1
|
Zencir S, Dilg D, Bruzzone M, Stutz F, Soudet J, Shore D, Albert B. A two-step regulatory mechanism dynamically controls histone H3 acetylation by SAGA complex at growth-related promoters. Nucleic Acids Res 2025; 53:gkaf276. [PMID: 40207626 PMCID: PMC11983098 DOI: 10.1093/nar/gkaf276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Acetylation of histone H3 at residue K9 (H3K9ac) is a dynamically regulated mark associated with transcriptionally active promoters in eukaryotes. However, our understanding of the relationship between H3K9ac and gene expression remains mostly correlative. In this study, we identify a large suite of growth-related (GR) genes in yeast that undergo a particularly strong down-regulation of both transcription and promoter-associated H3K9ac upon stress, and delineate the roles of transcriptional activators (TAs), repressors, SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase, and RNA-polymerase II in this response. We demonstrate that H3K9 acetylation states are orchestrated by a two-step mechanism driven by the dynamic binding of transcriptional repressors (TRs) and activators, that is independent of transcription. In response to stress, promoter release of TAs at GR genes is a prerequisite for rapid reduction of H3K9ac, whereas binding of TRs is required to establish a hypo-acetylated, strongly repressed state.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - David Shore
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| |
Collapse
|
2
|
Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biomolecules 2023; 13:biom13020288. [PMID: 36830657 PMCID: PMC9952952 DOI: 10.3390/biom13020288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Restricting ribosome biosynthesis and assembly in response to nutrient starvation is a universal phenomenon that enables cells to survive with limited intracellular resources. When cells experience starvation, nutrient signaling pathways, such as the target of rapamycin (TOR) and protein kinase A (PKA), become quiescent, leading to several transcription factors and histone modification enzymes cooperatively and rapidly repressing ribosomal genes. Fission yeast has factors for heterochromatin formation similar to mammalian cells, such as H3K9 methyltransferase and HP1 protein, which are absent in budding yeast. However, limited studies on heterochromatinization in ribosomal genes have been conducted on fission yeast. Herein, we shed light on and compare the regulatory mechanisms of ribosomal gene transcription in two species with the latest insights.
Collapse
|
3
|
Genomic Considerations for the Modification of Saccharomyces cerevisiae for Biofuel and Metabolite Biosynthesis. Microorganisms 2020; 8:microorganisms8030321. [PMID: 32110897 PMCID: PMC7143498 DOI: 10.3390/microorganisms8030321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
The growing global population and developing world has put a strain on non-renewable natural resources, such as fuels. The shift to renewable sources will, thus, help meet demands, often through the modification of existing biosynthetic pathways or the introduction of novel pathways into non-native species. There are several useful biosynthetic pathways endogenous to organisms that are not conducive for the scale-up necessary for industrial use. The use of genetic and synthetic biological approaches to engineer these pathways in non-native organisms can help ameliorate these challenges. The budding yeast Saccharomyces cerevisiae offers several advantages for genetic engineering for this purpose due to its widespread use as a model system studied by many researchers. The focus of this review is to present a primer on understanding genomic considerations prior to genetic modification and manipulation of S. cerevisiae. The choice of a site for genetic manipulation can have broad implications on transcription throughout a region and this review will present the current understanding of position effects on transcription.
Collapse
|
4
|
Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O, Rodríguez-Gil A, Gaspar SG, Villalobo E, Dosil M, de la Cruz J. Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1561-1575. [PMID: 31413149 PMCID: PMC6795146 DOI: 10.1261/rna.072116.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.
Collapse
Affiliation(s)
- Ana Ramos-Sáenz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Daniel González-Álvarez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| |
Collapse
|
5
|
Kunkel J, Luo X, Capaldi AP. Integrated TORC1 and PKA signaling control the temporal activation of glucose-induced gene expression in yeast. Nat Commun 2019; 10:3558. [PMID: 31395866 PMCID: PMC6687784 DOI: 10.1038/s41467-019-11540-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2019] [Indexed: 01/04/2023] Open
Abstract
The growth rate of a yeast cell is controlled by the target of rapamycin kinase complex I (TORC1) and cAMP-dependent protein kinase (PKA) pathways. To determine how TORC1 and PKA cooperate to regulate cell growth, we performed temporal analysis of gene expression in yeast switched from a non-fermentable substrate, to glucose, in the presence and absence of TORC1 and PKA inhibitors. Quantitative analysis of these data reveals that PKA drives the expression of key cell growth genes during transitions into, and out of, the rapid growth state in glucose, while TORC1 is important for the steady-state expression of the same genes. This circuit design may enable yeast to set an exact growth rate based on the abundance of internal metabolites such as amino acids, via TORC1, but also adapt rapidly to changes in external nutrients, such as glucose, via PKA.
Collapse
Affiliation(s)
- Joseph Kunkel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721-0206, USA
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721-0206, USA
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721-0206, USA.
| |
Collapse
|
6
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
7
|
Functionally Related Genes Cluster into Genomic Regions That Coordinate Transcription at a Distance in Saccharomyces cerevisiae. mSphere 2019; 4:4/2/e00063-19. [PMID: 30867326 PMCID: PMC6416364 DOI: 10.1128/msphere.00063-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The two-dimensional, physical positioning of genes along a chromosome can impact proper transcriptional regulation throughout a genomic region. The transcription of neighboring genes is correlated in a genome-wide manner, which is a characteristic of eukaryotes. Many coregulated gene families can be found clustered with another member of the same set—which can result in adjacent gene coregulation of the pair. Due to the myriad gene families that exhibit a nonrandom genomic distribution, there are likely multiple mechanisms working in concert to properly regulate transcriptional coordination of functionally clustered genes. In this study, we utilized budding yeast in an attempt to elucidate mechanisms that underlie this coregulation: testing and empirically validating the enhancer-promoter hypothesis in this species and reporting that functionally related genes cluster to genomic regions that are more conducive to transcriptional regulation at a distance. These clusters rely, in part, on chromatin maintenance and remodelers to maintain proper transcriptional coordination. Our work provides insight into the mechanisms underlying adjacent gene coregulation. Balancing gene expression is a fundamental challenge of all cell types. To properly regulate transcription on a genome-wide level, there are myriad mechanisms employed by the cell. One layer to this regulation is through spatial positioning, with particular chromosomal loci exerting an influence on transcription throughout a region. Many coregulated gene families utilize spatial positioning to coordinate transcription, with functionally related genes clustering together which can allow coordinated expression via adjacent gene coregulation. The mechanisms underlying this process have not been elucidated, though there are many coregulated gene families that exhibit this genomic distribution. In the present study, we tested for a role for the enhancer-promoter (EP) hypothesis, which demonstrates that regulatory elements can exert transcriptional effects over a broad distance, in coordinating transcriptional coregulation using budding yeast, Saccharomyces cerevisiae. We empirically validated the EP model, finding that the genomic distance a promoter can affect varies by locus, which can profoundly affect levels of transcription, phenotype, and the extent of transcriptional disruption throughout a genomic region. Using the nitrogen metabolism, ribosomal protein, toxin response, and heat shock gene families as our test case, we report functionally clustered genes localize to genomic loci that are more conducive to transcriptional regulation at a distance compared to the unpaired members of the same families. Furthermore, we report that the coregulation of functional clusters is dependent, in part, on chromatin maintenance and remodeling, providing one mechanism underlying adjacent gene coregulation. IMPORTANCE The two-dimensional, physical positioning of genes along a chromosome can impact proper transcriptional regulation throughout a genomic region. The transcription of neighboring genes is correlated in a genome-wide manner, which is a characteristic of eukaryotes. Many coregulated gene families can be found clustered with another member of the same set—which can result in adjacent gene coregulation of the pair. Due to the myriad gene families that exhibit a nonrandom genomic distribution, there are likely multiple mechanisms working in concert to properly regulate transcriptional coordination of functionally clustered genes. In this study, we utilized budding yeast in an attempt to elucidate mechanisms that underlie this coregulation: testing and empirically validating the enhancer-promoter hypothesis in this species and reporting that functionally related genes cluster to genomic regions that are more conducive to transcriptional regulation at a distance. These clusters rely, in part, on chromatin maintenance and remodelers to maintain proper transcriptional coordination. Our work provides insight into the mechanisms underlying adjacent gene coregulation.
