1
|
Morgan RA, Ma F, Unti MJ, Brown D, Ayoub PG, Tam C, Lathrop L, Aleshe B, Kurita R, Nakamura Y, Senadheera S, Wong RL, Hollis RP, Pellegrini M, Kohn DB. Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences. Mol Ther Methods Clin Dev 2020; 17:999-1013. [PMID: 32426415 PMCID: PMC7225380 DOI: 10.1016/j.omtm.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem cell gene therapy is a promising approach for treating disorders of the hematopoietic system. Identifying combinations of cis-regulatory elements that do not impede packaging or transduction efficiency when included in lentiviral vectors has proven challenging. In this study, we deploy LV-MPRA (lentiviral vector-based, massively parallel reporter assay), an approach that simultaneously analyzes thousands of synthetic DNA fragments in parallel to identify sequence-intrinsic and lineage-specific enhancer function at near-base-pair resolution. We demonstrate the power of LV-MPRA in elucidating the boundaries of previously unknown intrinsic enhancer sequences of the human β-globin locus control region. Our approach facilitated the rapid assembly of novel therapeutic βAS3-globin lentiviral vectors harboring strong lineage-specific recombinant control elements capable of correcting a mouse model of sickle cell disease. LV-MPRA can be used to map any genomic locus for enhancer activity and facilitates the rapid development of therapeutic vectors for treating disorders of the hematopoietic system or other specific tissues and cell types.
Collapse
Affiliation(s)
- Richard A. Morgan
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Molecular Biology Institute Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mildred J. Unti
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devin Brown
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul George Ayoub
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Curtis Tam
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lindsay Lathrop
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bamidele Aleshe
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Shantha Senadheera
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan L. Wong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P. Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Molecular Biology Institute Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Davis R, Gurumurthy A, Hossain MA, Gunn EM, Bungert J. Engineering Globin Gene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:102-110. [PMID: 30603654 PMCID: PMC6310746 DOI: 10.1016/j.omtm.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemoglobinopathies, including sickle cell disease and thalassemia, are among the most common inherited genetic diseases worldwide. Due to the relative ease of isolating and genetically modifying hematopoietic stem and progenitor cells, recent gene editing and gene therapy strategies have progressed to clinical trials with promising outcomes; however, challenges remain and necessitate the continued exploration of new gene engineering and cell transplantation protocols. Current gene engineering strategies aim at reactivating the expression of the fetal γ-globin genes in adult erythroid cells. The γ-globin proteins exhibit anti-sickling properties and can functionally replace adult β-globin. Here, we describe and compare the current genetic engineering procedures that may develop into safe and efficient therapies for hemoglobinopathies in the near future.
Collapse
Affiliation(s)
- Rachael Davis
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Eliot M Gunn
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Weber L, Poletti V, Magrin E, Antoniani C, Martin S, Bayard C, Sadek H, Felix T, Meneghini V, Antoniou MN, El-Nemer W, Mavilio F, Cavazzana M, Andre-Schmutz I, Miccio A. An Optimized Lentiviral Vector Efficiently Corrects the Human Sickle Cell Disease Phenotype. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:268-280. [PMID: 30140714 PMCID: PMC6105766 DOI: 10.1016/j.omtm.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Autologous transplantation of hematopoietic stem cells transduced with a lentiviral vector (LV) expressing an anti-sickling HBB variant is a potential treatment for sickle cell disease (SCD). With a clinical trial as our ultimate goal, we generated LV constructs containing an anti-sickling HBB transgene (HBBAS3), a minimal HBB promoter, and different combinations of DNase I hypersensitive sites (HSs) from the locus control region (LCR). Hematopoietic stem progenitor cells (HSPCs) from SCD patients were transduced with LVs containing either HS2 and HS3 (β-AS3) or HS2, HS3, and HS4 (β-AS3 HS4). The inclusion of the HS4 element drastically reduced vector titer and infectivity in HSPCs, with negligible improvement of transgene expression. Conversely, the LV containing only HS2 and HS3 was able to efficiently transduce SCD bone marrow and Plerixafor-mobilized HSPCs, with anti-sickling HBB representing up to ∼60% of the total HBB-like chains. The expression of the anti-sickling HBB and the reduced incorporation of the βS-chain in hemoglobin tetramers allowed up to 50% reduction in the frequency of RBC sickling under hypoxic conditions. Together, these results demonstrate the ability of a high-titer LV to express elevated levels of a potent anti-sickling HBB transgene ameliorating the SCD cell phenotype.
Collapse
Affiliation(s)
- Leslie Weber
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Paris Diderot University - Sorbonne Paris Cité, 75015 Paris, France
| | | | - Elisa Magrin
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Chiara Antoniani
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | | | - Charles Bayard
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France
| | - Hanem Sadek
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France
| | - Tristan Felix
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | - Vasco Meneghini
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | | | - Wassim El-Nemer
- Biologie Intégrée du Globule Rouge, INSERM UMR_S1134, Paris Diderot University, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, 75015 Paris, France.,Institut National de la Transfusion Sanguine, 75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Fulvio Mavilio
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Annarita Miccio
- Genethon, INSERM UMR951, 91000 Evry, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| |
Collapse
|
4
|
Identifying and mapping cell-type-specific chromatin programming of gene expression. Proc Natl Acad Sci U S A 2014; 111:E645-54. [PMID: 24469817 DOI: 10.1073/pnas.1312523111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A problem of substantial interest is to systematically map variation in chromatin structure to gene-expression regulation across conditions, environments, or differentiated cell types. We developed and applied a quantitative framework for determining the existence, strength, and type of relationship between high-resolution chromatin structure in terms of DNaseI hypersensitivity and genome-wide gene-expression levels in 20 diverse human cell types. We show that ∼25% of genes show cell-type-specific expression explained by alterations in chromatin structure. We find that distal regions of chromatin structure (e.g., ±200 kb) capture more genes with this relationship than local regions (e.g., ±2.5 kb), yet the local regions show a more pronounced effect. By exploiting variation across cell types, we were capable of pinpointing the most likely hypersensitive sites related to cell-type-specific expression, which we show have a range of contextual uses. This quantitative framework is likely applicable to other settings aimed at relating continuous genomic measurements to gene-expression variation.
Collapse
|
5
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Rupon JW, Wang SZ, Gnanapragasam M, Labropoulos S, Ginder GD. MBD2 contributes to developmental silencing of the human ε-globin gene. Blood Cells Mol Dis 2011; 46:212-9. [PMID: 21296012 DOI: 10.1016/j.bcmd.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
During erythroid development, the embryonic ε-globin gene becomes silenced as erythropoiesis shifts from the yolk sac to the fetal liver where γ-globin gene expression predominates. Previous studies have shown that the ε-globin gene is autonomously silenced through promoter proximal cis-acting sequences in adult erythroid cells. We have shown a role for the methylcytosine binding domain protein 2 (MBD2) in the developmental silencing of the avian embryonic ρ-globin and human fetal γ-globin genes. To determine the roles of MBD2 and DNA methylation in human ε-globin gene silencing, transgenic mice containing all sequences extending from the 5' hypersensitive site 5 (HS5) of the β-globin locus LCR to the human γ-globin gene promoter were generated. These mice show correct developmental expression and autonomous silencing of the transgene. Either the absence of MBD2 or treatment with the DNA methyltransferase inhibitor 5-azacytidine increases ε-globin transgene expression by 15-20 fold in adult mice. Adult mice containing the entire human β-globin locus also show an increase in expression of both the ε-globin gene transgene and endogenous ε(Y) and β(H1) genes in the absence of MBD2. These results indicate that the human ε-globin gene is subject to multilayered silencing mediated in part by MBD2.
