1
|
Alavi M, Roudi R, D'Angelo A, Sobhani N, Safari F. Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy. Mol Cell Biochem 2025; 480:3521-3533. [PMID: 39922936 DOI: 10.1007/s11010-025-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.
Collapse
Affiliation(s)
- Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Shimada N, Matsuda J, Asano-Matsuda K, Tokuchi M, Aoudjit L, Masztalerz A, Lemay S, Takano T, Isaka Y. Rac1 Suppression by the Focal Adhesion Protein GIT ArfGAP2 and Podocyte Protection. J Am Soc Nephrol 2025:00001751-990000000-00532. [PMID: 40019803 DOI: 10.1681/asn.0000000614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/15/2025] [Indexed: 04/30/2025] Open
Abstract
Key Points
Focal adhesion protein GIT2 protected podocytes from injury in rodent proteinuric disease models.GIT2 facilitated translocation of tyrosine phosphatase PTP1B to focal adhesions where it dephosphorylates p130Cas, thereby suppressing Rac1 activity.Stabilizing GIT2 or facilitating GIT2 localization to focal adhesions in podocytes could be a therapeutic strategy in proteinuric kidney diseases.
Background
Podocytes have an intricate structure featured by numerous actin-based projections called foot processes. Rho family of small GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1), play important roles in actin cytoskeletal remodeling required for cell morphology and adhesion. We previously showed that Rac1 activation in podocytes causes foot process effacement and proteinuria, but the upstream and spatiotemporal regulatory mechanism directing Rac1 is largely unknown. Recently, we identified the focal adhesion protein GIT ArfGAP2 (GIT2) as one of the Rac1 interactors in human podocytes by proximity-dependent biotin identification and proteomics.
Methods
Systemic and podocyte-specific GIT2 knockout mice were generated and assessed for kidney phenotypes. Human podocytes with GIT2 knockdown (KD) and overexpression were established using lentiviral transduction and characterized.
Results
GIT2 was enriched in glomeruli, including podocytes, in the mouse kidney. Gene deletion of Git2 in podocytes caused exacerbated proteinuria and foot process effacement when subjected to the minimal change disease model and salt-sensitive hypertension model, which were improved by pharmacological inhibition of Rac1. In cultured podocytes, GIT2 KD resulted in Rac1-dependent cell spreading with marked lamellipodial protrusions, accelerated focal adhesion disassembly, and shorter focal adhesion lifetime. In GIT2 KD podocytes, tyrosine phosphorylation of the focal adhesion protein p130 Crk-associated substrate (Cas) was significantly increased, accompanied by impaired localization of the tyrosine phosphatase PTP1B to focal adhesions. These phenotypes observed in GIT2 KD podocytes were reversed by GIT2 overexpression.
Conclusions
The results indicate that GIT2 facilitates translocation of PTP1B to focal adhesions where it dephosphorylates p130Cas, thereby suppressing local Rac1 activity and protecting against podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Nephrology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Kana Asano-Matsuda
- Department of Nephrology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Maho Tokuchi
- Department of Nephrology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| | - Lamine Aoudjit
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Agnieszka Masztalerz
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Serge Lemay
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, The University of Osaka, Suita, Osaka, Japan
| |
Collapse
|
3
|
Yang W, Pan L, Cheng Y, Wu X, Tang B, Zhu H, Zhang M, Zhang Y. Nintedanib alleviates pulmonary fibrosis in vitro and in vivo by inhibiting the FAK/ERK/S100A4 signalling pathway. Int Immunopharmacol 2022; 113:109409. [PMID: 36461602 DOI: 10.1016/j.intimp.2022.109409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
4
|
Katoh K. FAK-Dependent Cell Motility and Cell Elongation. Cells 2020; 9:cells9010192. [PMID: 31940873 PMCID: PMC7017285 DOI: 10.3390/cells9010192] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Fibroblastic cells show specific substrate selectivity for typical cell–substrate adhesion. However, focal adhesion kinase (FAK) contributes to controlling the regulation of orientation and polarity. When fibroblasts attach to micropatterns, tyrosine-phosphorylated proteins and FAK are both detected along the inner border between the adhesive micropatterns and the nonadhesive glass surface. FAK likely plays important roles in regulation of cell adhesion to the substrate, as FAK is a tyrosine-phosphorylated protein that acts as a signal transduction molecule at sites of cell–substrate attachment, called focal adhesions. FAK has been suggested to play a role in the attachment of cells at adhesive micropatterns by affecting cell polarity. Therefore, the localization of FAK might play a key role in recognition of the border of the cell with the adhesive micropattern, thus regulating cell polarity and the cell axis. This review discusses the regulation and molecular mechanism of cell proliferation and cell elongation by FAK and its associated signal transduction proteins.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
5
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
6
|
Aboubakar Nana F, Lecocq M, Ladjemi MZ, Detry B, Dupasquier S, Feron O, Massion PP, Sibille Y, Pilette C, Ocak S. Therapeutic Potential of Focal Adhesion Kinase Inhibition in Small Cell Lung Cancer. Mol Cancer Ther 2018; 18:17-27. [PMID: 30352800 DOI: 10.1158/1535-7163.mct-18-0328] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/17/2018] [Accepted: 10/16/2018] [Indexed: 02/01/2023]
Abstract
Small cell lung cancer (SCLC) has a poor prognosis. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase regulating cell proliferation, survival, migration, and invasion, which is overexpressed and/or activated in several cancers, including SCLC. We wanted to determine whether FAK contributes to SCLC aggressive behavior. We first evaluated the effect of FAK small-molecule inhibitor PF-573,228 in NCI-H82, NCI-H146, NCI-H196, and NCI-H446 SCLC cell lines. PF-573,228 (0.1-5 μmol/L) inhibited FAK activity by decreasing phospho-FAK (Tyr397), without modifying total FAK expression. PF-573,228 decreased proliferation, decreased DNA synthesis, induced cell-cycle arrest in G2-M phases, and increased apoptosis in all cell lines. PF-573,228 also decreased motility in adherent cell lines. To make sure that these effects were not off-target, we then used a genetic method to inhibit FAK in NCI-H82 and NCI-H446, namely stable transduction with FAK shRNA and/or FAK-related nonkinase (FRNK), a splice variant lacking the N-terminal and kinase domains. Although FAK shRNA transduction decreased total and phospho-FAK (Tyr397) expression, it did not affect proliferation, DNA synthesis, or progression through cell cycle. However, restoration of FAK-targeting (FAT) domain (attached to focal adhesion complex where it inhibits pro-proliferative proteins such as Rac-1) by FRNK transduction inhibited proliferation, DNA synthesis, and induced apoptosis. Moreover, although FAK shRNA transduction increased active Rac1 level, FRNK reexpression in cells previously transduced with FAK shRNA decreased it. Therefore, FAK appears important in SCLC biology and targeting its kinase domain may have a therapeutic potential, while targeting its FAT domain should be avoided to prevent Rac1-mediated protumoral activity.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Marylène Lecocq
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Maha Zohra Ladjemi
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Bruno Detry
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sébastien Dupasquier
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Olivier Feron
- IREC, Pôle de Pharmacologie et Thérapeutique (FATH), UCL, Brussels, Belgium
| | - Pierre P Massion
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center (VUMC), and Tennessee Valley Health Care Systems, Nashville, Tennessee
| | - Yves Sibille
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium.,Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, Yvoir, Belgium
| | - Charles Pilette
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium.,Division of Pneumology, Cliniques Universitaires St-Luc, UCL, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCL), Brussels, Belgium. .,Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, Yvoir, Belgium
| |
Collapse
|
7
|
Gemperle J, Hexnerová R, Lepšík M, Tesina P, Dibus M, Novotný M, Brábek J, Veverka V, Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci Rep 2017; 7:8057. [PMID: 28808245 PMCID: PMC5556061 DOI: 10.1038/s41598-017-08303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CAS is a docking protein downstream of the proto-oncogene Src with a role in invasion and metastasis of cancer cells. The CAS SH3 domain is indispensable for CAS-mediated signaling, but structural aspects of CAS SH3 ligand binding and regulation are not well understood. Here, we identified the consensus CAS SH3 binding motif and structurally characterized the CAS SH3 domain in complex with ligand. We revealed the requirement for an uncommon centrally localized lysine residue at position +2 of CAS SH3 ligands and two rather dissimilar optional anchoring residues, leucine and arginine, at position +5. We further expanded the knowledge of CAS SH3 ligand binding regulation by manipulating tyrosine 12 phosphorylation and confirmed the negative role of this phosphorylation on CAS SH3 ligand binding. Finally, by exploiting the newly identified binding requirements of the CAS SH3 domain, we predicted and experimentally verified two novel CAS SH3 binding partners, DOK7 and GLIS2.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic.
