1
|
ZNF382: A transcription inhibitor down-regulated in multiple tumors due to promoter methylation. Clin Chim Acta 2019; 500:220-225. [PMID: 31678273 DOI: 10.1016/j.cca.2019.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Zinc finger protein 382 (ZNF382), a member of the Krüppel-associated box zinc finger proteins (KRAB-ZFPs) family, plays critical roles in regulating certain downstream genes expression as a transcription inhibitor. ZNF382 is downregulated in multiple tumors due to hypermethylation of its promoter, to be more specific, methylation of promoter CpG island may contributes to inhibition of gene expression as found in many studies. With application of DNA methyltransferase inhibitors (DNMTi) 5-azacytidine and 5-aza-2'-deoxycytidine, hypomethylation of ZNF382 gene may contribute to anti-tumor effects. This review summerized the structure, biological functions, expression and the roles of ZNF382 in multiple cancers, and, expression of ZNF382 regulated by promoter methylation was further discussed to show the possibilities of DNA hypomethylation treatment as a potential treatment in clinical applications.
Collapse
|
2
|
In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module. Nat Commun 2019; 10:3597. [PMID: 31399572 PMCID: PMC6689074 DOI: 10.1038/s41467-019-11416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Hox proteins belong to a family of transcription factors with similar DNA binding specificities that control animal differentiation along the antero-posterior body axis. Hox proteins are expressed in partially overlapping regions where each one is responsible for the formation of particular organs and structures through the regulation of specific direct downstream targets. Thus, explaining how each Hox protein can selectively control its direct targets from those of another Hox protein is fundamental to understand animal development. Here we analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins and uncover how different Hox class proteins differentially control its expression. We find that regulation by one or another Hox protein depends on the combination of three modes: Hox-cofactor dependent DNA-binding specificity; Hox-monomer binding sites; and interaction with positive and negative Hox-collaborator proteins. Additionally, we find that similar regulation can be achieved by Amphioxus orthologs, suggesting these three mechanisms are conserved from insects to chordates. Hox proteins are expressed in partially overlapping regions to inform development along the embryo’s head-tail axis. Here the authors analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins to uncover how different Hox class proteins differentially control its expression.
Collapse
|
3
|
Concepcion D, Hamada H, Papaioannou VE. Tbx6 controls left-right asymmetry through regulation of Gdf1. Biol Open 2018; 7:bio.032565. [PMID: 29650695 PMCID: PMC5992533 DOI: 10.1242/bio.032565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Tbx6 transcription factor plays multiple roles during gastrulation, somite formation and body axis determination. One of the notable features of the Tbx6 homozygous mutant phenotype is randomization of left/right axis determination. Cilia of the node are morphologically abnormal, leading to the hypothesis that disrupted nodal flow is the cause of the laterality defect. However, Tbx6 is expressed around but not in the node, leading to uncertainty as to the mechanism of this effect. In this study, we have examined the molecular characteristics of the node and the genetic cascade determining left/right axis determination. We found evidence that a leftward nodal flow is generated in Tbx6 homozygous mutants despite the cilia defect, establishing the initial asymmetric gene expression in Dand5 around the node, but that the transduction of the signal from the node to the left lateral plate mesoderm is disrupted due to lack of expression of the Nodal coligand Gdf1 around the node. Gdf1 was shown to be a downstream target of Tbx6 and a Gdf1 transgene partially rescues the laterality defect. Summary: Tbx6 affects morphology of the cilia of the node, but a leftward nodal flow is still generated. Downstream of nodal flow, Tbx6 regulates the Nodal coligand Gdf1 leading to disruption of left/right axis determination.
Collapse
Affiliation(s)
- Daniel Concepcion
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hiroshi Hamada
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
The novel 19q13 KRAB zinc-finger tumour suppressor ZNF382 is frequently methylated in oesophageal squamous cell carcinoma and antagonises Wnt/β-catenin signalling. Cell Death Dis 2018; 9:573. [PMID: 29760376 PMCID: PMC5951945 DOI: 10.1038/s41419-018-0604-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/16/2023]
Abstract
Zinc finger proteins (ZFPs) are the largest transcription factor family in mammals. About one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs and involved in the regulation of cell differentiation/proliferation/apoptosis and neoplastic transformation. We recently identified ZNF382 as a novel KRAB-ZFP epigenetically inactivated in multiple cancers due to frequent promoter CpG methylation. However, its epigenetic alterations, biological functions/mechanism and clinical significance in oesophageal squamous cell carcinoma (ESCC) are still unknown. Here, we demonstrate that ZNF382 expression was suppressed in ESCC due to aberrant promoter methylation, but highly expressed in normal oesophagus tissues. ZNF382 promoter methylation is correlated with ESCC differentiation levels. Restoration of ZNF382 expression in silenced ESCC cells suppressed tumour cell proliferation and metastasis through inducing cell apoptosis. Importantly, ZNF382 suppressed Wnt/β-catenin signalling and downstream target gene expression, likely through binding directly to FZD1 and DVL2 promoters. In summary, our findings demonstrate that ZNF382 functions as a bona fide tumour suppressor inhibiting ESCC pathogenesis through inhibiting the Wnt/β-catenin signalling pathway.
Collapse
|
5
|
Srivastava A, Kumar AS, Mishra RK. Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci 2018; 75:623-633. [PMID: 28856379 PMCID: PMC11105447 DOI: 10.1007/s00018-017-2633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Amitha Sampath Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
6
|
Mathison A, Salmonson A, Missfeldt M, Bintz J, Williams M, Kossak S, Nair A, de Assuncao TM, Christensen T, Buttar N, Iovanna J, Huebert R, Lomberk G. Combined AURKA and H3K9 Methyltransferase Targeting Inhibits Cell Growth By Inducing Mitotic Catastrophe. Mol Cancer Res 2017; 15:984-997. [PMID: 28442587 DOI: 10.1158/1541-7786.mcr-17-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
The current integrative pathobiologic hypothesis states that pancreatic cancer (PDAC) develops and progresses in response to an interaction between known oncogenes and downstream epigenomic regulators. Congruently, this study tests a new combinatorial therapy based on the inhibition of the Aurora kinase A (AURKA) oncogene and one of its targets, the H3K9 methylation-based epigenetic pathway. This therapeutic combination is effective at inhibiting the in vitro growth of PDAC cells both, in monolayer culture systems, and in three-dimensional spheroids and organoids. The combination also reduces the growth of PDAC xenografts in vivo Mechanistically, it was found that inhibiting methyltransferases of the H3K9 pathway in cells, which are arrested in G2-M after targeting AURKA, decreases H3K9 methylation at centromeres, induces mitotic aberrations, triggers an aberrant mitotic check point response, and ultimately leads to mitotic catastrophe. Combined, these data describe for the first time a hypothesis-driven design of an efficient combinatorial treatment that targets a dual oncogenic-epigenomic pathway to inhibit PDAC cell growth via a cytotoxic mechanism that involves perturbation of normal mitotic progression to end in mitotic catastrophe. Therefore, this new knowledge has significant mechanistic value as it relates to the development of new therapies as well as biomedical relevance.Implications: These results outline a model for the combined inhibition of a genetic-to-epigenetic pathway to inhibit cell growth and suggest an important and provocative consideration for harnessing the capacity of cell-cycle inhibitors to enhance the future use of epigenetic inhibitors. Mol Cancer Res; 15(8); 984-97. ©2017 AACR.
Collapse
Affiliation(s)
- Angela Mathison
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ann Salmonson
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mckenna Missfeldt
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Monique Williams
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sarah Kossak
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Thiago M de Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Trace Christensen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Navtej Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Robert Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Murphy KE, Shylo NA, Alexander KA, Churchill AJ, Copperman C, García-García MJ. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28. PLoS One 2016; 11:e0163555. [PMID: 27658112 PMCID: PMC5033580 DOI: 10.1371/journal.pone.0163555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.