Collapse
Affiliation(s)
- Jeremy W Rupon
- Massey Cancer Center, Virginia Commonwealth University, Richmond, USA.
| | | | | | | | | |
Collapse
|
7
|
Hamid M, Mahjoubi F, Akbari MT, Khanahmad H, Jamshidi F, Zeinali S, Karimipoor M. Transient expression assay of Agamma-588 (A/G) mutations in the K562 cell line. IRANIAN BIOMEDICAL JOURNAL 2011; 15:15-21. [PMID: 21725495 PMCID: PMC3639736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 03/06/2011] [Accepted: 03/08/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND In the previous study, we have shown that the presence of A allele at position -588 in Agamma-globin gene was highly frequent and closely associated with fetal hemoglobin elevation among beta-thalassemia intermedia patients. Therefore, we decided to investigate whether this allele (A allele at -588) could result in an increase in Agamma-globin gene expression to ameliorate the severity of the disease in thalassemia patients. METHODS Three constructs containing mu locus control region, Agamma-globin and beta-globin genes were designed and employed in the transient expression assay. The difference among constructs was in the promoter region of Agamma-globin gene (A and G alleles at -588). A construct with T to C base substitution at -175 of Agamma-globin, created by site-directed mutagenesis, was selected as positive control. The K562 cell line was transfected with the above constructs. Subsequently, the expression of Agamma-globin gene was determined by quantitative real-time reverse transcription-PCR. RESULTS There was not a significant increase in the expression of Agamma-globin gene in the construct containing A allele comparing the one with G allele at -588. CONCLUSIONS -588 (A>G) mutation does not play a major role in regulation of Agamma-globin gene, suggesting that other factors may be involved.
Collapse
Affiliation(s)
- Mohammad Hamid
- Molecular Medicine Division, Biotechnology Research Center, Pasteur Institute of Iran, Tehran;
| | - Frouzandeh Mahjoubi
- Dept. of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran;
| | - Mohammad Taghi Akbari
- Dept. of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran;
| | | | - Fatemeh Jamshidi
- Molecular Medicine Division, Biotechnology Research Center, Pasteur Institute of Iran, Tehran;
| | - Sirous Zeinali
- Molecular Medicine Division, Biotechnology Research Center, Pasteur Institute of Iran, Tehran;
| | - Morteza Karimipoor
- Molecular Medicine Division, Biotechnology Research Center, Pasteur Institute of Iran, Tehran;
| |
Collapse
|
8
|
Long-range enhancer differentially regulated by c-Jun and JunD controls peptidylarginine deiminase-3 gene in keratinocytes. J Mol Biol 2008; 384:1048-57. [PMID: 18952102 DOI: 10.1016/j.jmb.2008.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 11/23/2022]
Abstract
Long-range cis elements are critical regulators of transcription, particularly for clustered paralogous genes. Such are the five PADI genes in 1p35-36 encoding peptidylarginine deiminases, which catalyze deimination, a Ca2+-dependent post-translational modification. Deimination has been implicated in the pathophysiology of severe human diseases such as multiple sclerosis and rheumatoid arthritis. The PADI genes present different expression patterns. PADI1-3 are expressed in the epidermis, with increased expression levels in the most differentiated keratinocytes. Previous studies on PADI proximal promoters failed to explain such specificity of expression. We identified a conserved intergenic sequence in the PADI locus (IG1), which may play a role in PADI transcriptional regulation. In this work, we identified two DNase I.hypersensitive sites located in IG1, PAD intergenic enhancer segment 1 (PIE-S1) and PIE-S2, which act in synergy as a bipartite enhancer of the PADI3 and probably PADI1 promoters in normal human epidermal keratinocytes differentiated by a high-calcium-containing medium (1.5 mM). PIE-S1 and PIE-S2 present all the hallmarks of transcriptional enhancers: orientation-independence, copy-number dependence and cell-type specificity. PIE-S1 and PIE-S2 comprise conserved putative binding sites for MIBP1/RFX1 and activator protein 1, respectively. Deletion mutant screening revealed that these sites are crucial for the enhancer activity. Furthermore, chromatin immunoprecipitation assays evidenced differential binding of JunD or c-Jun on the activator protein 1 site depending on the cell differentiation state. Our results reveal the molecular bases of the expression specificity of PADI1 and PADI3 during keratinocyte differentiation through a long-range enhancer and support a model of PADI gene regulation depending on c-Jun-JunD competition.
Collapse
|
9
|
Keys JR, Tallack MR, Zhan Y, Papathanasiou P, Goodnow CC, Gaensler KM, Crossley M, Dekker J, Perkins AC. A mechanism for Ikaros regulation of human globin gene switching. Br J Haematol 2008; 141:398-406. [PMID: 18318763 DOI: 10.1111/j.1365-2141.2008.07065.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human beta globin locus consists of an upstream LCR and functional genes arranged sequentially in the order of their expression during development: 5'-HBE1, HBG2, HBG1, HBD, HBB-3'. Haemoglobin switching entails the successive recruitment of these genes into an active chromatin hub (ACH). Here we show that the transcription factor Ikaros plays a major role in the formation of the beta-globin ACH, and in haemoglobin switching. In Plastic mice, where the DNA-binding region of Ikaros is disrupted by a point mutation, there is concomitant marked down-regulation of HBB, and up-regulation of HBG expression. We show for the first time Ikaros and its family member Eos, bind to critical cis elements implicated in haemoglobin switching and deletional hereditary persistence of fetal haemoglobin (HPFH). Chromatin conformation capture (3C) data demonstrated that Ikaros facilitates long-distance DNA looping between the LCR and a region upstream of HBD. This study provides new insights into the mechanism of stage-specific assembly of the beta-globin ACH, and HPFH.
Collapse
Affiliation(s)
- Janelle R Keys
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H. Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 2007; 18:411-9. [PMID: 17904350 DOI: 10.1016/j.copbio.2007.07.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 02/07/2023]
Abstract
In the past years, recombinase-based approaches for integrating transgenes into defined chromosomal loci of mammalian cells have gained increasing attention. This method is attractive since it enables to precisely integrate transgenes of interest into pre-defined integration sites, thereby allowing to predict the expression properties of a genetically manipulated cell. This review focuses on the current state of targeting strategies including RMCE employing site-specific recombinases such as Cre, Flp and PhiC31. In particular, applications for protein expression, virus production, transgenic animals and chromosome engineering are described.