Collapse
|
8
|
Bruzzone MJ, Grünberg S, Kubik S, Zentner GE, Shore D. Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Genes Dev 2018; 32:1252-1265. [PMID: 30108132 PMCID: PMC6120713 DOI: 10.1101/gad.312173.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Here, Bruzzone et al. explore the relative contributions of the transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. They show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect, and their findings suggest that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels. The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.
Collapse
Affiliation(s)
- Maria Jessica Bruzzone
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| | - Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Slawomir Kubik
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
9
|
de la Cruz J, Gómez-Herreros F, Rodríguez-Galán O, Begley V, de la Cruz Muñoz-Centeno M, Chávez S. Feedback regulation of ribosome assembly. Curr Genet 2017; 64:393-404. [PMID: 29022131 DOI: 10.1007/s00294-017-0764-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
Ribosome biogenesis is a crucial process for growth and constitutes the major consumer of cellular resources. This pathway is subjected to very stringent regulation to ensure correct ribosome manufacture with a wide variety of environmental and metabolic changes, and intracellular insults. Here we summarise our current knowledge on the regulation of ribosome biogenesis in Saccharomyces cerevisiae by particularly focusing on the feedback mechanisms that maintain ribosome homeostasis. Ribosome biogenesis in yeast is controlled mainly at the level of the production of both pre-rRNAs and ribosomal proteins through the transcriptional and post-transcriptional control of the TORC1 and protein kinase A signalling pathways. Pre-rRNA processing can occur before or after the 35S pre-rRNA transcript is completed; the switch between these two alternatives is regulated by growth conditions. The expression of both ribosomal proteins and the large family of transacting factors involved in ribosome biogenesis is co-regulated. Recently, it has been shown that the synthesis of rRNA and ribosomal proteins, but not of trans-factors, is coupled. Thus the so-called CURI complex sequesters specific transcription factor Ifh1 to repress ribosomal protein genes when rRNA transcription is impaired. We recently found that an analogue system should operate to control the expression of transacting factor genes in response to actual ribosome assembly performance. Regulation of ribosome biogenesis manages situations of imbalanced ribosome production or misassembled ribosomal precursors and subunits, which have been closely linked to distinct human diseases.
Collapse
Affiliation(s)
- Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| | - Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Victoria Begley
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - María de la Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC, Universidad de Sevilla, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
10
|
Madru C, Leulliot N, Lebaron S. [Ribosomes synthesis at the heart of cell proliferation]. Med Sci (Paris) 2017; 33:613-619. [PMID: 28990563 DOI: 10.1051/medsci/20173306018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ribosomes are central to gene expression. Their assembly is a complex and an energy consuming process. Many controls exist to make it possible a fine-tuning of ribosome production adapted to cell needs. In this review, we describe recent advances in the characterisation of the links occurring between ribosome synthesis and cell proliferation control. Defects in ribosome biogenesis directly impede cellular cycle and slow-down proliferation. Among the different factors involved, we could define the 5S particle, a ribosome sub-complex, as a key-regulator of p53 and other tumour suppressors such as pRB. This cross-talk between ribosome neogenesis defects and proliferation and cellular cycle also involves other cell cycle controls such as p14ARF, SRSF1 or PRAS40 pathways. These data place ribosome synthesis at the heart of cell proliferation and offer new therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Clément Madru
- Laboratoire de Cristallographie et RMN Biologiques, UMR, CNRS 8015, Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, 75006 Paris, France
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR, CNRS 8015, Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, 75006 Paris, France
| | - Simon Lebaron
- Laboratoire de Cristallographie et RMN Biologiques, UMR, CNRS 8015, Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, 75006 Paris, France - Institut national de la santé et de la recherche médicale, Paris, France
| |
Collapse
|
11
|
Bosio MC, Fermi B, Spagnoli G, Levati E, Rubbi L, Ferrari R, Pellegrini M, Dieci G. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast. Nucleic Acids Res 2017; 45:4493-4506. [PMID: 28158860 PMCID: PMC5416754 DOI: 10.1093/nar/gkx058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 01/25/2017] [Indexed: 01/21/2023] Open
Abstract
Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Beatrice Fermi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Elisabetta Levati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Ludmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Ferrari
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
12
|
Bosio MC, Fermi B, Dieci G. Transcriptional control of yeast ribosome biogenesis: A multifaceted role for general regulatory factors. Transcription 2017; 8:254-260. [PMID: 28448767 DOI: 10.1080/21541264.2017.1317378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Saccharomyces cerevisiae, a group of more than 200 co-regulated genes (Ribi genes) is involved in ribosome biogenesis. This regulon has recently been shown to rely on a small set of transcriptional regulators (mainly Abf1, but also Reb1, Tbf1 and Rap1) previously referred to as general regulatory factors (GRFs) because of their widespread binding and action at many promoters and other specialized genomic regions. Intriguingly, Abf1 binding to Ribi genes is differentially modulated in response to distinct nutrition signaling pathways. Such a dynamic promoter association has the potential to orchestrate both activation and repression of Ribi genes in synergy with neighboring regulatory sites and through the functional interplay of histone acetyltransferases and deacetylases.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| | - Beatrice Fermi
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| | - Giorgio Dieci
- a Department of Chemistry , Life Sciences and Environmental Sustainability, University of Parma , Parma , Italy
| |
Collapse
|
13
|
Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:6113-26. [PMID: 27016735 PMCID: PMC5291244 DOI: 10.1093/nar/gkw194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.
