1
|
Wang Y, Myers G, Yu L, Deng K, Balbin-Cuesta G, Singh SA, Guan Y, Khoriaty R, Engel JD. TR4 and BCL11A repress γ-globin transcription via independent mechanisms. Blood 2024; 144:2762-2772. [PMID: 39393056 PMCID: PMC11862819 DOI: 10.1182/blood.2024024599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/13/2024] Open
Abstract
ABSTRACT Nuclear receptor TR4 (NR2C2) was previously shown to bind to the -117 position of the γ-globin gene promoters in vitro, which overlaps the more recently described BCL11 transcription factor A (BCL11A) binding site. The role of TR4 in human γ-globin gene repression has not been extensively characterized in vivo, whereas any relationship between TR4 and BCL11A regulation through the γ-globin promoters is unclear at present. We show here that TR4 and BCL11A competitively bind in vitro to distinct, overlapping sequences, including positions overlapping -117 of the γ-globin promoter. We found that TR4 represses γ-globin transcription and fetal hemoglobin accumulation in vivo in a BCL11A-independent manner. Finally, examination of the chromatin occupancy of TR4 within the β-globin locus, compared with BCL11A, shows that both bind avidly to the locus control region and other sites, but only BCL11A binds to the γ-globin promoters at statistically significant frequency. These data resolve an important discrepancy in the literature and, thus, clarify possible approaches to the treatment of sickle cell disease and β-thalassaemia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Kaiwen Deng
- Department of Computational and Medical Bioinformatics, University of Michigan Medical School, Ann Arbor, MI
| | - Ginette Balbin-Cuesta
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Sharon A. Singh
- Division of Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| | - Yuanfang Guan
- Department of Computational and Medical Bioinformatics, University of Michigan Medical School, Ann Arbor, MI
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
2
|
Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Res 2023; 51:1443-1457. [PMID: 36651297 PMCID: PMC9943680 DOI: 10.1093/nar/gkac1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xin Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- To whom correspondence should be addressed. Tel: +86 10 62734078; Fax: +86 10 62734078;
| |
Collapse
|
3
|
Xia L, Shen D, Zhang Y, Lu J, Wang M, Wang H, Chen Y, Xue D, Xie D, Li G. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J Cell Mol Med 2021; 25:2404-2417. [PMID: 33491272 PMCID: PMC7933964 DOI: 10.1111/jcmm.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/12/2023] Open
Abstract
Drug options for the life‐threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4‐LBD) and induces a conformational change in the secondary structure of TR4‐LBD. Bexarotene suppressed AtT‐20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4‐increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5’ promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH‐secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajiang Xie
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS One 2018; 13:e0190800. [PMID: 29324782 PMCID: PMC5764304 DOI: 10.1371/journal.pone.0190800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreER™ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells.
Collapse
|
5
|
Marxreiter S, Thummel CS. Adult functions for the Drosophila DHR78 nuclear receptor. Dev Dyn 2017; 247:315-322. [PMID: 29171103 DOI: 10.1002/dvdy.24608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Testicular Receptors 2 and 4 (TR2, TR4) comprise a small subfamily of orphan nuclear receptors. Genetic studies in mouse models have identified roles for TR4 in developmental progression, fertility, brain development, and metabolism, as well as genetic redundancy with TR2. Here we study the adult functions of the single Drosophila member of this subfamily, DHR78, with the goal of defining its ancestral functions in the absence of genetic redundancy. RESULTS We show that DHR78 mutants have a shortened lifespan, reduced motility, and mated DHR78 mutant females display a reduced feeding rate. Transcriptional profiling reveals a major role for DHR78 in promoting the expression of genes that are expressed in the midgut, suggesting that it contributes to nutrient uptake. We also identify roles for DHR78 in maintaining the expression of genes in the ecdysone and Notch signaling pathways. CONCLUSIONS This study provides a new context for linking the molecular activity of the TR orphan nuclear receptors with their complex roles in adult physiology and lifespan. Developmental Dynamics 247:315-322, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefanie Marxreiter
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
6
|
The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood 2017; 130:2537-2547. [PMID: 29018082 DOI: 10.1182/blood-2017-05-783159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