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic.
| |
Collapse
|
8
|
Dasgupta SK, Le A, Vijayan KV, Thiagarajan P. Dasatinib inhibits actin fiber reorganization and promotes endothelial cell permeability through RhoA-ROCK pathway. Cancer Med 2017; 6:809-818. [PMID: 28316141 PMCID: PMC5387130 DOI: 10.1002/cam4.1019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 11/24/2022] Open
Abstract
Treatment with dasatinib, a tyrosine kinase inhibitor, is associated with edema, pleural effusion, and pulmonary edema. We investigated the effect of dasatinib on the barrier function of human microvascular endothelial cells‐1 (HMEC‐1) in vitro and in vivo. The permeability of HMEC‐1 to fluorescein isothiocyante (FITC)‐dextran increased in Transwell chambers within 5 min following the addition of therapeutic concentrations of dasatinib. The change in permeability was associated with increased activation of RhoA GTPase and its effector Rho‐associated coiled‐coil kinase 1(ROCK1). RhoA inhibitor C3 transferase almost completely inhibited dasatinib‐induced increase in permeability. Under similar conditions, imatinib had no effect on permeability or activation of RhoA. Since integrin‐induced cell spreading suppresses RhoA activation, we examined the effect of dasatinib on cell spreading on fibronectin substrate. Dasatinib impaired endothelial cell spreading in a concentration‐dependent manner and induced disorganization of actin fibers. Tyrosine kinases play an essential role in transmitting signals from integrins to RhoA and we examined tyrosine phosphorylation of several cytoskeletal proteins. Dasatinib markedly inhibited tyrosine phosphorylation of p130 Crk‐associated substrate (p130cas), paxillin and vinculin. These results suggest that the inhibition of tyrosine phosphorylation of the focal adhesion plaque components by dasatinib may alter the assembly of actin fibers resulting in the activation of RhoA/ROCK pathway. Consistent with these findings, dasatinib‐induced increase in the permeability was blocked by ROCK inhibitor y27632. In vivo administration of y27632, significantly inhibited the dasatinib‐induced extravasation of Evans blue in mice and dasatinib‐induced increase in microvascular permeability was attenuated in ROCK1‐deficient mice. These findings suggest that ROCK inhibitors could serve as therapeutic modalities to ameliorate the dasatinib‐induced pulmonary changes.
Collapse
Affiliation(s)
- Swapan K Dasgupta
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Anhquyen Le
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Bradbury PM, Turner K, Mitchell C, Griffin KR, Middlemiss S, Lau L, Dagg R, Taran E, Cooper-White J, Fabry B, O’Neill GM. The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function. J Cell Sci 2017; 130:1263-1273. [DOI: 10.1242/jcs.192930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
The Cas family of focal adhesion proteins contain a highly conserved C-terminal focal adhesion targeting (FAT) domain. To determine the role of the FAT domain we compared wildtype exogenous NEDD9 with a hybrid construct in which the NEDD9 FAT domain is exchanged for the p130Cas FAT domain. Fluorescence recovery after photobleaching (FRAP) revealed significantly slowed exchange of the fusion protein at focal adhesions and significantly slower 2D migration. No differences were detected in cell stiffness measured with Atomic Force Microscopy (AFM) and cell adhesion forces measured with a magnetic tweezer device. Thus the slowed migration was not due to changes in cell stiffness or adhesion strength. Analysis of cell migration on surfaces of increasing rigidity revealed a striking reduction of cell motility in cells expressing the p130Cas FAT domain. The p130Cas FAT domain induced rigidity-dependent tyrosine phosphorylation of the NEDD9 substrate domain. This in turn reduced post-translational cleavage of NEDD9 which we show inhibits NEDD9-induced migration. Collectively, our data therefore suggest that the p130Cas FAT domain uniquely confers mechanosensing function.
Collapse
Affiliation(s)
- Peta M. Bradbury
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| | - Kylie Turner
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Camilla Mitchell
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Kaitlyn R. Griffin
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Shiloh Middlemiss
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Loretta Lau
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Rebecca Dagg
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Elena Taran
- Australian National Fabrication Facility- Queensland node, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Germany
| | - Geraldine M. O’Neill
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| |
Collapse
|
10
|
Palanisamy AP, Suryakumar G, Panneerselvam K, Willey CD, Kuppuswamy D. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium. J Cell Biochem 2016; 116:2793-803. [PMID: 25976166 DOI: 10.1002/jcb.25224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium.
Collapse
Affiliation(s)
- Arun P Palanisamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Geetha Suryakumar
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Kavin Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Christopher D Willey
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, 29425-2221
| |
Collapse
|
11
|
Yue J, Zhang Y, Liang WG, Gou X, Lee P, Liu H, Lyu W, Tang WJ, Chen SY, Yang F, Liang H, Wu X. In vivo epidermal migration requires focal adhesion targeting of ACF7. Nat Commun 2016; 7:11692. [PMID: 27216888 PMCID: PMC5476826 DOI: 10.1038/ncomms11692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
Turnover of focal adhesions allows cell retraction, which is essential for cell migration. The mammalian spectraplakin protein, ACF7 (Actin-Crosslinking Factor 7), promotes focal adhesion dynamics by targeting of microtubule plus ends towards focal adhesions. However, it remains unclear how the activity of ACF7 is regulated spatiotemporally to achieve focal adhesion-specific guidance of microtubule. To explore the potential mechanisms, we resolve the crystal structure of ACF7’s NT (amino-terminal) domain, which mediates F-actin interactions. Structural analysis leads to identification of a key tyrosine residue at the calponin homology (CH) domain of ACF7, whose phosphorylation by Src/FAK (focal adhesion kinase) complex is essential for F-actin binding of ACF7. Using skin epidermis as a model system, we further demonstrate that the phosphorylation of ACF7 plays an indispensable role in focal adhesion dynamics and epidermal migration in vitro and in vivo. Together, our findings provide critical insights into the molecular mechanisms underlying coordinated cytoskeletal dynamics during cell movement. The spectraplakin protein ACF7 binds to actin at focal adhesions and targets microtubule plus ends to focal adhesions, promoting their disassembly. Here the authors reveal that ACF7 is phosphorylated by Src/FAK, and this regulates actin binding and focal adhesion dynamics in vitro and in vivo.
Collapse
Affiliation(s)
- Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Philbert Lee
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Han Liu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wanqing Lyu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, Kentucky 40292, USA
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guanxi Normal University, Guilin 541004, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Lee JH, Lee SH, Choi SH, Asahara T, Kwon SM. The sulfated polysaccharide fucoidan rescues senescence of endothelial colony-forming cells for ischemic repair. Stem Cells 2016; 33:1939-51. [PMID: 25693733 DOI: 10.1002/stem.1973] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/15/2015] [Indexed: 01/08/2023]
Abstract
The efficacy of cell therapy using endothelial colony-forming cells (ECFCs) in the treatment of ischemia is limited by the replicative senescence of isolated ECFCs in vitro. Such senescence must therefore be overcome in order for such cell therapies to be clinically applicable. This study aimed to investigate the potential of sulfated polysaccharide fucoidan to rescue ECFCs from cellular senescence and to improve in vivo vascular repair by ECFCs. Fucoidan-preconditioning of senescent ECFCs was shown by flow cytometry to restore the expression of functional ECFC surface markers (CD34, c-Kit, VEGFR2, and CXCR4) and stimulate the in vitro tube formation capacity of ECFCs. Fucoidan also promoted the expression of cell cycle-associated proteins (cyclin E, Cdk2, cyclin D1, and Cdk4) in senescent ECFCs, significantly reversed cellular senescence, and increased the proliferation of ECFCs via the FAK, Akt, and ERK signaling pathways. Fucoidan was found to enhance the survival, proliferation, incorporation, and endothelial differentiation of senescent ECFCs transplanted in ischemic tissues in a murine hind limb ischemia model. Moreover, ECFC-induced functional recovery and limb salvage were markedly improved by fucoidan pretreatment of ECFCs. To our knowledge, the findings of our study are the first to demonstrate that fucoidan enhances the neovasculogenic potential of ECFCs by rescuing them from replicative cellular senescence. Pretreatment of ECFCs with fucoidan may thus provide a novel strategy for the application of senescent stem cells to therapeutic neovascularization.