Collapse
Affiliation(s)
- Beatrice Fermi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Maria Cristina Bosio
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
14
|
Abu-Jamous B, Fa R, Roberts DJ, Nandi AK. Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis. BMC Bioinformatics 2014; 15:322. [PMID: 25267386 PMCID: PMC4262117 DOI: 10.1186/1471-2105-15-322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The scale and complexity of genomic data lend themselves to analysis using sophisticated mathematical techniques to yield information that can generate new hypotheses and so guide further experimental investigations. An ensemble clustering method has the ability to perform consensus clustering over the same set of genes from different microarray datasets by combining results from different clustering methods into a single consensus result. RESULTS In this paper we have performed comprehensive analysis of forty yeast microarray datasets. One recently described Bi-CoPaM method can analyse expressions of the same set of genes from various microarray datasets while using different clustering methods, and then combine these results into a single consensus result whose clusters' tightness is tunable from tight, specific clusters to wide, overlapping clusters. This has been adopted in a novel way over genome-wide data from forty yeast microarray datasets to discover two clusters of genes that are consistently co-expressed over all of these datasets from different biological contexts and various experimental conditions. Most strikingly, average expression profiles of those clusters are consistently negatively correlated in all of the forty datasets while neither profile leads or lags the other. CONCLUSIONS The first cluster is enriched with ribosomal biogenesis genes. The biological processes of most of the genes in the second cluster are either unknown or apparently unrelated although they show high connectivity in protein-protein and genetic interaction networks. Therefore, it is possible that this mostly uncharacterised cluster and the ribosomal biogenesis cluster are transcriptionally oppositely regulated by some common machinery. Moreover, we anticipate that the genes included in this previously unknown cluster participate in generic, in contrast to specific, stress response processes. These novel findings illuminate coordinated gene expression in yeast and suggest several hypotheses for future experimental functional work. Additionally, we have demonstrated the usefulness of the Bi-CoPaM-based approach, which may be helpful for the analysis of other groups of (microarray) datasets from other species and systems for the exploration of global genetic co-expression.
Collapse
Affiliation(s)
- Basel Abu-Jamous
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
| | - Rui Fa
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
| | - David J Roberts
- />National Health Service Blood and Transplant, Oxford, UK
- />Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Asoke K Nandi
- />Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH UK
- />Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
Dissecting the cis and trans elements that regulate adjacent-gene coregulation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2014; 13:738-48. [PMID: 24706020 DOI: 10.1128/ec.00317-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The relative positions that genes occupy on their respective chromosomes can play a critical role in determining how they are regulated at the transcriptional level. For example, a significant fraction of the genes from a variety of coregulated gene sets, including the ribosomal protein (RP) and the rRNA and ribosome biogenesis (RRB) regulons, exist as immediate, adjacent gene pairs. These gene pairs occur in all possible divergent, tandem, and convergent orientations. Adjacent-gene pairing in these regulons is associated with a tighter transcriptional coregulation than is observed for nonpaired genes of the same regulons. In order to define the cis and trans factors that regulate adjacent-gene coregulation (AGC), we conducted a mutational analysis of the convergently oriented RRB gene pair MPP10-YJR003C. We observed that coupled corepression of the gene pair under heat shock was abrogated when the two genes were separated by an actively expressed RNA polymerase (Pol) II transcription unit (the LEU2 gene) but not when the inserted LEU2 gene was repressed. In contrast, the insertion of an RNA Pol III-transcribed tRNA (Thr) gene did not disrupt the coregulated repression of MPP10 and YJR003C. A targeted screen of mutants defective in regulating chromosome architecture revealed that the Spt20, Snf2, and Chd1 proteins were required for coupling the repression of YJR003C to that of MPP10. Nucleosome occupancy assays performed across the MPP10 and YJR003C promoter regions revealed that the mechanism of corepression of the gene pair was not related to the repositioning of nucleosomes across the respective gene promoters.
Collapse
|
16
|
Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, Alon U, Milo R, Segal E. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol 2013; 9:701. [PMID: 24169404 PMCID: PMC3817408 DOI: 10.1038/msb.2013.59] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60-90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation-promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles.
Collapse
Affiliation(s)
- Leeat Keren
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ora Zackay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Barenholz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Dekel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vered Sasson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Aidelberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Danny Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Milo
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Sousounis K, Looso M, Maki N, Ivester CJ, Braun T, Tsonis PA. Transcriptome analysis of newt lens regeneration reveals distinct gradients in gene expression patterns. PLoS One 2013; 8:e61445. [PMID: 23613853 PMCID: PMC3628982 DOI: 10.1371/journal.pone.0061445] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/09/2013] [Indexed: 12/11/2022] Open
Abstract
Regeneration of the lens in newts is quite a unique process. The lens is removed in its entirety and regeneration ensues from the pigment epithelial cells of the dorsal iris via transdifferentiation. The same type of cells from the ventral iris are not capable of regenerating a lens. It is, thus, expected that differences between dorsal and ventral iris during the process of regeneration might provide important clues pertaining to the mechanism of regeneration. In this paper, we employed next generation RNA-seq to determine gene expression patterns during lens regeneration in Notophthalmus viridescens. The expression of more than 38,000 transcripts was compared between dorsal and ventral iris. Although very few genes were found to be dorsal- or ventral-specific, certain groups of genes were up-regulated specifically in the dorsal iris. These genes are involved in cell cycle, gene regulation, cytoskeleton and immune response. In addition, the expression of six highly regulated genes, TBX5, FGF10, UNC5B, VAX2, NR2F5, and NTN1, was verified using qRT-PCR. These graded gene expression patterns provide insight into the mechanism of lens regeneration, the markers that are specific to dorsal or ventral iris, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| | - Mario Looso
- Department of Bioinformatics, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nobuyasu Maki
- Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| | - Clifford J. Ivester
- Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (TB); (PAT)
| | - Panagiotis A. Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
- * E-mail: (TB); (PAT)
| |
Collapse
|
18
|
Martyanov V, Gross RH. Computational discovery of transcriptional regulatory modules in fungal ribosome biogenesis genes reveals novel sequence and function patterns. PLoS One 2013; 8:e59851. [PMID: 23555806 PMCID: PMC3612091 DOI: 10.1371/journal.pone.0059851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/20/2013] [Indexed: 11/24/2022] Open
Abstract
Genes involved in ribosome biogenesis and assembly (RBA) are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules), we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.
Collapse
Affiliation(s)
- Viktor Martyanov
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert H. Gross
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
19
|
Glucose, nitrogen, and phosphate repletion in Saccharomyces cerevisiae: common transcriptional responses to different nutrient signals. G3-GENES GENOMES GENETICS 2012; 2:1003-17. [PMID: 22973537 PMCID: PMC3429914 DOI: 10.1534/g3.112.002808] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Saccharomyces cerevisiae are able to control growth in response to changes in nutrient availability. The limitation for single macronutrients, including nitrogen (N) and phosphate (P), produces stable arrest in G1/G0. Restoration of the limiting nutrient quickly restores growth. It has been shown that glucose (G) depletion/repletion very rapidly alters the levels of more than 2000 transcripts by at least 2-fold, a large portion of which are involved with either protein production in growth or stress responses in starvation. Although the signals generated by G, N, and P are thought to be quite distinct, we tested the hypothesis that depletion and repletion of any of these three nutrients would affect a common core set of genes as part of a generalized response to conditions that promote growth and quiescence. We found that the response to depletion of G, N, or P produced similar quiescent states with largely similar transcriptomes. As we predicted, repletion of each of the nutrients G, N, or P induced a large (501) common core set of genes and repressed a large (616) common gene set. Each nutrient also produced nutrient-specific transcript changes. The transcriptional responses to each of the three nutrients depended on cAMP and, to a lesser extent, the TOR pathway. All three nutrients stimulated cAMP production within minutes of repletion, and artificially increasing cAMP levels was sufficient to replicate much of the core transcriptional response. The recently identified transceptors Gap1, Mep1, Mep2, and Mep3, as well as Pho84, all played some role in the core transcriptional responses to N or P. As expected, we found some evidence of cross talk between nutrient signals, yet each nutrient sends distinct signals.