Collapse
Affiliation(s)
- Kristin E. Murphy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Natalia A. Shylo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Angela J. Churchill
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Cecilia Copperman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - María J. García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yuki R, Aoyama K, Kubota S, Yamaguchi N, Kubota S, Hasegawa H, Morii M, Huang X, Liu K, Williams R, Fukuda MN, Yamaguchi N. Overexpression of zinc-finger protein 777 (ZNF777) inhibits proliferation at low cell density through down-regulation of FAM129A. J Cell Biochem 2016; 116:954-68. [PMID: 25560148 DOI: 10.1002/jcb.25046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023]
Abstract
Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) regulate a wide range of cellular processes. KRAB-ZFPs have a KRAB domain, which binds to transcriptional corepressors, and a zinc finger domain, which binds to DNA to activate or repress gene transcription. Here, we characterize ZNF777, a member of KRAB-ZFPs. We show that ZNF777 localizes to the nucleus and inducible overexpression of ZNF777 inhibits cell proliferation in a manner dependent on its zinc finger domain but independent of its KRAB domain. Intriguingly, ZNF777 overexpression drastically inhibits cell proliferation at low cell density but slightly inhibits cell proliferation at high cell density. Furthermore, ZNF777 overexpression decreases the mRNA level of FAM129A irrespective of cell density. Importantly, the protein level of FAM129A strongly decreases at low cell density, but at high cell density the protein level of FAM129A does not decrease to that observed at low cell density. ZNF777-mediated inhibition of cell proliferation is attenuated by overexpression of FAM129A at low cell density. Furthermore, ZNF777-mediated down-regulation of FAM129A induces moderate levels of the cyclin-dependent kinase inhibitor p21. These results suggest that ZNF777 overexpression inhibits cell proliferation at low cell density and that p21 induction by ZNF777-mediated down-regulation of FAM129A plays a role in inhibition of cell proliferation.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ichida Y, Utsunomiya Y, Onodera M. The third to fifth zinc fingers play an essential role in the binding of ZFP809 to the MLV-derived PBS. Biochem Biophys Res Commun 2016; 469:490-4. [DOI: 10.1016/j.bbrc.2015.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023]
|
10
|
Venturini L, Stadler M, Manukjan G, Scherr M, Schlegelberger B, Steinemann D, Ganser A. The stem cell zinc finger 1 (SZF1)/ZNF589 protein has a human-specific evolutionary nucleotide DNA change and acts as a regulator of cell viability in the hematopoietic system. Exp Hematol 2015; 44:257-68. [PMID: 26738774 DOI: 10.1016/j.exphem.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 01/19/2023]
Abstract
The stem cell zinc finger 1 (SZF1)/ZNF589 protein belongs to the large family of Krüppel-associated box domain-zinc finger (KRAB-ZNF) transcription factors, which are present only in higher vertebrates and epigenetically repress transcription by recruiting chromatin-modifying complexes to the promoter regions of their respective target genes. Although the distinct biological functions of most KRAB-ZNF proteins remain unknown, recent publications indicate their implication in fundamental processes, such as cell proliferation, apoptosis, differentiation, development, and tumorigenesis. SZF1/ZNF589 was first identified as a gene with SZF1-1 isoform specifically expressed in CD34(+) hematopoietic cells, strongly suggesting a role in epigenetic control of gene expression in hematopoietic stem/progenitor cells (HSPCs). However, the function of SZF1/ZNF589 in hematopoiesis has not yet been elucidated. Our study reveals SZF1/ZNF589 as a gene with a human-specific nucleotide DNA-change, conferring potential species-specific functional properties. Through shRNA-mediated loss-of-function experiments, we found that changes in expression of fundamental apoptosis-controlling genes are induced on SZF1/ZNF589 knockdown, resulting in inhibited growth of hematopoietic cell lines and decreased progenitor potential of primary human bone marrow CD34(+) cells. Moreover, we found that the SZF1/ZNF589 gene is differentially regulated during hypoxia in CD34(+) HSPCs in a cytokine-dependent manner, implicating its possible involvement in the maintenance of the hypoxic physiologic status of hematopoietic stem cells. Our results establish the role of SZF1/ZNF589 as a new functional regulator of the hematopoietic system.
Collapse
Affiliation(s)
- Letizia Venturini
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georgi Manukjan
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Zheng Y, Tabbaa ZM, Khan Z, Schoolmeester JK, El-Nashar S, Famuyide A, Keeney GL, Daftary GS. Epigenetic regulation of uterine biology by transcription factor KLF11 via posttranslational histone deacetylation of cytochrome p450 metabolic enzymes. Endocrinology 2014; 155:4507-20. [PMID: 25076120 DOI: 10.1210/en.2014-1139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endocrine regulation of uterine biology is critical for embryo receptivity and human reproduction. Uterine endometrium depends on extrinsic sex steroid input and hence likely has mechanisms that enable adaptation to hormonal variation. Emerging evidence suggests that sex steroid bioavailability in the endometrium is determined by adjusting their metabolic rate and fate via regulation of cytochrome (CYP) p450 enzymes. The CYP enzymes are targeted by ubiquitously expressed Sp/Krüppel-like (Sp/KLF) transcription factors. Specifically, KLF11 is highly expressed in reproductive tissues, regulates an array of endocrine/metabolic pathways via epigenetic histone-based mechanisms and, when aberrantly expressed, is associated with diabetes and reproductive tract diseases, such as leiomyoma and endometriosis. Using KLF11 as a model to investigate epigenetic regulation of endometrial first-pass metabolism, we evaluated the expression of a comprehensive array of metabolic enzymes in Ishikawa cells. KLF11 repressed most endometrial CYP enzymes. To characterize KLF11-recruited epigenetic regulatory mechanisms, we focused on the estrogen-metabolizing enzyme CYP3A4. KLF11 expression declined in secretory phase endometrial epithelium associated with increased CYP3A4 expression. Additionally, KLF11 bound to CYP3A4 promoter GC elements and thereby repressed promoter, message, protein as well as enzymatic function. This repression was epigenetically mediated, because KLF11 colocalized with and recruited the corepressor SIN3A/histone deacetylase resulting in selective deacetylation of the CYP3A4 promoter. Repression was reversed by a mutation in KLF11 that abrogated cofactor recruitment and binding. This repression was also pharmacologically reversible with an histone deacetylase inhibitor. Pharmacological alteration of endometrial metabolism could have long-term translational implications on human reproduction and uterine disease.
Collapse
Affiliation(s)
- Ye Zheng
- Laboratory of Translational Epigenetics in Reproduction (Y.Z., Z.M.T., Z.K., G.S.D.) and Departments of Laboratory Medicine and Pathology (J.K.S., G.L.K.) and Obstetrics and Gynecology (Y.Z., Z.M.T., Z.K., S.E.-N., A.F., G.S.D.), Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | | | | | | | |
Collapse
|
12
|
MAGE proteins regulate KRAB zinc finger transcription factors and KAP1 E3 ligase activity. Arch Biochem Biophys 2014; 563:136-44. [PMID: 25107531 DOI: 10.1016/j.abb.2014.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Expression of Melanoma AntiGen Encoding (MAGE) genes, particularly MAGE-A3, has been correlated with aggressive clinical course, the acquisition of resistance to chemotherapy and poor clinical outcomes of melanoma and other malignancies. MAGE proteins bind to KAP1, a gene repressor and ubiquitin E3 ligase which also binds KRAB domain containing zinc finger transcription factors (KZNFs), and MAGE expression may affect KZNF mediated gene regulation. To investigate mechanisms for these effects, we tested the hypothesis that differences in KRAB domain composition affect KZNF poly-ubiquitination and determine whether MAGE expression increases, decreases, or has no effect on KZNFs mediated gene repression. Using an integrated reporter gene responsive to repression by KRAB domain fusion proteins, we found that MAGE-A3 relieved KZNF mediated repression and induced KZNF poly-ubiquitination and degradation in association with expression of the A+B box KRAB domain. In contrast, MAGE-A3 enhanced KAP1 mediated repression of KZNFs expressing A or A+b box KRAB domains but caused no increase in poly-ubiquitination or degradation. MAGE-A3 has no significant impact on KZNFs with KRAB domains containing the Scan box motif. These data support our hypothesis by showing that the effects of MAGE-A3 on gene repression depend on the type of KZNF KRAB domain involved.
Collapse
|
13
|
Calvo E, Grzenda A, Lomberk G, Mathison A, Iovanna J, Urrutia R. Single and combinatorial chromatin coupling events underlies the function of transcript factor Krüppel-like factor 11 in the regulation of gene networks. BMC Mol Biol 2014; 15:10. [PMID: 24885560 PMCID: PMC4049485 DOI: 10.1186/1471-2199-15-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/07/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Krüppel-like factors (KLFs) are a group of master regulators of gene expression conserved from flies to human. However, scant information is available on either the mechanisms or functional impact of the coupling of KLF proteins to chromatin remodeling machines, a deterministic step in transcriptional regulation. RESULTS AND DISCUSSION In the current study, we use genome-wide analyses of chromatin immunoprecipitation (ChIP-on-Chip) and Affymetrix-based expression profiling to gain insight into how KLF11, a human transcription factor involved in tumor suppression and metabolic diseases, works by coupling to three co-factor groups: the Sin3-histone deacetylase system, WD40-domain containing proteins, and the HP1-histone methyltransferase system. Our results reveal that KLF11 regulates distinct gene networks involved in metabolism and growth by using single or combinatorial coupling events. CONCLUSION This study, the first of its type for any KLF protein, reveals that interactions with multiple chromatin systems are required for the full gene regulatory function of these proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
Velu CS, Chaubey A, Phelan JD, Horman SR, Wunderlich M, Guzman ML, Jegga AG, Zeleznik-Le NJ, Chen J, Mulloy JC, Cancelas JA, Jordan CT, Aronow BJ, Marcucci G, Bhat B, Gebelein B, Grimes HL. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest 2014; 124:222-36. [PMID: 24334453 PMCID: PMC3871218 DOI: 10.1172/jci66005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/10/2013] [Indexed: 12/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) subtypes that result from oncogenic activation of homeobox (HOX) transcription factors are associated with poor prognosis. The HOXA9 transcription activator and growth factor independent 1 (GFI1) transcriptional repressor compete for occupancy at DNA-binding sites for the regulation of common target genes. We exploited this HOXA9 versus GFI1 antagonism to identify the genes encoding microRNA-21 and microRNA-196b as transcriptional targets of HOX-based leukemia oncoproteins. Therapeutic inhibition of microRNA-21 and microRNA-196b inhibited in vitro leukemic colony forming activity and depleted in vivo leukemia-initiating cell activity of HOX-based leukemias, which led to leukemia-free survival in a murine AML model and delayed disease onset in xenograft models. These data establish microRNA as functional effectors of endogenous HOXA9 and HOX-based leukemia oncoproteins, provide a concise in vivo platform to test RNA therapeutics, and suggest therapeutic value for microRNA antagonists in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Base Sequence
- Binding Sites
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Combined Modality Therapy
- Cytarabine/administration & dosage
- DNA-Binding Proteins/metabolism
- Doxorubicin/administration & dosage
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/physiology
- Phosphorothioate Oligonucleotides/genetics
- Pre-B-Cell Leukemia Transcription Factor 1
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Transcription Factors/metabolism
- Transcriptome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chinavenmeni S. Velu
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aditya Chaubey
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James D. Phelan
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shane R. Horman
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Wunderlich
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Monica L. Guzman
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anil G. Jegga
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nancy J. Zeleznik-Le
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jianjun Chen
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James C. Mulloy
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jose A. Cancelas
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig T. Jordan
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce J. Aronow
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Guido Marcucci
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Balkrishen Bhat
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian Gebelein
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - H. Leighton Grimes
- Division of Immunobiology and
Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Weill Cornell College of Medicine, New York, New York, USA.
Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
Loyola University Medical Center, Maywood, Illinois, USA.
University of Chicago, Chicago, Illinois, USA.
University of Colorado, Aurora, Colorado, USA.
The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
Regulus Therapeutics, San Diego, California, USA.
Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Tabbaa ZM, Zheng Y, Daftary GS. KLF11 epigenetically regulates glycodelin-A, a marker of endometrial biology via histone-modifying chromatin mechanisms. Reprod Sci 2013; 21:319-28. [PMID: 24060634 DOI: 10.1177/1933719113503407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endometrial biology is characterized by programmed proliferation and differentiation that is synchronous with ovarian folliculogenesis to maximize the chance of pregnancy. Glycodelin-A, an endometrial secretory protein, promotes pregnancy mostly through immunomodulatory mechanisms. Glycodelin-A is repressed during the proliferative and early secretory phase and activated thereafter. Progesterone activates glycodelin via the Sp1 (Specificity Protein 1) transactivator. We identify a novel role for Kruppel-like transcription factor 11 (KLF11) as a glycodelin-A repressor. Although KLF11 bound 2 distinct regulatory elements, it regulated glycodelin promoter activity differentially through each element. Whereas KLF11 weakly activated glycodelin promoter activity via a region that also bound Sp1, the dominant effect of KLF11 was repression of promoter activity, messenger RNA (mRNA), and protein expression via a novel, specific binding element. KLF11 mediated this repression by recruiting the SIN3/histone deacetylase (HDAC) corepressor complex to the glycodelin promoter. KLF11 may solely, or by competing with Sp1, repress glycodelin-A levels and thereby influence its role in the endometrium.
Collapse
Affiliation(s)
- Zaid M Tabbaa
- 1Laboratory of Translational Epigenetics in Reproduction, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
16
|
Grzenda A, Leonard P, Seo S, Mathison AJ, Urrutia G, Calvo E, Iovanna J, Urrutia R, Lomberk G. Functional impact of Aurora A-mediated phosphorylation of HP1γ at serine 83 during cell cycle progression. Epigenetics Chromatin 2013; 6:21. [PMID: 23829974 PMCID: PMC3707784 DOI: 10.1186/1756-8935-6-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023] Open
Abstract
Background Previous elegant studies performed in the fission yeast Schizosaccharomyces pombe have identified a requirement for heterochromatin protein 1 (HP1) for spindle pole formation and appropriate cell division. In mammalian cells, HP1γ has been implicated in both somatic and germ cell proliferation. High levels of HP1γ protein associate with enhanced cell proliferation and oncogenesis, while its genetic inactivation results in meiotic and mitotic failure. However, the regulation of HP1γ by kinases, critical for supporting mitotic progression, remains to be fully characterized. Results We report for the first time that during mitotic cell division, HP1γ colocalizes and is phosphorylated at serine 83 (Ser83) in G2/M phase by Aurora A. Since Aurora A regulates both cell proliferation and mitotic aberrations, we evaluated the role of HP1γ in the regulation of these phenomena using siRNA-mediated knockdown, as well as phosphomimetic and nonphosphorylatable site-directed mutants. We found that genetic downregulation of HP1γ, which decreases the levels of phosphorylation of HP1γ at Ser83 (P-Ser83-HP1γ), results in mitotic aberrations that can be rescued by reintroducing wild type HP1γ, but not the nonphosphorylatable S83A-HP1γ mutant. In addition, proliferation assays showed that the phosphomimetic S83D-HP1γ increases 5-ethynyl-2´-deoxyuridine (EdU) incorporation, whereas the nonphosphorylatable S83A-HP1γ mutant abrogates this effect. Genome-wide expression profiling revealed that the effects of these mutants on mitotic functions are congruently reflected in G2/M gene expression networks in a manner that mimics the on and off states for P-Ser83-HP1γ. Conclusions This is the first description of a mitotic Aurora A-HP1γ pathway, whose integrity is necessary for the execution of proper somatic cell division, providing insight into specific types of posttranslational modifications that associate to distinct functional outcomes of this important chromatin protein.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Laboratory of Epigenetics and Chromatin Dynamics, GIH Division, Department of Medicine, Biochemistry and Molecular Biology, Guggenheim 10, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Grzenda A, Lomberk G, Svingen P, Mathison A, Calvo E, Iovanna J, Xiong Y, Faubion W, Urrutia R. Functional characterization of EZH2β reveals the increased complexity of EZH2 isoforms involved in the regulation of mammalian gene expression. Epigenetics Chromatin 2013; 6:3. [PMID: 23448518 PMCID: PMC3606351 DOI: 10.1186/1756-8935-6-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 02/05/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Histone methyltransferase enhancer of zeste homologue 2 (EZH2) forms an obligate repressive complex with suppressor of zeste 12 and embryonic ectoderm development, which is thought, along with EZH1, to be primarily responsible for mediating Polycomb-dependent gene silencing. Polycomb-mediated repression influences gene expression across the entire gamut of biological processes, including development, differentiation and cellular proliferation. Deregulation of EZH2 expression is implicated in numerous complex human diseases. To date, most EZH2-mediated function has been primarily ascribed to a single protein product of the EZH2 locus. RESULTS We report that the EZH2 locus undergoes alternative splicing to yield at least two structurally and functionally distinct EZH2 methyltransferases. The longest protein encoded by this locus is the conventional enzyme, which we refer to as EZH2α, whereas EZH2β, characterized here, represents a novel isoform. We find that EZH2β localizes to the cell nucleus, complexes with embryonic ectoderm development and suppressor of zeste 12, trimethylates histone 3 at lysine 27, and mediates silencing of target promoters. At the cell biological level, we find that increased EZH2β induces cell proliferation, demonstrating that this protein is functional in the regulation of processes previously attributed to EZH2α. Biochemically, through the use of genome-wide expression profiling, we demonstrate that EZH2β governs a pattern of gene repression that is often ontologically redundant from that of EZH2α, but also divergent for a wide variety of specific target genes. CONCLUSIONS Combined, these results demonstrate that an expanded repertoire of EZH2 writers can modulate histone code instruction during histone 3 lysine 27-mediated gene silencing. These data support the notion that the regulation of EZH2-mediated gene silencing is more complex than previously anticipated and should guide the design and interpretation of future studies aimed at understanding the biochemical and biological roles of this important family of epigenomic regulators.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Laboratory of Epigenetics and Chromatin Dynamics, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells. PLoS One 2013; 8:e56721. [PMID: 23451074 PMCID: PMC3579818 DOI: 10.1371/journal.pone.0056721] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 01/24/2023] Open
Abstract
Highly coordinated transcription networks orchestrate the self-renewal of pluripotent stem cell and the earliest steps of mammalian development. KRAB-containing zinc finger proteins represent the largest group of transcription factors encoded by the genomes of higher vertebrates including mice and humans. Together with their putatively universal cofactor KAP1, they have been implicated in events as diverse as the silencing of endogenous retroelements, the maintenance of imprinting and the pluripotent self-renewal of embryonic stem cells, although the genomic targets and specific functions of individual members of this gene family remain largely undefined. Here, we first generated a list of Ensembl-annotated KRAB-containing genes encoding the mouse and human genomes. We then defined the transcription levels of these genes in murine early embryonic cells. We found that the majority of KRAB-ZFP genes are expressed in mouse pluripotent stem cells and other early progenitors. However, we also identified distinctively cell- or stage-specific patterns of expression, some of which are pluripotency-restricted. Finally, we determined that individual KRAB-ZFP genes exhibit highly distinctive modes of expression, even when grouped in genomic clusters, and that these cannot be correlated with the presence of prototypic repressive or activating chromatin marks. These results pave the way to delineating the role of specific KRAB-ZFPs in early embryogenesis.
Collapse
|
19
|
Arora R, del Alcazar CM, Morrisey EE, Naiche LA, Papaioannou VE. Candidate gene approach identifies multiple genes and signaling pathways downstream of Tbx4 in the developing allantois. PLoS One 2012; 7:e43581. [PMID: 22952711 PMCID: PMC3429498 DOI: 10.1371/journal.pone.0043581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
Loss of Tbx4 results in absence of chorio-allantoic fusion and failure of formation of the primary vascular plexus of the allantois leading to embryonic death at E10.5. We reviewed the literature for genes implicated in chorio-allantoic fusion, cavitation and vascular plexus formation, processes affected in Tbx4 mutant allantoises. Using this candidate gene approach, we identified a number of genes downstream of Tbx4 in the allantois including extracellular matrix molecules Vcan, Has2, and Itgα5, transcription factors Snai1 and Twist, and signaling molecules Bmp2, Bmp7, Notch2, Jag1 and Wnt2. In addition, we show that the canonical Wnt signaling pathway contributes to the vessel-forming potential of the allantois. Ex vivo, the Tbx4 mutant phenotype can be rescued using agonists of the Wnt signaling pathway and, in wildtype allantoises, an inhibitor of the canonical Wnt signaling pathway disrupts vascular plexus formation. In vivo, Tbx4 and Wnt2 double heterozygous placentas show decreased vasculature suggesting interactions between Tbx4 and the canonical Wnt signaling pathway in the process of allantois-derived blood vessel formation.
