1
|
Moeller-McCoy CA, Wieser TA, Lubin JW, Gillespie AE, Ramirez JA, Paschini M, Wuttke DS, Lundblad V. The canonical RPA complex interacts with Est3 to regulate yeast telomerase activity. Proc Natl Acad Sci U S A 2025; 122:e2419309122. [PMID: 39913192 PMCID: PMC11848354 DOI: 10.1073/pnas.2419309122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025] Open
Abstract
In most eukaryotic organisms, cells that rely on continuous cell division employ the enzyme telomerase which replenishes chromosome termini through the addition of telomeric repeats. In budding yeast, the telomerase holoenzyme is composed of a catalytic core associated with two regulatory subunits, Est1 and Est3. The Est1 protein binds a telomere-specific RPA-like complex to recruit telomerase to chromosome ends. However, the regulatory function of the Est3 subunit has remained elusive. We report here that an interaction between Est3 and the canonical RPA complex is required for in vivo telomerase function, as revealed by mutations in RPA2 that confer an Est (Ever shorter telomeres) phenotype, characteristic of a defect in the telomerase pathway. Binding between RPA and telomerase, which is supported by compensatory charge-swap mutations in EST3 and RPA2, utilizes a surface on Est3 that is structurally analogous to an interface on the human TPP1 protein that is required for telomerase processivity. Mutations in a subset of conserved DNA contact residues in RPA also result in short telomeres and senescence, which we show is due to a requirement for DNA binding after RPA interacts with telomerase. We propose that once RPA forms a complex with telomerase, RPA utilizes a subset of DNA-binding domains to stabilize the interaction between the telomerase active site and telomeric substrates, thereby facilitating enzyme processivity. These results, combined with prior observations, show that yeast telomerase interacts with two different high-affinity ssDNA-binding complexes, indicating that management of single-stranded DNA is integral to effective telomerase function.
Collapse
Affiliation(s)
- Corinne A. Moeller-McCoy
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Thomas A. Wieser
- Department of Biochemistry, University of Colorado, Boulder, CO80309
| | - Johnathan W. Lubin
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Abigail E. Gillespie
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Jocelyn A. Ramirez
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Margherita Paschini
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Deborah S. Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO80309
| | - Victoria Lundblad
- Salk Institute for Biological Studies, La Jolla, CA92037
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
5
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
6
|
Abstract
Chromatin immunoprecipitation, commonly referred to as ChIP, is a powerful technique for the evaluation of in vivo interactions of proteins with specific regions of genomic DNA. Formaldehyde is used in this technique to cross-link proteins to DNA in vivo, followed by the extraction of chromatin from cross-linked cells and tissues. Harvested chromatin is sheared and subsequently used in an immunoprecipitation incorporating antibodies specific to protein(s) of interest and thus coprecipitating and enriching the cross-linked, protein-associated DNA. The cross-linking process can be reversed, and protein-bound DNA fragments of optimal length ranging from 200 to 1000 base pairs (bp) can subsequently be purified and measured or sequenced by numerous analytical methods. In this protocol, two different fixation methods are described in detail. The first involves the standard fixation of cells and tissue by formaldehyde if the target antigen is highly abundant. The dual cross-linking procedure presented at the end includes an additional preformaldehyde cross-linking step and can be especially useful when the target protein is in low abundance or if it is indirectly associated with chromatin DNA through another protein.
Collapse
|
7
|
Grabuschnig S, Soh J, Heidinger P, Bachler T, Hirschböck E, Rosales Rodriguez I, Schwendenwein D, Sensen CW. Circulating cell-free DNA is predominantly composed of retrotransposable elements and non-telomeric satellite DNA. J Biotechnol 2020; 313:48-56. [DOI: 10.1016/j.jbiotec.2020.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
|
8
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Hocher A, Ruault M, Kaferle P, Descrimes M, Garnier M, Morillon A, Taddei A. Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions. Genome Res 2018; 28:1867-1881. [PMID: 30355601 PMCID: PMC6280759 DOI: 10.1101/gr.236554.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly, and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into extended silent domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells, and stopping at zones of histone mark transitions including H3K79 trimethylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Last, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.
Collapse
Affiliation(s)
- Antoine Hocher
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Petra Kaferle
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Marc Descrimes
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
10
|
Abstract
Dna2 is a nuclease and helicase that functions redundantly with other proteins in Okazaki fragment processing, double-strand break resection, and checkpoint kinase activation. Dna2 is an essential enzyme, required for yeast and mammalian cell viability. Here, we report that numerous mutations affecting the DNA damage checkpoint suppress dna2∆ lethality in Saccharomyces cerevisiaedna2∆ cells are also suppressed by deletion of helicases PIF1 and MPH1, and by deletion of POL32, a subunit of DNA polymerase δ. All dna2∆ cells are temperature sensitive, have telomere length defects, and low levels of telomeric 3' single-stranded DNA (ssDNA). Interestingly, Rfa1, a subunit of the major ssDNA binding protein RPA, and the telomere-specific ssDNA binding protein Cdc13, often colocalize in dna2∆ cells. This suggests that telomeric defects often occur in dna2∆ cells. There are several plausible explanations for why the most critical function of Dna2 is at telomeres. Telomeres modulate the DNA damage response at chromosome ends, inhibiting resection, ligation, and cell-cycle arrest. We suggest that Dna2 nuclease activity contributes to modulating the DNA damage response at telomeres by removing telomeric C-rich ssDNA and thus preventing checkpoint activation.