The orphan nuclear receptors TR4 (NR2C2) and TR2 (NR2C1) are the DNA-binding subunits of the macromolecular complex, direct repeat erythroid-definitive, which has been shown to repress ε- and γ-globin transcription during adult definitive erythropoiesis. Previous studies implied that TR2 and TR4 act largely in a redundant manner during erythroid differentiation; however, during the course of routine genetic studies, we observed multiple variably penetrant phenotypes in the Tr4 mutants, suggesting that indirect effects of the mutation might be masked by multiple modifying genes. To test this hypothesis, Tr4+/- mutant mice were bred into a congenic C57BL/6 background and their phenotypes were reexamined. Surprisingly, we found that homozygous Tr4 null mutant mice expired early during embryogenesis, around embryonic day 7.0, and well before erythropoiesis commences. We further found that Tr4+/- erythroid cells failed to fully differentiate and exhibited diminished proliferative capacity. Analysis of Tr4+/- mutant erythroid cells revealed that reduced TR4 abundance resulted in decreased expression of genes required for heme biosynthesis and erythroid differentiation (Alad and Alas2), but led to significantly increased expression of the proliferation inhibitory factor, cyclin dependent kinase inhibitor (Cdkn1c) These studies support a vital role for TR4 in promoting erythroid maturation and proliferation, and demonstrate that TR4 and TR2 execute distinct, individual functions during embryogenesis and erythroid differentiation.
Collapse
|
7
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
8
|
Murugananthkumar R, Akhila MV, Rajakumar A, Mamta SK, Sudhakumari CC, Senthilkumaran B. Molecular cloning, expression analysis and transcript localization of testicular orphan nuclear receptor 2 in the male catfish, Clarias batrachus. Gen Comp Endocrinol 2016; 239:71-79. [PMID: 26519761 DOI: 10.1016/j.ygcen.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish.
Collapse
Affiliation(s)
- R Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - M V Akhila
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - A Rajakumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - S K Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - C C Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
9
|
Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Blood 2015; 125:1477-87. [PMID: 25561507 DOI: 10.1182/blood-2014-10-605022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The orphan nuclear receptors TR2 and TR4 have been shown to play key roles in repressing the embryonic and fetal globin genes in erythroid cells. However, combined germline inactivation of Tr2 and Tr4 leads to periimplantation lethal demise in inbred mice. Hence, we have previously been unable to examine the consequences of their dual loss of function in adult definitive erythroid cells. To circumvent this issue, we generated conditional null mutants in both genes and performed gene inactivation in vitro in adult bone marrow cells. Compound Tr2/Tr4 loss of function led to induced expression of the embryonic εy and βh1 globins (murine counterparts of the human ε- and γ-globin genes). Additionally, TR2/TR4 function is required for terminal erythroid cell maturation. Loss of TR2/TR4 abolished their occupancy on the εy and βh1 gene promoters, and concurrently impaired co-occupancy by interacting corepressors. These data strongly support the hypothesis that the TR2/TR4 core complex is an adult stage-specific, gene-selective repressor of the embryonic globin genes. Detailed mechanistic understanding of the roles of TR2/TR4 and their cofactors in embryonic and fetal globin gene repression may ultimately enhance the discovery of novel therapeutic agents that can effectively inhibit their transcriptional activity and be safely applied to the treatment of β-globinopathies.
Collapse
|
10
|
Liu Y, Tao D, Lu Y, Yang Y, Ma Y, Zhang S. Targeted disruption of the mouse testis-enriched gene Znf230 does not affect spermatogenesis or fertility. Genet Mol Biol 2014; 37:708-15. [PMID: 25505846 PMCID: PMC4261971 DOI: 10.1590/s1415-47572014005000013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 06/24/2014] [Indexed: 02/05/2023] Open
Abstract
The mouse testis-enriched Znf230 gene, which encodes a type of RING finger protein, is present primarily in the nuclei of spermatogonia, the acrosome and the tail of spermatozoa. To investigate the role of Znf230 in spermatogenesis, we generated Znf230-deficient mice by disrupting Znf230 exon-5 and exon-6 using homologous recombination. The homozygous Znf230-knockout (KO) mice did not exhibit Znf230 mRNA expression and Znf230 protein production. Znf230 KO mice exhibited no obvious impairment in body growth or fertility. Male Znf230 KO mice had integral reproductive systems and mature sperm that were regular in number and shape. The developmental stages of male germ cells of Znf230 KO mice were also normal. We further examined variations in the transcriptomes of testicular tissue between Znf230 KO and wild-type mice through microarray analysis. The results showed that the mRNA level of one unclassified transcript 4921513I08Rik was increased and that the mRNA levels of three other transcripts, i.e., 4930448A20Rik, 4931431B13Rik and potassium channel tetramerisation domain containing 14(Kctd14), were reduced more than two-fold in Znf230 KO mice compared with wild-type mice. Using our current examination techniques, these findings suggested that Znf230 deficiency in mice may not affect growth, fertility or spermatogenesis.