Collapse
|
20
|
Contribution of transcription factor binding site motif variants to condition-specific gene expression patterns in budding yeast. PLoS One 2012; 7:e32274. [PMID: 22384202 PMCID: PMC3285675 DOI: 10.1371/journal.pone.0032274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
It is now experimentally well known that variant sequences of a cis transcription factor binding site motif can contribute to differential regulation of genes. We characterize the relationship between motif variants and gene expression by analyzing expression microarray data and binding site predictions. To accomplish this, we statistically detect motif variants with effects that differ among environments. Such environmental specificity may be due to either affinity differences between variants or, more likely, differential interactions of TFs bound to these variants with cofactors, and with differential presence of cofactors across environments. We examine conservation of functional variants across four Saccharomyces species, and find that about a third of transcription factors have target genes that are differentially expressed in a condition-specific manner that is correlated with the nucleotide at variant motif positions. We find good correspondence between our results and some cases in the experimental literature (Reb1, Sum1, Mcm1, and Rap1). These results and growing consensus in the literature indicates that motif variants may often be functionally distinct, that this may be observed in genomic data, and that variants play an important role in condition-specific gene regulation.
Collapse
|
21
|
Erb I, van Nimwegen E. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters. PLoS One 2011; 6:e24279. [PMID: 21931670 PMCID: PMC3170328 DOI: 10.1371/journal.pone.0024279] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/09/2011] [Indexed: 12/26/2022] Open
Abstract
The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.
Collapse
Affiliation(s)
- Ionas Erb
- Bioinformatics and Genomics program, Center for Genomic Regulation and Pompeu Fabra University, Barcelona, Spain
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Milligan-Myhre KC, Rooney PJ, Knoll LJ. Examination of a virulence mutant uncovers the ribosome biogenesis regulatory protein of Toxoplasma gondii. J Parasitol 2011; 97:1173-7. [PMID: 21736491 DOI: 10.1645/ge-2741.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several insertional mutants identified in a screen for Toxoplasma gondii that were defective in establishing a chronic infection had a common site of plasmid insertion. This insertion site was determined to be 43 bp upstream of the transcription initiation site of a gene whose predicted product has homology to ribosome biogenesis regulatory protein Rrs1p, an essential protein required for ribosome biogenesis in Saccharomyces cerevisiae. Northern blot analysis of this locus, termed TgRRS1 , showed that in the C3 mutant, the full-length transcript is down-regulated and at least 1 new smaller transcript is present. Restoration of the intact predicted promoter and locus to TgRRS1 insertional mutant strain C3 did not restore brain cyst formation to the levels of the parent strain. Epitope-tagged TgRRS1 was found to localize to the parasite nucleolus, in an area corresponding to the granular component region. TgRRS1 can serve as a marker for the sub-nucleolar granular component region of T. gondii.
Collapse
|
23
|
Reduction in ribosomal protein synthesis is sufficient to explain major effects on ribosome production after short-term TOR inactivation in Saccharomyces cerevisiae. Mol Cell Biol 2010; 31:803-17. [PMID: 21149576 DOI: 10.1128/mcb.01227-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ribosome synthesis depends on nutrient availability, sensed by the target of rapamycin (TOR) signaling pathway in eukaryotes. TOR inactivation affects ribosome biogenesis at the level of rRNA gene transcription, expression of ribosomal proteins (r-proteins) and biogenesis factors, preribosome processing, and transport. Here, we demonstrate that upon TOR inactivation, levels of newly synthesized ribosomal subunits drop drastically before the integrity of the RNA polymerase I apparatus is severely impaired but in good correlation with a sharp decrease in r-protein production. Inhibition of translation by cycloheximide mimics the rRNA maturation defect observed immediately after TOR inactivation. Both cycloheximide addition and the depletion of individual r-proteins also reproduce TOR-dependent nucleolar entrapment of specific ribosomal precursor complexes. We suggest that shortage of newly synthesized r-proteins after short-term TOR inactivation is sufficient to explain most of the observed effects on ribosome production.
Collapse
|
24
|
Adjacent gene pairing plays a role in the coordinated expression of ribosome biogenesis genes MPP10 and YJR003C in Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 10:43-53. [PMID: 21115740 DOI: 10.1128/ec.00257-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rRNA and ribosome biogenesis (RRB) regulon from Saccharomyces cerevisiae contains some 200 genes, the expression of which is tightly regulated under changing cellular conditions. RRB gene promoters are enriched for the RRPE and PAC consensus motifs, and a significant fraction of RRB genes are found as adjacent gene pairs. A genetic analysis of the MPP10 promoter revealed that both the RRPE and PAC motifs are important for coordinated expression of MPP10 following heat shock, osmotic stress, and glucose replenishment. The association of the RRPE binding factor Stb3 with the MPP10 promoter was found to increase after glucose replenishment and to decrease following heat shock. Similarly, bulk histone H3 clearing and histone H4K12 acetylation levels at the MPP10 promoter were found to increase or decrease following glucose replenishment or heat shock, respectively. Interestingly, substitutions in the PAC and RRPE sequences at the MPP10 promoter were also found to impact the regulated expression of the adjacent RRB gene YJR003, whose promoter lies in the opposite orientation and some 3.8 kb away. Furthermore, the regulated expression of YJR003C could be disrupted by inserting a reporter cassette that increased its distance from MPP10. Given that a high incidence of gene pairing was also found within the ribosomal protein (RP) and RRB regulons across different yeast species, our results indicate that immediately adjacent positioning of genes can be functionally significant for their coregulated expression.