Collapse
|
11
|
Abstract
Accurate repair of DNA double-strand breaks (DSBs) is carried out by homologous recombination. In order to repair DNA breaks by the recombination pathway, the 5'-terminated DNA strand at DSB sites must be first nucleolytically processed to produce 3'-overhang. The process is termed DNA end resection and involves the interplay of several nuclease complexes. DNA end resection commits DSB repair to the recombination pathway including a process termed single-strand annealing, as resected DNA ends are generally nonligatable by the competing nonhomologous end-joining machinery. Biochemical reconstitution experiments provided invaluable mechanistic insights into the DNA end resection pathways. In this chapter, we describe preparation procedures of key proteins involved in DNA end resection in human cells, including the MRE11-RAD50-NBS1 complex, phosphorylated variant of CtIP, the DNA2 nuclease-helicase with its helicase partners Bloom (BLM) or Werner (WRN), as well as the single-stranded DNA-binding protein replication protein A. The availability of recombinant DNA end resection factors will help to further elucidate resection mechanisms and regulatory processes that may involve novel protein partners and posttranslational modifications.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
12
|
Jia PP, Junaid M, Ma YB, Ahmad F, Jia YF, Li WG, Pei DS. Role of human DNA2 (hDNA2) as a potential target for cancer and other diseases: A systematic review. DNA Repair (Amst) 2017; 59:9-19. [PMID: 28903076 DOI: 10.1016/j.dnarep.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 11/28/2022]
Abstract
DNA nuclease/helicase 2 (DNA2), a multi-functional protein protecting the high fidelity of genomic transmission, plays critical roles in DNA replication and repair processes. In the maturation of Okazaki fragments, DNA2 acts synergistically with other enzymes to cleave the DNA-RNA primer flaps via different pathways. DNA2 is also involved in the stability of mitochondrial DNA and the maintenance of telomeres. Moreover, DNA2 potentially participates in controlling the cell cycle by repairing the DNA replication faults at main checkpoints. In addition, previous evidences demonstrated that DNA2 also functions in the repair process of DNA damages, such as base excision repair (BER). Currently, large studies revealed the structures and functions of DNA2 in prokaryotes and unicellular eukaryotes, such as bacteria and yeast. However, the studies that highlighted the functions of human DNA2 (hDNA2) and the relationships with other multifunctional proteins are still elusive, and more precise investigations are immensely needed. Therefore, this review mainly encompasses the key functions of DNA2 in human cells with various aspects, especially focusing on the genome integrity, and also generalizes the recent insights to the mechanisms related to the occurrence of cancer and other diseases potentially linked to the mutations in DNA2.
Collapse
Affiliation(s)
- Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; College of Life Science, Henan Normal University, Xinxiang 453007, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China
| | - Farooq Ahmad
- Sustainable Development Study Centre, GC University Lahore, Pakistan
| | - Yong-Fang Jia
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China.
| |
Collapse
|
13
|
Pawłowska E, Szczepanska J, Blasiak J. DNA2-An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein? Int J Mol Sci 2017; 18:ijms18071562. [PMID: 28718810 PMCID: PMC5536050 DOI: 10.3390/ijms18071562] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
The human DNA2 (DNA replication helicase/nuclease 2) protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER), interacting with the replication protein A (RPA) and the flap endonuclease 1 (FEN1). DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN) and Bloom syndrome protein (BLM). In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB) repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5' adduct resulting from a chemical group bound to DNA 5' ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.
Collapse
Affiliation(s)
- Elzbieta Pawłowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
14
|
Pinto C, Kasaciunaite K, Seidel R, Cejka P. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. eLife 2016; 5. [PMID: 27612385 PMCID: PMC5030094 DOI: 10.7554/elife.18574] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI:http://dx.doi.org/10.7554/eLife.18574.001
Collapse
Affiliation(s)
- Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | - Ralf Seidel
- Institute of Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Jia N, Liu X, Gao H. A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants. PLANT PHYSIOLOGY 2016; 171:318-33. [PMID: 26951435 PMCID: PMC4854720 DOI: 10.1104/pp.16.00312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Plant meristem cells divide and differentiate in a spatially and temporally regulated manner, ultimately giving rise to organs. In this study, we isolated the Arabidopsis jing he sheng 1 (jhs1) mutant, which exhibited retarded growth, an abnormal pattern of meristem cell division and differentiation, and morphological defects such as fasciation, an irregular arrangement of siliques, and short roots. We identified JHS1 as a homolog of human and yeast DNA Replication Helicase/Nuclease2, which is known to be involved in DNA replication and damage repair. JHS1 is strongly expressed in the meristem of Arabidopsis. The jhs1 mutant was sensitive to DNA damage stress and had an increased DNA damage response, including increased expression of genes involved in DNA damage repair and cell cycle regulation, and a higher frequency of homologous recombination. In the meristem of the mutant plants, cell cycle progression was delayed at the G2 or late S phase and genes essential for meristem maintenance were misregulated. These results suggest that JHS1 plays an important role in DNA replication and damage repair, meristem maintenance, and development in plants.