Collapse
Affiliation(s)
- Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| | - Sizhong Zhang
- Department of Medical Genetics and Division of Human Morbid Genomics , State Key Laboratory of Biotherapy , West China Hospital , West China Medical School , Sichuan Universtiy , Chengdu, Sichuan Province , China
| |
Collapse
|
11
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fetal globin gene repressors as drug targets for molecular therapies to treat the β-globinopathies. Mol Cell Biol 2014; 34:3560-9. [PMID: 25022757 DOI: 10.1128/mcb.00714-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β-globin locus is comprised of embryonic, fetal, and adult globin genes that are expressed in a developmental stage-specific manner. Mutations in the globin locus give rise to the β-globinopathies, β-thalassemia and sickle cell disease, which begin to manifest symptoms around the time of birth. Although the fetal globin genes are autonomously silenced in adult-stage erythroid cells, mutations lying both within and outside the locus lead to natural variations in the level of fetal globin gene expression, and some of these significantly ameliorate the clinical symptoms of the β-globinopathies. Multiple reports have now identified several transcription factors that are involved in fetal globin gene repression in definitive (adult)-stage erythroid cells (the TR2/TR4 heterodimer, MYB, KLFs, BCL11A, and SOX6). To carry out their repression functions, chromatin-modifying enzymes (such as DNA methyltransferase, histone deacetylases, and lysine-specific histone demethylase 1) are additionally involved as a consequence of forming large macromolecular complexes with the DNA-binding subunits of these cellular machines. This review focuses on the molecular mechanisms underlying fetal globin gene silencing and possible near-future molecularly targeted therapies for treating the β-globinopathies.
Collapse
|
13
|
Deshmukh S, Madagi SB. A chemogenomics based approach for deorphanization of testicular receptor 4: An orphan receptor of nuclear receptor superfamily. J Nat Sci Biol Med 2014; 4:276-81. [PMID: 24082716 PMCID: PMC3783764 DOI: 10.4103/0976-9668.116966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Orphan Receptor of Nuclear Receptor superfamily is the one with no known endogenous ligands. Many of these orphan receptors are associated with different types of diseases and therefore deserve special attention to find the potential ligands they would be associated with. The major task of molecular pharmacology is the deorphanization of the large number of nuclear receptors with unidentified endogenous agonists. The deorphanization provides a promising research for new therapeutics. The Testicular Receptor 4 being negative modulator to other members of the nuclear receptor superfamily, is one of the Orphan members of this family and is associated with prostate cancer, breast cancer, sickle cell anemia and joint diseases. The knowledge that related receptors of the same family often have ligands with similar structural features has helped us to utilize the chemogenomic approach to deorphanize the orphan receptor. Chemogenomics approach involves screening of known ligands of a protein family having analogous domain architecture for identification of new leads for existing protein family members. The deorphanization involved the database homology searching, followed by domain identification, active site prediction, sequence and structure comparative studies. A ligand library set was prepared based on these studies and was used to deorphanize the receptor. The molecular docking study conducted using PyRx revealed that estradiol and tretinion as a potential ligand for Testicular Receptor 4.
