ssu087] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/29/2014] [Indexed: 05/18/2023]
Abstract
A subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the transcriptional changes that drive a transition to photomorphogenesis. The PIFs function both redundantly and partially differentially at the morphogenic level in this process. To identify the direct targets of PIF transcriptional regulation genome-wide, we analyzed the DNA-binding sites for all four PIFs by ChIP-seq analysis, and defined the genes transcriptionally regulated by each PIF, using RNA-seq analysis of pif mutants. Despite the absence of detectable differences in DNA-binding-motif recognition between the PIFs, the data show a spectrum of regulatory patterns, ranging from single PIF dominance to equal contributions by all four. Similarly, a broad array of promoter architectures was found, ranging from single PIF-binding sites, containing single sequence motifs, through multiple PIF-binding sites, each containing one or more motifs, with each site occupied preferentially by one to multiple PIFs. Quantitative analysis of the promoter occupancy and expression level induced by each PIF revealed an intriguing pattern. Although there is no robust correlation broadly across the target-gene population, examination of individual genes that are shared targets of multiple PIFs shows a gradation in correlation from strongly positive, through uncorrelated, to negative. This finding suggests a dual-layered mechanism of transcriptional regulation, comprising both a continuum of binding-site occupancy by each PIF and a superimposed layer of local regulation that acts differentially on each PIF, to modulate its intrinsic transcriptional activation capacity at each site, in a quantitative pattern that varies between the individual PIFs from gene to gene. These findings provide a framework for probing the mechanisms by which transcription factors with overlapping direct-target genes integrate and selectively transduce signals to their target networks.
Collapse
Affiliation(s)
- Anne Pfeiffer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Hui Shi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - James M Tepperman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; United States Department of Agriculture, Plant Gene Expression Center, Albany, CA 94710, USA.
| |
Collapse
|
37
|
Lu S, Zmijewski E, Gollan J, Harrison-Findik DD. Apoptosis induced by Fas signaling does not alter hepatic hepcidin expression. World J Biol Chem 2014; 5:387-397. [PMID: 25225605 PMCID: PMC4160531 DOI: 10.4331/wjbc.v5.i3.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/07/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine the regulation of human hepcidin (HAMP) and mouse hepcidin (hepcidin-1 and hepcidin-2) gene expression in the liver by apoptosis using in vivo and in vitro experimental models.
METHODS: For the induction of the extrinsic apoptotic pathway, HepG2 cells were treated with various concentrations of CH11, an activating antibody for human Fas receptor, for 12 h. Male C57BL/6NCR and C57BL/6J strains of mice were injected intraperitoneally with sublethal doses of an activating antibody for mouse Fas receptor, Jo2. The mice were anesthetized and sacrificed 1 or 6 h after the injection. The level of apoptosis was quantified by caspase-3 activity assay. Liver injury was assessed by measuring the levels of ALT/AST enzymes in the serum. The acute phase reaction in the liver was examined by determining the expression levels of IL-6 and SAA3 genes by SYBR green quantitative real-time PCR (qPCR). The phosphorylation of transcription factors, Stat3, Smad4 and NF-κB was determined by western blotting. Hepcidin gene expression was determined by Taqman qPCR. The binding of transcription factors to hepcidin-1 promoter was studied using chromatin immunoprecipitation (ChIP) assays.
RESULTS: The treatment of HepG2 cells with CH11 induced apoptosis, as shown by the significant activation of caspase-3 (P < 0.001), but did not cause any significant changes in HAMP expression. Short-term (1 h) Jo2 treatment (0.2 μg/g b.w.) neither induced apoptosis and acute phase reaction nor altered mRNA expression of mouse hepcidin-1 in the livers of C57BL/6NCR mice. In contrast, 6 h after Jo2 injection, the livers of C57BL/6NCR mice exhibited a significant level of apoptosis (P < 0.001) and an increase in SAA3 (P < 0.023) and IL-6 (P < 0.005) expression in the liver. However, mRNA expression of hepcidin-1 in the liver was not significantly altered. Despite the Jo2-induced phosphorylation of Stat3, no occupancy of hepcidin-1 promoter by Stat3 was observed, as shown by ChIP assays. Compared to C57BL/6NCR mice, Jo2 treatment (0.2 μg/g b.w.) of C57BL/6J strain mice for 6 h induced a more prominent activation of apoptosis, liver injury and acute phase reaction. Similar to C57BL/6NCR mice, the level of liver hepcidin-1 mRNA expression in the livers of C57BL/6J mice injected with a sublethal dose of Jo2 (0.2 μg/g b.w.) remained unchanged. The injection of C57BL/6J mice with a higher dose of Jo2 (0.32 μg/g b.w.) did not also alter hepatic hepcidin expression.