Collapse
Affiliation(s)
- Jun Hee Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sang Hun Lee
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Yongsan-gu, Seoul, Korea.,Department of Biochemistry, School of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sung Hyun Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Korea
| | - Takayuki Asahara
- Department Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
13
|
A ligand-independent integrin β1 mechanosensory complex guides spindle orientation. Nat Commun 2016; 7:10899. [PMID: 26952307 PMCID: PMC4786777 DOI: 10.1038/ncomms10899] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli.
Collapse
|
14
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK) phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.
Collapse
|
15
|
Wu X, Zahari MS, Renuse S, Nirujogi RS, Kim MS, Manda SS, Stearns V, Gabrielson E, Sukumar S, Pandey A. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer. Mol Cell Proteomics 2015; 14:2887-900. [PMID: 26330541 DOI: 10.1074/mcp.m115.050484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 01/13/2023] Open
Abstract
Tamoxifen, an estrogen receptor-α (ER) antagonist, is an important agent for the treatment of breast cancer. However, this therapy is complicated by the fact that a substantial number of patients exhibit either de novo or acquired resistance. To characterize the signaling mechanisms underlying this resistance, we treated the MCF7 breast cancer cell line with tamoxifen for over six months and showed that this cell line acquired resistance to tamoxifen in vitro and in vivo. We performed SILAC-based quantitative phosphoproteomic profiling on the tamoxifen resistant and vehicle-treated sensitive cell lines to quantify the phosphorylation alterations associated with tamoxifen resistance. From >5600 unique phosphopeptides identified, 1529 peptides exhibited hyperphosphorylation and 409 peptides showed hypophosphorylation in the tamoxifen resistant cells. Gene set enrichment analysis revealed that focal adhesion pathway was one of the most enriched signaling pathways activated in tamoxifen resistant cells. Significantly, we showed that the focal adhesion kinase FAK2 was not only hyperphosphorylated but also transcriptionally up-regulated in tamoxifen resistant cells. FAK2 suppression by specific siRNA knockdown or a small molecule inhibitor repressed cellular proliferation in vitro and tumor formation in vivo. More importantly, our survival analysis revealed that high expression of FAK2 is significantly associated with shorter metastasis-free survival in estrogen receptor-positive breast cancer patients treated with tamoxifen. Our studies suggest that FAK2 is a potential therapeutic target for the management of hormone-refractory breast cancers.
Collapse
Affiliation(s)
- Xinyan Wu
- From the ‡McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Muhammad Saddiq Zahari
- From the ‡McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Santosh Renuse
- §Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Raja Sekhar Nirujogi
- §Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Min-Sik Kim
- From the ‡McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Srikanth S Manda
- §Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | | | - Edward Gabrielson
- ‖Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | | | - Akhilesh Pandey
- From the ‡McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ¶Department of Oncology; ‖Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
16
|
ZHANG SISEN, WU LIHUA. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review). Mol Med Rep 2015; 12:6415-21. [DOI: 10.3892/mmr.2015.4240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/15/2015] [Indexed: 11/05/2022] Open
|
17
|
Mui KL, Bae YH, Gao L, Liu SL, Xu T, Radice GL, Chen CS, Assoian RK. N-Cadherin Induction by ECM Stiffness and FAK Overrides the Spreading Requirement for Proliferation of Vascular Smooth Muscle Cells. Cell Rep 2015; 10:1477-1486. [PMID: 25753414 PMCID: PMC4560684 DOI: 10.1016/j.celrep.2015.02.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 10/28/2022] Open
Abstract
In contrast to the accepted pro-proliferative effect of cell-matrix adhesion, the proliferative effect of cadherin-mediated cell-cell adhesion remains unresolved. Here, we studied the effect of N-cadherin on cell proliferation in the vasculature. We show that N-cadherin is induced in smooth muscle cells (SMCs) in response to vascular injury, an in vivo model of tissue stiffening and proliferation. Complementary experiments performed with deformable substrata demonstrated that stiffness-mediated activation of a focal adhesion kinase (FAK)-p130Cas-Rac signaling pathway induces N-cadherin. Additionally, by culturing paired and unpaired SMCs on microfabricated adhesive islands of different areas, we found that N-cadherin relaxes the spreading requirement for SMC proliferation. In vivo SMC deletion of N-cadherin strongly reduced injury-induced cycling. Finally, SMC-specific deletion of FAK inhibited proliferation after vascular injury, and this was accompanied by reduced induction of N-cadherin. Thus, a stiffness- and FAK-dependent induction of N-cadherin connects cell-matrix to cell-cell adhesion and regulates the degree of cell spreading needed for cycling.
Collapse
Affiliation(s)
- Keeley L Mui
- Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Ho Bae
- Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Gao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shu-Lin Liu
- Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina Xu
- Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glenn L Radice
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Richard K Assoian
- Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Bai Y, Kim JY, Watters JM, Fang B, Kinose F, Song L, Koomen JM, Teer JK, Fisher K, Chen YA, Rix U, Haura EB. Adaptive responses to dasatinib-treated lung squamous cell cancer cells harboring DDR2 mutations. Cancer Res 2014; 74:7217-7228. [PMID: 25348954 DOI: 10.1158/0008-5472.can-14-0505] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DDR2 mutations occur in approximately 4% of lung squamous cell cancer (SCC) where the tyrosine kinase inhibitor dasatinib has emerged as a new therapeutic option. We found that ERK and AKT phosphorylation was weakly inhibited by dasatinib in DDR2-mutant lung SCC cells, suggesting that dasatinib inhibits survival signals distinct from other oncogenic receptor tyrosine kinases (RTK) and/or compensatory signals exist that dampen dasatinib activity. To gain better insight into dasatinib's action in these cells, we assessed altered global tyrosine phosphorylation (pY) after dasatinib exposure using a mass spectrometry-based quantitative phosphoproteomics approach. Overlaying protein-protein interaction relationships upon this dasatinib-regulated pY network revealed decreased phosphorylation of Src family kinases and their targets. Conversely, dasatinib enhanced tyrosine phosphorylation in a panel of RTK and their signaling adaptor complexes, including EGFR, MET/GAB1, and IGF1R/IRS2, implicating a RTK-driven adaptive response associated with dasatinib. To address the significance of this observation, these results were further integrated with results from a small-molecule chemical library screen. We found that dasatinib combined with MET and insulin-like growth factor receptor (IGF1R) inhibitors had a synergistic effect, and ligand stimulation of EGFR and MET rescued DDR2-mutant lung SCC cells from dasatinib-induced loss of cell viability. Importantly, we observed high levels of tyrosine-phosphorylated EGFR and MET in a panel of human lung SCC tissues harboring DDR2 mutations. Our results highlight potential RTK-driven adaptive-resistant mechanisms upon DDR2 targeting, and they suggest new, rationale cotargeting strategies for DDR2-mutant lung SCC.
Collapse
Affiliation(s)
- Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jae-Young Kim
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - January M Watters
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kate Fisher
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
19
|
Janoštiak R, Pataki AC, Brábek J, Rösel D. Mechanosensors in integrin signaling: The emerging role of p130Cas. Eur J Cell Biol 2014; 93:445-54. [DOI: 10.1016/j.ejcb.2014.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
|
20
|
p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells. J Virol 2014; 88:13858-78. [PMID: 25253349 DOI: 10.1128/jvi.01674-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules, without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies.