Collapse
Affiliation(s)
- Savita Deshmukh
- Department of Bioinformatics, Karnataka State Women University, Bijapur, Karnataka, India
| | | |
Collapse
|
14
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
15
|
Wagner RT, Cooney AJ. Minireview: the diverse roles of nuclear receptors in the regulation of embryonic stem cell pluripotency. Mol Endocrinol 2013; 27:864-78. [PMID: 23504955 PMCID: PMC3656235 DOI: 10.1210/me.2012-1383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Extensive research has been devoted to the goal of understanding how a single cell of embryonic origin can give rise to every somatic cell type and the germ cell lineage, a hallmark defined as "pluripotency." The aggregate of this work supports fundamentally important roles for the gene transcription networks inherent to the pluripotent cell. Transcription networks have been identified that are both required for pluripotency, as well as sufficient to reprogram somatic cells to a naive pluripotent state. Several members of the nuclear receptor (NR) superfamily of transcription factors have been identified to play diverse roles in the regulation of pluripotency. The ligand-responsive nature of NRs coupled with the abundance of genetic models available has led to a significant advance in the understanding of NR roles in embryonic stem cell pluripotency. Furthermore, the presence of a ligand-binding domain may lead to development of small molecules for a wide range of therapeutic and research applications, even in cases of NRs that are not known to respond to physiologic ligands. Presented here is an overview of NR regulation of pluripotency with a focus on the transcriptional, proteomic, and epigenetic mechanisms by which they promote or suppress the pluripotent state.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Cell Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston TX 77030-3498, USA
| | | |
Collapse
|
16
|
Lin SJ, Ho HC, Lee YF, Liu NC, Liu S, Li G, Shyr CR, Chang C. Reduced osteoblast activity in the mice lacking TR4 nuclear receptor leads to osteoporosis. Reprod Biol Endocrinol 2012; 10:43. [PMID: 22676849 PMCID: PMC3447707 DOI: 10.1186/1477-7827-10-43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/29/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Early studies suggested that TR4 nuclear receptor might play important roles in the skeletal development, yet its detailed mechanism remains unclear. METHODS We generated TR4 knockout mice and compared skeletal development with their wild type littermates. Primary bone marrow cells were cultured and we assayed bone differentiation by alkaline phosphatase and alizarin red staining. Primary calvaria were cultured and osteoblastic marker genes were detected by quantitative PCR. Luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA) were performed to demonstrate TR4 can directly regulate bone differentiation marker osteocalcin. RESULTS We first found mice lacking TR4 might develop osteoporosis. We then found that osteoblast progenitor cells isolated from bone marrow of TR4 knockout mice displayed reduced osteoblast differentiation capacity and calcification. Osteoblast primary cultures from TR4 knockout mice calvaria also showed higher proliferation rates indicating lower osteoblast differentiation ability in mice after loss of TR4. Mechanism dissection found the expression of osteoblast markers genes, such as ALP, type I collagen alpha 1, osteocalcin, PTH, and PTHR was dramatically reduced in osteoblasts from TR4 knockout mice as compared to those from TR4 wild type mice. In vitro cell line studies with luciferase reporter assay, ChIP assay, and EMSA further demonstrated TR4 could bind directly to the promoter region of osteocalcin gene and induce its gene expression at the transcriptional level in a dose dependent manner. CONCLUSIONS Together, these results demonstrate TR4 may function as a novel transcriptional factor to play pathophysiological roles in maintaining normal osteoblast activity during the bone development and remodeling, and disruption of TR4 function may result in multiple skeletal abnormalities.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Remodeling
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation
- Cells, Cultured
- Female
- Male
- Mice
- Mice, Knockout
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Osteocalcin/biosynthesis
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteogenesis
- Osteoporosis/metabolism
- Osteoporosis/pathology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Shin-Jen Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hsin-Chiu Ho
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Su Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chih-Rong Shyr
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer center, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| |
Collapse
|
17
|
[Regulation of gene expression during spermatogenesis at transcriptional level]. YI CHUAN = HEREDITAS 2012; 33:1300-7. [PMID: 22207375 DOI: 10.3724/sp.j.1005.2011.01300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian spermatogenesis is a highly complex cell division and differentiation process occurring in the seminiferous tubules of the testis. This processes are regulated at both transcriptional and post-transcriptional levels, any mistake in this process can lead to infertility. Unveiling the molecular mechanisms of spermatogenesis has important implications for exploring novel contraceptive approach and treatment of infertility. This review addresses recent progress towards understanding the regulation of androgen, estrogen and their receptors, transcription factors and chromatin-associated factors for spermatogenesis at transcriptional level.