Collapse
Affiliation(s)
- Ning Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| |
Collapse
|
16
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
17
|
Abstract
DNA damage response pathways are crucial for protecting genome stability in all eukaryotes. Saccharomyces cerevisiaeDna2 has both helicase and nuclease activities that are essential for Okazaki fragment maturation, and Dna2 is involved in long-range DNA end resection at double-strand breaks. Dna2 forms nuclear foci in response to DNA replication stress and to double-strand breaks. We find that Dna2-GFP focus formation occurs mainly during S phase in unperturbed cells. Dna2 colocalizes in nuclear foci with 25 DNA repair proteins that define recombination repair centers in response to phleomycin-induced DNA damage. To systematically identify genes that affect Dna2 focus formation, we crossed Dna2-GFP into 4293 nonessential gene deletion mutants and assessed Dna2-GFP nuclear focus formation after phleomycin treatment. We identified 37 gene deletions that affect Dna2-GFP focus formation, 12 with fewer foci and 25 with increased foci. Together these data comprise a useful resource for understanding Dna2 regulation in response to DNA damage.
Collapse
|
18
|
Abstract
Mec1 (ATR in humans) is the principal kinase responsible for checkpoint activation in response to replication stress and DNA damage in Saccharomyces cerevisiae. Checkpoint initiation requires stimulation of Mec1 kinase activity by specific activators. The complexity of checkpoint initiation in yeast increases with the complexity of chromosomal states during the different phases of the cell cycle. In G1 phase, the checkpoint clamp 9-1-1 is both necessary and sufficient for full activation of Mec1 kinase whereas in G2/M, robust checkpoint function requires both 9-1-1 and the replisome assembly protein Dpb11 (human TopBP1). A third activator, Dna2, is employed specifically during S phase to stimulate Mec1 kinase and to initiate the replication checkpoint. Dna2 is an essential nuclease-helicase that is required for proper Okazaki fragment maturation, for double-strand break repair, and for protecting stalled replication forks. Remarkably, all three Mec1 activators use an unstructured region of the protein, containing two critically important aromatic residues, in order to activate Mec1. A role for these checkpoint activators in channeling aberrant replication structures into checkpoint complexes is discussed.
Collapse
Affiliation(s)
- Paulina H Wanrooij
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
León-Ortiz AM, Svendsen J, Boulton SJ. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst) 2014; 19:152-62. [PMID: 24815912 DOI: 10.1016/j.dnarep.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Jennifer Svendsen
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
20
|
Lee M, Lee CH, Demin AA, Munashingha PR, Amangyeld T, Kwon B, Formosa T, Seo YS. Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 2014; 289:15064-79. [PMID: 24711454 DOI: 10.1074/jbc.m114.548388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism. We found that the recombination-defective Rad52-QDDD/AAAA mutant did not rescue dna2-K1080E, suggesting that Rad52-mediated recombination is important for suppression. The Rad52-mediated enzymatic stimulation of Dna2 or Rad27 is not a direct cause of suppression observed in vivo, as both Rad52 and Rad52-QDDD/AAAA proteins stimulated the endonuclease activities of both Dna2 and Rad27 to a similar extent. The recombination mediator activity of Rad52 was dispensable for the suppression, whereas both the DNA annealing activity and its ability to interact with Rad59 were essential. In addition, we found that several cohesion establishment factors, including Rsc2 and Elg1, were required for the Rad52-dependent suppression of dna2-K1080E. Our findings suggest a novel Rad52/Rad59-dependent, but Rad51-independent recombination pathway that could ultimately lead to the removal of faulty flaps in conjunction with cohesion establishment factors.
Collapse
Affiliation(s)
- Miju Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Chul-Hwan Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Annie Albert Demin
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Palinda Ruvan Munashingha
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tamir Amangyeld
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Buki Kwon
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tim Formosa
- the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Yeon-Soo Seo
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| |
Collapse
|
21
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
22
|
Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. Proc Natl Acad Sci U S A 2013; 110:E1992-2001. [PMID: 23671118 DOI: 10.1073/pnas.1300390110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dna2 is a nuclease-helicase involved in several key pathways of eukaryotic DNA metabolism. The potent nuclease activity of Saccharomyces cerevisiae Dna2 was reported to be required for all its in vivo functions tested to date. In contrast, its helicase activity was shown to be weak, and its inactivation affected only a subset of Dna2 functions. We describe here a complex interplay of the two enzymatic activities. We show that the nuclease of Dna2 inhibits its helicase by cleaving 5' flaps that are required by the helicase domain for loading onto its substrate. Mutational inactivation of Dna2 nuclease unleashes unexpectedly vigorous DNA unwinding activity, comparable with that of the most potent eukaryotic helicases. Thus, the ssDNA-specific nuclease activity of Dna2 limits and controls the enzyme's capacity to unwind dsDNA. We postulate that regulation of this interplay could modulate the biochemical properties of Dna2 and thus license it to carry out its distinct cellular functions.