Collapse
|
21
|
Tomakidi P, Schulz S, Proksch S, Weber W, Steinberg T. Focal adhesion kinase (FAK) perspectives in mechanobiology: implications for cell behaviour. Cell Tissue Res 2014; 357:515-26. [PMID: 24988914 DOI: 10.1007/s00441-014-1945-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
Abstract
Mechanobiology is a scientific interface discipline emerging from engineering and biology. With regard to tissue-regenerative cell-based strategies, mechanobiological concepts, including biomechanics as a target for cell and human mesenchymal stem cell behaviour, are on the march. Based on the periodontium as a paradigm, this mini-review discusses the key role of focal-adhesion kinase (FAK) in mechanobiology, since it is involved in mediating the transformation of environmental biomechanical signals into cell behavioural responses via mechanotransducing signalling cascades. These processes enable cells to adjust quickly to environmental cues, whereas adjustment itself relies on the specific intramolecular phosphorylation of FAK tyrosine residues and the multiple interactions of FAK with distinct partners. Furthermore, interaction-triggered mechanotransducing pathways govern the dynamics of focal adhesion sites and cell behaviour. Facets of behaviour not only include cell spreading and motility, but also proliferation, differentiation and apoptosis. In translational terms, identified and characterized biomechanical parameters can be incorporated into innovative concepts of cell- and tissue-tailored clinically applied biomaterials controlling cell behaviour as desired.
Collapse
Affiliation(s)
- Pascal Tomakidi
- Department of Oral Biotechnology, University Hospital Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany,
| | | | | | | | | |
Collapse
|
22
|
Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 2014; 7:ra57. [PMID: 24939893 PMCID: PMC4345117 DOI: 10.1126/scisignal.2004838] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue and extracellular matrix (ECM) stiffness is transduced into intracellular stiffness, signaling, and changes in cellular behavior. Integrins and several of their associated focal adhesion proteins have been implicated in sensing ECM stiffness. We investigated how an initial sensing event is translated into intracellular stiffness and a biologically interpretable signal. We found that a pathway consisting of focal adhesion kinase (FAK), the adaptor protein p130Cas (Cas), and the guanosine triphosphatase Rac selectively transduced ECM stiffness into stable intracellular stiffness, increased the abundance of the cell cycle protein cyclin D1, and promoted S-phase entry. Rac-dependent intracellular stiffening involved its binding partner lamellipodin, a protein that transmits Rac signals to the cytoskeleton during cell migration. Our findings establish that mechanotransduction by a FAK-Cas-Rac-lamellipodin signaling module converts the external information encoded by ECM stiffness into stable intracellular stiffness and mechanosensitive cell cycling. Thus, lamellipodin is important not only in controlling cellular migration but also for regulating the cell cycle in response to mechanical signals.
Collapse
Affiliation(s)
- Yong Ho Bae
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keeley L Mui
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bernadette Y Hsu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shu-Lin Liu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziba Razinia
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina Xu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard K Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
24
|
Machiyama H, Hirata H, Loh XK, Kanchi MM, Fujita H, Tan SH, Kawauchi K, Sawada Y. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration. J Cell Sci 2014; 127:3440-50. [PMID: 24928898 DOI: 10.1242/jcs.143438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton.
Collapse
Affiliation(s)
- Hiroaki Machiyama
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Xia Kun Loh
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Madhu Mathi Kanchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Hideaki Fujita
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871 Japan
| | - Song Hui Tan
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Keiko Kawauchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Yasuhiro Sawada
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biological Sciences, National University of Singapore, 117411 Singapore Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Chiba, 277-0032 Japan
| |
Collapse
|
25
|
Graf RP, Keller N, Barbero S, Stupack D. Caspase-8 as a regulator of tumor cell motility. Curr Mol Med 2014; 14:246-54. [PMID: 24467204 PMCID: PMC4106798 DOI: 10.2174/1566524014666140128111951] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 01/31/2023]
Abstract
The caspases are a family of ubiquitously expressed cysteine proteases best known for their roles in programmed cell death. However, caspases play a number of other roles in vertebrates. In the case of caspase-8, loss of expression is an embryonic lethal phenotype, and caspase-8 plays roles in suppressing cellular necrosis, promoting differentiation and immune signaling, regulating autophagy, and promoting cellular migration. Apoptosis and migration require localization of caspase-8 in the periphery of the cells, where caspase-8 acts as part of distinct biosensory complexes that either promote migration in appropriate cellular microenvironments, or cell death in inappropriate settings. In the cellular periphery, caspase-8 interacts with components of the focal adhesion complex in a tyrosine-kinase dependent manner, promoting both cell migration in vitro and metastasis in vivo. Mechanistically, caspase-8 interacts with components of both focal adhesions and early endosomes, enhancing focal adhesion turnover and promoting rapid integrin recycling to the cell surface. Clinically, this suggests that the expression of caspase-8 may not always be a positive prognostic sign, and that the role of caspase-8 in cancer progression is likely context-dependent.
Collapse
Affiliation(s)
| | | | | | - D Stupack
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 0803, 3855 Health Sciences Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Zhang X, Moore SW, Iskratsch T, Sheetz MP. N-WASP-directed actin polymerization activates Cas phosphorylation and lamellipodium spreading. J Cell Sci 2014; 127:1394-405. [PMID: 24481817 DOI: 10.1242/jcs.134692] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tyrosine phosphorylation of the substrate domain of Cas (CasSD) correlates with increased cell migration in healthy and diseased cells. Here, we address the mechanism leading to the phosphorylation of CasSD in the context of fibronectin-induced early spreading of fibroblasts. We have previously demonstrated that mechanical stretching of CasSD exposes phosphorylation sites for Src family kinases (SFKs). Surprisingly, phosphorylation of CasSD was independent of myosin contractile activity but dependent on actin polymerization. Furthermore, we found that CasSD phosphorylation in the early stages of cell spreading required: (1) integrin anchorage and integrin-mediated activation of SFKs, (2) association of Cas with focal adhesion kinase (FAK), and (3) N-WASP-driven actin-assembly activity. These findings, and analyses of the interactions of the Cas domains, indicate that the N-terminus of Cas associates with the FAK-N-WASP complex at the protrusive edge of the cell and that the C-terminus of Cas associates with the immobilized integrin-SFK cluster. Thus, extension of the leading edge mediated by actin polymerization could stretch Cas during early cell spreading, priming it for phosphorylation.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
27
|
CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci 2013; 71:727-44. [PMID: 23974298 PMCID: PMC3901934 DOI: 10.1007/s00018-013-1450-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Focal adhesions are cellular structures through which both mechanical forces and regulatory signals are transmitted. Two focal adhesion-associated proteins, Crk-associated substrate (CAS) and vinculin, were both independently shown to be crucial for the ability of cells to transmit mechanical forces and to regulate cytoskeletal tension. Here, we identify a novel, direct binding interaction between CAS and vinculin. This interaction is mediated by the CAS SRC homology 3 domain and a proline-rich sequence in the hinge region of vinculin. We show that CAS localization in focal adhesions is partially dependent on vinculin, and that CAS–vinculin coupling is required for stretch-induced activation of CAS at the Y410 phosphorylation site. Moreover, CAS–vinculin binding significantly affects the dynamics of CAS and vinculin within focal adhesions as well as the size of focal adhesions. Finally, disruption of CAS binding to vinculin reduces cell stiffness and traction force generation. Taken together, these findings strongly implicate a crucial role of CAS–vinculin interaction in mechanosensing and focal adhesion dynamics.