Collapse
Affiliation(s)
- Ripla Arora
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Chelsea M. del Alcazar
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Edward E. Morrisey
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - L. A. Naiche
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland, United States of America
| | - Virginia E. Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hu C, Zhang S, Gao X, Gao X, Xu X, Lv Y, Zhang Y, Zhu Z, Zhang C, Li Q, Wong J, Cui Y, Zhang W, Ma L, Wang C. Roles of Kruppel-associated Box (KRAB)-associated Co-repressor KAP1 Ser-473 Phosphorylation in DNA Damage Response. J Biol Chem 2012; 287:18937-52. [PMID: 22496453 DOI: 10.1074/jbc.m111.313262] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Kruppel-associated box (KRAB)-associated co-repressor KAP1 is an essential nuclear co-repressor for the KRAB zinc finger protein superfamily of transcriptional factors. Ataxia telangiectasia mutated (ATM)-Chk2 and ATM- and Rad3-related (ATR)-Chk1 are two primary kinase signaling cascades activated in response to DNA damage. A growing body of evidence suggests that ATM and ATR phosphorylate KAP1 at Ser-824 in response to DNA damage and regulate KAP1-dependent chromatin condensation, DNA repair, and gene expression. Here, we show that, depending on the type of DNA damage that occurs, KAP1 Ser-473 can be phosphorylated by ATM-Chk2 or ATR-Chk1 kinases. Phosphorylation of KAP1 at Ser-473 attenuated its binding to the heterochromatin protein 1 family proteins and inhibited its transcriptional repression of KRAB-zinc finger protein (KRAB-ZFP) target genes. Moreover, KAP1 Ser-473 phosphorylation induced by DNA damage stimulated KAP1-E2F1 binding. Overexpression of heterochromatin protein 1 significantly inhibited E2F1-KAP1 binding. Elimination of KAP1 Ser-473 phosphorylation increased E2F1-targeted proapoptotic gene expression and E2F1-induced apoptosis in response to DNA damage. Furthermore, loss of phosphorylation of KAP1 Ser-473 led to less BRCA1 focus formation and slower kinetics of loss of γH2AX foci after DNA damage. KAP1 Ser-473 phosphorylation was required for efficient DNA repair and cell survival in response to DNA damage. Our studies reveal novel functions of KAP1 Ser-473 phosphorylation under stress.
Collapse
Affiliation(s)
- Chen Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and College of Life Science and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li-Kroeger D, Cook TA, Gebelein B. Integration of an abdominal Hox complex with Pax2 yields cell-specific EGF secretion from Drosophila sensory precursor cells. Development 2012; 139:1611-9. [PMID: 22438572 DOI: 10.1242/dev.077842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cis-regulatory modules (CRMs) ensure specific developmental outcomes by mediating both proper spatiotemporal gene expression patterns and appropriate transcriptional levels. In Drosophila, the precise transcriptional control of the serine protease rhomboid regulates EGF signaling to specify distinct cell types. Recently, we identified a CRM that activates rhomboid expression and thereby EGF secretion from a subset of abdominal sensory organ precursor cells (SOPs) to induce an appropriate number of lipid-processing cells called oenocytes. Here, we use scanning mutagenesis coupled with reporter assays, biochemistry and genetics to dissect the transcriptional mechanisms regulating SOP-specific rhomboid activation. Our results show that proper spatial activity of the rhomboid CRM is dependent upon direct integration of the abdomen-specific Hox factor Abdominal-A and the SOP-restricted Pax2 factor. In addition, we show that the Extradenticle and Homothorax Hox co-factors are differentially integrated on the rhomboid CRM by abdominal versus thoracic Hox proteins in the presence of Pax2. Last, we show that Abdominal-A uses both Pax2-dependent and Pax2-independent mechanisms to stimulate rhomboid CRM activity to induce proper oenocyte numbers. Thus, these data demonstrate how a CRM integrates Hox and neural transcriptional inputs to regulate the appropriate spatial pattern and levels of EGF secretion to specify an essential cell fate.
Collapse
Affiliation(s)
- David Li-Kroeger
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7007, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
22
|
Shibata M, Blauvelt KE, Liem KF, García-García MJ. TRIM28 is required by the mouse KRAB domain protein ZFP568 to control convergent extension and morphogenesis of extra-embryonic tissues. Development 2012; 138:5333-43. [PMID: 22110054 DOI: 10.1242/dev.072546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TRIM28 is a transcriptional regulator that is essential for embryonic development and is implicated in a variety of human diseases. The roles of TRIM28 in distinct biological processes are thought to depend on its interaction with factors that determine its DNA target specificity. However, functional evidence linking TRIM28 to specific co-factors is scarce. chatwo, a hypomorphic allele of Trim28, causes embryonic lethality and defects in convergent extension and morphogenesis of extra-embryonic tissues. These phenotypes are remarkably similar to those of mutants in the Krüppel-associated box (KRAB) zinc finger protein ZFP568, providing strong genetic evidence that ZFP568 and TRIM28 control morphogenesis through a common molecular mechanism. We determined that chatwo mutations decrease TRIM28 protein stability and repressive activity, disrupting both ZFP568-dependent and ZFP568-independent roles of TRIM28. These results, together with the analysis of embryos bearing a conditional inactivation of Trim28 in embryonic-derived tissues, revealed that TRIM28 is differentially required by ZFP568 and other factors during the early stages of mouse embryogenesis. In addition to uncovering novel roles of TRIM28 in convergent extension and morphogenesis of extra-embryonic tissues, our characterization of chatwo mutants demonstrates that KRAB domain proteins are essential to determine some of the biological functions of TRIM28.
Collapse
Affiliation(s)
- Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
23
|
Daftary GS, Lomberk GA, Buttar NS, Allen TW, Grzenda A, Zhang J, Zheng Y, Mathison AJ, Gada RP, Calvo E, Iovanna JL, Billadeau DD, Prendergast FG, Urrutia R. Detailed structural-functional analysis of the Krüppel-like factor 16 (KLF16) transcription factor reveals novel mechanisms for silencing Sp/KLF sites involved in metabolism and endocrinology. J Biol Chem 2011; 287:7010-25. [PMID: 22203677 PMCID: PMC3293586 DOI: 10.1074/jbc.m111.266007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Krüppel-like factor (KLF) proteins have elicited significant attention due to their emerging key role in metabolic and endocrine diseases. Here, we extend this knowledge through the biochemical characterization of KLF16, unveiling novel mechanisms regulating expression of genes involved in reproductive endocrinology. We found that KLF16 selectively binds three distinct KLF-binding sites (GC, CA, and BTE boxes). KLF16 also regulated the expression of several genes essential for metabolic and endocrine processes in sex steroid-sensitive uterine cells. Mechanistically, we determined that KLF16 possesses an activation domain that couples to histone acetyltransferase-mediated pathways, as well as a repression domain that interacts with the histone deacetylase chromatin-remodeling system via all three Sin3 isoforms, suggesting a higher level of plasticity in chromatin cofactor selection. Molecular modeling combined with molecular dynamic simulations of the Sin3a-KLF16 complex revealed important insights into how this interaction occurs at an atomic resolution level, predicting that phosphorylation of Tyr-10 may modulate KLF16 function. Phosphorylation of KLF16 was confirmed by in vivo32P incorporation and controlled by a Y10F site-directed mutant. Inhibition of Src-type tyrosine kinase signaling as well as the nonphosphorylatable Y10F mutation disrupted KLF16-mediated gene silencing, demonstrating that its function is regulatable rather than constitutive. Subcellular localization studies revealed that signal-induced nuclear translocation and euchromatic compartmentalization constitute an additional mechanism for regulating KLF16 function. Thus, this study lends insights on key biochemical mechanisms for regulating KLF sites involved in reproductive biology. These data also contribute to the new functional information that is applicable to understanding KLF16 and other highly related KLF proteins.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem J 2011; 435:529-37. [PMID: 21171965 DOI: 10.1042/bj20100773] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SP/KLF (Specificity protein/Krüppel-like factor) transcription factors comprise an emerging group of proteins that may behave as tumour suppressors. Incidentally, many cancers that display alterations in certain KLF proteins are also associated with a high incidence of KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue) mutations. Therefore in the present paper we investigate whether SP/KLF proteins suppress KRAS-mediated cell growth, and more importantly, the potential mechanisms underlying these effects. Using a comprehensive family-wide screening of the 24 SP/KLF members, we discovered that SP5, SP8, KLF2, KLF3, KLF4, KLF11, KLF13, KLF14, KLF15 and KLF16 inhibit cellular growth and suppress transformation mediated by oncogenic KRAS. Each protein in this subset of SP/KLF members individually inhibits BrdU (5-bromo-2-deoxyuridine) incorporation in KRAS oncogenic-mutant cancer cells. SP5, KLF3, KLF11, KLF13, KLF14 and KLF16 also increase apoptosis in these cells. Using KLF11 as a representative model for mechanistic studies, we demonstrate that this protein inhibits the ability of cancer cells to form both colonies in soft agar and tumour growth in vivo. Molecular studies demonstrate that these effects of KLF11 are mediated, at least in part, through silencing cyclin A via binding to its promoter and leading to cell-cycle arrest in S-phase. Interestingly, similar to KLF11, KLF14 and KLF16 mechanistically share the ability to modulate the expression of cyclin A. Collectively, the present study stringently defines a distinct subset of SP/KLF proteins that impairs KRAS-mediated cell growth, and that mechanistically some members of this subset accomplish this, at least in part, through regulation of the cyclin A promoter.