Collapse
|
25
|
Abstract
Several nucleolar proteins, such as ARF, ribosomal protein (RP) L5, L11, L23 and S7, have been shown to induce p53 activation by inhibiting MDM2 E3 ligase activity and consequently to trigger cell cycle arrest and/or apoptosis. Our recent study revealed another nucleolar protein called nucleostemin (NS), a nucleolar GTP binding protein, as a novel regulator of the p53-MDM2 feedback loop. However, unlike other known nucleolar regulators of this loop, NS surprisingly plays a dual role, as both up and downregulations of its levels could turn on p53 activity. Here, we try to offer some prospective views for this unusual phenomenon by reconciling previously and recently published studies in the field in hoping to better depict the role of NS in linking the p53 pathway with ribosomal biogenesis during cell growth and proliferation as well as to propose NS as another potential molecular target for anti-cancer drug development.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Simon Cancer Center, Indianapolis, Indiana, USA
| | | |
Collapse
|
26
|
Preti M, Ribeyre C, Pascali C, Bosio MC, Cortelazzi B, Rougemont J, Guarnera E, Naef F, Shore D, Dieci G. The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae. Mol Cell 2010; 38:614-20. [PMID: 20513435 DOI: 10.1016/j.molcel.2010.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 01/22/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Small nucleolar RNAs (snoRNAs) play a key role in ribosomal RNA biogenesis, yet factors controlling their expression are unknown. We found that the majority of Saccharomyces snoRNA promoters display an aRCCCTaa sequence motif at the upstream border of a TATA-containing nucleosome-free region. Genome-wide ChIP-seq analysis showed that these motifs are bound by Tbf1, a telomere-binding protein known to recognize mammalian-like T(2)AG(3) repeats at subtelomeric regions. Tbf1 has over 100 additional promoter targets, including several other genes involved in ribosome biogenesis and the TBF1 gene itself. Tbf1 is required for full snoRNA expression, yet it does not influence nucleosome positioning at snoRNA promoters. In contrast, Tbf1 contributes to nucleosome exclusion at non-snoRNA promoters, where it selectively colocalizes with the Tbf1-interacting zinc-finger proteins Vid22 and Ygr071c. Our data show that, besides the ribosomal protein gene regulator Rap1, a second telomere-binding protein also functions as a transcriptional regulator linked to yeast ribosome biogenesis.
Collapse
Affiliation(s)
- Milena Preti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Evolutionarily conserved function of RRP36 in early cleavages of the pre-rRNA and production of the 40S ribosomal subunit. Mol Cell Biol 2009; 30:1130-44. [PMID: 20038530 DOI: 10.1128/mcb.00999-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis in eukaryotes is a major cellular activity mobilizing the products of over 200 transcriptionally coregulated genes referred to as the rRNA and ribosome biosynthesis regulon. We investigated the function of an essential, uncharacterized gene of this regulon, renamed RRP36. We show that the Rrp36p protein is nucleolar and interacts with 90S and pre-40S preribosomal particles. Its depletion affects early cleavages of the 35S pre-rRNA and results in a rapid decrease in mature 18S rRNA levels. Rrp36p is a novel component of the 90S preribosome, the assembly of which has been suggested to result from the stepwise incorporation of several modules, including the tUTP/UTP-A, PWP2/UTP-B, and UTP-C subcomplexes. We show that Rrp36p depletion does not impair the incorporation of these subcomplexes and the U3 small nucleolar RNP into preribosomes. In contrast, depletion of components of the UTP-A or UTP-B modules, but not Rrp5p, prevents Rrp36p recruitment and reduces its accumulation levels. In parallel, we studied the human orthologue of Rrp36p in HeLa cells, and we show that the function of this protein in early cleavages of the pre-rRNA has been conserved through evolution in eukaryotes.
Collapse
|
28
|
Li N, Yuan L, Liu N, Shi D, Li X, Tang Z, Liu J, Sundaresan V, Yang WC. SLOW WALKER2, a NOC1/MAK21 homologue, is essential for coordinated cell cycle progression during female gametophyte development in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1486-97. [PMID: 19734265 PMCID: PMC2773048 DOI: 10.1104/pp.109.142414] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 08/30/2009] [Indexed: 05/19/2023]
Abstract
Morphogenesis requires the coordination of cell growth, division, and cell differentiation. Female gametogenesis in flowering plants, where a single haploid spore undergoes continuous growth and nuclear division without cytokinesis to form an eight-nucleate coenocytic embryo sac before cellularization, provides a good system to study the genetic control of such processes in multicellular organisms. Here, we report the characterization of an Arabidopsis (Arabidopsis thaliana) female gametophyte mutant, slow walker2 (swa2), in which the progression of the mitotic cycles and the synchrony of female gametophyte development were impaired, causing an arrest of female gametophytes at the two-, four-, or eight-nucleate stage. Delayed pollination test showed that a portion of the mutant ovules were able to develop into functional embryo sacs and could be fertilized. SWA2 encodes a nucleolar protein homologous to yeast NUCLEOLAR COMPLEX ASSOCIATED PROTEIN1 (NOC1)/MAINTENANCE OF KILLER21 that, together with NOC2, is involved in preribosome export from the nucleus to the cytoplasm. Similarly, SWA2 can physically interact with a putative Arabidopsis NOC2 homologue. SWA2 is expressed ubiquitously throughout the plant, at high levels in actively dividing tissues and gametophytes. Therefore, we conclude that SWA2 most likely plays a role in ribosome biogenesis that is essential for the coordinated mitotic progression of the female gametophyte.
Collapse
|
29
|
Carnemolla A, Fossale E, Agostoni E, Michelazzi S, Calligaris R, De Maso L, Del Sal G, MacDonald ME, Persichetti F. Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J Biol Chem 2009; 284:18167-73. [PMID: 19433866 PMCID: PMC2709382 DOI: 10.1074/jbc.m109.018325] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/07/2009] [Indexed: 11/06/2022] Open
Abstract
The induction of Rrs1 expression is one of the earliest events detected in a presymptomatic knock-in mouse model of Huntington disease (HD). Rrs1 up-regulation fulfills the HD criteria of dominance, striatal specificity, and polyglutamine dependence. Here we show that mammalian Rrs1 is localized both in the nucleolus as well as in the endoplasmic reticulum (ER) of neurons. This dual localization is shared with its newly identified molecular partner 3D3/lyric. We then show that both genes are induced by ER stress in neurons. Interestingly, we demonstrate that ER stress is an early event in a presymptomatic HD mouse model that persists throughout the life span of the rodent. We further show that ER stress also occurs in postmortem brains of HD patients.
Collapse
Affiliation(s)
- Alisia Carnemolla
- From the Sector of Neurobiology, International School for Advanced Studies, Via Beirut 2-4, 34151 Trieste, Italy
| | - Elisa Fossale
- the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Elena Agostoni
- From the Sector of Neurobiology, International School for Advanced Studies, Via Beirut 2-4, 34151 Trieste, Italy
| | - Silvia Michelazzi
- From the Sector of Neurobiology, International School for Advanced Studies, Via Beirut 2-4, 34151 Trieste, Italy
| | - Raffaella Calligaris
- From the Sector of Neurobiology, International School for Advanced Studies, Via Beirut 2-4, 34151 Trieste, Italy
| | - Luca De Maso
- From the Sector of Neurobiology, International School for Advanced Studies, Via Beirut 2-4, 34151 Trieste, Italy
| | - Giannino Del Sal
- the Laboratorio Nazionale CIB, Area Science Park Padriciano, 34149 Trieste, Italy, and
- the Dipartimento di Scienze della Vita, Universitá degli Studi di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Marcy E. MacDonald
- the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Francesca Persichetti
- From the Sector of Neurobiology, International School for Advanced Studies, Via Beirut 2-4, 34151 Trieste, Italy
| |
Collapse
|
30
|
Saccharomyces cerevisiae Rbg1 protein and its binding partner Gir2 interact on Polyribosomes with Gcn1. EUKARYOTIC CELL 2009; 8:1061-71. [PMID: 19448108 DOI: 10.1128/ec.00356-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rbg1 is a previously uncharacterized protein of Saccharomyces cerevisiae belonging to the Obg/CgtA subfamily of GTP-binding proteins whose members are involved in ribosome function in both prokaryotes and eukaryotes. We show here that Rbg1 specifically associates with translating ribosomes. In addition, in this study proteins were identified that interact with Rbg1 by yeast two-hybrid screening and include Tma46, Ygr250c, Yap1, and Gir2. Gir2 contains a GI (Gcn2 and Impact) domain similar to that of Gcn2, an essential factor of the general amino acid control pathway required for overcoming amino acid shortage. Interestingly, we found that Gir2, like Gcn2, interacts with Gcn1 through its GI domain, and overexpression of Gir2, under conditions mimicking amino acid starvation, resulted in inhibition of growth that could be reversed by Gcn2 co-overexpression. Moreover, we found that Gir2 also cofractionated with polyribosomes, and this fractionation pattern was partially dependent on the presence of Gcn1. Based on these findings, we conclude that Rbg1 and its interacting partner Gir2 associate with ribosomes, and their possible biological roles are discussed.