Collapse
Affiliation(s)
- Dagmar Wirth
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation and Model Systems for Infection and Immunity, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Wang H, Zhang Y, Cheng Y, Zhou Y, King DC, Taylor J, Chiaromonte F, Kasturi J, Petrykowska H, Gibb B, Dorman C, Miller W, Dore LC, Welch J, Weiss MJ, Hardison RC. Experimental validation of predicted mammalian erythroid cis-regulatory modules. Genes Dev 2006; 16:1480-92. [PMID: 17038566 PMCID: PMC1665632 DOI: 10.1101/gr.5353806] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 06/07/2006] [Indexed: 11/25/2022]
Abstract
Multiple alignments of genome sequences are helpful guides to functional analysis, but predicting cis-regulatory modules (CRMs) accurately from such alignments remains an elusive goal. We predict CRMs for mammalian genes expressed in red blood cells by combining two properties gleaned from aligned, noncoding genome sequences: a positive regulatory potential (RP) score, which detects similarity to patterns in alignments distinctive for regulatory regions, and conservation of a binding site motif for the essential erythroid transcription factor GATA-1. Within eight target loci, we tested 75 noncoding segments by reporter gene assays in transiently transfected human K562 cells and/or after site-directed integration into murine erythroleukemia cells. Segments with a high RP score and a conserved exact match to the binding site consensus are validated at a good rate (50%-100%, with rates increasing at higher RP), whereas segments with lower RP scores or nonconsensus binding motifs tend to be inactive. Active DNA segments were shown to be occupied by GATA-1 protein by chromatin immunoprecipitation, whereas sites predicted to be inactive were not occupied. We verify four previously known erythroid CRMs and identify 28 novel ones. Thus, high RP in combination with another feature of a CRM, such as a conserved transcription factor binding site, is a good predictor of functional CRMs. Genome-wide predictions based on RP and a large set of well-defined transcription factor binding sites are available through servers at http://www.bx.psu.edu/.
Collapse
Affiliation(s)
- Hao Wang
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| | - Ying Zhang
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Intercollege Graduate Degree Program in Genetics
| | - Yong Cheng
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| | - Yuepin Zhou
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| | - David C. King
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Intercollege Graduate Degree Program in Integrative Biosciences
| | - James Taylor
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Computer Science and Engineering
| | - Francesca Chiaromonte
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Statistics, and
| | - Jyotsna Kasturi
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Computer Science and Engineering
| | - Hanna Petrykowska
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| | - Brian Gibb
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| | - Christine Dorman
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| | - Webb Miller
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Computer Science and Engineering
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Louis C. Dore
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - John Welch
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J. Weiss
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Ross C. Hardison
- Center for Comparative Genomics and Bioinformatics of the Huck Institutes of Life Sciences
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
12
|
Feng YQ, Desprat R, Fu H, Olivier E, Lin CM, Lobell A, Gowda SN, Aladjem MI, Bouhassira EE. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLoS Genet 2006; 2:e65. [PMID: 16683039 PMCID: PMC1449906 DOI: 10.1371/journal.pgen.0020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 03/17/2006] [Indexed: 12/31/2022] Open
Abstract
We have investigated the role of DNA methylation in the initiation and maintenance of silenced chromatin in somatic mammalian cells. We found that a mutated transgene, in which all the CpG dinucleotides have been eliminated, underwent transcriptional silencing to the same extent as the unmodified transgene. These observations demonstrate that DNA methylation is not required for silencing. The silenced CpG-free transgene exhibited all the features of heterochromatin, including silencing of transcriptional activity, delayed DNA replication, lack of histone H3 and H4 acetylation, lack of H3-K4 methylation, and enrichment in tri-methyl-H3-K9. In contrast, when we tested for transgene reactivation using a Cre recombinase-mediated inversion assay, we observed a marked difference between a CpG-free and an unmodified transgene: the CpG-free transgene resumed transcription and did not exhibit markers of heterochromatin whereas the unmodified transgene remained silenced. These data indicate that methylation of CpG residues conferred epigenetic memory in this system. These results also suggest that replication delay, lack of histone H3 and H4 acetylation, H3-K4 methylation, and enrichment in tri-methyl-H3-K9 are not sufficient to confer epigenetic memory. We propose that DNA methylation within transgenes serves as an intrinsic epigenetic memory to permanently silence transgenes and prevent their reactivation.
Collapse
Affiliation(s)
- Yong-Qing Feng
- Department of Medicine, Division of Hematology, and Department of Cell Biology, Albert Einstein College Of Medicine, Bronx, New York, New York, United States of America
| | - Romain Desprat
- Department of Medicine, Division of Hematology, and Department of Cell Biology, Albert Einstein College Of Medicine, Bronx, New York, New York, United States of America
| | - Haiqing Fu
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Emmanuel Olivier
- Department of Medicine, Division of Hematology, and Department of Cell Biology, Albert Einstein College Of Medicine, Bronx, New York, New York, United States of America
| | - Chii Mei Lin
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Amanda Lobell
- Department of Medicine, Division of Hematology, and Department of Cell Biology, Albert Einstein College Of Medicine, Bronx, New York, New York, United States of America
| | - Shilpa N Gowda
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Eric E Bouhassira
- Department of Medicine, Division of Hematology, and Department of Cell Biology, Albert Einstein College Of Medicine, Bronx, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Abstract
AIMS To compare the biosynthetic gene cluster sequences of the main aflatoxin (AF)-producing Aspergillus species. METHODS AND RESULTS Sequencing was on fosmid clones selected by homology to Aspergillus parasiticus sequence. Alignments revealed that gene order is conserved among AF gene clusters of Aspergillus nomius, A. parasiticus, two sclerotial morphotypes of Aspergillus flavus, and an unnamed Aspergillus sp. Phylogenetic relationships were established using the maximum likelihood method implemented in PAUP. Based on the Eurotiomycete/Sordariomycete divergence time, the A. flavus-type cluster has been maintained for at least 25 million years. Such conservation of the genes and gene order reflects strong selective constraints on rearrangement. Phylogenetic comparison of individual genes in the cluster indicated that ver-1, which has homology to a melanin biosynthesis gene, experienced selective forces distinct from the other pathway genes. Sequences upstream of the polyketide synthase-encoding gene vary among the species, but a four-gene sugar utilization cluster at the distal end is conserved, indicating a functional relationship between the two adjacent clusters. CONCLUSIONS The high conservation of cluster components needed for AF production suggests there is an adaptive value for AFs in character-shaping niches important to those taxa. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first comparison of the complete nucleotide sequences of gene clusters harbouring the AF biosynthesis genes of the main AF-producing species. Such a comparison will aid in understanding how AF biosynthesis is regulated in experimental and natural environments.
Collapse
Affiliation(s)
- K C Ehrlich
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, PO Box 19687, New Orleans, LA 70179, USA.
| | | | | |
Collapse
|
14
|
Hu X, Bulger M, Bender MA, Fields J, Groudine M, Fiering S. Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes. Blood 2005; 107:821-6. [PMID: 16189270 PMCID: PMC1895626 DOI: 10.1182/blood-2005-06-2308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-globin locus control region (LCR) is a large DNA element that is required for high-level expression of beta-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human beta-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp "flanks" with weaker functional activity and lower interspecies homology. Studies of human beta-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However, human transgenes in which only individual HS core regions were deleted showed drastic loss of expression accompanied by changes in chromatin structure. To address these disparate results, we have deleted the core region of 5'HS2 from the endogenous murine beta-LCR. The phenotype was similar to that of the larger 5'HS2 deletion, with no apparent disruption of chromatin structure. These results demonstrate that the greater severity of HS core deletions in comparison to full HS deletions is not a general property of the beta-LCR.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Microbiology/Immunology, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | |
Collapse
|
15
|
King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, Hardison RC. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res 2005; 15:1051-60. [PMID: 16024817 PMCID: PMC1182217 DOI: 10.1101/gr.3642605] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/02/2005] [Indexed: 11/24/2022]
Abstract
Techniques of comparative genomics are being used to identify candidate functional DNA sequences, and objective evaluations are needed to assess their effectiveness. Different analytical methods score distinctive features of whole-genome alignments among human, mouse, and rat to predict functional regions. We evaluated three of these methods for their ability to identify the positions of known regulatory regions in the well-studied HBB gene complex. Two methods, multispecies conserved sequences and phastCons, quantify levels of conservation to estimate a likelihood that aligned DNA sequences are under purifying selection. A third function, regulatory potential (RP), measures the similarity of patterns in the alignments to those in known regulatory regions. The methods can correctly identify 50%-60% of noncoding positions in the HBB gene complex as regulatory or nonregulatory, with RP performing better than do other methods. When evaluated by the ability to discriminate genomic intervals, RP reaches a sensitivity of 0.78 and a true discovery rate of approximately 0.6. The performance is better on other reference sets; both phastCons and RP scores can capture almost all regulatory elements in those sets along with approximately 7% of the human genome.