CONCLUSION: Our findings suggest that human or mouse hepcidin gene expression is not regulated by apoptosis induced via Fas receptor activation in the liver.
Collapse
|
38
|
Zhu W, Swaminathan G, Plowey ED. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes. Autophagy 2014; 10:1622-36. [PMID: 25046113 DOI: 10.4161/auto.29454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.
Collapse
Affiliation(s)
- Wan Zhu
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| | - Gayathri Swaminathan
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| | - Edward D Plowey
- Department of Pathology; Stanford University School of Medicine; Stanford, CA USA
| |
Collapse
|
39
|
Caronna EA, Patterson ES, Hummert PM, Kroll KL. Geminin restrains mesendodermal fate acquisition of embryonic stem cells and is associated with antagonism of Wnt signaling and enhanced polycomb-mediated repression. Stem Cells 2014; 31:1477-87. [PMID: 23630199 DOI: 10.1002/stem.1410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/04/2013] [Indexed: 11/07/2022]
Abstract
Embryonic cells use both growth factor signaling and cell intrinsic transcriptional and epigenetic regulation to acquire early cell fates. Underlying mechanisms that integrate these cues are poorly understood. Here, we investigated the role of Geminin, a nucleoprotein that interacts with both transcription factors and epigenetic regulatory complexes, during fate acquisition of mouse embryonic stem cells. In order to determine Geminin's role in mesendoderm formation, a process which occurs during embryonic gastrulation, we selectively over-expressed or knocked down Geminin in an in vitro model of differentiating mouse embryonic stem cells. We found that Geminin antagonizes mesendodermal fate acquisition, while these cells instead maintain elevated expression of genes associated with pluripotency of embryonic stem cells. During mesendodermal fate acquisition, Geminin knockdown promotes Wnt signaling, while Bmp, Fgf, and Nodal signaling are not affected. Moreover, we showed that Geminin facilitates the repression of mesendodermal genes that are regulated by the Polycomb repressor complex. Geminin directly binds several of these genes, while Geminin knockdown in mesendodermal cells reduces Polycomb repressor complex occupancy at these loci and increases trimethylation of histone H3 lysine 4, which correlates with active gene expression. Together, these results indicate that Geminin is required to restrain mesendodermal fate acquisition of early embryonic cells and that this is associated with both decreased Wnt signaling and enhanced Polycomb repressor complex retention at mesendodermal genes.