Collapse
|
28
|
Zeller KS, Riaz A, Sarve H, Li J, Tengholm A, Johansson S. The role of mechanical force and ROS in integrin-dependent signals. PLoS One 2013; 8:e64897. [PMID: 23738008 PMCID: PMC3667809 DOI: 10.1371/journal.pone.0064897] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/19/2013] [Indexed: 12/22/2022] Open
Abstract
Cells are exposed to several types of integrin stimuli, which generate responses generally referred to as “integrin signals”, but the specific responses to different integrin stimuli are poorly defined. In this study, signals induced by integrin ligation during cell attachment, mechanical force from intracellular contraction, or cell stretching by external force were compared. The elevated phosphorylation levels of several proteins during the early phase of cell attachment and spreading of fibroblast cell lines were not affected by inhibition of ROCK and myosin II activity, i.e. the reactions occurred independently of intracellular contractile force acting on the adhesion sites. The contraction-independent phosphorylation sites included ERK1/2 T202/Y204, AKT S473, p130CAS Y410, and cofilin S3. In contrast to cell attachment, cyclic stretching of the adherent cells induced a robust phosphorylation only of ERK1/2 and the phosphorylation levels of the other investigated proteins were not or only moderately affected by stretching. No major differences between signaling via α5β1 or αvβ3 integrins were detected. The importance of mitochondrial ROS for the integrin-induced signaling pathways was investigated using rotenone, a specific inhibitor of complex I in the respiratory chain. While rotenone only moderately reduced ATP levels and hardly affected the signals induced by cyclic cell stretching, it abolished the activation of AKT and reduced the actin polymerization rate in response to attachment in both cell lines. In contrast, scavenging of extracellular ROS with catalase or the vitamin C analog Asc-2P did not significantly influence the attachment-derived signaling, but caused a selective and pronounced enhancement of ERK1/2 phosphorylation in response to stretching. In conclusion, the results showed that “integrin signals” are composed of separate sets of reactions triggered by different types of integrin stimulation. Mitochondrial ROS and extracellular ROS had specific and distinct effects on the integrin signals induced by cell attachment and mechanical stretching.
Collapse
Affiliation(s)
- Kathrin S. Zeller
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anjum Riaz
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hamid Sarve
- Centre for Image Analysis, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jia Li
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
29
|
Fan H, Zhao X, Sun S, Luo M, Guan JL. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial-mesenchymal transition and mammary cancer stem cell activities in vivo. J Biol Chem 2012; 288:3322-33. [PMID: 23255596 DOI: 10.1074/jbc.m112.420497] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinases have been shown to play critical roles in cancer development and progression, and their inhibitors hold the potential as effective targeted therapies for breast and other cancers. However, some of these kinases like focal adhesion kinase (FAK) also possess scaffolding functions in intracellular signaling, but such kinase-independent functions of FAK or other kinases have not been examined in cancer directly in vivo. Here, we report that disruption of the function of FAK scaffolding through its Pro-878/881 motif suppressed mammary tumor growth and metastasis in a well characterized murine model of human breast cancer. P878A/P881A mutation in the endogenous FAK gene decreased the expression of markers for epithelial-mesenchymal transition (EMT) and mammary cancer stem cell (MaCSC) activities in tumors derived from mutant mice. This mutation disrupted the function of FAK scaffolding to mediate endophilin A2 phosphorylation at Tyr-315 by Src, leading to the decreased surface expression of MT1-MMP, as observed previously in transformed fibroblasts in vitro. Inhibition of the downstream components of this FAK scaffolding function by Y315F endophilin A2 mutant or MT1-MMP knockdown reduced markers for EMT and MaCSC activities. Conversely, bypass of the scaffolding function using the phosphorylation mimic mutant Y315E endophilin A2 or endophilin A2 knockdown rescued the decreased markers for EMT and MaCSCs as well as surface expression of MT1-MMP in tumor cells harboring the P878A/P881A mutation. Together, these results identify a novel role of FAK scaffolding function in breast cancer, which could serve as a new target in combination with kinase inhibition for more effective treatment strategies.
Collapse
Affiliation(s)
- Huaping Fan
- Division of Molecular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | |
Collapse
|
30
|
Krishnan H, Miller WT, Goldberg GS. SRC points the way to biomarkers and chemotherapeutic targets. Genes Cancer 2012; 3:426-35. [PMID: 23226580 DOI: 10.1177/1947601912458583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of Src in tumorigenesis has been extensively studied since the work of Peyton Rous over a hundred years ago. Src is a non-receptor tyrosine kinase that plays key roles in signaling pathways controlling tumor cell growth and migration. Src regulates the activities of numerous molecules to induce cell transformation. However, transformed cells do not always migrate and realize their tumorigenic potential. They can be normalized by surrounding nontransformed cells by a process called contact normalization. Tumor cells need to override contact normalization to become malignant or metastatic. In this review, we discuss the role of Src in cell migration and contact normalization, with emphasis on Cas and Abl pathways. This paradigm illuminates several chemotherapeutic targets and may lead to the identification of new biomarkers and the development of effective anticancer treatments.
Collapse
Affiliation(s)
- Harini Krishnan
- University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Stratford, NJ, USA
| | | | | |
Collapse
|
31
|
Wallez Y, Mace PD, Pasquale EB, Riedl SJ. NSP-CAS Protein Complexes: Emerging Signaling Modules in Cancer. Genes Cancer 2012; 3:382-93. [PMID: 23226576 DOI: 10.1177/1947601912460050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The CAS (CRK-associated substrate) family of adaptor proteins comprises 4 members, which share a conserved modular domain structure that enables multiple protein-protein interactions, leading to the assembly of intracellular signaling platforms. Besides their physiological role in signal transduction downstream of a variety of cell surface receptors, CAS proteins are also critical for oncogenic transformation and cancer cell malignancy through associations with a variety of regulatory proteins and downstream effectors. Among the regulatory partners, the 3 recently identified adaptor proteins constituting the NSP (novel SH2-containing protein) family avidly bind to the conserved carboxy-terminal focal adhesion-targeting (FAT) domain of CAS proteins. NSP proteins use an anomalous nucleotide exchange factor domain that lacks catalytic activity to form NSP-CAS signaling modules. Additionally, the NSP SH2 domain can link NSP-CAS signaling assemblies to tyrosine-phosphorylated cell surface receptors. NSP proteins can potentiate CAS function by affecting key CAS attributes such as expression levels, phosphorylation state, and subcellular localization, leading to effects on cell adhesion, migration, and invasion as well as cell growth. The consequences of these activities are well exemplified by the role that members of both families play in promoting breast cancer cell invasiveness and resistance to antiestrogens. In this review, we discuss the intriguing interplay between the NSP and CAS families, with a particular focus on cancer signaling networks.
Collapse
Affiliation(s)
- Yann Wallez
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
32
|
Yoon JH, Kim J, Lee H, Kim SY, Jang HH, Ryu SH, Kim BJ, Lee TG. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts. Biochem Biophys Res Commun 2012; 428:416-21. [PMID: 23111328 DOI: 10.1016/j.bbrc.2012.10.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- NovaCell Technology Inc., Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Whitney NP, Lamb AC, Louw TM, Subramanian A. Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1734-43. [PMID: 22920546 PMCID: PMC3438336 DOI: 10.1016/j.ultrasmedbio.2012.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 05/11/2023]
Abstract
Chondrocytes are mechanosensitive cells that require mechanical stimulation for proper growth and function in in vitro culture systems. Ultrasound (US) has emerged as a technique to deliver mechanical stress; however, the intracellular signaling components of the mechanotransduction pathways that transmit the extracellular mechanical stimulus to gene regulatory mechanisms are not fully defined. We evaluated a possible integrin/mitogen-activated protein kinase (MAPK) mechanotransduction pathway using Western blotting with antibodies targeting specific phosphorylation sites on intracellular signaling proteins. US stimulation of chondrocytes induced phosphorylation of focal adhesion kinase (FAK), Src, p130 Crk-associated substrate (p130Cas), CrkII and extracellular-regulated kinase (Erk). Furthermore, pre-incubation with inhibitors of integrin receptors, Src and MAPK/Erk kinase (MEK) reduced US-induced Erk phosphorylation levels, indicating integrins and Src are upstream of Erk in an US-mediated mechanotransduction pathway. These findings suggest US signals through integrin receptors to the MAPK/Erk pathway via a mechanotransduction pathway involving FAK, Src, p130Cas and CrkII.