Collapse
|
23
|
Lin W, Sampathi S, Dai H, Liu C, Zhou M, Hu J, Huang Q, Campbell J, Shin-Ya K, Zheng L, Chai W, Shen B. Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J 2013; 32:1425-39. [PMID: 23604072 DOI: 10.1038/emboj.2013.88] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/26/2013] [Indexed: 01/23/2023] Open
Abstract
Efficient and faithful replication of telomeric DNA is critical for maintaining genome integrity. The G-quadruplex (G4) structure arising in the repetitive TTAGGG sequence is thought to stall replication forks, impairing efficient telomere replication and leading to telomere instabilities. However, pathways modulating telomeric G4 are poorly understood, and it is unclear whether defects in these pathways contribute to genome instabilities in vivo. Here, we report that mammalian DNA2 helicase/nuclease recognizes and cleaves telomeric G4 in vitro. Consistent with DNA2's role in removing G4, DNA2 deficiency in mouse cells leads to telomere replication defects, elevating the levels of fragile telomeres (FTs) and sister telomere associations (STAs). Such telomere defects are enhanced by stabilizers of G4. Moreover, DNA2 deficiency induces telomere DNA damage and chromosome segregation errors, resulting in tetraploidy and aneuploidy. Consequently, DNA2-deficient mice develop aneuploidy-associated cancers containing dysfunctional telomeres. Collectively, our genetic, cytological, and biochemical results suggest that mammalian DNA2 reduces replication stress at telomeres, thereby preserving genome stability and suppressing cancer development, and that this may involve, at least in part, nucleolytic processing of telomeric G4.
Collapse
Affiliation(s)
- Weiqiang Lin
- Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The yeast Mec1 kinase is a key regulator of the DNA damage response (DDR). In this issue of Genes & Development, Kumar and Burgers (pp. 313-321) report that Ddc1, Dpb11, and Dna2 function in concert to activate Mec1 during S phase of the cell cycle. Furthermore, the Tel1 kinase also contributes to the DDR in S phase when Mec1 activation is compromised.
Collapse
Affiliation(s)
- Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
25
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
26
|
Duxin JP, Moore HR, Sidorova J, Karanja K, Honaker Y, Dao B, Piwnica-Worms H, Campbell JL, Monnat RJ, Stewart SA. Okazaki fragment processing-independent role for human Dna2 enzyme during DNA replication. J Biol Chem 2012; 287:21980-91. [PMID: 22570476 DOI: 10.1074/jbc.m112.359018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Cell Biology and Physiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection.
Collapse
Affiliation(s)
- Shilpa Sampathi
- WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | |
Collapse
|
28
|
Lee MH, Hollis SE, Yoo BH, Nykamp K. Caenorhabditis elegans DNA-2 helicase/endonuclease plays a vital role in maintaining genome stability, morphogenesis, and life span. Biochem Biophys Res Commun 2011; 407:495-500. [PMID: 21414295 DOI: 10.1016/j.bbrc.2011.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
In eukaryotes, highly conserved Dna2 helicase/endonuclease proteins are involved in DNA replication, DNA double-strand break repair, telomere regulation, and mitochondrial function. The Dna2 protein assists Fen1 (Flap structure-specific endonuclease 1) protein in the maturation of Okazaki fragments. In yeast, Dna2 is absolutely essential for viability, whereas Fen1 is not. In Caenorhabditis elegans, however, CRN-1 (a Fen1 homolog) is essential, but Dna2 is not. Here we explored the biological function of C. elegans Dna2 (Cedna-2) in multiple developmental processes. We find that Cedna-2 contributes to embryonic viability, the morphogenesis of both late-stage embryos and male sensory rays, and normal life span. Our results support a model whereby CeDNA-2 minimizes genetic defects and maintains genome integrity during cell division and DNA replication. These finding may provide insight into the role of Dna2 in other multi-cellular organisms, including humans, and could have important implications for development and treatment of human conditions linked to the accumulation of genetic defects, such as cancer or aging.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | |
Collapse
|
29
|
De Amicis A, Piane M, Ferrari F, Fanciulli M, Delia D, Chessa L. Role of senataxin in DNA damage and telomeric stability. DNA Repair (Amst) 2010; 10:199-209. [PMID: 21112256 DOI: 10.1016/j.dnarep.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/28/2010] [Accepted: 10/30/2010] [Indexed: 11/15/2022]
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin (SETX), a putative DNA/RNA helicase. The presence of the helicase domain led us to investigate whether SETX might play a role in DNA damage repair and telomere stability. We analyzed the response of AOA2 lymphocytes and lymphoblasts after treatment with camptothecin (CPT), mitomycin C (MMC), H₂O₂ and X-rays by cytogenetic and Q-FISH (quantitative-FISH) assays. The rate of chromosomal aberrations was normal in AOA2 cells after treatment with CPT, MMC, H₂O₂ and X-rays. Conversely, Q-FISH analysis showed constitutively reduced telomere length in AOA2 lymphocytes, compared to age-matched controls. Furthermore, CPT- or X-ray-induced telomere shortening was more marked in AOA2 than in control cells. The partial co-localization of SETX with telomeric DNA, demonstrated by combined immunofluorescence-Q-FISH and chromatin immunoprecipitation, suggests a possible involvement of SETX in telomere stability.