Collapse
Affiliation(s)
- Elizabeth A Caronna
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
40
|
Tang Y, Li Y, Yu H, Gao C, Liu L, Chen S, Xing M, Liu L, Yao P. Quercetin prevents ethanol-induced iron overload by regulating hepcidin through the BMP6/SMAD4 signaling pathway. J Nutr Biochem 2014; 25:675-82. [PMID: 24746831 DOI: 10.1016/j.jnutbio.2014.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
Emerging evidence has demonstrated that chronic ethanol exposure induces iron overload, enhancing ethanol-mediated liver damage. The purpose of this study was to explore the effects of the naturally occurring compound quercetin on ethanol-induced iron overload and liver damage, focusing on the signaling pathway of the iron regulatory hormone hepcidin. Adult male C57BL/6J mice were pair-fed with isocaloric-Lieber De Carli diets containing ethanol (accounting for 30% of total calories) and/or carbonyl iron (0.2%) and treated with quecertin (100 mg/kg body weight) for 15 weeks. Mouse primary hepatocytes were incubated with ethanol (100 mM) and quercetin (100 μM) for 24 h. Mice exposed to either ethanol or iron presented significant fatty infiltration and iron deposition in the liver; these symptoms were exacerbated in mice cotreated with ethanol and iron. Quercetin attenuated the abnormity induced by ethanol and/or iron. Ethanol suppressed BMP6 and intranuclear SMAD4 as well as decreased hepcidin expression. These effects were partially alleviated by quercetin supplementation in mice and hepatocytes. Importantly, ethanol caused suppression of SMAD4 binding to the HAMP promoter and of hepcidin messenger RNA expression. These effects were exacerbated by anti-BMP6 antibody and partially alleviated by quercetin or human recombinant BMP6 in cultured hepatocytes. In contrast, co-treatment with iron and ethanol, especially exposure of iron alone, activated BMP6/SMAD4 pathway and up-regulated hepcidin expression, which was also normalized by quercetin in vivo. Quercetin prevented ethanol-induced hepatic iron overload different from what carbonyl iron diet elicited in the mechanism, by regulating hepcidin expression via the BMP6/SMAD4 signaling pathway.
Collapse
Affiliation(s)
- Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiyan Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shaodan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingyou Xing
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
41
|
Yu L, Zhang YD, Zhou J, Yao DM, Li X. Identification of target genes of transcription factor CEBPB in acute promyelocytic leukemia cells induced by all-trans retinoic acid. ASIAN PAC J TROP MED 2014; 6:473-80. [PMID: 23711709 DOI: 10.1016/s1995-7645(13)60077-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/15/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To identify target genes of transcription factor CCAAT enhancer-binding protein β (CEBPB) in acute promyelocytic leukemia cells induced by all-trans retinoic acid. METHODS A new strategy for high-throughput identification of direct target genes was established by combining chromatin immunoprecipitation (ChIP) with in vitro selection. Then, 106 potential CEBPB binding fragments from the genome of the all-trans retinoic acid (ATRA)-treated NB4 cells were identified. RESULTS Of them, 82 were mapped in proximity to known or previously predicted genes; 7 were randomly picked up for further confirmation by ChIP-PCR and 3 genes (GALM, ITPR2 and ORM2) were found to be specifically up-regulated in the ATRA-treated NB4 cells, indicating that they might be the down-stream target genes of ATRA. CONCLUSIONS Our results provided new insight into the mechanisms of ATRA-induced granulocytic differentiation.
Collapse
Affiliation(s)
- Lei Yu
- Department of Hepatic Surgery, National Hepatobiliary and Enteric Surgery Research Center, Ministry of Health, Central South University, China
| | | | | | | | | |
Collapse
|
42
|
Genomic organization and identification of promoter regions for the BDNF gene in the pond turtle Trachemys scripta elegans. J Mol Neurosci 2014; 53:626-36. [PMID: 24443176 DOI: 10.1007/s12031-014-0229-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/06/2014] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I-III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI-III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression.
Collapse
|
43
|
Vigneault F, Guérin SL. Regulation of gene expression: probing DNA–protein interactionsin vivoandin vitro. Expert Rev Proteomics 2014; 2:705-18. [PMID: 16209650 DOI: 10.1586/14789450.2.5.705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tremendous efforts have been put together over the last several years to complete the entire sequencing of the human genome. As we enter the proteomic era, when the major aim is understanding which gene encodes which protein, the time has also come to identify their precise function inside the astonishing signaling network required to accomplish all cellular functions. Understanding when, why and how a gene is expressed has now become a necessity toward identifying all the regulatory pathways that mediate cellular processes such as differentiation, migration, replication, DNA repair and apoptosis. Regulation of gene transcription is a process that is primarily under the influence of nuclear-located transcription factors. Consequently, identifying which protein activates or represses a specific gene is a prerequisite for understanding cell fate and function. The current state of, and recent advances in, transcriptional regulation approaches are reviewed here, with special emphasis on new technologies required when probing for DNA-protein interactions. This review explores different strategies aimed at identifying both the regulatory sequences of any given gene and the trans-acting regulatory factors that recognize these elements as their target sites in the nucleus. Ongoing developments in the fields of nanotechnology, RNA silencing and protein modeling toward the investigation of DNA-protein interactions and their relevance in the battle against cancer are discussed.