Collapse
Affiliation(s)
- Nicholas P. Whitney
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
| | - Allyson C. Lamb
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
| | - Tobias M. Louw
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
| | - Anuradha Subramanian
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA 68588-0643
- Correspondence: Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, 207L Othmer Hall, 820 N. 16th St., Lincoln, NE 68588-0643, USA., Phone: (402)-472-3463 Fax: (402)-472-6989,
| |
Collapse
|
34
|
Protein tyrosine phosphatase α phosphotyrosyl-789 binds BCAR3 to position Cas for activation at integrin-mediated focal adhesions. Mol Cell Biol 2012; 32:3776-89. [PMID: 22801373 DOI: 10.1128/mcb.00214-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Integrin-mediated focal adhesions connect the extracellular matrix and cytoskeleton to regulate cell responses, such as migration. Protein tyrosine phosphatase α (PTPα) regulates integrin signaling, focal adhesion formation, and migration, but its roles in these events are incompletely understood. The integrin-proximal action of PTPα activates Src family kinases, and subsequent phosphorylation of PTPα at Tyr789 acts in an unknown manner to promote migration. PTPα-null cells were used in reconstitution assays to distinguish PTPα-Tyr789-dependent signaling events. This showed that PTPα-Tyr789 regulates the localization of PTPα and the scaffolding protein Cas to adhesion sites where Cas interacts with and is phosphorylated by Src to initiate Cas signaling. Linking these events, we identify BCAR3 as a molecular connector of PTPα and Cas, with phospho-Tyr789 PTPα serving as the first defined cellular ligand for the BCAR3 SH2 domain that recruits BCAR3-Cas to adhesions. Our findings reveal a novel role of PTPα in integrin-induced adhesion assembly that enables Src-mediated activation of the pivotal function of Cas in migration.
Collapse
|
35
|
Tu L, De Man FS, Girerd B, Huertas A, Chaumais MC, Lecerf F, François C, Perros F, Dorfmüller P, Fadel E, Montani D, Eddahibi S, Humbert M, Guignabert C. A critical role for p130Cas in the progression of pulmonary hypertension in humans and rodents. Am J Respir Crit Care Med 2012; 186:666-76. [PMID: 22798315 DOI: 10.1164/rccm.201202-0309oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a progressive and fatal disease characterized by pulmonary arterial muscularization due to excessive pulmonary vascular cell proliferation and migration, a phenotype dependent upon growth factors and activation of receptor tyrosine kinases (RTKs). p130(Cas) is an adaptor protein involved in several cellular signaling pathways that control cell migration, proliferation, and survival. OBJECTIVES We hypothesized that in experimental and human PAH p130(Cas) signaling is overactivated, thereby facilitating the intracellular transmission of signal induced by fibroblast growth factor (FGF)2, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF). MEASUREMENTS AND MAIN RESULTS In patients with PAH, levels of p130(Cas) protein and/or activity are higher in the serum, in the walls of distal pulmonary arteries, in cultured smooth muscle cells (PA-SMCs), and in pulmonary endothelial cells (P-ECs) than in control subjects. These abnormalities in the p130(Cas) signaling were also found in the chronically hypoxic mice and monocrotaline-injected rats as models of human PAH. We obtained evidence for the convergence and amplification of the growth-stimulating effect of the EGF-, FGF2-, and PDGF-signaling pathways via the p130(Cas) signaling pathway. We found that daily treatment with the EGF-R inhibitor gefitinib, the FGF-R inhibitor dovitinib, and the PDGF-R inhibitor imatinib started 2 weeks after a subcutaneous monocrotaline injection substantially attenuated the abnormal increase in p130(Cas) and ERK1/2 activation and regressed established pulmonary hypertension. CONCLUSIONS Our findings demonstrate that p130(Cas) signaling plays a critical role in experimental and idiopathic PAH by modulating pulmonary vascular cell migration and proliferation and by acting as an amplifier of RTK downstream signals.
Collapse
Affiliation(s)
- Ly Tu
- INSERM UMR 999, Centre Chirurgical Marie Lannelongue, 133 Avenue de la Resistance, Le Plessis-Robinson, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Makkinje A, Vanden Borre P, Near RI, Patel PS, Lerner A. Breast cancer anti-estrogen resistance 3 (BCAR3) protein augments binding of the c-Src SH3 domain to Crk-associated substrate (p130cas). J Biol Chem 2012; 287:27703-14. [PMID: 22711540 DOI: 10.1074/jbc.m112.389981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The focal adhesion adapter protein p130(cas) regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130(cas). AND-34/BCAR3, one of three NSP family members, binds the p130(cas) carboxyl terminus, adjacent to a bipartite p130(cas) Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130(cas). Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130(cas) complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130(cas) to bind the Src SH3 domain through an RPLPSPP motif in the p130(cas) SBD. Although our prior work identified phosphorylation of the serine within the p130(cas) RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130(cas). The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130(cas) complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130(cas) substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130(cas). Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130(cas) and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130(cas) complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130(cas) SBD.
Collapse
Affiliation(s)
- Anthony Makkinje
- Department of Medicine, Section of Hematology/Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Anchorage-independent growth is the most significant hallmark of cell transformation, which has an intimate relevance to cancer. Anchorage or adhesion physically links cells to the extracellular matrix and allows the transmission of external mechanical cues to intracellular signaling machineries. Transformation involves acquiring the ability to proliferate without requiring mechanically initiated signal transduction, known as mechanotransduction. A number of signaling and cytoskeletal molecules are located at focal adhesions. Src and its related proteins, including p130Cas, localize to adhesion sites, where their functions can be mechanically regulated. In addition, the aberrant activation and expression of Src and p130Cas are linked to transformation and malignancy both in vitro and in vivo. These findings shed light on the importance of mechanotransduction in tumorigenesis and the regulation of cancer progression and also provide insights into the mechanical aspects of cancer signaling.
Collapse
Affiliation(s)
- Hiroyuki Matsui
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
| | - Ichiro Harada
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
| | - Yasuhiro Sawada
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
38
|
Guerrero MS, Parsons JT, Bouton AH. Cas and NEDD9 Contribute to Tumor Progression through Dynamic Regulation of the Cytoskeleton. Genes Cancer 2012; 3:371-81. [PMID: 23226575 PMCID: PMC3513795 DOI: 10.1177/1947601912458585] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cas family proteins, p130(Cas) (Cas) and NEDD9, are adaptor molecules that regulate cytoskeletal dynamics to promote multiple cellular processes, including migration, invasion, proliferation, and survival. Because these functions are also critical for tumor initiation, growth, and metastasis, Cas and NEDD9 are well positioned to contribute to these oncogenic processes. Indeed, mouse models of cancer show that these proteins function during multiple stages of disease progression. Furthermore, in many human cancers, high expression of Cas and NEDD9 is associated with advanced stage disease and is predictive of poor outcome. This review explores the contribution of Cas and NEDD9 during cellular transformation and neoplastic growth, tumor progression, metastasis, and the development of therapeutic resistance. Given these roles, Cas and NEDD9 may prove to be viable candidates for use as biomarkers and therapeutic targets.
Collapse
|
39
|
Zhong J, Baquiran JB, Bonakdar N, Lees J, Ching YW, Pugacheva E, Fabry B, O'Neill GM. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration. PLoS One 2012; 7:e35058. [PMID: 22509381 PMCID: PMC3324407 DOI: 10.1371/journal.pone.0035058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.
Collapse
Affiliation(s)
- Jessie Zhong
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jaime B. Baquiran
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Navid Bonakdar
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Justin Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yu Wooi Ching
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Elena Pugacheva
- Mary Babb Randolph Cancer Center (MBRCC), West Virginia University, Morgantown, West Virginia, United States of America
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Geraldine M. O'Neill
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
40
|
Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, Wessler S, Torres J, Smolka A, Backert S. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest 2012; 122:1553-66. [PMID: 22378042 PMCID: PMC3314471 DOI: 10.1172/jci61143] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/11/2012] [Indexed: 12/24/2022] Open
Abstract
Many bacterial pathogens inject into host cells effector proteins that are substrates for host tyrosine kinases such as Src and Abl family kinases. Phosphorylated effectors eventually subvert host cell signaling, aiding disease development. In the case of the gastric pathogen Helicobacter pylori, which is a major risk factor for the development of gastric cancer, the only known effector protein injected into host cells is the oncoprotein CagA. Here, we followed the hierarchic tyrosine phosphorylation of H. pylori CagA as a model system to study early effector phosphorylation processes. Translocated CagA is phosphorylated on Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs EPIYA-A, EPIYA-B, and EPIYA-C in Western strains of H. pylori and EPIYA-A, EPIYA-B, and EPIYA-D in East Asian strains. We found that c-Src only phosphorylated EPIYA-C and EPIYA-D, whereas c-Abl phosphorylated EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D. Further analysis revealed that CagA molecules were phosphorylated on 1 or 2 EPIYA motifs, but never simultaneously on 3 motifs. Furthermore, none of the phosphorylated EPIYA motifs alone was sufficient for inducing AGS cell scattering and elongation. The preferred combination of phosphorylated EPIYA motifs in Western strains was EPIYA-A and EPIYA-C, either across 2 CagA molecules or simultaneously on 1. Our study thus identifies a tightly regulated hierarchic phosphorylation model for CagA starting at EPIYA-C/D, followed by phosphorylation of EPIYA-A or EPIYA-B. These results provide insight for clinical H. pylori typing and clarify the role of phosphorylated bacterial effector proteins in pathogenesis.