Collapse
|
25
|
Xiao TZ, Bhatia N, Urrutia R, Lomberk GA, Simpson A, Longley BJ. MAGE I transcription factors regulate KAP1 and KRAB domain zinc finger transcription factor mediated gene repression. PLoS One 2011; 6:e23747. [PMID: 21876767 PMCID: PMC3158099 DOI: 10.1371/journal.pone.0023747] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/23/2011] [Indexed: 01/08/2023] Open
Abstract
Class I MAGE proteins (MAGE I) are normally expressed only in developing germ cells but are aberrantly expressed in many cancers. They have been shown to promote tumor survival, aggressive growth, and chemoresistance but the underlying mechanisms and MAGE I functions have not been fully elucidated. KRAB domain zinc finger transcription factors (KZNFs) are the largest group of vertebrate transcription factors and regulate neoplastic transformation, tumor suppression, cellular proliferation, and apoptosis. KZNFs bind the KAP1 protein and direct KAP1 to specific DNA sequences where it suppresses gene expression by inducing localized heterochromatin characterized by histone 3 lysine 9 trimethylation (H3me3K9). Discovery that MAGE I proteins also bind to KAP1 prompted us to investigate whether MAGE I can affect KZNF and KAP1 mediated gene regulation. We found that expression of MAGE I proteins, MAGE-A3 or MAGE-C2, relieved repression of a reporter gene by ZNF382, a KZNF with tumor suppressor activity. ChIP of MAGE I (-) HEK293T cells showed KAP1 and H3me3K9 are normally bound to the ID1 gene, a target of ZNF382, but that binding is greatly reduced in the presence of MAGE I proteins. MAGE I expression relieved KAP1 mediated ID1 repression, causing increased expression of ID1 mRNA and ID1 chromatin relaxation characterized by loss of H3me3K9. MAGE I binding to KAP1 also induced ZNF382 poly-ubiquitination and degradation, consistent with loss of ZNF382 leading to decreased KAP1 binding to ID1. In contrast, MAGE I expression caused increased KAP1 binding to Ki67, another KAP1 target gene, with increased H3me3K9 and decreased Ki67 mRNA expression. Since KZNFs are required to direct KAP1 to specific genes, these results show that MAGE I proteins can differentially regulate members of the KZNF family and KAP1 mediated gene repression.
Collapse
Affiliation(s)
- Tony Z. Xiao
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (TZX); (BJL)
| | - Neehar Bhatia
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Raul Urrutia
- Department of Molecular Neuroscience, Department of Biochemistry and Molecular Biology, and Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gwen A. Lomberk
- Department of Molecular Neuroscience, Department of Biochemistry and Molecular Biology, and Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew Simpson
- Ludwig Institute for Cancer Research, New York, New York, United States of America
| | - B. Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (TZX); (BJL)
| |
Collapse
|
26
|
Gu H, Li D, Sung CK, Yim H, Troke P, Benjamin T. DNA-binding and regulatory properties of the transcription factor and putative tumor suppressor p150(Sal2). BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:276-83. [PMID: 21362508 DOI: 10.1016/j.bbagrm.2011.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/10/2011] [Accepted: 02/22/2011] [Indexed: 12/26/2022]
Abstract
The product of the SALL2 protein p150(Sal2) is a multi-zinc finger transcription factor with growth arrest and proapoptotic functions that overlap those of p53. Its DNA-binding properties are unknown. We have used a modified SELEX procedure with purified p150(Sal2) and a pool of oligonucleotides of random sequence to identify those that are bound preferentially by p150(Sal2). The consensus sequence for optimal binding in vitro is GGG(T/C)GGG, placing p150(Sal2) among a large group of GC box-binding proteins including the Sp1 family of transcription factors. A triple zinc finger motif in p150(Sal2) similar to that in Sp1 is required for DNA binding. p150(Sal2) and Sp1 show evidence of co-operative binding in vitro and of interaction in vivo. p150(Sal2), a known activator of the CDK inhibitor p21(Cip1/Waf1) (p21), binds to regions of the human p21 promoter that contain variations of the consensus sequence in multiple copies. p150(Sal2) is also shown to bind to the BAX promoter with similar elements and to activate its expression following an apoptotic stimulus. These results demonstrate binding of p150(Sal2) to two natural promoters with GC elements related to the optimal binding sequence defined in vitro and whose regulation is important for suppression of tumor growth.
Collapse
Affiliation(s)
- Hongcang Gu
- Department of pathology NRB-939, Harvard Medical School, 77 Avenue Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
He Z, Cai J, Lim JW, Kroll K, Ma L. A novel KRAB domain-containing zinc finger transcription factor ZNF431 directly represses Patched1 transcription. J Biol Chem 2010; 286:7279-89. [PMID: 21177534 DOI: 10.1074/jbc.m110.178780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel-like zinc finger transcription factors compose the largest transcription factor family in the mammalian genome. However, the functions for the majority of these transcription factors as well as their in vivo downstream targets are not clear. We have functionally characterized a novel KRAB domain zinc finger transcription factor ZNF431 using both in vitro and in vivo assays. ZNF431 is a nuclear transcriptional repressor whose repressive activity depends on its association with HDAC1 and -2. Using the limb mesenchymal cell line MPLB, we identified Patched1 as a direct transcriptional target of ZNF431. Promoter analyses revealed three ZNF431 binding sites that bind to ZNF431 both in vitro and in vivo as revealed by gel-shift and chromatin immunoprecipitation, respectively. Mutations of these three sites abolished ZNF431 repression in transient transfection assays. Moreover, overexpressing ZNF431 in MPLB cells or in Xenopus and mouse embryos strongly repressed Patched1 expression. On the other hand, shRNA knockdown of ZNF431 in MPLB cells elevated Patched1 expression. Finally, hedgehog signaling readout was reduced in ZNF431 overexpression but elevated in ZNF431 knockdown MPLB cells. Our results indicate that ZNF431 directly represses Patched1 expression and likely functions to repress the hedgehog response in cells.
Collapse
Affiliation(s)
- Zhenhua He
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
28
|
Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, Srivastava G, Ng MH, Fukagawa T, Wu X, Chan AT, Tao Q. KRAB Zinc Finger Protein ZNF382 Is a Proapoptotic Tumor Suppressor That Represses Multiple Oncogenes and Is Commonly Silenced in Multiple Carcinomas. Cancer Res 2010; 70:6516-26. [DOI: 10.1158/0008-5472.can-09-4566] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Wang Y, Zhou J, Ye X, Wan Y, Li Y, Mo X, Yuan W, Yan Y, Luo N, Wang Z, Fan X, Deng Y, Wu X. ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway. BMB Rep 2010; 43:212-8. [PMID: 20356463 DOI: 10.5483/bmbrep.2010.43.3.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc finger-containing transcription factors are the largest single family of transcriptional regulators in mammals, which play an essential role in cell differentiation, cell proliferation, apoptosis, and neoplastic transformation. Here we have cloned a novel KRAB-related zinc finger gene, ZNF424, encoding a protein of 555aa. ZNF424 gene consisted of 4 exons and 3 introns, and mapped to chromosome 19p13.3. ZNF424 gene was ubiquitously expressed in human embryo tissues by Northern blot analysis. ZNF424 is conserved across species in evolution. Using a GFP-labeled ZNF424 protein, we demonstrate that ZNF424 localizes mostly in the nucleus. Transcriptional activity assays shows ZNF424 suppresses transcriptional activity of L8G5-luciferase. Overexpression of ZNF424 in HEK- 293 cells inhibited the transcriptional activity of NFAT and p21, which may be silenced by siRNA. The results suggest that ZNF424 protein may act as a transcriptional repressor that suppresses NFAT and p21 pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Yuequn Wang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, P. R. of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nowick K, Hamilton AT, Zhang H, Stubbs L. Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol Biol Evol 2010; 27:2606-17. [PMID: 20573777 DOI: 10.1093/molbev/msq157] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent segmental duplications (SDs), arising from duplication events that occurred within the past 35-40 My, have provided a major resource for the evolution of proteins with primate-specific functions. KRAB zinc finger (KRAB-ZNF) transcription factor genes are overrepresented among genes contained within these recent human SDs. Here, we examine the structural and functional diversity of the 70 human KRAB-ZNF genes involved in the most recent primate SD events including genes that arose in the hominid lineage. Despite their recent advent, many parent-daughter KRAB-ZNF gene pairs display significant differences in zinc finger structure and sequence, expression, and splicing patterns, each of which could significantly alter the regulatory functions of the paralogous genes. Paralogs that emerged on the lineage to humans and chimpanzees have undergone more evolutionary changes per unit of time than genes already present in the common ancestor of rhesus macaques and great apes. Taken together, these data indicate that a substantial fraction of the recently evolved primate-specific KRAB-ZNF gene duplicates have acquired novel functions that may possibly define novel regulatory pathways and suggest an active ongoing selection for regulatory diversity in primates.