Collapse
Affiliation(s)
- David C King
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
16
|
Feng YQ, Warin R, Li T, Olivier E, Besse A, Lobell A, Fu H, Lin CM, Aladjem MI, Bouhassira EE. The human beta-globin locus control region can silence as well as activate gene expression. Mol Cell Biol 2005; 25:3864-74. [PMID: 15870261 PMCID: PMC1087713 DOI: 10.1128/mcb.25.10.3864-3874.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using recombinase-mediated cassette exchange to test multiple transgenes at the same site of integration, we demonstrate a novel chromatin context-dependent silencer activity of the beta-globin locus control region (LCR). This silencer activity requires DNase I hypersensitive sites HS2 and HS3 but not HS4. After silencing, the silenced cassettes adopt a typical closed chromatin conformation (histone H3 and H4 deacetylation, histone H3-K4 methylation, DNA methylation, and replication in late S phase). In the absence of the LCR at the same site of integration, the chromatin remains decondensed. We demonstrate that the LCR is necessary but not sufficient to trigger these chromatin changes. We also provide evidence that this novel silencing activity is caused by transcriptional interference triggered by activation of transcription in the flanking sequences by the LCR.
Collapse
Affiliation(s)
- Yong-Qing Feng
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang SHL, Levings PP, Andersen F, Laipis PJ, Berns KI, Zori RT, Bungert J. Locus control region elements HS2 and HS3 in combination with chromatin boundaries confer high-level expression of a human beta-globin transgene in a centromeric region. Genes Cells 2005; 9:1043-53. [PMID: 15507116 DOI: 10.1111/j.1365-2443.2004.00788.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression constructs are subject to position-effects in transgenic assays unless they harbour elements that protect them from negative or positive influences exerted by chromatin at the site of integration. Locus control regions (LCRs) and boundary elements are able to protect from position effects by preventing heterochromatization of linked genes. The LCR in the human beta-globin gene locus is located far upstream of the genes and composed of several erythroid specific DNase I hypersensitive (HS) sites. Previous studies demonstrated that the LCR HS sites act synergistically to confer position-independent and high-level globin gene expression at different integration sites in transgenic mice. Here we show that LCR HS sites 2 and 3, in combination with boundary elements derived from the chicken beta-globin gene locus, confer high-level human beta-globin gene expression in different chromosomal integration sites in transgenic mice. Moreover, we found that the construct is accessible to nucleases and highly expressed when integrated in a centromeric region. These results demonstrate that the combination of enhancer, chromatin opening and boundary activities can establish independent expression units when integrated into chromatin.
Collapse
Affiliation(s)
- Sung-Hae Lee Kang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The hemoglobin disorders of beta-thalassemia and sickle cell disease together constitute the most prevalent group of human monogenic diseases. Although curative allogeneic stem cell transplantation therapy and palliative therapies have been developed for these disorders, the majority of patients still suffer significant morbidity and early mortality. The development of therapeutic approaches based on genetic manipulation of autologous stem cells therefore remains an attractive alternative. In the past 4 years, significant advances have been made toward this goal using lentiviral vectors to obtain high-level expression of complex globin gene cassettes. Therapeutic correction in murine models of both beta-thalassemia and sickle cell anemia has been achieved using this approach. These advances, coupled with progress in the ability to achieve in vivo selection of genetically modified cells, can now be evaluated in the well-developed nonhuman primate autologous transplant model. The goal in these studies is to provide preclinical safety and efficacy data prior to human clinical trials in order to maximize the likelihood of success in the context of an acceptable risk to benefit ratio. Here we review progress in each of these areas.
Collapse
Affiliation(s)
- Derek A Persons
- Department of Hematology/Oncology, Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | |
Collapse
|
19
|
Fields PE, Lee GR, Kim ST, Bartsevich VV, Flavell RA. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity 2004; 21:865-76. [PMID: 15589174 DOI: 10.1016/j.immuni.2004.10.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 10/20/2004] [Accepted: 10/27/2004] [Indexed: 11/26/2022]
Abstract
We recently identified a 3' region of the rad50 gene possessing strong enhancer activity as well as activity consistent with function as a locus control region (LCR) for the flanking Th2 cytokine genes. In this study, we identify several functional elements within this region by examining chromatin changes as well as activity in transgenic mice. We find within this region four DNase I hypersensitive clusters, three of which are highly conserved and predominantly expressed in Th2 cells. Histone acetylation of this region is elevated in Th2 cells. Further, one of the hypersensitive sites (RHS7) is rapidly demethylated in Th2, but not Th1, cells. In transgenic mice, these hypersensitive sites impart strong, Th2-specific enhancer activity as well as copy number-dependent expression of the reporter gene, recapitulating LCR function. We postulate that these sites function alone or in combination with other regulatory elements to coordinate gene expression in the Th2 cytokine locus.
Collapse
Affiliation(s)
- Patrick E Fields
- Section of Immunobiology and Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
20
|
Martowicz ML, Grass JA, Boyer ME, Guend H, Bresnick EH. Dynamic GATA factor interplay at a multicomponent regulatory region of the GATA-2 locus. J Biol Chem 2004; 280:1724-32. [PMID: 15494394 DOI: 10.1074/jbc.m406038200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the simplicity of the DNA sequence that mediates binding of GATA transcription factors, GATA motifs reside throughout chromosomal DNA. However, chromatin immunoprecipitation analysis has revealed that GATA-1 discriminates exquisitely among these sites. GATA-2 selectively occupies the -2.8-kilobase (kb) region of the GATA-2 locus in the active state despite there being numerous GATA motifs throughout the locus. The GATA-1-mediated displacement of GATA-2 is tightly coupled to repression of GATA-2 transcription. We have used high resolution chromatin immunoprecipitation to show that GATA-1 and GATA-2 occupy two additional regions, -3.9 and -1.8 kb of the GATA-2 locus. GATA-1 and GATA-2 had distinct preferences for occupancy at these regions, with GATA-1 and GATA-2 occupancy highest at the -3.9- and -1.8-kb regions, respectively. Activation of an estrogen receptor fusion to GATA-1 (ER-GATA-1) induced similar kinetics of ER-GATA-1 occupancy and GATA-2 displacement at the sites. In the transcriptionally active state, DNase I hypersensitive sites (HSs) were detected at the -3.9- and -1.8-kb regions, with a weak HS at the -2.8-kb region. Whereas ER-GATA-1-instigated repression abolished the -1.8-kb HS, the -3.9-kb HS persisted in the repressed state. Transient transfection analysis provided evidence that the -3.9-kb region functions distinctly from the -2.8- and -1.8-kb regions. We propose that GATA-2 transcription is regulated via the collective actions of complexes assembled at the -2.8- and -1.8-kb regions, which share similar properties, and through a qualitatively distinct activity of the -3.9-kb complex.