Collapse
Affiliation(s)
- Andrea De Amicis
- II School of Medicine, Department of Clinical and Molecular Medicine, University La Sapienza, Roma, Italy. andrea.deamicis@unirom
| | | | | | | | | | | |
Collapse
|
30
|
Balakrishnan L, Polaczek P, Pokharel S, Campbell JL, Bambara RA. Dna2 exhibits a unique strand end-dependent helicase function. J Biol Chem 2010; 285:38861-8. [PMID: 20929864 DOI: 10.1074/jbc.m110.165191] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dna2 endonuclease/helicase participates in eukaryotic DNA transactions including cleavage of long flaps generated during Okazaki fragment processing. Its unusual substrate interaction consists of recognition and binding of the flap base, then threading over the 5'-end of the flap, and cleaving periodically to produce a terminal product ∼5 nt in length. Blocking the 5'-end prevents cleavage. The Dna2 ATP-driven 5' to 3' DNA helicase function promotes motion of Dna2 on the flap, presumably aiding its nuclease function. Here we demonstrate using two different nuclease-dead Dna2 mutants that on substrates simulating Okazaki fragments, Dna2 must thread onto an unblocked 5' flap to display helicase activity. This requirement is maintained on substrates with single-stranded regions thousands of nucleotides in length. To our knowledge this is the first description of a eukaryotic helicase that cannot load onto its tracking strand internally but instead must enter from the end. Biologically, the loading requirement likely helps the helicase to coordinate with the Dna2 nuclease function to prevent creation of undesirably long flaps during DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Alternate DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by sequences that are widely distributed throughout the human genome. G-quadruplex secondary structures, formed by the stacking of planar quartets composed of four guanines that interact by Hoogsteen hydrogen bonding, can affect cellular DNA replication and transcription, and influence genomic stability. The unique metabolism of G-rich chromosomal regions that potentially form quadruplexes may influence a number of biological processes including immunoglobulin gene rearrangements, promoter activation and telomere maintenance. A number of human diseases are characterized by telomere defects, and it is proposed that G-quadruplex structures which form at telomere ends play an important role in telomere stability. Evidence from cellular studies and model organisms suggests that diseases with known defects in G4 DNA helicases are likely to be perturbed in telomere maintenance and cellular DNA replication. In this minireview, we discuss the connections of G-quadruplex nucleic acids to human genetic diseases and cancer based on the recent literature.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | |
Collapse
|
32
|
Paeschke K, McDonald KR, Zakian VA. Telomeres: structures in need of unwinding. FEBS Lett 2010; 584:3760-72. [PMID: 20637196 DOI: 10.1016/j.febslet.2010.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/26/2022]
Abstract
Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
33
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
34
|
Cdc13 and Telomerase Bind through Different Mechanisms at the Lagging- and Leading-Strand Telomeres. Mol Cell 2010; 38:842-52. [DOI: 10.1016/j.molcel.2010.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/20/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022]
|
35
|
Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:417-426. [PMID: 20544882 DOI: 10.1002/em.20576] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
36
|
Mitochondrial helicases and mitochondrial genome maintenance. Mech Ageing Dev 2010; 131:503-10. [PMID: 20576512 DOI: 10.1016/j.mad.2010.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 12/28/2022]
Abstract
Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus.
Collapse
|
37
|
Lee SH, Kim YR, Yoo NJ, Lee SH. Mutation and Expression of DNA2Gene in Gastric and Colorectal Carcinomas. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.4.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sung Hak Lee
- Department of Hospital Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yoo Ri Kim
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Nam Jin Yoo
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sug Hyung Lee
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Abstract
Dna2 is a highly conserved helicase/nuclease that in yeast participates in Okazaki fragment processing, DNA repair, and telomere maintenance. Here, we investigated the biological function of human Dna2 (hDna2). Immunofluorescence and biochemical fractionation studies demonstrated that hDna2 was present in both the nucleus and the mitochondria. Analysis of mitochondrial hDna2 revealed that it colocalized with a subfraction of DNA-containing mitochondrial nucleoids in unperturbed cells. Upon the expression of disease-associated mutant forms of the mitochondrial Twinkle helicase which induce DNA replication pausing/stalling, hDna2 accumulated within nucleoids. RNA interference-mediated depletion of hDna2 led to a modest decrease in mitochondrial DNA replication intermediates and inefficient repair of damaged mitochondrial DNA. Importantly, hDna2 depletion also resulted in the appearance of aneuploid cells and the formation of internuclear chromatin bridges, indicating that nuclear hDna2 plays a role in genomic DNA stability. Together, our data indicate that hDna2 is similar to its yeast counterpart and is a new addition to the growing list of proteins that participate in both nuclear and mitochondrial DNA maintenance.