Collapse
Affiliation(s)
- Katja Nowick
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | | | | | | |
Collapse
|
31
|
Witt LM, Gutzwiller LM, Gresser AL, Li-Kroeger D, Cook TA, Gebelein B. Atonal, Senseless, and Abdominal-A regulate rhomboid enhancer activity in abdominal sensory organ precursors. Dev Biol 2010; 344:1060-70. [PMID: 20478292 DOI: 10.1016/j.ydbio.2010.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/07/2010] [Accepted: 05/09/2010] [Indexed: 11/19/2022]
Abstract
The atonal (ato) proneural gene specifies different numbers of sensory organ precursor (SOP) cells within distinct regions of the Drosophila embryo in an epidermal growth factor-dependent manner through the activation of the rhomboid (rho) protease. How ato activates rho, and why it does so in only a limited number of sensory cells remains unclear. We previously identified a rho enhancer (RhoBAD) that is active within a subset of abdominal SOP cells to induce larval oenocytes and showed that RhoBAD is regulated by an Abdominal-A (Abd-A) Hox complex and the Senseless (Sens) transcription factor. Here, we show that ato is also required for proper RhoBAD activity and oenocyte formation. Transgenic reporter assays reveal RhoBAD contains two conserved regions that drive SOP gene expression: RhoD mediates low levels of expression in both thoracic and abdominal SOP cells, whereas RhoA drives strong expression within abdominal SOP cells. Ato indirectly stimulates both elements and enhances RhoA reporter activity by interfering with the ability of the Sens repressor to bind DNA. As RhoA is also directly regulated by Abd-A, we propose a model for how the Ato and Sens proneural factors are integrated with an abdominal Hox factor to regulate region-specific SOP gene expression.
Collapse
Affiliation(s)
- Lorraine M Witt
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
32
|
Xu JH, Wang T, Wang XG, Wu XP, Zhao ZZ, Zhu CG, Qiu HL, Xue L, Shao HJ, Guo MX, Li WX. PU.1 can regulate the ZNF300 promoter in APL-derived promyelocytes HL-60. Leuk Res 2010; 34:1636-46. [PMID: 20471086 DOI: 10.1016/j.leukres.2010.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/14/2010] [Accepted: 04/13/2010] [Indexed: 01/17/2023]
Abstract
ZNF300, which plays the role in human embryonic development and some diseases, is a typical KRAB/C2H2 zinc finger gene expressed only in higher mammalians. Our data showed that expression of ZNF300 changed significantly in various leukemia blasts in the bone marrow aspirates of newly diagnosed leukemia patients. To investigate the potential relationship between expression of ZNF300 and the progression of leukemia development and hematopoietic differentiation, we cloned and characterized the putative human ZNF300 gene promoter and identified its transcription start sites (TSSs). Deletion and mutagenesis analysis demonstrated that a myeloid-specific transcription factor PU.1 binding site was responsible for myeloid-specific regulation of ZNF300 promoter activity. Furthermore, electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that PU.1 bound to the PU.1 binding site within ZNF300 promoter region in vitro and in vivo. Overexpression of PU.1 elevated ZNF300 promoter activity, whereas silencing of PU.1 expression significantly reduced the activity in myeloid-derived HL-60 cell but not in T-cell Jurkat. In vitro induced HL-60 cells into CD11b expressing cells by DMSO demonstrated that ZNF300 was upregulated along with upregulation of PU.1 expression. These results demonstrated that ZNF300 was activated by PU.1 and suggested that the regulation may be involved in the progression of leukemia development and hematopoietic differentiation.
Collapse
Affiliation(s)
- Jun-Hua Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luojia Hill, Wuchang, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Uhl JD, Cook TA, Gebelein B. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements. Dev Biol 2010; 343:154-66. [PMID: 20398649 DOI: 10.1016/j.ydbio.2010.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 11/18/2022]
Abstract
Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes.
Collapse
Affiliation(s)
- Juli D Uhl
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
34
|
A novel transcriptional repressor, Rhit, is involved in heat-inducible and age-dependent expression of Mpv17-like protein, a participant in reactive oxygen species metabolism. Mol Cell Biol 2010; 30:2306-15. [PMID: 20231359 DOI: 10.1128/mcb.01025-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. The two M-LP isoforms in mouse, M-LP(S) and M-LP(L), are generated by the alternative usage of promoters. M-LP(S) is expressed exclusively in kidneys after the age of 6 weeks, whereas M-LP(L) is expressed ubiquitously. To elucidate the molecular basis of M-LP(S) expression, we searched for cis-regulatory elements in the promoter region of M-LP(S) and identified heat shock element half-sites as positive elements and a Tramtrack 69K (Ttk 69K) binding site as a negative element. Furthermore, we isolated a novel transcription repressor, Rhit (regulator of heat-induced transcription), that binds to the Ttk 69K binding site within the M-LP(S) promoter by DNA affinity chromatography and confirmed its participation in the transcriptional regulation of M-LP(S) by RNA interference (RNAi). Sequence analysis revealed that Rhit contains a KRAB (Krüppel-associated box) domain and a DNA-binding domain composed of eight C(2)H(2)-type zinc fingers. Interestingly, exposure to heat shock stress resulted in the upregulation of M-LP(S) expression concurrent with the downregulation of Rhit expression. Moreover, the age-dependent expression of M-LP(S) was inversely correlated with that of Rhit. These observations strongly suggest that Rhit acts as a repressor in the heat-induced and age-dependent transcriptional regulation of M-LP(S).
Collapse
|
35
|
Yang Z, Wen HJ, Minhas V, Wood C. The zinc finger DNA-binding domain of K-RBP plays an important role in regulating Kaposi's sarcoma-associated herpesvirus RTA-mediated gene expression. Virology 2009; 391:221-31. [PMID: 19592062 DOI: 10.1016/j.virol.2009.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/24/2009] [Accepted: 06/09/2009] [Indexed: 01/10/2023]
Abstract
K-RBP is a KRAB-containing zinc finger protein with multiple zinc finger motifs and represses Kaposi's sarcoma-associated herpesvirus (KSHV) transactivator RTA-mediated transactivation of several viral lytic gene promoters, including the ORF57 promoter. Whether K-RBP binds DNA through its zinc fingers and the role of zinc finger domain in repressing gene expression are unclear. Here we report that K-RBP binds DNA through its zinc finger domain and the target DNA sequences contain high GC content. Furthermore, K-RBP binds to KSHV ORF57 promoter, which contains a GC-rich motif. K-RBP suppresses the basal ORF57 promoter activity as well as RTA-mediated activation. The zinc finger domain of K-RBP is sufficient for the suppression of ORF57 promoter activation mediated by the viral transactivator RTA. Finally, we show that K-RBP inhibits RTA binding to ORF57 promoter. These findings suggest that the DNA-binding activity of K-RBP plays an important role in repressing viral promoter activity.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | | | | | | |
Collapse
|
36
|
Emerson RO, Thomas JH. Adaptive evolution in zinc finger transcription factors. PLoS Genet 2009; 5:e1000325. [PMID: 19119423 PMCID: PMC2604467 DOI: 10.1371/journal.pgen.1000325] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 12/02/2008] [Indexed: 01/10/2023] Open
Abstract
The majority of human genes are conserved among mammals, but some gene families have undergone extensive expansion in particular lineages. Here, we present an evolutionary analysis of one such gene family, the poly–zinc-finger (poly-ZF) genes. The human genome encodes approximately 700 members of the poly-ZF family of putative transcriptional repressors, many of which have associated KRAB, SCAN, or BTB domains. Analysis of the gene family across the tree of life indicates that the gene family arose from a small ancestral group of eukaryotic zinc-finger transcription factors through many repeated gene duplications accompanied by functional divergence. The ancestral gene family has probably expanded independently in several lineages, including mammals and some fishes. Investigation of adaptive evolution among recent paralogs using dN/dS analysis indicates that a major component of the selective pressure acting on these genes has been positive selection to change their DNA-binding specificity. These results suggest that the poly-ZF genes are a major source of new transcriptional repression activity in humans and other primates. Gene families, arising by the repeated duplication and diversification of existing genes, are a pervasive feature of the genomes of higher organisms. In this study, we analyze the evolutionary history of one of the largest gene families in humans, the poly–zinc-finger genes. Each poly–zinc-finger gene is thought to act by regulating the expression levels of one or more other genes, but the ultimate function and purpose of most poly–zinc-finger genes is unknown. We have found that the poly–zinc-finger gene family has been growing rapidly in many lineages including the human lineage, and that evolution has favored the creation of new poly–zinc-finger genes that have different DNA targets than the genes from which they were derived. These results suggest that the emergence of new and different poly–zinc-finger genes has probably been important in the evolution of humans and many other animal species.
Collapse
Affiliation(s)
- Ryan O. Emerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - James H. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
37
|
García-García MJ, Shibata M, Anderson KV. Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo. Development 2008; 135:3053-62. [PMID: 18701545 DOI: 10.1242/dev.022897] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgestation and defects characteristic of convergent extension mutants, including a shortened body axis, mediolaterally extended somites and an open neural tube. The chato mutation disrupts Zfp568, a Krüppel-associated box (KRAB) domain zinc-finger protein. Morphometric analysis revealed that the definitive endoderm of mouse wild-type embryos undergoes cell rearrangements that lead to convergent extension during early somite stages, and that these cell rearrangements fail in chato embryos. Although non-canonical Wnt signaling is important for convergent extension in the mouse notochord and neural plate, the results indicate that chato regulates body axis elongation in all embryonic tissues through a process independent of non-canonical Wnt signaling.