Collapse
Affiliation(s)
- Doreen Mueller
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nicole Tegtmeyer
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sabine Brandt
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yoshio Yamaoka
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eimear De Poire
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dionyssios Sgouras
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Silja Wessler
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Javier Torres
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Adam Smolka
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steffen Backert
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
41
|
George B, Verma R, Soofi AA, Garg P, Zhang J, Park TJ, Giardino L, Ryzhova L, Johnstone DB, Wong H, Nihalani D, Salant DJ, Hanks SK, Curran T, Rastaldi MP, Holzman LB. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J Clin Invest 2012; 122:674-92. [PMID: 22251701 DOI: 10.1172/jci60070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/06/2011] [Indexed: 01/03/2023] Open
Abstract
The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation - markers of focal adhesion complex-mediated Crk-dependent signaling - was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2-dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases.
Collapse
Affiliation(s)
- Britta George
- Renal-Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Niediek V, Born S, Hampe N, Kirchgessner N, Merkel R, Hoffmann B. Cyclic stretch induces reorientation of cells in a Src family kinase- and p130Cas-dependent manner. Eur J Cell Biol 2011; 91:118-28. [PMID: 22178114 DOI: 10.1016/j.ejcb.2011.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 10/23/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Recognition of external mechanical signals by cells is an essential process for life. One important mechanical signal experienced by various cell types, e.g. around blood vessels, within the lung epithelia or around the intestine, is cyclic stretch. As a response, many cell types reorient their actin cytoskeleton and main cell axis almost perpendicular to the direction of stretch. Despite the vital necessity of cellular adaptation to cyclic stretch, the underlying mechanosensory signal cascades are far from being understood. Here we show an important function of Src-family kinase activity in cellular reorientation upon cyclic stretch. Deletion of all three family members, namely c-Src, Yes and Fyn (SYF), results in a strongly impaired cell reorientation of mouse embryonic fibroblasts with an only incomplete reorientation upon expression of c-Src. We further demonstrate that this reorientation phenotype of SYF-depleted cells is not caused by affected protein exchange dynamics within focal adhesions or altered cell force generation. Instead, Src-family kinases regulate the reorientation in a mechanotransduction-dependent manner, since knock-down and knock-out of p130Cas, a putative stretch sensor known to be phosphorylated by Src-family kinases, also reduce cellular reorientation upon cyclic stretch. This impaired reorientation is identical in intensity upon mutating stretch-sensitive tyrosines of p130Cas only. These statistically highly significant data pinpoint early events in a Src family kinase- and p130Cas-dependent mechanosensory/mechanotransduction pathway.
Collapse
Affiliation(s)
- Verena Niediek
- Institute of Complex Systems 7, Biomechanics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Janoštiak R, Tolde O, Brůhová Z, Novotný M, Hanks SK, Rösel D, Brábek J. Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness. Mol Biol Cell 2011; 22:4256-67. [PMID: 21937722 PMCID: PMC3216652 DOI: 10.1091/mbc.e11-03-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Crk-associated substrate (CAS) Tyr-12 phosphorylation has an important role in ligand binding, CAS localization, turnover of adhesion structures, migration, and invasiveness. CAS Tyr-12 phosphorylation thus possibly represents a novel regulatory mechanism by which CAS-mediated signaling could trigger different cellular responses. Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein–tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas–/– mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.
Collapse
Affiliation(s)
- Radoslav Janoštiak
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Cao H, Chen J, McNiven MA. A direct interaction between the large GTPase dynamin-2 and FAK regulates focal adhesion dynamics in response to active Src. Mol Biol Cell 2011; 22:1529-38. [PMID: 21411625 PMCID: PMC3084675 DOI: 10.1091/mbc.e10-09-0785] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study establishes Dyn2 as a novel effector downstream of Src-FAK signaling in mediating FA disassembly. FAK directly binds to and recruits Dyn2 to FAs. The formation of a Src–FAK–Dyn2 complex is essential for Dyn2's phosphoactivation and subsequent endocytic turnover of FAs. Tumor cell migration is supported in part by the cyclic formation and disassembly of focal adhesions (FAs); however, the mechanisms that regulate this process are not fully defined. The large guanosine 5′-triphosphatase dynamin (Dyn) plays an important role in FA dynamics and is activated by tyrosine phosphorylation. Using a novel antibody specific to phospho-dynamin (pDyn–Tyr-231), we found that Dyn2 is phosphorylated at FAs by Src kinase and is recruited to FAs by a direct interaction with the 4.1/ezrin/radizin/moesin domain of focal adhesion kinase (FAK), which functions as an adaptor between Src and Dyn2 to facilitate Dyn2 phosphorylation. This Src–FAK–Dyn2 trimeric complex is essential for FA turnover, as mutants disrupting the formation of this complex inhibit FA disassembly. Importantly, phosphoactivated Dyn2 promotes FA turnover by mediating the endocytosis of integrins in a clathrin-dependent manner. This study defines a novel mechanism of how Dyn2 functions as a downstream effector of FAK–Src signaling in turning over FAs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
45
|
Vanden Borre P, Near RI, Makkinje A, Mostoslavsky G, Lerner A. BCAR3/AND-34 can signal independent of complex formation with CAS family members or the presence of p130Cas. Cell Signal 2011; 23:1030-40. [PMID: 21262352 DOI: 10.1016/j.cellsig.2011.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
BCAR3 binds to the carboxy-terminus of p130Cas, a focal adhesion adapter protein. Both BCAR3 and p130Cas have been linked to resistance to anti-estrogens in breast cancer, Rac activation and cell motility. Using R743A BCAR3, a point mutant that has lost the ability to bind p130Cas, we find that BCAR3-p130Cas complex formation is not required for BCAR3-mediated anti-estrogen resistance, Rac activation or discohesion of epithelial breast cancer cells. Complex formation was also not required for BCAR3-induced lamellipodia formation in BALB/c-3T3 fibroblasts but was required for optimal BCAR3-induced motility. Although both wildtype and R743A BCAR3 induced phosphorylation of p130Cas and the related adapter protein HEF1/NEDD9, chimeric NSP3:BCAR3 experiments demonstrate that such phosphorylation does not correlate with BCAR3-induced anti-estrogen resistance or lamellipodia formation. Wildtype but not R743A BCAR3 induced lamellipodia formation and augmented cell motility in p130Cas(-/-) murine embryonic fibroblasts (MEFs), suggesting that while p130Cas itself is not strictly required for these endpoints, complex formation with other CAS family members is, at least in cells lacking p130Cas. Overall, our work suggests that many, but not all, BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. These studies also indicate that disruption of the BCAR3-p130Cas complex is unlikely to reverse BCAR3-mediated anti-estrogen resistance.