Collapse
|
31
|
Rajaram S. A novel meta-analysis method exploiting consistency of high-throughput experiments. ACTA ACUST UNITED AC 2009; 25:636-42. [PMID: 19176547 DOI: 10.1093/bioinformatics/btp007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Large-scale biological experiments provide snapshots into the huge number of processes running in parallel within the organism. These processes depend on a large number of (hidden) (epi)genetic, social, environmental and other factors that are out of experimentalists' control. This makes it extremely difficult to identify the dominant processes and the elements involved in them based on a single experiment. It is therefore desirable to use multiple sets of experiments targeting the same phenomena while differing in some experimental parameters (hidden or controllable). Although such datasets are becoming increasingly common, their analysis is complicated by the fact that the various biological elements could be influenced by different sets of factors. RESULTS The central hypothesis of this article is that biologically related elements and processes are affected by changes in similar ways while unrelated ones are affected differently. Thus, the relations between related elements are more consistent across experiments. The method outlined here looks for groups of elements with robust intra-group relationships in the expectation that they are related. The major groups of elements may be identified in this way. The strengths of relationships per se are not valued, just their consistency. This represents a completely novel and unutilized source of information. In the analysis of time course microarray experiments, I found cell cycle- and ribosome-related genes to be the major groups. Despite not looking for these groups in particular, the identification of these genes rivals that of methods designed specifically for this purpose. AVAILABILITY A C++ implementation is available at http://www.rinst.org/ICS/ICS_Programs.tar.gz.
Collapse
Affiliation(s)
- Satwik Rajaram
- Department of Physics,1110 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA.
| |
Collapse
|
32
|
A mutant plasma membrane protein is stabilized upon loss of Yvh1, a novel ribosome assembly factor. Genetics 2008; 181:907-15. [PMID: 19114459 DOI: 10.1534/genetics.108.100099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pma1-10 is a mutant plasma membrane ATPase defective at the restrictive temperature in stability at the cell surface. At 37 degrees, Pma1-10 is ubiquitinated and internalized from the plasma membrane for degradation in the vacuole. YVH1, encoding a tyrosine phosphatase, is a mutant suppressor of pma1-10; in the absence of Yvh1, Pma1-10 remains stable at the plasma membrane, thereby permitting cells to grow. The RING finger domain of Yvh1, but not its phosphatase domain, is required for removal of mutant Pma1-10 from the plasma membrane. Yvh1 is a novel ribosome assembly factor: in yvh1Delta cells, free 60S and 80S ribosomal subunits are decreased, free 40S subunits are increased, and half-mer polysomes are accumulated. Pma1-10 is also stabilized by deletion of 60S ribosomal proteins Rpl19a and Rpl35a. We propose that changes in ribosome biogenesis caused by loss of Yvh1 or specific ribosomal proteins have effects on the plasma membrane, perhaps by producing specific translational changes.
Collapse
|
33
|
Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJJ. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 2008; 8:35-52. [PMID: 18215224 DOI: 10.1111/j.1567-1364.2007.00338.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase.
Collapse
Affiliation(s)
- Virginia D Marks
- Wine Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gruber-Olipitz M, Ströbel T, Chen WQ, Grotzer MA, Quehenberger F, Slavc I, Lubec G. Synthesis, chaperoning, and metabolism of proteins are regulated by NT-3/TrkC signaling in the medulloblastoma cell line DAOY. J Proteome Res 2008; 7:1932-44. [PMID: 18336001 DOI: 10.1021/pr700724a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human medulloblastoma cell line DAOY was transfected with Tropomyosin receptor kinase (TrkC), a marker for good prognostic outcome. Following TrkC-activation by its ligand neurotrophin-3, protein extracts from DAOY cells were run on 2DE with subsequent MALDI-TOF-TOF analysis and quantification in order to detect downstream effectors. Protein levels of translational, splicing, processing, chaperone, protein handling, and metabolism machineries were shown to depend on neurotrophin-3-induced TrkC activation probably representing pharmacological targets.
Collapse
|
35
|
Cipollina C, van den Brink J, Daran-Lapujade P, Pronk JT, Vai M, de Winde JH. Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology (Reading) 2008; 154:337-346. [PMID: 18174152 DOI: 10.1099/mic.0.2007/011767-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chiara Cipollina
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P.za della Scienza 2, 20126 Milano, Italy
| | - Joost van den Brink
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P.za della Scienza 2, 20126 Milano, Italy
| | - Johannes H. de Winde
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
36
|
Liko D, Slattery MG, Heideman W. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae. J Biol Chem 2007; 282:26623-8. [PMID: 17616518 DOI: 10.1074/jbc.m704762200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer of quiescent Saccharomyces cerevisiae cells to fresh medium rapidly induces hundreds of genes needed for growth. A large subset of these genes is regulated via a DNA sequence motif known as the ribosomal RNA processing element (RRPE). However, no RRPE-binding proteins have been identified. We screened a panel of 6144 glutathione S-transferase-open reading frame fusions for RRPE-binding proteins and identified Stb3 as a specific RRPE-binding protein, both in vitro and in vivo. Chromatin immunoprecipitation experiments showed that glucose increases Stb3 binding to RRPE-containing promoters. Microarray experiments demonstrated that the loss of Stb3 inhibits the transcriptional response to fresh glucose, especially for genes with RRPE motifs. However, these experiments also showed that not all genes containing RRPEs were dependent on Stb3 for expression. Overall our data support a model in which Stb3 plays an important but not exclusive role in the transcriptional response to growth conditions.