Collapse
|
39
|
Ribeyre C, Lopes J, Boulé JB, Piazza A, Guédin A, Zakian VA, Mergny JL, Nicolas A. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 2009; 5:e1000475. [PMID: 19424434 PMCID: PMC2673046 DOI: 10.1371/journal.pgen.1000475] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/08/2009] [Indexed: 12/02/2022] Open
Abstract
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences. Changes in the primary DNA sequence are a major source of pathologies and cancers. The hereditary information also resides in secondary DNA structures, a layer of genetic information that remains poorly understood. Biophysical and structural studies have long established that, in vitro, the DNA molecule can adopt diverse structures different from the canonical Watson-Crick conformations. However, for a long time their existence in vivo has been regarded with a certain skepticism and their functional role elusive. One example is the G-quadruplex structure, which involves G-quartets that form between four DNA strands. Here, using in vitro and in vivo assays in the yeast S. cerevisiae, we reveal the unexpected role of the Pif1 helicase in maintaining the stability of the human CEB1 G-rich tandem repeat array. By site-directed mutagenesis, we show that the genomic instability of CEB1 repeats in absence of Pif1 and is directly dependent on the ability of CEB1 to form G-quadruplex structures. We show that Pif1 is very efficient in vitro in processing G-quadruplex structures formed by CEB1. We propose that Pif1 maintains CEB1 repeats by its ability to resolve G-quadruplex structures, thus providing circumstantial evidence of their formation in vivo.
Collapse
Affiliation(s)
- Cyril Ribeyre
- Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, Paris, France
| | - Judith Lopes
- Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, Paris, France
| | - Jean-Baptiste Boulé
- Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, Paris, France
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Aurèle Piazza
- Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, Paris, France
| | - Aurore Guédin
- Laboratoire de Biophysique, Museum National d'Histoire Naturelle USM 503, INSERM U565, CNRS UMR5153, Paris, France
| | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jean-Louis Mergny
- Laboratoire de Biophysique, Museum National d'Histoire Naturelle USM 503, INSERM U565, CNRS UMR5153, Paris, France
| | - Alain Nicolas
- Recombinaison et Instabilité Génétique, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
40
|
Kang YH, Kang MJ, Kim JH, Lee CH, Cho IT, Hurwitz J, Seo YS. The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing. J Biol Chem 2009; 284:10376-86. [PMID: 19181670 PMCID: PMC2667725 DOI: 10.1074/jbc.m808894200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/28/2009] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae MPH1 was first identified as a gene encoding a 3' to 5' DNA helicase, which when deleted leads to a mutator phenotype. In this study, we isolated MPH1 as a multicopy suppressor of the dna2K1080E helicase-negative lethal mutant. Purified Mph1 stimulated the endonuclease activities of both Fen1 and Dna2, which act faithfully in the processing of Okazaki fragments. This stimulation required neither ATP hydrolysis nor the helicase activity of Mph1. Multicopy expression of MPH1 also suppressed the temperature-sensitive growth defects in cells expressing dna2Delta405N, which lacks the N-terminal 405 amino acids of Dna2. However, Mph1 did not stimulate the endonuclease activity of the Dna2Delta405N mutant protein. The stimulation of Fen1 by Mph1 was limited to flap-structured substrates; Mph1 hardly stimulated the 5' to 3' exonuclease activity of Fen1. Mph1 binds to flap-structured substrate more efficiently than to nicked duplex structures, suggesting that the stimulatory effect of Mph1 is exerted through its binding to DNA substrates. In addition, we found that Mph1 reversed the inhibitory effects of replication protein A on Fen1 activity. Our biochemical and genetic data indicate that the in vivo suppression of Dna2 defects observed with both dna2K1080E and dna2Delta405N mutants occur via stimulation of Fen1 activity. These findings suggest that Mph1 plays an important, although not essential, role in processing of Okazaki fragments by facilitating the formation of ligatable nicks.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Stewart JA, Campbell JL, Bambara RA. Significance of the dissociation of Dna2 by flap endonuclease 1 to Okazaki fragment processing in Saccharomyces cerevisiae. J Biol Chem 2009; 284:8283-91. [PMID: 19179330 DOI: 10.1074/jbc.m809189200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Okazaki fragments are initiated by short RNA/DNA primers, which are displaced into flap intermediates for processing. Flap endonuclease 1 (FEN1) and Dna2 are responsible for flap cleavage. Replication protein A (RPA)-bound flaps inhibit cleavage by FEN1 but stimulate Dna2, requiring that Dna2 cleaves prior to FEN1. Upon cleavage, Dna2 leaves a short flap, which is then cut by FEN1 forming a nick for ligation. Both enzymes require a flap with