Collapse
|
18
|
Collins LL, Lee YF, Ting HJ, Lin WJ, Liu NC, Meshul CK, Uno H, Bao BY, Chen YT, Chang C. The roles of testicular nuclear receptor 4 (TR4) in male fertility-priapism and sexual behavior defects in TR4 knockout mice. Reprod Biol Endocrinol 2011; 9:138. [PMID: 21995792 PMCID: PMC3212810 DOI: 10.1186/1477-7827-9-138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/13/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Successful reproductive efforts require the establishment of a situation favorable for reproduction that requires integration of both behavior and internal physiological events. TR4 nuclear receptor is known to be involved in male fertility via controlling spermatogenesis, yet its roles in regulating other biological events related to reproduction have not been completely revealed. METHODS Male TR4 knockout (TR4 -/-) and wild type mice were used for the sexual behavior and penile dysfunction studies. Mice were sacrificed for histological examination and corresponding genes profiles were analyzed by quantitative RT-PCR. Reporter gene assays were performed. RESULTS We describe an unexpected finding of priapism in TR4 -/- mice. As a transcriptional factor, we demonstrated that TR4 transcriptionally modulates a key enzyme regulating penis erection and neuronal nitric oxide synthese NOS (nNOS). Thereby, elimination of TR4 results in nNOS reduction in both mRNA and protein levels, consequently may lead to erectile dysfunction. In addition, male TR4 -/- mice display defects in sexual and social behavior, with increased fear or anxiety, as well as reduced mounting, intromission, and ejaculation. Reduction of ER alpha, ER beta, and oxytocin in the hypothalamus may contribute to defects in sexual behavior and stress response. CONCLUSIONS Together, these results provide in vivo evidence of important TR4 roles in penile physiology, as well as in male sexual behavior. In conjunction with previous finding, TR4 represents a key factor that controls male fertility via regulating behavior and internal physiological events.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fertility
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth/growth & development
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Nitric Oxide Synthase Type I/genetics
- Nitric Oxide Synthase Type I/metabolism
- Nuclear Receptor Subfamily 2, Group C, Member 2/genetics
- Nuclear Receptor Subfamily 2, Group C, Member 2/physiology
- Penis/growth & development
- Penis/metabolism
- Penis/pathology
- Penis/physiopathology
- Priapism/metabolism
- Priapism/pathology
- Priapism/physiopathology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Response Elements
- Severity of Illness Index
- Sexual Behavior, Animal
- Transcriptional Activation
Collapse
Affiliation(s)
- Loretta L Collins
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Huei-Ju Ting
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen-Jye Lin
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles K Meshul
- Research Services, V.A. Medical Center and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hideo Uno
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53708, USA
| | - Bo-Ying Bao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center and School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yen-Ta Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sex Hormone Research Center and School of Pharmacy, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
20
|
Abstract
Several signals, such as hormones and signaling molecules, have been identified as important regulators of Leydig cell differentiation and function. Conveying these signals and translating them into a genomic response to ensure an accurate physiological output requires the action of a network of transcription factors, including those belonging to the nuclear receptor superfamily. Nuclear receptors regulate expression of genes important for growth, differentiation, development, and homeostasis. Several nuclear receptors, such as steroid hormone receptors (NR3A and NR3C families), are activated upon ligand binding, whereas others, including members of the NR2C, NR2F, and NR4A families, either do not require a ligand or ligands have yet to be identified. Several nuclear receptors (e.g., NR2F2 and NR5A1) have been shown to play essential roles in Leydig cells, whereas for others (e.g., NR2B1 and NR4A1), the assessment of their function has been precluded by the early embryonic lethality associated with null mice or by redundancy mechanisms by other family members. This is now being overcome with the generation of novel approaches, including Leydig cell-specific knockout models. This review provides an overview of the nuclear receptor family of transcription factors as they relate to Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Luc J Martin
- Reproduction, Perinatal, and Child Health, Research Centre du Centre Universitaire de Québec, Québec City, Québec, Canada.