Collapse
Affiliation(s)
- Dritan Liko
- Department of Biomolecular Chemistry, School of Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
37
|
Mendes-Ferreira A, del Olmo M, García-Martínez J, Jiménez-Martí E, Mendes-Faia A, Pérez-Ortín JE, Leão C. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 2007; 73:3049-60. [PMID: 17337556 PMCID: PMC1892875 DOI: 10.1128/aem.02754-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were observed when the early time points of the N-limiting and control fermentations were compared. Despite the high levels of glucose present in the media, the early responses of yeast cells to low nitrogen were characterized by the induction of genes involved in oxidative glucose metabolism, including a significant number of mitochondrial associated genes resembling the yeast cell response to glucose starvation. As the N-limiting fermentation progressed, a general downregulation of genes associated with catabolism was observed. Surprisingly, genes encoding ribosomal proteins and involved in ribosome biogenesis showed a slight increase during N starvation; besides, genes that comprise the RiBi regulon behaved distinctively under the different experimental conditions. Here, for the first time, the global response of nitrogen-depleted cells to nitrogen addition under enological conditions is described. An important gene expression reprogramming occurred after nitrogen addition; this reprogramming affected genes involved in glycolysis, thiamine metabolism, and energy pathways, which enabled the yeast strain to overcome the previous nitrogen starvation stress and restart alcoholic fermentation.
Collapse
Affiliation(s)
- A Mendes-Ferreira
- Centro de Genética e Biotecnologia-IBB, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | | | | | | | | | | | | |
Collapse
|
38
|
Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 2007; 27:297-311. [PMID: 17074814 PMCID: PMC1800639 DOI: 10.1128/mcb.01558-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/06/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UAS(RAP1) enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UAS(RAP1) enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.
Collapse
Affiliation(s)
- Krassimira A Garbett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
39
|
Guertin DA, Guntur KVP, Bell GW, Thoreen CC, Sabatini DM. Functional genomics identifies TOR-regulated genes that control growth and division. Curr Biol 2006; 16:958-70. [PMID: 16713952 DOI: 10.1016/j.cub.2006.03.084] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/09/2006] [Accepted: 03/22/2006] [Indexed: 01/08/2023]
Abstract
BACKGROUND The TOR (target of rapamycin) ser/thr protein kinase is the central component of a eukaryotic signaling pathway that regulates growth and is the direct target of the clinically useful drug rapamycin. Recent efforts have identified at least two multiprotein complexes that contain TOR, but little is known in higher eukaryotes about the genes downstream of TOR that control growth. RESULTS By combining the use of a small molecule inhibitor (rapamycin), transcriptional profiling, and RNA interference in Drosophila tissue culture cells, we identified genes whose expression responds to Drosophila TOR (dTOR) inhibition and that regulate cell size. Several of the dTOR-regulated genes that function in cell size control have additional roles in cell division. Most of these genes are conserved in mammals and several are linked to human disease. This set of genes is highly enriched for regulators of ribosome biogenesis, which emphasizes the importance of TOR-dependent transcription in building the protein synthesis machinery in higher eukaryotes. In addition, we identify two dTOR-regulated genes, CG3071 and CG6677, whose human orthologs, SAW and ASH2L, are also under TOR-dependent transcriptional control and encode proteins with conserved functional roles in growth. CONCLUSIONS We conclude that combining RNA interference with genomic analysis approaches, such as transcriptional profiling, is an effective way to identify genes functioning in a particular biological process. Moreover, this strategy, if applied in model systems with simpler genomes, can identify genes with conserved functions in mammals.
Collapse
Affiliation(s)
- David A Guertin
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
40
|
Rempola B, Karkusiewicz I, Piekarska I, Rytka J. Fcf1p and Fcf2p are novel nucleolar Saccharomyces cerevisiae proteins involved in pre-rRNA processing. Biochem Biophys Res Commun 2006; 346:546-54. [PMID: 16762320 DOI: 10.1016/j.bbrc.2006.05.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 11/26/2022]
Abstract
The uncharacterized Saccharomyces cerevisiae proteins Fcf1 and Fcf2, encoded by the ORFs YDR339c and YLR051c, respectively, were identified in a tandem affinity purification experiment of the known 40S factor Faf1p. Most of the proteins associated with TAP-Faf1p are trans-acting factors involved in pre-rRNA processing and 40S subunit biogenesis, in agreement with the previously observed role of Faf1p in 18S rRNA synthesis. Fcf1p and Fcf2p are both essential and localize to the nucleolus. Depletion of Fcf1p and Fcf2p leads to a decrease in synthesis of the 18S rRNA, resulting in a deficit in 40S ribosomal subunits. Northern analysis indicates inefficient processing of pre-rRNA at the A(0), A(1), and A(2) cleavage sites.
Collapse
Affiliation(s)
- Bozenna Rempola
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw.
| | | | | | | |
Collapse
|
41
|
Wade CH, Umbarger MA, McAlear MA. The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast 2006; 23:293-306. [PMID: 16544271 DOI: 10.1002/yea.1353] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ribosome biogenesis pathway constitutes one of the major metabolic obligations for a dividing yeast cell and it depends upon the activity of hundreds of gene products to produce the necessary rRNA and ribosomal protein components. Previously, we reported that a set of 65 S. cerevisiae genes that function in the rRNA biosynthesis pathway are transcriptionally co-regulated as cells pass through a variety of physiological transitions. By analysing multiple microarray-based transcriptional datasets, we have extended that study and now suggest that the ribosomal and rRNA biosynthesis regulon contains over 200 genes. This regulon is distinct from the set of ribosomal protein genes, and the promoters of the expanded RRB gene set are highly enriched for the PAC and RRPE motifs. Since a similar pattern of organization and gene regulation can be recognized in C. albicans, the RRB regulon appears to be a conserved, extensive, and metabolically important group of genes.
Collapse
Affiliation(s)
- Christopher H Wade
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|
42
|
Chen JCY, Powers T. Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae. Curr Genet 2006; 49:281-93. [PMID: 16397762 DOI: 10.1007/s00294-005-0055-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
The target of rapamycin (TOR) signaling pathway is an essential regulator of cell growth in eukaryotic cells. In Saccharomyces cerevisiae, TOR controls the expression of many genes involved in a wide array of distinct nutrient-responsive metabolic pathways. By exploring the TOR pathway under different growth conditions, we have identified novel TOR-regulated genes, including genes required for branched-chain amino acid biosynthesis as well as lysine biosynthesis (LYS genes). We show that TOR-dependent control of LYS gene expression occurs independently from previously identified LYS gene regulators and is instead coupled to cAMP-regulated protein kinase A (PKA). Additional genome-wide expression analyses reveal that TOR and PKA coregulate LYS gene expression in a pattern that is remarkably similar to genes within the ribosomal protein and "Ribi" regulon genes required for ribosome biogenesis. Moreover, this pattern of coregulation is distinct from other clusters of TOR/PKA coregulated genes, which includes genes involved in fermentation as well as aerobic respiration, suggesting that control of gene expression by TOR and PKA involves multiple modes of crosstalk. Our results underscore how multiple signaling pathways, general growth conditions, as well as the availability of specific nutrients contribute to the maintenance of appropriate patterns of gene activity in yeast.