Collapse
Affiliation(s)
- Melissa L Martowicz
- University of Wisconsin Medical School, Molecular and Cellular Pharmacology Program, Department of Pharmacology, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Vieira KF, Levings PP, Hill MA, Crusselle VJ, Kang SHL, Engel JD, Bungert J. Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. J Biol Chem 2004; 279:50350-7. [PMID: 15385559 PMCID: PMC3705557 DOI: 10.1074/jbc.m408883200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid-specific, high level expression of the beta-globin genes is regulated by the locus control region (LCR), composed of multiple DNase I-hypersensitive sites and located far upstream of the genes. Recent studies have shown that LCR core elements recruit RNA polymerase II (pol II). In the present study we demonstrate the following: 1) pol II and other basal transcription factors are recruited to LCR core hypersensitive elements; 2) pol II dissociates from and re-associates with the globin gene locus during replication; 3) pol II interacts with the LCR but not with the beta-globin gene prior to erythroid differentiation in embryonic stem cells; and 4) the erythroid transcription factor NF-E2 facilitates the transfer of pol II from immobilized LCR constructs to a beta-globin gene in vitro. The data are consistent with the hypothesis that the LCR serves as the primary attachment site for the recruitment of macromolecular complexes involved in chromatin structure alterations and transcription of the globin genes.
Collapse
Affiliation(s)
- Karen F. Vieira
- Department of Biochemistry and Molecular Biology, Centers for Gene Therapy and Mammalian Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Padraic P. Levings
- Department of Biochemistry and Molecular Biology, Centers for Gene Therapy and Mammalian Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Meredith A. Hill
- Department of Biochemistry and Molecular Biology, Centers for Gene Therapy and Mammalian Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Valerie J. Crusselle
- Department of Biochemistry and Molecular Biology, Centers for Gene Therapy and Mammalian Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Sung-Hae Lee Kang
- Department of Biochemistry and Molecular Biology, Centers for Gene Therapy and Mammalian Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-0616
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Centers for Gene Therapy and Mammalian Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Florida College of Medicine, P. O. Box 100245, 1600 SW Archer Rd., Gainesville, FL 32610. Tel.: 352-392-0121; Fax: 352-392-2953;
| |
Collapse
|
22
|
Davies N, Freebody J, Murray V. Chromatin structure at the flanking regions of the human beta-globin locus control region DNase I hypersensitive site-2: proposed nucleosome positioning by DNA-binding proteins including GATA-1. ACTA ACUST UNITED AC 2004; 1679:201-13. [PMID: 15358512 DOI: 10.1016/j.bbaexp.2004.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/06/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
The human beta-globin locus control region DNase I hypersensitive site-2 (LCR HS-2) is erythroid-specific and is located 10.9 kb upstream of the epsilon-globin gene. Most studies have only examined the core region of HS-2. However, previous studies in this laboratory indicate that positioned nucleosomes are present at the 5'- and 3'-flanking regions of HS-2. In addition, footprints were observed that indicated the involvement of DNA-binding proteins in positioning the nucleosome cores. A consensus GATA-1 site exists in the region of the 3'-footprint. In this study, using an electrophoretic mobility shift assay (EMSA) and DNase I footprinting, we confirmed that GATA-1 binds in vitro at the 3'-end of HS-2. An additional GATA-1 site was found to bind GATA-1 in vitro at a site positioned 40 bp upstream. At the 5'-end of HS-2, DNase I footprinting revealed a series of footprints showing a marked correlation with the in vivo footprints. EMSA indicated the presence of several erythroid-specific complexes in this region including GATA-1 binding. Sequence alignment for 12 mammalian species in HS-2 confirmed that the highest conservation to be in the HS-2 core. However, a second level of conservation extends from the core to the sites of the proposed positioning proteins at the HS-2 flanking regions, before declining rapidly. This indicates the importance of the HS-2 flanking regions and supports the proposal of nucleosome positioning proteins in these regions.
Collapse
Affiliation(s)
- Neil Davies
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
23
|
Hanawa H, Hargrove PW, Kepes S, Srivastava DK, Nienhuis AW, Persons DA. Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood 2004; 104:2281-90. [PMID: 15198957 DOI: 10.1182/blood-2004-03-0863] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since increased fetal hemoglobin diminishes the severity of beta-thalassemia and sickle cell anemia, a strategy using autologous, stem cell-targeted gene transfer of a gamma-globin gene may be therapeutically useful. We previously found that a gamma-globin lentiviral vector utilizing the beta-globin promoter and elements from the beta-globin locus control region (LCR) totaling 1.7 kb could correct murine beta-thalassemia. However, therapeutic consistency was compromised by chromosomal position effects on vector expression. In contrast, we show here that the majority of animals that received transplants of beta-thalassemic stem cells transduced with a new vector containing 3.2 kb of LCR sequences expressed high levels of fetal hemoglobin (17%-33%), with an average vector copy number of 1.3. This led to a mean 26 g/L (2.6 g/dL) increase in hemoglobin concentration and enhanced amelioration of other hematologic parameters. Analysis of clonal erythroid cells of secondary spleen colonies from mice that underwent transplantation demonstrated an increased resistance of the larger LCR vector to stable and variegating position effects. This trend was also observed for vector insertion sites located inside genes, where vector expression was often compromised, in contrast to intergenic sites, where higher levels of expression were observed. These data emphasize the importance of overcoming detrimental position effects for consistent therapeutic globin vector expression.
Collapse
Affiliation(s)
- Hideki Hanawa
- 332 North Lauderdale Dr, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
24
|
Harrow F, Amuta JU, Hutchinson SR, Akwaa F, Ortiz BD. Factors Binding a Non-classical Cis-element Prevent Heterochromatin Effects on Locus Control Region Activity. J Biol Chem 2004; 279:17842-9. [PMID: 14966120 DOI: 10.1074/jbc.m401258200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A locus control region (LCR) is a cis-acting gene-regulatory element capable of transferring the expression characteristics of its gene locus of origin to a linked transgene. Furthermore, it can do this independently of the site of integration in the genome of transgenic mice. Although most LCRs contain subelements with classical transcriptional enhancer function, key aspects of LCR activity are supported by cis-acting sequences devoid of the ability to act as direct transcriptional enhancers. Very few of these "non-enhancer" LCR components have been characterized. Consequently, the sequence requirements and molecular bases for their functions, as well as their roles in LCR activity, are poorly understood. We have investigated these questions using the LCR from the mouse T cell receptor (TCR) alpha/Dad1 gene locus. Here we focus on DNase hypersensitive site (HS) 6 of the TCRalpha LCR. HS6 does not support classical enhancer activity, yet has gene regulatory activity in an in vivo chromatin context. We have identified three in vivo occupied factor-binding sites within HS6, two of which interact with Runx1 and Elf-1 factors. Deletion of these sites from the LCR impairs its activity in vivo. This mutation renders the transgene locus abnormally inaccessible in chromatin, preventing the normal function of other LCR subelements and reducing transgene mRNA levels. These data show these factor-binding sites are required for preventing heterochromatin formation and indicate that they function to maintain an active TCRalpha LCR assembly in vivo.