Collapse
Affiliation(s)
- Francois Vigneault
- Laboratoire d'Endocrinologie Moléculaire et Oncologique, Centre de recherche du CHUL (CHUQ), Sainte-Foy, Québec, G1V 4G2, Canada.
| | | |
Collapse
|
44
|
Chan DV, Gibson HM, Aufiero BM, Wilson AJ, Hafner MS, Mi QS, Wong HK. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun 2014; 15:25-32. [PMID: 24173147 PMCID: PMC4284071 DOI: 10.1038/gene.2013.57] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a costimulatory molecule that negatively regulates T-cell activation. Originally identified in murine CD8(+) T cells, it has been found to be rapidly induced on human T cells. Furthermore, CTLA-4 is expressed on regulatory T cells. Clinically, targeting CTLA-4 has clinical utility in the treatment of melanoma. Whether the expression of CTLA-4 is differentially regulated in CD8(+) vs CD4(+) human T cells is unclear. Here, we analyzed CTLA-4 in normal human CD4(+) and CD8(+) T-cell subsets and show for the first time that CTLA-4 is expressed significantly higher in the CD4(+) T cells than in CD8(+) T cells. CTLA-4 is higher at the protein and the transcriptional levels in CD4(+) T cells. This increase is due to the activation of the CTLA-4 promoter, which undergoes acetylation at the proximal promoter. Furthermore, we show that blocking CTLA-4 on CD4(+) T cells permits greater proliferation in CD4(+) vs CD8(+) cells. These findings demonstrate a differential regulation of CTLA-4 on CD4(+) and CD8(+) T-cell subsets, which is likely important to the clinical efficacy for anti-CTLA-4 therapies. The findings hint to strategies to modulate CTLA-4 expression by targeting epigenetic transcription to alter the immune response.
Collapse
Affiliation(s)
- Derek V. Chan
- Department of Internal Medicine, Division of Dermatology, The Ohio State University, Columbus, OH
| | - Heather M. Gibson
- Department of Internal Medicine, Division of Dermatology, The Ohio State University, Columbus, OH
- Department of Dermatology and Immunology, Henry Ford Hospital, Detroit, MI
| | - Barbara M. Aufiero
- Department of Dermatology and Immunology, Henry Ford Hospital, Detroit, MI
| | - Adam J. Wilson
- Department of Dermatology and Immunology, Henry Ford Hospital, Detroit, MI
| | - Mikehl S. Hafner
- Department of Dermatology and Immunology, Henry Ford Hospital, Detroit, MI
| | - Qing-Sheng Mi
- Department of Dermatology and Immunology, Henry Ford Hospital, Detroit, MI
| | - Henry K. Wong
- Department of Internal Medicine, Division of Dermatology, The Ohio State University, Columbus, OH
- Department of Dermatology and Immunology, Henry Ford Hospital, Detroit, MI
| |
Collapse
|
45
|
Thai P, Statt S, Chen CH, Liang E, Campbell C, Wu R. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol 2013; 49:204-11. [PMID: 23672216 DOI: 10.1165/rcmb.2013-0159rc] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of lung diseases and cancer caused by cigarette smoke is increasing. The molecular mechanisms of gene regulation induced by cigarette smoke that ultimately lead to cancer remain unclear. This report describes a novel long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) both in vitro and in vivo and is elevated in numerous lung cancer cell lines. We have termed this lncRNA the smoke and cancer-associated lncRNA-1 (SCAL1). This lncRNA is located in chromosome 5, and initial sequencing analysis reveals a transcript with four exons and three introns. The expression of SCAL1 is regulated transcriptionally by nuclear factor erythroid 2-related factor (NRF2), as determined by the small, interfering RNA (siRNA) knockdown of NRF2 and kelch-like ECH-associated protein 1 (KEAP1). A nuclear factor erythroid-derived 2 (NF-E2) motif was identified in the promoter region that shows binding to NRF2 after its activation. Functionally, the siRNA knockdown of SCAL1 in human bronchial epithelial cells shows a significant potentiation of cytotoxicity induced by CSE in vitro. Altogether, these results identify a novel and intriguing new noncoding RNA that may act downstream of NRF2 to regulate gene expression and mediate oxidative stress protection in airway epithelial cells.