Collapse
Affiliation(s)
- Jenny C-Y Chen
- Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
43
|
Gardocki ME, Jani N, Lopes JM. Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:89-100. [PMID: 15967713 DOI: 10.1016/j.bbalip.2005.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/14/2005] [Accepted: 05/19/2005] [Indexed: 12/22/2022]
Abstract
Phosphatidylinositol (PI) is a ubiquitous membrane lipid in eukaryotes. It is becoming increasingly obvious that PI and its metabolites play a myriad of very diverse roles in eukaryotic cells. The Saccharomyces cerevisiae PIS1 gene is essential and encodes PI synthase, which is required for the synthesis of PI. Recently, PIS1 expression was found to be regulated in response to carbon source and oxygen availability. It is particularly significant that the promoter elements required for these responses are conserved evolutionarily throughout the Saccharomyces genus. In addition, several genome-wide strategies coupled with more traditional screens suggest that several other factors regulate PIS1 expression. The impact of regulating PIS1 expression on PI synthesis will be discussed along with the possible role(s) that this may have on diseases such as cancer.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit MI 48202, USA
| | | | | |
Collapse
|
44
|
Beggs JD, Tollervey D. Crosstalk between RNA metabolic pathways: an RNOMICS approach. Nat Rev Mol Cell Biol 2005; 6:423-9. [PMID: 15956981 DOI: 10.1038/nrm1648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eukaryotic cells contain many different RNA species. Nuclear pre-mRNAs and cytoplasmic mRNAs carry genomic information to the protein synthesis machinery, whereas many stable RNA species have important functional roles. The mature, functional forms of these RNA species are generated by post-transcriptional processing, and evidence has been accumulating that there are functional links between the various processing pathways. This indicates that there are regulatory networks that coordinate different stages of RNA metabolism. This article describes the aims and results, to date, of the European RNOMICS project as an example of an integrated approach to investigate these links.
Collapse
Affiliation(s)
- Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
45
|
Abstract
A large number of ribosome synthesis factors have been identified using proteomic analyses in yeast. The patterns of RNA and protein co-precipitation suggest that ribosome synthesis does not proceed via a linear progression of successive steps. Recent analyses have identified several interactions between factors clearly implicated in ribosome synthesis and specific steps in the cell division cycle. The intersections between these pathways were not anticipated, but potential explanations for their existence can be advanced.
Collapse
Affiliation(s)
- Christophe Dez
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
46
|
Ionescu CN, Origanti S, McAlear MA. The yeast rRNA biosynthesis factor Ebp2p is also required for efficient nuclear division. Yeast 2005; 21:1219-32. [PMID: 15515129 DOI: 10.1002/yea.1177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Molecular genetic analysis of the yeast Ebp2 protein has revealed that it is an essential, nucleolar protein that functions in the rRNA biosynthesis pathway. Temperature-sensitive ebp2-1 mutants are defective in the processing of the 27 SA precursor rRNA, and the point substitutions that disrupt this activity cluster towards the central, more highly conserved region of the Ebp2 protein. We report here that other ebp2 mutants exhibit deficiencies associated with defects in chromosome segregation. Yeast cells bearing a 50 amino acid C-terminal truncation allele (ebp2 delta C50) display a slow-growth phenotype and exhibit an increased percentage of cells with the nucleus positioned at the bud neck. The ebp2-1 and ebp2 delta C50 alleles genetically complement each other, and ebp2 delta C50 mutants exhibit nuclear division defects that are distinct from the rRNA biosynthesis-related phenotypes of ebp2-1 mutants. Cytological and FACS analysis of the ebp2 delta C50 deletion mutants indicate that the chromosome segregation related activities of the Ebp2 protein are monitored by Mad2p, a mitotic checkpoint protein. The finding that yeast Ebp2p functions in nuclear division is consistent with the growing body of evidence that supports the role that human EBP2 plays in chromosome segregation.
Collapse
Affiliation(s)
- Costin N Ionescu
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459-0175, USA
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Dipayan Rudra
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
48
|
Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 2004; 18:2491-505. [PMID: 15466158 PMCID: PMC529537 DOI: 10.1101/gad.1228804] [Citation(s) in RCA: 487] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell-size homeostasis entails a fundamental balance between growth and division. The budding yeast Saccharomyces cerevisiae establishes this balance by enforcing growth to a critical cell size prior to cell cycle commitment (Start) in late G1 phase. Nutrients modulate the critical size threshold, such that cells are large in rich medium and small in poor medium. Here, we show that two potent negative regulators of Start, Sfp1 and Sch9, are activators of the ribosomal protein (RP) and ribosome biogenesis (Ribi) regulons, the transcriptional programs that dictate ribosome synthesis rate in accord with environmental and intracellular conditions. Sfp1 and Sch9 are required for carbon-source modulation of cell size and are regulated at the level of nuclear localization and abundance, respectively. Sfp1 nuclear concentration responds rapidly to nutrient and stress conditions and is regulated by the Ras/PKA and TOR signaling pathways. In turn, Sfp1 influences the nuclear localization of Fhl1 and Ifh1, which bind to RP gene promoters. Starvation or the absence of Sfp1 causes Fhl1 and Ifh1 to localize to nucleolar regions, concomitant with reduced RP gene transcription. These findings suggest that nutrient signals set the critical cell-size threshold via Sfp1 and Sch9-mediated control of ribosome biosynthetic rates.
Collapse
Affiliation(s)
- Paul Jorgensen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
49
|
Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2004; 2:E259. [PMID: 15309048 PMCID: PMC490026 DOI: 10.1371/journal.pbio.0020259] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 05/14/2004] [Indexed: 11/19/2022] Open
Abstract
In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip) to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.
Collapse
Affiliation(s)
- Earl F Glynn
- 1Stowers Institute for Medical Research, Kansas CityMissouri, United States of America
| | - Paul C Megee
- 2Department of Biochemistry and Molecular Genetics, University of ColoradoDenver, Colorado, United States of America
| | - Hong-Guo Yu
- 3Howard Hughes Medical Institute, Department of EmbryologyCarnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Cathy Mistrot
- 3Howard Hughes Medical Institute, Department of EmbryologyCarnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Elcin Unal
- 3Howard Hughes Medical Institute, Department of EmbryologyCarnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Douglas E Koshland
- 3Howard Hughes Medical Institute, Department of EmbryologyCarnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Joseph L DeRisi
- 4Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Jennifer L Gerton
- 1Stowers Institute for Medical Research, Kansas CityMissouri, United States of America
| |
Collapse
|
50
|
Karkusiewicz I, Rempola B, Gromadka R, Grynberg M, Rytka J. Functional and physical interactions of Faf1p, a Saccharomyces cerevisiae nucleolar protein. Biochem Biophys Res Commun 2004; 319:349-57. [PMID: 15178413 DOI: 10.1016/j.bbrc.2004.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Indexed: 12/01/2022]
Abstract
We report the discovery and characterisation of a novel nucleolar protein of Saccharomyces cerevisiae. We identified this protein encoded by ORF YIL019w, designated in SGD base as Faf1p, in a two hybrid interaction screen using the known nucleolar protein Krr1 as bait. The presented data indicate that depletion of the Faf1 protein has an impact on the 40S ribosomal subunit biogenesis resulting from a decrease in the production of 18S rRNA. The primary defect is apparently due to inefficient processing of 35S rRNA at the A(0), A(1), and A(2) cleavage sites.
Collapse
Affiliation(s)
- Iwona Karkusiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|