Collapse
Affiliation(s)
- Faith Harrow
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
25
|
Razin SV, Farrell CM, Recillas-Targa F. Genomic domains and regulatory elements operating at the domain level. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:63-125. [PMID: 12921236 DOI: 10.1016/s0074-7696(03)01002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The sequencing of the complete genomes of several organisms, including humans, has so far not contributed much to our understanding of the mechanisms regulating gene expression in the course of realization of developmental programs. In this so-called "postgenomic" era, we still do not understand how (if at all) the long-range organization of the genome is related to its function. The domain hypothesis of the eukaryotic genome organization postulates that the genome is subdivided into a number of semiindependent functional units (domains) that may include one or several functionally related genes, with these domains having well-defined borders, and operate under the control of special (domain-level) regulatory systems. This hypothesis was extensively discussed in the literature over the past 15 years. Yet it is still unclear whether the hypothesis is valid or not. There is evidence both supporting and questioning this hypothesis. The most conclusive data supporting the domain hypothesis come from studies of avian and mammalian beta-globin domains. In this review we will critically discuss the present state of the studies on these and other genomic domains, paying special attention to the domain-level regulatory systems known as locus control regions (LCRs). Based on this discussion, we will try to reevaluate the domain hypothesis of the organization of the eukaryotic genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, 117334 Moscow, Russia
| | | | | |
Collapse
|
26
|
Follows GA, Tagoh H, Lefevre P, Morgan GJ, Bonifer C. Differential transcription factor occupancy but evolutionarily conserved chromatin features at the human and mouse M-CSF (CSF-1) receptor loci. Nucleic Acids Res 2004; 31:5805-16. [PMID: 14530429 PMCID: PMC219482 DOI: 10.1093/nar/gkg804] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The c-FMS gene encodes the macrophage colony-stimulating factor receptor (M-CSFR or CSF1-R), which is a tyrosine kinase growth factor receptor essential for macrophage development. We have previously characterized the chromatin features of the mouse gene; however, very little is known about chromatin structure and function of the human c-FMS locus. Here we present a side-by-side comparison of the chromatin structure, histone modification, transcription factor occupancy and cofactor recruitment of the human and the mouse c-FMS loci. We show that, similar to the mouse gene, the human c-FMS gene possesses a promoter and an intronic enhancer element (c-fms intronic regulatory element or FIRE). Both elements are evolutionarily conserved and specifically active in macrophages. However, we demonstrate by in vivo footprinting that both murine and human c-FMS cis-regulatory elements are recognised by an overlapping, but non-identical, set of transcription factors. Despite these differences, chromatin immunoprecipitation experiments show highly similar patterns of histone H3 modification and a similar distribution of chromatin modifying and remodelling activities at individual cis-regulatory elements and across the c-FMS locus. Our experiments support the hypothesis that the same regulatory principles operate at both genes via conserved cores of transcription factor binding sites.
Collapse
Affiliation(s)
- George A Follows
- Molecular Medicine Unit, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | |
Collapse
|
27
|
Lv X, Xu DD, Liu DP, Li L, Hao DL, Liang CC. High-mobility group protein 2 may be involved in the locus control region regulation of the beta-globin gene cluster. Biochem Cell Biol 2003; 80:765-70. [PMID: 12555809 DOI: 10.1139/o02-164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression regulation of the beta-globin gene cluster is a result of synergistic interactions between cis-elements and trans-acting factors. Previous studies usually concentrated on the core sequence of each hypersensitive site in the locus control region of the beta-globin gene cluster. But more and more evidence illustrates that the flanking regions are indispensable also. Using electrophoretic mobility shift assay and solid-phase DNase I footprinting methods, we identified a small nuclear protein from K562 cells that binds specifically to the first AT-rich region flanking the hypersensitive site 2 core sequence of the human beta-globin gene locus control region. N-terminal sequencing of the enriched protein proved that it is a member of the high-mobility group protein 2 family. This indicates that the AT-rich region in human hypersensitive site 2 may take part in the regulation of the beta-globin gene cluster by facilitating DNA bending, which is a prerequisite for the looping mechanism in this region.
Collapse
Affiliation(s)
- Xiang Lv
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Jia CP, Huang SZ, Yan JB, Xiao YP, Ren ZR, Zeng YT. Effects of human locus control region elements HS2 and HS3 on human β-globin gene expression in transgenic mouse. Blood Cells Mol Dis 2003; 31:360-9. [PMID: 14636653 DOI: 10.1016/j.bcmd.2003.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The locus control region (LCR) is the most important cis-element in the regulation of beta-globin gene expression. DNaseI-hypersensitive site (HS) 2 and HS3 are two significant components of beta-LCR. To examine the effect of HS2, HS3, and HS2-HS3 (combination of HS2 and HS3) on the spatial and temporal expression of the human beta-globin gene, we have produced transgenic mice with constructs, in which the gene encoding enhanced green fluorescent protein (EGFP) is driven by beta-globin promoter and under the control of HS2, HS3, and HS2-HS3, respectively. The results showed that HS2 and HS3 each had the same enhancement activity in regulation of beta-globin gene expression in transgenic mice. When HS2 and HS3 were in combination (HS2-HS3), the two cis-elements showed a marked synergy in regulating beta-globin gene spatial and temporal expression as well as its expression level in transgenic mice although the EGFP expression varied largely among different transgenic mouse litters. The results also showed that HS2 was able to confer beta-globin gene expression in embryonic yolk sac, fetal liver, and adult bone marrow, which was not developmentally stage-specific, while HS3 could confer the same beta-globin gene expression in the adult. Thus, HS3 was different from HS2, the former being more important for specific expression of beta-globin gene in the developmental stages and the switch of gamma-->beta-globin genes. Our results indicate that the mechanism of gamma-->beta switch could be best explained by the "divided model."
Collapse
Affiliation(s)
- Chun-Ping Jia
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Walters MC, Nienhuis AW, Vichinsky E. Novel therapeutic approaches in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2003:10-34. [PMID: 12446417 DOI: 10.1182/asheducation-2002.1.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this update, selected clinical features of sickle cell disease and their management are reviewed. In addition, the current status of interventions that have curative potential for sickle cell disease is discussed, with particular attention focused on indications, methodology, recent results, and challenges to wider clinical application. In Section I, Dr. Nienhuis describes recent improvements in vector technology, safety, and replacement gene expression that are creating the potential for clinical application of this technology. In Section II, Dr. Vichinsky reviews our current understanding of the pathophysiology and treatment of pulmonary injury in sickle cell disease. The acute and chronic pulmonary complications of sickle cell disease, modulators and predictors of severity, and conventional and novel treatment of these complications are discussed. In Section III, Dr. Walters reviews the current status of hematopoietic cell transplantation for sickle cell disease. Newer efforts to expand its availability by identifying alternate sources of stem cells and by reducing the toxicity of transplantation are discussed.