a free 5'-end for tracking to the cleavage sites. Previously, we demonstrated that FEN1 disengages the tracking mechanism of Dna2 to remove it from the flap. To determine why the disengagement mechanism evolved, we measured FEN1 dissociation of Dna2 on short RNA and DNA flaps, which occur during flap processing. Dna2 tracked onto these flaps but could not cleave, presenting a block to FEN1 entry. However, FEN1 disengaged these nonproductively bound Dna2 molecules, proceeding on to conduct proper cleavage. These results clarify the importance of disengagement. Additional results showed that flap substrate recognition and tracking by FEN1, as occur during fragment processing, are required for effective displacement of the flap-bound Dna2. Dna2 was recently shown to dissociate flap-bound RPA, independent of cleavage. Using a nuclease-defective Dna2 mutant, we reconstituted the sequential dissociation reactions in the proposed RPA/Dna2/FEN1 pathway showing that, even without cutting, Dna2 enables FEN1 to cleave RPA-coated flaps. In summary, RPA, Dna2, and FEN1 have evolved highly coordinated binding properties enabling one protein to succeed the next for proper and efficient Okazaki flap processing.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
42
|
Budd ME, Campbell JL. Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS One 2009; 4:e4267. [PMID: 19165339 PMCID: PMC2625443 DOI: 10.1371/journal.pone.0004267] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 11/22/2022] Open
Abstract
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway.
Collapse
Affiliation(s)
- Martin E Budd
- Divisions of Biology and Chemistry, Caltech, Braun Laboratories, Pasadena, California, United States of America
| | | |
Collapse
|
43
|
Stewart JA, Miller AS, Campbell JL, Bambara RA. Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae. J Biol Chem 2008; 283:31356-65. [PMID: 18799459 DOI: 10.1074/jbc.m805965200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic Okazaki fragments are initiated by a RNA/DNA primer, which is removed before the fragments are joined. Polymerase delta displaces the primer into a flap for processing. Dna2 nuclease/helicase and flap endonuclease 1 (FEN1) are proposed to cleave the flap. The single-stranded DNA-binding protein, replication protein A (RPA), governs cleavage activity. Flap-bound RPA inhibits FEN1. This necessitates cleavage by Dna2, which is stimulated by RPA. FEN1 then cuts the remaining RPA-free flap to create a nick for ligation. Cleavage by Dna2 requires that it enter the 5'-end and track down the flap. Because Dna2 cleaves the RPA-bound flap, we investigated the mechanism by which Dna2 accesses the protein-coated flap for cleavage. Using a nuclease-defective Dna2 mutant, we showed that just binding of Dna2 dissociates the flap-bound RPA. Facile dissociation is specific to substrates with a genuine flap, and will not occur with an RPA-coated single strand. We also compared the cleavage patterns of Dna2 with and without RPA to better define RPA stimulation of Dna2. Stimulation derived from removal of DNA folding in the flap. Apparently, coordinated with its dissociation, RPA relinquishes the flap to Dna2 for tracking in a way that does not allow flap structure to reform. We also found that RPA strand melting activity promotes excessive flap elongation, but it is suppressed by Dna2-promoted RPA dissociation. Overall, results indicate that Dna2 and RPA coordinate their functions for efficient flap cleavage and preparation for FEN1.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
44
|
Masuda-Sasa T, Polaczek P, Peng XP, Chen L, Campbell JL. Processing of G4 DNA by Dna2 helicase/nuclease and replication protein A (RPA) provides insights into the mechanism of Dna2/RPA substrate recognition. J Biol Chem 2008; 283:24359-73. [PMID: 18593712 PMCID: PMC2528986 DOI: 10.1074/jbc.m802244200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/13/2008] [Indexed: 11/06/2022] Open
Abstract
The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair. The lagging strand DNA replication protein, Dna2, has demonstrated a unique localization to telomeres and a role in de novo telomere biogenesis, prompting us to study the activities of Dna2 on G4 DNA-containing substrates. We find that yeast Dna2 binds with 25-fold higher affinity to G4 DNA formed from yeast telomere repeats than to single-stranded DNA of the same sequence. Human Dna2 also binds G4 DNAs. The helicase activities of both yeast and human Dna2 are effective in unwinding G4 DNAs. On the other hand, the nuclease activities of both yeast and human Dna2 are attenuated by the formation of G4 DNA, with the extent of inhibition depending on the topology of the G4 structure. This inhibition can be overcome by replication protein A. Replication protein A is known to stimulate the 5'- to 3'-nuclease activity of Dna2; however, we go on to show that this same protein inhibits the 3'- to 5'-exo/endonuclease activity of Dna2. These observations are discussed in terms of possible roles for Dna2 in resolving G4 secondary structures that arise during Okazaki fragment processing and telomere lengthening.