Collapse
Affiliation(s)
- María J García-García
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
38
|
Wang D, Guo MX, Hu HM, Zhao ZZ, Qiu HL, Shao HJ, Zhu CG, Xue L, Shi YB, Li WX. Human T-cell leukemia virus type 1 oncoprotein tax represses ZNF268 expression through the cAMP-responsive element-binding protein/activating transcription factor pathway. J Biol Chem 2008; 283:16299-308. [PMID: 18375384 DOI: 10.1074/jbc.m706426200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the human T-cell leukemia virus type 1 (HTLV-1) oncoprotein Tax is correlated with cellular transformation, contributing to the development of adult T-cell leukemia. In this study, we investigated the role of Tax in the regulation of the ZNF268 gene, which plays a role in the differentiation of blood cells and the pathogenesis of leukemia. We demonstrated that ZNF268 mRNA was repressed in HTLV-1-infected cells. We also showed that stable and transient expression of HTLV-1 Tax led to repression of ZNF268. In addition, by using reporter constructs that bear the human ZNF268 promoter and its mutants, we showed that Tax repressed ZNF268 promoter in a process dependent on a functional cAMP-responsive element. By using Tax, cAMP-responsive element-binding protein (CREB)-1, CREB-2, and their mutants, we further showed that Tax repressed ZNF268 through the CREB/activating transcription factor pathway. Electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated the formation of the complex of Tax.CREB-1 directly at the cAMP-responsive element both in vitro and in vivo. These findings suggest a role for ZNF268 in aberrant T-cell proliferation observed in HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
40
|
Guo MX, Wang D, Shao HJ, Qiu HL, Xue L, Zhao ZZ, Zhu CG, Shi YB, Li WX. Transcription of human zinc finger ZNF268 gene requires an intragenic promoter element. J Biol Chem 2006; 281:24623-36. [PMID: 16787922 DOI: 10.1074/jbc.m602753200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ZNF268 gene is a typical Krüppel-associated box/C2H2 zinc finger gene whose homolog has been found only in higher mammals and not in lower mammals such as mouse. Its expression profiles have suggested that it plays a role in the differentiation of blood cells during early human embryonic development and the pathogenesis of leukemia. To gain additional insight into the molecular mechanisms controlling the expression of the ZNF268 gene and to provide the necessary tools for further genetic studies of leukemia, we have mapped the 5'-end of the human ZNF268 mRNA by reverse transcription-PCR and primer extension assays. We then cloned the 5'-flanking genomic DNA containing the putative ZNF268 gene promoter and analyzed its function in several different human and mouse tissue culture cell lines. Interestingly, our studies show that the ZNF268 gene lacks a typical eukaryotic promoter that is present upstream of the transcription start site and directs a basal level of transcription. Instead, the functional promoter requires an essential element that is located within the first exon of the gene. Deletion and mutational analysis reveals the requirement for a cAMP response-element-binding protein (CREB)-binding site within this element for promoter function. Gel mobility shift and chromatin immunoprecipitation assays confirm that CREB-2 binds to the site in vitro and in vivo. Furthermore, overexpression of CREB-2 enhances the promoter activity. These results demonstrate that the human ZNF268 gene promoter is atypical and requires an intragenic element located within the first exon that mediates the effect of CREB for its activity.
Collapse
Affiliation(s)
- Ming-Xiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hamilton AT, Huntley S, Tran-Gyamfi M, Baggott DM, Gordon L, Stubbs L. Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes. Genome Res 2006; 16:584-94. [PMID: 16606703 PMCID: PMC1457049 DOI: 10.1101/gr.4843906] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Most genes are conserved in mammals, but certain gene families have acquired large numbers of lineage-specific loci through repeated rounds of gene duplication, divergence, and loss that have continued in each mammalian group. One such family encodes KRAB-zinc finger (KRAB-ZNF) proteins, which function as transcriptional repressors. One particular subfamily of KRAB-ZNF genes, including ZNF91, has expanded specifically in primates to comprise more than 110 loci in the human genome. Genes of the ZNF91 subfamily reside in large gene clusters near centromeric regions of human chromosomes 19 and 7 with smaller clusters or isolated copies in other locations. Phylogenetic analysis indicates that many of these genes arose before the split between the New and Old World monkeys, but the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. Paralogous loci are distinguished by divergence within their zinc finger arrays, indicating selection for proteins with different regulatory targets. In addition, many loci produce multiple alternatively spliced transcripts encoding proteins that may serve separate and perhaps even opposing regulatory roles because of the modular motif structure of KRAB-ZNF genes. The tissue-specific expression patterns and rapid structural divergence of ZNF91 subfamily genes suggest a role in determining gene expression differences between species and the evolution of novel primate traits.
Collapse
Affiliation(s)
- Aaron T. Hamilton
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Stuart Huntley
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Mary Tran-Gyamfi
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Daniel M. Baggott
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Laurie Gordon
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Lisa Stubbs
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Corresponding author.E-mail ; fax (925) 422-2099
| |
Collapse
|
42
|
Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, Gordon L, Branscomb E, Stubbs L. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 2006; 16:669-77. [PMID: 16606702 PMCID: PMC1457042 DOI: 10.1101/gr.4842106] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Krüppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotes. KRAB-ZNF proteins, in which a potent repressor domain is attached to a tandem array of DNA-binding zinc-finger motifs, are specific to tetrapod vertebrates and represent the largest class of ZNF proteins in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the genome sequence for key motifs and then constructed and manually curated gene models incorporating those sequences. The resulting gene catalog contains 423 KRAB-ZNF protein-coding loci, yielding alternative transcripts that altogether predict at least 742 structurally distinct proteins. Active rounds of segmental duplication, involving single genes or larger regions and including both tandem and distributed duplication events, have driven the expansion of this mammalian gene family. Comparisons between the human genes and ZNF loci mined from the draft mouse, dog, and chimpanzee genomes not only identified 103 KRAB-ZNF genes that are conserved in mammals but also highlighted a substantial level of lineage-specific change; at least 136 KRAB-ZNF coding genes are primate specific, including many recent duplicates. KRAB-ZNF genes are widely expressed and clustered genes are typically not coregulated, indicating that paralogs have evolved to fill roles in many different biological processes. To facilitate further study, we have developed a Web-based public resource with access to gene models, sequences, and other data, including visualization tools to provide genomic context and interaction with other public data sets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elbert Branscomb
- Microbial Systems Divisions, Biosciences, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Lisa Stubbs
- Genome Biology
- Corresponding author.E-mail ; fax (925) 422-2099
| |
Collapse
|
43
|
Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006; 8:407-15. [PMID: 16531993 DOI: 10.1038/ncb1383] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 01/11/2006] [Indexed: 11/08/2022]
Abstract
Currently, the mammalian heterochromatic proteins HP1alpha, HP1beta and the pan-nuclear HP1gamma are considered 'gatekeepers' of methyl-K9-H3-mediated silencing. Understanding how the binding of these proteins to post-translationally modified histones is switched on and off will further our knowledge of how the histone code is modulated. Here, we report that all three HP1 isoforms can be extensively modified, similar to histones, suggesting that the silencing of gene expression may be further regulated beyond the histone code. To assess the potential impact of these modifications, we analysed the phosphorylation of HP1gamma at Ser 83 as a 'model modification'. We demonstrate that P-Ser 83-HP1gamma has an exclusively euchromatic localization, interacts with Ku70 (a regulatory protein involved in multiple nuclear procesess), has impaired silencing activity and serves as a marker for transcription elongation. These observations predict that regulation of silencing by methyl-K9-H3 through modification of mammalian HP1 proteins may be more complex than previously thought and suggests the existence of an HP1-mediated 'silencing subcode' that underlies the instructions of the histone code.