Collapse
Affiliation(s)
- Mark C Walters
- Children's Hospital & Research Center, Oakland, University of California, San Francisco, 94609, USA
| | | | | |
Collapse
|
30
|
Nienhuis AW, Hanawa H, Sawai N, Sorrentino BP, Persons DA. Development of gene therapy for hemoglobin disorders. Ann N Y Acad Sci 2003; 996:101-11. [PMID: 12799288 DOI: 10.1111/j.1749-6632.2003.tb03238.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hemoglobin disorders, severe beta-thalassemia and sickle cell anemia, are prevalent monogenetic disorders which cause severe morbidity and mortality worldwide. Gene therapy approaches to these disorders envision stem cell targeted gene transfer, autologous transplantation of gene-corrected stem cells, and functional, phenotypically corrective globin gene expression in developing erythroid cells. Lentiviral vector systems potentially appear to afford adequately efficient gene transfer into stem cells and are capable, with appropriate genetic engineering, of transferring a globin gene with the regulatory elements required to achieve high-level, erythroid-specific expression. Herein are results obtained in use of lentiviral vectors to insert a gamma-globin gene into murine stem cells with phenotypic correction of the thalassemia phenotype. Further, we have developed a drug-selection system for genetically modified stem cells based on a mutant form of methylguanine, methyltransferase, which allows selective amplification of genetically modified stem cells with phenotypic correction even in the absence of myeloablation prior to stem cell transplantation. These advances provide essential preclinical data which build toward the development of effective gene therapy for the severe hemoglobin disorders.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | |
Collapse
|
31
|
Tang Y, Liu DP, Liang CC. Further understanding of the beta-globin locus regulation at the molecular level: looping or linking models? Genes Cells 2003; 7:889-900. [PMID: 12296820 DOI: 10.1046/j.1365-2443.2002.00568.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human beta-globin locus is a classic model of the eukaryotic multigene family with tissue- and temporally specific expression. Over the past few years, great advances have been achieved in studies of beta-globin locus regulation. The dominant role of the beta-globin locus control region (LCR) in chromatin opening and developmental switching has been challenged, and elements beyond the LCR have been studied in depth. More recently, the fields of research have been expanded to intergenic transcription, nuclear localization and histone modification. Several models have been proposed to elucidate the regulation mechanism; among them, the looping and linking models are the most prevalent. Different models are the summarization of the observations made at different times and a persuasive model must be based on a systematic understanding of the numerous observations. The objective of this review is to provide an overview of progress in the area of beta-globin regulation and then to discuss models for it.
Collapse
Affiliation(s)
- Yi Tang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, PR China
| | | | | |
Collapse
|
32
|
Rivella S, May C, Chadburn A, Rivière I, Sadelain M. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 2003; 101:2932-9. [PMID: 12480689 DOI: 10.1182/blood-2002-10-3305] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients affected by beta-thalassemia major require lifelong transfusions because of insufficient or absent production of the beta chain of hemoglobin (Hb). A minority of patients are cured by allogeneic bone marrow transplantation. In the most severe of the hitherto available mouse models of beta-thalassemia, a model for human beta-thalassemia intermedia, we previously demonstrated that globin gene transfer in bone marrow cells is curative, stably raising Hb levels from 8.0-8.5 to 11.0-12.0 g/dL in long-term chimeras. To fully assess the therapeutic potential of gene therapy in the context of a lethal anemia, we now have created an adult model of beta(0)-thalassemia major. In this novel model, mice engrafted with beta-globin-null (Hbb(th3/th3)) fetal liver cells succumb to ineffective erythropoiesis within 60 days. These mice rapidly develop severe anemia (2-4 g/dL), massive splenomegaly, extramedullary hematopoiesis (EMH), and hepatic iron overload. Remarkably, most mice (11 of 13) treated by lentivirus-mediated globin gene transfer were rescued. Long-term chimeras with an average 1.0-2.4 copies of the TNS9 vector in their hematopoietic and blood cells stably produced up to 12 g/dL chimeric Hb consisting of mu alpha(2):hu beta(2) tetramers. Pathologic analyses indicated that erythroid maturation was restored, while EMH and iron overload dramatically decreased. Thus, we have established an adult animal model for the most severe of the hemoglobinopathies, Cooley anemia, which should prove useful to investigate both genetic and pharmacologic treatments. Our findings demonstrate the remarkable efficacy of lentivirus-mediated globin gene transfer in treating a fulminant blood disorder and strongly support the efficacy of gene therapy in the severe hemoglobinopathies.
Collapse
Affiliation(s)
- Stefano Rivella
- Department of Human Genetics/Medicine, the Gene Transfer and Somatic Cell Engineering Laboratory, and the Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 2003; 101:2175-83. [PMID: 12411297 DOI: 10.1182/blood-2002-07-2211] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased fetal hemoglobin (HbF) levels diminish the clinical severity of beta-thalassemia and sickle cell anemia. A treatment strategy using autologous stem cell-targeted gene transfer of a gamma-globin gene may therefore have therapeutic potential. We evaluated oncoretroviral- and lentiviral-based gamma-globin vectors for expression in transduced erythroid cell lines. Compared with gamma-globin, oncoretroviral vectors containing either a beta-spectrin or beta-globin promoter and the alpha-globin HS40 element, a gamma-globin lentiviral vector utilizing the beta-globin promoter and elements from the beta-globin locus control region demonstrated a higher probability of expression. This lentiviral vector design was evaluated in lethally irradiated mice that received transplants of transduced bone marrow cells. Long-term, stable erythroid expression of human gamma-globin was observed with levels of vector-encoded gamma-globin mRNA ranging from 9% to 19% of total murine alpha-globin mRNA. The therapeutic efficacy of the vector was subsequently evaluated in a murine model of beta-thalassemia intermedia. The majority of mice that underwent transplantation expressed significant levels of chimeric m(alpha)(2)h(gamma)(2) molecules (termed HbF), the amount of which correlated with the degree of phenotypic improvement. A group of animals with a mean HbF level of 21% displayed a 2.5 g/dL (25 g/L) improvement in Hb concentration and normalization of erythrocyte morphology relative to control animals. gamma-Globin expression and phenotypic improvement was variably lower in other animals due to differences in vector copy number and chromosomal position effects. These data establish the potential of using a gamma-globin lentiviral vector for gene therapy of beta-thalassemia.
Collapse
Affiliation(s)
- Derek A Persons
- Division of Experimental Hematology, Department of Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | |
Collapse
|
34
|
Jackson DA, McDowell JC, Dean A. Beta-globin locus control region HS2 and HS3 interact structurally and functionally. Nucleic Acids Res 2003; 31:1180-90. [PMID: 12582237 PMCID: PMC150235 DOI: 10.1093/nar/gkg217] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The overall structure of the DNase I hypersensitive sites (HSs) that comprise the beta-globin locus control region (LCR) is highly conserved among mammals, implying that the HSs have conserved functions. However, it is not well understood how the LCR HSs, either individually or collectively, activate transcription. We analyzed the interactions of HS2, HS3 and HS4 with the human epsilon- and beta-globin genes in chromatinized episomes in fetal/embryonic K562 cells. Only HS2 activates transcription of the epsilon-globin gene, while all three HSs activate the beta-globin gene. HS3 stimulates the beta-globin gene constitutively, but HS2 and HS4 transactivation requires expression of the transcription factor EKLF, which is not present in K562 cells but is required for beta-globin expression in vivo. To begin addressing how the individual HSs may interact with one another in a complex, we linked the beta-globin gene to both the HS2 and HS3. HS2 and HS3 together resulted in synergistic stimulation of beta-globin transcription. Unexpectedly, mutated, inactive forms of HS2 impeded the activation of the beta-globin gene by HS3. Thus, there appear to be distinct interactions among the HSs and between the HSs and the globin genes. These preferential, non-exclusive interactions may underlie an important structural and functional cooperativity among the regulatory sequences of the beta-globin locus in vivo.
Collapse
Affiliation(s)
- David A Jackson
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892-2715, USA
| | | | | |
Collapse
|
35
|
Sutter NB, Scalzo D, Fiering S, Groudine M, Martin DIK. Chromatin insulation by a transcriptional activator. Proc Natl Acad Sci U S A 2003; 100:1105-10. [PMID: 12547916 PMCID: PMC298734 DOI: 10.1073/pnas.242732999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2002] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression.