Collapse
Affiliation(s)
- Pierre Vanden Borre
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, MA, United States
| | | | | | | | | |
Collapse
|
46
|
Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 2010; 10:858-70. [PMID: 21102636 DOI: 10.1038/nrc2967] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current evidence highlights the ability of adaptor (or scaffold) proteins to create signalling platforms that drive cellular transformation upon integrin-dependent adhesion and growth factor receptor activation. The understanding of the biological effects that are regulated by these adaptors in tumours might be crucial for the identification of new targets and the development of innovative therapeutic strategies for human cancer. In this Review we discuss the relevance of adaptor proteins in signalling that originates from integrin-mediated cell-extracellular matrix (ECM) adhesion and growth factor stimulation in the context of cell transformation and tumour progression. We specifically underline the contribution of p130 Crk-associated substrate (p130CAS; also known as BCAR1), neural precursor cell expressed, developmentally down-regulated 9 (NEDD9; also known as HEF1), CRK and the integrin-linked kinase (ILK)-pinch-parvin (IPP) complex to cancer, along with the more recently identified p140 Cas-associated protein (p140CAP; also known as SRCIN1).
Collapse
Affiliation(s)
- Sara Cabodi
- Molecular Biotechnology Centre and Department of Genetics, Biology and Biochemistry, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | | | | |
Collapse
|
47
|
Roselli S, Wallez Y, Wang L, Vervoort V, Pasquale EB. The SH2 domain protein Shep1 regulates the in vivo signaling function of the scaffolding protein Cas. Cell Signal 2010; 22:1745-52. [PMID: 20603213 PMCID: PMC2948029 DOI: 10.1016/j.cellsig.2010.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/29/2010] [Indexed: 01/07/2023]
Abstract
The members of the p130Cas (Cas) family are important scaffolding proteins that orchestrate cell adhesion, migration and invasiveness downstream of integrin adhesion receptors and receptor tyrosine kinases by recruiting enzymes and structural molecules. Shep1, BCAR3/AND-34 and NSP1 define a recently identified family of SH2 domain-containing proteins that constitutively bind Cas proteins through a Cdc25-type nucleotide exchange factor-like domain. To gain insight into the functional interplay between Shep1 and Cas in vivo, we have inactivated the Shep1 gene in the mouse through Cre-mediated deletion of the exon encoding the SH2 domain. Analysis of Cas tyrosine phosphorylation in the brains of newborn mice, where Shep1 is highly expressed, revealed a strong decrease in Cas substrate domain phosphorylation in knockout compared to wild-type brains. Src family kinases bind to Cas via their SH3 and SH2 domains, which contributes to their activation, and phosphorylate multiple tyrosines in the Cas substrate domain. These tyrosine-phosphorylated motifs represent docking sites for the Crk adaptor, linking Cas to the downstream Rac1 and Rap1 GTPases to regulate cell adhesion and actin cytoskeleton organization. Accordingly, we detected lower Cas-Crk association and lower phosphorylation of the Src activation loop in Shep1 knockout brains compared to wild-type. Conversely, Shep1 transfection in COS cells increases Cas tyrosine phosphorylation. The SH2 domain is likely critical for the effects of Shep1 on Cas and Src signaling because the knockout mice express Shep1 fragments that lack the amino-terminal region including the SH2 domain, presumably due to aberrant translation from internal ATG codons. These fragments retain the ability to increase Cas levels in transfected cells, similar to full-length Shep1. However, they do not affect Cas phosphorylation on their own or in the presence of co-transfected full-length Shep1. They also do not show dominant negative effects on the activity of full-length Shep1 in vivo because the heterozygous mice, which express the fragments, have a normal life span. This is in contrast to the homozygous knockout mice, most of which die soon after birth. These data demonstrate that Shep1 plays a critical role in the in vivo regulation of Src activity and Cas downstream signaling through Crk, and suggest that the SH2 domain of Shep1 is critical for these effects.
Collapse
Affiliation(s)
- Séverine Roselli
- Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Meenderink LM, Ryzhova LM, Donato DM, Gochberg DF, Kaverina I, Hanks SK. P130Cas Src-binding and substrate domains have distinct roles in sustaining focal adhesion disassembly and promoting cell migration. PLoS One 2010; 5:e13412. [PMID: 20976150 PMCID: PMC2956669 DOI: 10.1371/journal.pone.0013412] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/19/2010] [Indexed: 01/17/2023] Open
Abstract
The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas −/− mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.
Collapse
Affiliation(s)
- Leslie M. Meenderink
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Larisa M. Ryzhova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Dominique M. Donato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Daniel F. Gochberg
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Steven K. Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
49
|
Donato DM, Ryzhova LM, Meenderink LM, Kaverina I, Hanks SK. Dynamics and mechanism of p130Cas localization to focal adhesions. J Biol Chem 2010; 285:20769-79. [PMID: 20430882 PMCID: PMC2898362 DOI: 10.1074/jbc.m109.091207] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/10/2010] [Indexed: 01/09/2023] Open
Abstract
The docking protein p130Cas is a major Src substrate involved in integrin signaling and mechanotransduction. Tyrosine phosphorylation of p130Cas in focal adhesions (FAs) has been linked to enhanced cell migration, invasion, proliferation, and survival. However, the mechanism of p130Cas targeting to FAs is uncertain, and dynamic aspects of its localization have not been explored. Using live cell microscopy, we show that fluorophore-tagged p130Cas is a component of FAs throughout the FA assembly and disassembly stages, although it resides transiently in FAs with a high mobile fraction. Deletion of either the N-terminal Src homology 3 (SH3) domain or the Cas-family C-terminal homology (CCH) domain significantly impaired p130Cas FA localization, and deletion of both domains resulted in full exclusion. Focal adhesion kinase was implicated in the FA targeting function of the p130Cas SH3 domain. Consistent with their roles in FA targeting, both the SH3 and CCH domains were found necessary for p130Cas to fully undergo tyrosine phosphorylation and promote cell migration. By revealing the capacity of p130Cas to function in FAs throughout their lifetime, clarifying FA targeting mechanism, and demonstrating the functional importance of the highly conserved CCH domain, our results advance the understanding of an important aspect of integrin signaling.
Collapse
Affiliation(s)
- Dominique M. Donato
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Larisa M. Ryzhova
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Leslie M. Meenderink
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Irina Kaverina
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Steven K. Hanks
- From the Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
50
|
Akasaka Y, Ono I, Kamiya T, Ishikawa Y, Kinoshita T, Ishiguro S, Yokoo T, Imaizumi R, Inomata N, Fujita K, Akishima-Fukasawa Y, Uzuki M, Ito K, Ishii T. The mechanisms underlying fibroblast apoptosis regulated by growth factors during wound healing. J Pathol 2010; 221:285-99. [PMID: 20527022 DOI: 10.1002/path.2710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While investigating the mechanisms underlying cell death during wound healing processes, we uncovered the pro-apoptotic effects of basic fibroblast growth factor (bFGF) on granulation tissue fibroblasts following pretreatment with transforming growth factor (TGF)-beta1 in vitro. bFGF induced caspase-3 activation and apoptosis in TGF-beta1-pretreated granulation tissue-derived fibroblasts (GF-1) following bFGF treatment for 48 and 96 h. In contrast, fibroblasts that had been treated in the same manner and that originated from the uninjured dermis did not display apoptosis, indicating that the mechanisms underlying apoptosis events in fibroblasts that originate from normal dermal and wound tissues differ. In this process, we also found that bFGF inhibited Akt phosphorylation at serine 473 and induced a rapid loss of phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 in pretreated GF-1 cells, an event that coincided with the dissociation of phosphorylated FAK from the focal adhesions. Therefore, inhibition of survival signals relayed via the disrupted focal adhesion structures and inactivated Akt following bFGF treatment may lead to apoptosis in GF-1 cells pretreated with TGF-beta1. Pretreatment of GF-1 with TGF-beta1 followed by the addition of bFGF resulted in significantly greater inhibition of phosphorylation of Akt and FAK compared to treatment with TGF-beta1 or bFGF alone. The combinatorial treatment also led to proteolysis of FAK and inhibition of FAK and Akt protein expression in GF-1 cells. These findings demonstrated a significant role for the two cytokines in apoptosis of granulation tissue fibroblasts during wound healing. In vivo studies also confirmed a marked decline in phosphorylation and protein expression of Akt and FAK in bFGF-injected skin wounds. These results led to the hypothesis that temporal activation of TGF-beta1 and bFGF at the injury site promotes apoptosis in granulation tissue fibroblasts, an event that is critical for the termination of proliferative granulation tissue formation.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Department of Pathology, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ohta-City, Tokyo, 143-8540, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|