Collapse
Affiliation(s)
- Philip Thai
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Science Facility, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ang J, Sheng J, Lai K, Wei S, Gao X. Identification of estrogen receptor-related receptor gamma as a direct transcriptional target of angiogenin. PLoS One 2013; 8:e71487. [PMID: 23977052 PMCID: PMC3744552 DOI: 10.1371/journal.pone.0071487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/30/2013] [Indexed: 11/30/2022] Open
Abstract
Nuclear translocation of angiogenin (ANG) is essential for the proliferation of its target cells. ANG promotes rRNA synthesis, while whether it regulates mRNA transcription remains unknown. Using the chromatin immunoprecipitation method, we have identified 12 ANG-binding sequences. One of these sequences lies in the estrogen receptor-related receptor gamma (ERRγ) gene which we designated as ANG-Binding Sequence within ERRγ (ABSE). ABSE exhibited ANG-dependent repressor activity in the luciferase reporter system. Down-regulation of ANG increased ERRγ expression, and active gene marker level at the ABSE region. The expression levels of ERRγ targets genes, p21WAF/CIP and p27KIP1, and the occupation of ERRγ on their promoter regions were increased in ANG-deficient cells accordingly. Furthermore, knockdown of ERRγ promoted the proliferation rate in ANG-deficient breast cancer cells. Finally, immunohistochemistry staining showed negative correlation between ANG and ERRγ in breast cancer tissue. Altogether, our study provides evidence that nuclear ANG directly binds to the ABSE of ERRγ gene and inhibits ERRγ transcription to promote breast cancer cell proliferation.
Collapse
Affiliation(s)
- Jian Ang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kairan Lai
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Medical Class 2006, Zhejiang University School of Medicine, Hangzhou, China
| | - Saisai Wei
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
47
|
Chen X, Liu G, Leffak M. Activation of a human chromosomal replication origin by protein tethering. Nucleic Acids Res 2013; 41:6460-74. [PMID: 23658226 PMCID: PMC3711443 DOI: 10.1093/nar/gkt368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.
Collapse
Affiliation(s)
- Xiaomi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
48
|
Tantin D, Voth WP, Shakya A. Efficient chromatin immunoprecipitation using limiting amounts of biomass. J Vis Exp 2013:e50064. [PMID: 23665589 DOI: 10.3791/50064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chromatin immunoprecipitation (ChIP) is a widely-used method for determining the interactions of different proteins with DNA in chromatin of living cells. Examples include sequence-specific DNA binding transcription factors, histones and their different modification states, enzymes such as RNA polymerases and ancillary factors, and DNA repair components. Despite its ubiquity, there is a lack of up-to-date, detailed methodologies for both bench preparation of material and for accurate analysis allowing quantitative metrics of interaction. Due to this lack of information, and also because, like any immunoprecipitation, conditions must be re-optimized for new sets of experimental conditions, the ChIP assay is susceptible to inaccurate or poorly quantitative results. Our protocol is ultimately derived from seminal work on transcription factor:DNA interactions(1,2) , but incorporates a number of improvements to sensitivity and reproducibility for difficult-to-obtain cell types. The protocol has been used successfully(3,4) , both using qPCR to quantify DNA enrichment, or using a semi-quantitative variant of the below protocol. This quantitative analysis of PCR-amplified material is performed computationally, and represents a limiting factor in the assay. Important controls and other considerations include the use of an isotype-matched antibody, as well as evaluation of a control region of genomic DNA, such as an intergenic region predicted not to be bound by the protein under study (or anticipated not to show changes under the experimental conditions). In addition, a standard curve of input material for every ChIP sample is used to derive absolute levels of enrichment in the experimental material. Use of standard curves helps to take into account differences between primer sets, regardless of how carefully they are designed, and also efficiency differences throughout the range of template concentrations for a single primer set. Our protocol is different from others that are available(5-8) in that we extensively cover the later, analysis phase.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine
| | | | | |
Collapse
|
49
|
A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet 2013; 9:e1003244. [PMID: 23382695 PMCID: PMC3561105 DOI: 10.1371/journal.pgen.1003244] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4, and 5) are critically necessary to maintaining this developmental state and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using integrated ChIP–seq and RNA–seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, exerted by sequence-specific binding to G-box (CACGTG) or PBE-box (CACATG) motifs in the target promoters genome-wide. In addition, expression analysis of selected genes in this set, in all triple pif-mutant combinations, provides evidence that the PIF quartet members collaborate to generate an expression pattern that is the product of a mosaic of differential transcriptional responsiveness of individual genes to the different PIFs and of differential regulatory activity of individual PIFs toward the different genes. Together with prior evidence that all four PIFs can bind to G-boxes, the data suggest that this collective activity may be exerted via shared occupancy of binding sites in target promoters. An important issue in understanding mechanisms of eukaryotic transcriptional regulation is how members of large transcription-factor families, with conserved DNA–binding domains (such as the 162-member Arabidopsis bHLH family), discriminate between target genes. However, the specific question of whether, and to what extent, closely related sub-family members, with potential overlapping functional redundancy (like the quartet of Phytochrome (phy)-Interacting bHLH transcription Factors (PIF1, 3, 4, and 5) studied here), share regulation of target genes through shared binding to promoter-localized consensus motifs does not appear to have been widely investigated. Here, using ChIP–seq analysis, we have identified genes that bind PIF3 to conserved, sequence-specific sites in their promoters; and, using RNA–seq, we have identified those genes displaying altered expression in various pif mutants. Integration of these data identifies those genes that are likely direct targets of transcriptional regulation by PIF3. Our data suggest that the PIF quartet members share directly in transcriptional activation of numerous target genes, potentially via redundant promoter occupancy, in a manner that varies quantitatively from gene to gene. This finding suggests that these PIFs function collectively as a signaling hub, selectively partitioning common upstream signals from light-activated phys at the transcriptional-network interface.
Collapse
|
50
|
Bock J, Mochmann LH, Schlee C, Farhadi-Sartangi N, Göllner S, Müller-Tidow C, Baldus CD. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling. PLoS One 2013; 8:e52872. [PMID: 23300998 PMCID: PMC3536782 DOI: 10.1371/journal.pone.0052872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 11/22/2012] [Indexed: 12/21/2022] Open
Abstract
High expression of the E26 transforming sequence related gene (ERG) is associated with poor prognosis in a subgroup of leukemia patients with acute myeloid (AML) and acute T-lymphoblastic leukemia (T-ALL). In a previous study we proposed that ERG overexpression may deregulate several signaling cascades in acute leukemia. Herein, we further expand those studies by identifying a consensus of biological targets in primary blasts of newly diagnosed acute leukemia patients. Our findings of chromatin immunoprecipitation-on-chip of primary samples revealed 48 significantly enriched single genes including DAAM1 and NUMB. Significantly enriched signaling pathways included WNT/β-catenin, p53, and PI3K/AKT with ERG overexpression inducing dephosphorylation of AKT(Ser473) relative to non ERG expressing K562 cells. Cell based ERG overexpression studies also revealed drug resistance to multi-kinase inhibitor, BAY 43-9006 (Sorafenib) and to the tyrosine kinase inhibitor TKI258. Thus in primary leukemic cells, ERG may contribute to the dysregulation of kinase signaling, which results in resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Juliane Bock
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Liliana H. Mochmann
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Cornelia Schlee
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Nasrin Farhadi-Sartangi
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stefanie Göllner
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Claudia D. Baldus
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|