Collapse
Affiliation(s)
- Gwen Lomberk
- Gastroenterology Research Unit, Department of Medicine, and Mayo Clinic Cancer Center, Rochester, MN 55605, USA
| | | | | | | |
Collapse
|
44
|
Oh HJ, Lau YFC. KRAB: a partner for SRY action on chromatin. Mol Cell Endocrinol 2006; 247:47-52. [PMID: 16414182 DOI: 10.1016/j.mce.2005.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 01/10/2023]
Abstract
The sex determining region Y (SRY/Sry) gene is necessary and sufficient for testis determination and differentiation in mammals. SRY/Sry encodes a putative transcription factor with a high mobility group (HMG) DNA-binding domain. The spatiotemporal regulation of Sry expression suggests that a brief action of SRY in a limited number of progenitor cells (pre-Sertoli cells) before the onset of default ovarian differentiation is sufficient to switch on testicular differentiation. Recent identification and characterization of the Krüppel-associated box only (KRAB-O) protein as an SRY-interacting protein have provided experimental evidence supporting an interesting model for SRY function. In this model, SRY recruits the KRAB-KAP1 (KRAB-associating protein 1) complex as a chromatin modulator, which provides a molecular mechanism of SRY as a transcription factor. Moreover, the sufficiency of a brief action of SRY for testis differentiation can be partly explained by the heritability of KRAB-mediated chromatin remodeling. Although it is currently uncertain whether KRAB-O is the only KRAB protein with which SRY interacts, we hypothesize that KRAB-O or yet-to-be identified KRAB-containing proteins might play various roles in sex determination and gonadal differentiation.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Department of Medicine, VA Medical Center, University of California at San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | |
Collapse
|
45
|
Medugno L, Florio F, De Cegli R, Grosso M, Lupo A, Costanzo P, Izzo P. The Krüppel-like zinc-finger protein ZNF224 represses aldolase A gene transcription by interacting with the KAP-1 co-repressor protein. Gene 2005; 359:35-43. [PMID: 16150558 DOI: 10.1016/j.gene.2005.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/16/2005] [Indexed: 12/28/2022]
Abstract
Transcription factors belonging to the Krüppel-like zinc finger family of proteins participate in the regulation of cell differentiation and development. Although many of these proteins have been identified, little is known about their structure and function. We recently purified ZNF224, a new Krüppel-like zinc finger protein, that contains a Krüppel-associated box (KRAB) domain at the NH2 terminus, and 19 Cys2-His2 zinc-finger domains at the COOH terminus. Using chromatin immunoprecipitation and transient transfection assays, we demonstrate that ZNF224 binds in vivo to the distal promoter of the aldolase A gene and represses its transcription. The results of transient co-transfection experiments show that ZNF224-mediated transcription repression requires the 45-amino acid long KRAB A domain. The ability of KRAB-containing ZNF224 protein to repress transcription depends on specific interaction with the KAP-1 co-repressor molecule. Finally, using selective treatment with the HDAC1 inhibitor trichostatin A, we demonstrate that ZNF224-mediated repression requires histone deacetylases.
Collapse
Affiliation(s)
- Lina Medugno
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Jing Z, Liu Y, Dong M, Hu S, Huang S. Identification of the DNA binding element of the human ZNF333 protein. BMB Rep 2005; 37:663-70. [PMID: 15607024 DOI: 10.5483/bmbrep.2004.37.6.663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZNF 333 is a new and sole gene containing two KRAB domains which has been identified currently. It is a member of subfamilies of zinc finger gene complex which had been localized on chromosome 19p13.1. The ZNF333 gene mainly encodes a 75.5 kDa protein which contains 10 zinc finger domains. Using the methods of random oligonucleotide selection assay, electromobility gel shift assay and luciferase activity assay, we found that ZNF333 recognized the specific DNA core binding sequence ATAAT. Moreover, these data indicated that the KRAB domain of ZNF333 really has the ability of transcriptional repression.
Collapse
Affiliation(s)
- Zhe Jing
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Krebs CJ, Larkins LK, Khan SM, Robins DM. Expansion and diversification of KRAB zinc-finger genes within a cluster including Regulator of sex-limitation 1 and 2. Genomics 2005; 85:752-61. [PMID: 15885501 DOI: 10.1016/j.ygeno.2005.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/07/2005] [Accepted: 03/08/2005] [Indexed: 12/22/2022]
Abstract
The genomic locus on mouse chromosome 13 called Regulator of sex-limitation (Rsl) accentuates sex differences in hepatic gene expression. Females homozygous for variant rsl alleles express some otherwise male-specific liver proteins, such as sex-limited protein (Slp), major urinary proteins (MUPs), and members of the cytochrome P450 (cyp) 2d subfamily. We recently identified mutations in two genes, Rsl1 and Rsl2, accounting for the rsl phenotype. These genes encode KRAB zinc-finger proteins (KRAB-ZFPs) and are embedded within a cluster of over 20 similar genes. Mammalian genomes contain over 200 KRAB-ZFP genes, which act biochemically to repress transcription, but the Rsl genes are the first to have their biological functions elucidated. Here we compare Rsl1 and Rsl2 with their neighboring genes, tracing a series of duplication, inversion, and gene conversion events that have created subfamilies within the locus. Polymorphisms among inbred mouse strains and feral species suggest that mutations responsible for the rsl phenotype arose during the creation of inbred strains. Comparisons among mouse, rat, and human sequences show that the Rsl genes, like members of certain other multigene families, have diversified in a species-specific manner. The targets of Rsl regulation also vary between species, occurring in gene families with functions in steroid and xenobiotic metabolism (Cyp2d), reproduction (MUPs), and immunity (Slp). This suggests that the Rsl locus in mouse, and comparable KRAB-ZFP genes in other mammals, may play a role in speciation via modulation of expression of genes influencing reproductive fitness or behavior.
Collapse
Affiliation(s)
- Christopher J Krebs
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
48
|
Tan W, Kim S, Boyer TG. Tetrameric oligomerization mediates transcriptional repression by the BRCA1-dependent Kruppel-associated box-zinc finger protein ZBRK1. J Biol Chem 2004; 279:55153-60. [PMID: 15496401 DOI: 10.1074/jbc.m410926200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Kruppel-associated box (KRAB)-zinc finger protein ZBRK1 has been implicated in the transcriptional regulation of DNA damage-response genes that function in cell growth control and survival. Recently, we described a novel BRCA1-dependent C-terminal transcriptional repression domain (CTRD) within ZBRK1, the mode of repression of which is functionally distinguishable from that of the N-terminal KRAB repression domain within ZBRK1. The identification of BRCA1 binding-competent but repression-defective CTRD mutants further revealed that BRCA1 binding is necessary, but not sufficient, for ZBRK1 CTRD function. During an unbiased search for possible co-regulators of the CTRD, we identified ZBRK1 itself, suggesting that ZBRK1 can oligomerize through its CTRD. Herein we explore the physical and functional requirements for ZBRK1 oligomerization in ZBRK1-directed transcriptional repression. Protein interaction analyses confirmed that ZBRK1 can homo-oligomerize both in vitro and in vivo and further mapped the ZBRK1 oligomerization domain to the CTRD C terminus. Biochemical analyses, including protein cross-linking and gel filtration chromatography, revealed that ZBRK1 homo-oligomers exist as tetramers in solution. Functionally, ZBRK1 oligomerization facilitates ZBRK1-directed transcriptional repression through ZBRK1 response elements; requirements for oligomerization-dependent repression include the ZBRK1 CTRD and KRAB repression domains but not the DNA binding activity of ZBRK1. These observations suggest that higher order oligomers of ZBRK1 may assemble on target ZBRK1 response elements through both protein-DNA and CTRD-dependent protein-protein interactions. These findings thus reveal an unanticipated dual function for ZBRK1 in both DNA binding-dependent and -independent modes of transcriptional repression and further establish the CTRD as a novel protein interaction surface responsible for directing homotypic and heterotypic interactions necessary for ZBRK1-directed transcriptional repression.
Collapse
Affiliation(s)
- Wei Tan
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207
| | | | | |
Collapse
|
49
|
Oh HJ, Li Y, Lau YFC. Sry associates with the heterochromatin protein 1 complex by interacting with a KRAB domain protein. Biol Reprod 2004; 72:407-15. [PMID: 15469996 DOI: 10.1095/biolreprod.104.034447] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals, the SRY/Sry gene on the Y chromosome is necessary and sufficient for a bipotential gonad to develop into a testis, regardless of its chromosomal sex. The SRY/Sry gene encodes a protein that belongs to a high-mobility-group (HMG) box protein family and that has been postulated to modulate the expression of genes necessary for male gonadal differentiation. Using a yeast two-hybrid screen, we identified a novel protein containing only a Krüppel-associated box (KRAB) domain, which is hereafter named KRAB-O (KRAB Only), as an SRY-interacting protein. The KRAB-O protein is encoded by an alternatively spliced transcript from the Zfp208 locus that also produces another transcript coding for a KRAB-zinc finger protein, ZFP208. The interaction of the mouse SRY with KRAB-O was further confirmed by glutathione S-transferase pull-down assay and coimmunoprecipitation in transfected COS7 cells. The KRAB-O interaction domain in both the human and mouse SRY was mapped to the bridge region outside the HMG box. Indirect immunofluorescence and confocal microscopy show that the mouse SRY colocalizes with KRAB-O in nuclear dots in transiently transfected COS7 cells and primary fetal mouse gonadal cells. Using similar approaches, we demonstrate that KRAB-O interacts directly with KAP1 (KRAB-associated protein 1), the obligatory corepressor for KRAB domain proteins. Furthermore, we show that the mouse SRY is associated indirectly with KAP1 and heterochromatin protein 1 (HP1) through its interaction with KRAB-O, suggesting that the mouse SRY could use the KRAB-KAP1-HP1 organized transcriptional regulatory complex to regulate its yet-to-be-identified downstream target genes.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, University of California, San Francisco, California 94121, USA
| | | | | |
Collapse
|
50
|
Fernandez-Zapico ME, Bramati PS, Zakaria S, Kaczynski JA, Urrutia R. Fundamentals of transcription factors and their impact on pancreatic development and cancer. Pancreatology 2004; 3:276-83. [PMID: 12890989 DOI: 10.1159/000071765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transcription factors are proteins that regulate gene expression by modulating the synthesis of messenger RNA. Since this process, known as gene transcription, is often the dominant control point in the production of many proteins, transcription factors are key regulators of numerous cellular functions, including secretion, proliferation, differentiation, and apoptosis. Most transcription factors are also the final effectors of signaling pathways that transduce signals from the cell membrane to the nucleus. Therefore alterations in the activity or expression of some transcription factors have a significant impact on the biology of human cells and may lead to the development of diseases. In this article we review this field of research with a particular emphasis on the role of transcription factors in pancreatic development and cancer.
Collapse
|