Collapse
Affiliation(s)
| | | | | | | | - Judith L. Campbell
- Braun Laboratories, 147-75, California Institute of Technology, Pasadena,
California 91125
| |
Collapse
|
45
|
Saharia A, Guittat L, Crocker S, Lim A, Steffen M, Kulkarni S, Stewart SA. Flap endonuclease 1 contributes to telomere stability. Curr Biol 2008; 18:496-500. [PMID: 18394896 DOI: 10.1016/j.cub.2008.02.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
Abstract
Telomere stability plays an important role in the preservation of genomic stability and is maintained through the coordinated actions of telomere-specific proteins and DNA repair and replication proteins [1, 2]. Flap endonuclease 1 (FEN1) is a protein that plays a role in lagging-strand DNA replication, base excision repair, homologous recombination, and reinitiation of stalled replication forks [3, 4]. Here, we demonstrate that FEN1 depletion leads to telomere dysfunction characterized by the presence of gammaH2AX and sister telomere loss. Expression of catalytically active telomerase, the reverse transcriptase that adds telomeric repeats to chromosome ends, was sufficient to rescue telomere dysfunction upon FEN1 depletion. Strikingly, FEN1 depletion exclusively abrogates telomeres replicated by lagging-strand DNA replication. Genetic rescue experiments utilizing FEN1 mutant proteins that retained the ability to localize to telomeric repeats revealed that FEN1's nuclease activity and ability to interact with the Werner protein (WRN) and telomere-binding protein (TRF2) were required for FEN1 activity at the telomere. Given FEN1's role in lagging-strand DNA replication and reinitiation of stalled replication forks, we propose that FEN1 contributes to telomere stability by ensuring efficient telomere replication.
Collapse
Affiliation(s)
- Abhishek Saharia
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Wu X, Sandhu S, Ding H. Establishment of conditional knockout alleles for the gene encoding the regulator of telomere length (RTEL). Genesis 2007; 45:788-92. [DOI: 10.1002/dvg.20359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Masuda-Sasa T, Polaczek P, Campbell JL. Single strand annealing and ATP-independent strand exchange activities of yeast and human DNA2: possible role in Okazaki fragment maturation. J Biol Chem 2006; 281:38555-64. [PMID: 17032657 DOI: 10.1074/jbc.m604925200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.
Collapse
Affiliation(s)
- Taro Masuda-Sasa
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
48
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
49
|
Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 2006; 26:2490-500. [PMID: 16537895 PMCID: PMC1430326 DOI: 10.1128/mcb.26.7.2490-2500.2006] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus. Specifically, we show that deletion of PIF1 suppresses the lethality of a DNA2-null mutant. The pif1delta dna2delta strain remains methylmethane sulfonate sensitive and temperature sensitive; however, these phenotypes can be suppressed by further deletion of a subunit of pol delta, POL32. Deletion of PIF1 also suppresses the cold-sensitive lethality and hydroxyurea sensitivity of the pol32delta strain. Dna2 is thought to function by cleaving long flaps that arise during OFP due to excessive strand displacement by pol delta and/or by an as yet unidentified helicase. Thus, suppression of dna2delta can be rationalized if deletion of POL32 and/or PIF1 results in a reduction in long flaps that require Dna2 for processing. We further show that deletion of DNA2 suppresses the long-telomere phenotype and the high rate of formation of gross chromosomal rearrangements in pif1Delta mutants, suggesting a role for Dna2 in telomere elongation in the absence of Pif1.
Collapse
Affiliation(s)
- Martin E Budd
- Braun Laboratories, 147-75, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Yeast Dna2 helicase/nuclease is essential for DNA replication and assists FEN1 nuclease in processing a subset of Okazaki fragments that have long single-stranded 5′ flaps. It is also involved in the maintenance of telomeres. DNA2 is a gene conserved in eukaryotes, and a putative human ortholog of yeast DNA2 (ScDNA2) has been identified. Little is known about the role of human DNA2 (hDNA2), although complementation experiments have shown that it can function in yeast to replace ScDNA2. We have now characterized the biochemical properties of hDna2. Recombinant hDna2 has single-stranded DNA-dependent ATPase and DNA helicase activity. It also has 5′–3′ nuclease activity with preference for single-stranded 5′ flaps adjacent to a duplex DNA region. The nuclease activity is stimulated by RPA and suppressed by steric hindrance at the 5′ end. Moreover, hDna2 shows strong 3′–5′ nuclease activity. This activity cleaves single-stranded DNA in a fork structure and, like the 5′–3′ activity, is suppressed by steric hindrance at the 3′-end, suggesting that the 3′–5′ nuclease requires a 3′ single-stranded end for activation. These biochemical specificities are very similar to those of the ScDna2 protein, but suggest that the 3′–5′ nuclease activity may be more important than previously thought.
Collapse
Affiliation(s)
| | | | - Judith L. Campbell
- To whom correspondence should be addressed. Tel: +1 626 395 6053; Fax: +1 626 449 0756;
| |
Collapse
|