Collapse
Affiliation(s)
- Nathan B Sutter
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
36
|
Hardison RC, Chiaromonte F, Kolbe D, Wang H, Petrykowska H, Elnitski L, Yang S, Giardine B, Zhang Y, Riemer C, Schwartz S, Haussler D, Roskin KM, Weber RJ, Diekhans M, Kent WJ, Weiss MJ, Welch J, Miller W. Global predictions and tests of erythroid regulatory regions. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 68:335-44. [PMID: 15338635 DOI: 10.1101/sqb.2003.68.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- R C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Routledge SJE, Proudfoot NJ. Definition of transcriptional promoters in the human beta globin locus control region. J Mol Biol 2002; 323:601-11. [PMID: 12419253 DOI: 10.1016/s0022-2836(02)01011-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous studies on the human beta globin gene cluster revealed the presence of intergenic transcripts throughout the locus, and demonstrated that transcription of the locus control region (LCR) initiates within an ERV9 endogenous retroviral long-terminal repeat (LTR) upstream of DNase I hypersensitive site 5. We show, using a combination of assays, that there are additional sites of transcription initiation within the LCR at hypersensitive sites 2 and 3. We have defined sites of transcription initiation, which occurs at discrete positions in a direction towards the globin genes. In addition, we show that mutation of specific transcription factor binding sites within HS2 leads to a reduction in transcription levels from within this site. We propose that these initiation events within the LCR can account for the observed orientation dependence of LCR function, and contribute to the open chromatin configuration of the beta globin locus. In addition, transcription from within the LCR hypersensitive sites could compensate for the absence of the ERV9 LTR in many transgenic mice lines, which nevertheless regulate their globin clusters correctly.
Collapse
Affiliation(s)
- S J E Routledge
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| | | |
Collapse
|
38
|
Johnson KD, Norton JE, Bresnick EH. Requirements for utilization of CREB binding protein by hypersensitive site two of the beta-globin locus control region. Nucleic Acids Res 2002; 30:1522-30. [PMID: 11917012 PMCID: PMC101831 DOI: 10.1093/nar/30.7.1522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Strong transactivation of the beta-globin genes is conferred by the beta-globin locus control region (LCR), which consists of four erythroid-specific DNase I hypersensitive sites (HS1-HS4). HS2 has a powerful enhancer activity dependent upon tandem binding sites for the erythroid cell- and megakaryocyte-specific transcription factor NF-E2. An important co-activator-mediating transactivation by HS2 is the histone acetyltransferase (HAT) CREB binding protein (CBP). We showed previously that recruitment of a GAL4-CBP fusion protein to HS2 largely bypassed the requirement of the NF-E2 sites for transactivation. To determine whether GAL4-CBP recruitment is sufficient for transactivation, we assessed the importance of cis-elements within HS2. Docking of GAL4-CBP upstream of an Agamma-globin promoter lacking HS2 only weakly activated the promoter, indicating that HS2 components are required for GAL4-CBP-mediated transactivation. Sequences upstream and downstream of the NF-E2 sites were required for maximal GAL4-CBP-mediated transactivation, and HAT catalytic activity of GAL4-CBP was critical. No single factor-binding site was required for GAL4-CBP-mediated transactivation. However, deletion of two sites, a CACC site and an E-box, abolished transactivation in transient and stable transfection assays. These results suggest that NF-E2 recruits CBP as a critical step in transactivation, but additional components of HS2 are required to achieve maximal enhancer activity.
Collapse
Affiliation(s)
- Kirby D Johnson
- University of Wisconsin Medical School, Department of Pharmacology, Molecular and Cellular Pharmacology Program, 383 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
39
|
Abstract
The human beta-globin gene locus is the subject of intense study, and over the past two decades a wealth of information has accumulated on how tissue-specific and stage-specific expression of its genes is achieved. The data are extensive and it would be difficult, if not impossible, to formulate a comprehensive model integrating every aspect of what is currently known. In this review, we introduce the fundamental characteristics of globin locus regulation as well as questions on which much of the current research is predicated. We then outline a hypothesis that encompasses more recent results, focusing on the modification of higher-order chromatin structure and recruitment of transcription complexes to the globin locus. The essence of this hypothesis is that the locus control region (LCR) is a genetic entity highly accessible to and capable of recruiting, with great efficiency, chromatin-modifying, coactivator, and transcription complexes. These complexes are used to establish accessible chromatin domains, allowing basal factors to be loaded on to specific globin gene promoters in a developmental stage-specific manner. We conceptually divide this process into four steps: (a) generation of a highly accessible LCR holocomplex; (b) recruitment of transcription and chromatin-modifying complexes to the LCR; (c) establishment of chromatin domains permissive for transcription; (d) transfer of transcription complexes to globin gene promoters.
Collapse
Affiliation(s)
- Padraic P Levings
- Department of Biochemistry and Molecular Biology, Gene Therapy Center, Center for Mammalian Genetics, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
40
|
Molete JM, Petrykowska H, Sigg M, Miller W, Hardison R. Functional and binding studies of HS3.2 of the beta-globin locus control region. Gene 2002; 283:185-97. [PMID: 11867225 DOI: 10.1016/s0378-1119(01)00858-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distal locus control region (LCR) is required for high-level expression of the complex of genes (HBBC) encoding the beta-like globins of mammals in erythroid cells. Several major DNase hypersensitive sites (HSs 1-5) mark the LCR. Sequence conservation and direct experimental evidence have implicated sequences within and between the HS cores in function of the LCR. In this report we confirm the mapping of a minor HS between HS3 and HS4, called HS3.2, and show that sequences including it increase the number of random integration sites at which a drug resistance gene is expressed. We also show that nuclear proteins including GATA1 and Oct1 bind specifically to sequences within HS3.2. However, the protein Pbx1, whose binding site is the best match to one highly conserved sequence, does not bind strongly. GATA1 and Oct1 also bind in the HS cores of the LCR and to promoters in HBBC. Their binding to this minor HS suggests that they may be used in assembly of a large complex containing multiple regulatory sequences.
Collapse
Affiliation(s)
- Joseph M Molete
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 206 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
41
|
Schübeler D, Groudine M, Bender MA. The murine beta-globin locus control region regulates the rate of transcription but not the hyperacetylation of histones at the active genes. Proc Natl Acad Sci U S A 2001; 98:11432-7. [PMID: 11553791 PMCID: PMC58747 DOI: 10.1073/pnas.201394698] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 07/27/2001] [Indexed: 12/24/2022] Open
Abstract
Locus control regions (LCRs) are defined by their ability to confer high-level tissue-specific expression to linked genes in transgenic assays. Previously, we reported that, at its native site, the murine beta-globin LCR is required for high-level beta-globin gene expression, but is not required to initiate an open chromatin conformation of the locus. To further investigate the mechanism of LCR-mediated transcriptional enhancement, we have analyzed allele-specific beta-globin expression and the pattern of histone acetylation in the presence and absence of the LCR. In single cells from mice heterozygous for a deletion of the LCR, beta-globin expression from the LCR-deleted allele is consistently low ( approximately 1-4% of wild type). Thus, the endogenous LCR enhances globin gene expression by increasing the rate of transcription from each linked allele rather than by increasing the probability of establishing transcription per se. Furthermore, in erythroid cells from mice homozygous for the highly expressing wild-type beta-globin locus, hyperacetylation of histones H3 and H4 is localized to the LCR and active genes. In mice homozygous for the LCR deletion reduced histone hyperacetylation is observed in LCR proximal sequences; however, deletion of the LCR has no effect on the localized hyperacetylation of the genes. Together, our results suggest that, in its native genomic context, the LCR follows the rate model of enhancer function, and that the developmentally specific hyperacetylation of the globin genes is independent of both the rate of transcription and the presence of the LCR.
Collapse
Affiliation(s)
- D Schübeler
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|