| | | |
Collapse
|
21
|
|
22
|
Shyr CR, Kang HY, Tsai MY, Liu NC, Ku PY, Huang KE, Chang C. Roles of testicular orphan nuclear receptors 2 and 4 in early embryonic development and embryonic stem cells. Endocrinology 2009; 150:2454-62. [PMID: 19131575 DOI: 10.1210/en.2008-1165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The testicular orphan nuclear receptors (TRs) 2 and 4 act as either transcriptional activators or regulatory proteins of other nuclear receptor superfamily members. With no identified cognate ligands, their physiological roles remain unclear. Here we showed the phenotypes of TR2(-/-):TR4(-/-) mutant embryos, which reveal that the loss of TR2 and TR4 causes early embryonic lethality and increased cell death. We also found that TR2 and TR4 are expressed in blastocysts and embryonic stem (ES) cells, and can act as transcriptional activators in ES cells. The results on further investigating the roles of TR2 and TR4 in ES cells showed that TR2 and TR4 were differentially expressed when ES cells were induced into different specialized cell types, and their expression is regulated by retinoic acid. Knocking down TR2 and TR4 mRNAs decreased the expression of Oct-3/4 and Nanog genes. Mechanism dissection suggests that TR2 and TR4 may affect the Oct-3/4 gene by binding to a direct repeat-1 element located in its promoter region, which is influenced by retinoic acid. Together, our findings highlight possible roles for TR2 and TR4 in early embryonic development by regulating key genes involved in stem cell self-renewal, commitment, and differentiation.
Collapse
MESH Headings
- Adipogenesis/genetics
- Animals
- Blastocyst/metabolism
- Blastocyst/physiology
- Cell Differentiation/genetics
- Cells, Cultured
- Crosses, Genetic
- Embryo, Mammalian
- Embryonic Development/genetics
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/physiology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Male
- Mice
- Mice, Knockout
- Neurogenesis/genetics
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Osteogenesis/genetics
- Pregnancy
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Receptors, Thyroid Hormone/physiology
- Testis/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Chih-Rong Shyr
- Department of Pathology, The Cancer Center, George Whipple Lab for Cancer Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Wei LN. Post-translational modifications of orphan nuclear receptor TR2 - new insights into drug targets for stem cell therapy and the effect of retinoic acid. Proteomics Clin Appl 2009; 3:279-285. [DOI: 10.1002/prca.200800100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Zaretsky JZ, Wreschner DH. Protein multifunctionality: principles and mechanisms. TRANSLATIONAL ONCOGENOMICS 2008; 3:99-136. [PMID: 21566747 PMCID: PMC3022353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins.
Collapse
Affiliation(s)
- Joseph Z Zaretsky
- Department Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Haim Levanon St., 69978 Tel-Aviv, Israel
| | | |
Collapse
|
25
|
Tanabe O, Shen Y, Liu Q, Campbell AD, Kuroha T, Yamamoto M, Engel JD. The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription. Genes Dev 2008; 21:2832-44. [PMID: 17974920 DOI: 10.1101/gad.1593307] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
When the orphan nuclear receptors TR2 and TR4, the DNA-binding subunits of the DRED repressor complex, are forcibly expressed in erythroid cells of transgenic mice, embryos exhibit a transient mid-gestational anemia as a consequence of a reduction in the number of primitive erythroid cells. GATA-1 mRNA is specifically diminished in the erythroid cells of these TR2/TR4 transgenic embryos as it is in human CD34(+) progenitor cells transfected with forcibly expressed TR2/TR4. In contrast, in loss-of-function studies analyzing either Tr2- or Tr4-germline-null mutant mice or human CD34(+) progenitor cells transfected with force-expressed TR2 and TR4 short hairpin RNAs (shRNAs), GATA-1 mRNA is induced. An evolutionarily conserved direct repeat (DR) element, a canonical binding site for nuclear receptors, was identified in the GATA1 hematopoietic enhancer (G1HE), and TR2/TR4 binds to that site in vitro and in vivo. Mutation of that DR element led to elevated Gata1 promoter activity, and reduced promoter responsiveness to cotransfected TR2/TR4. Thus, TR2/TR4 directly represses Gata1/GATA1 transcription in murine and human erythroid progenitor cells through an evolutionarily conserved binding site within a well-characterized, tissue-specific Gata1 enhancer, thereby providing a mechanism by which Gata1 can be directly silenced during terminal erythroid maturation.
Collapse
Affiliation(s)
- Osamu Tanabe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tanabe O, McPhee D, Kobayashi S, Shen Y, Brandt W, Jiang X, Campbell AD, Chen YT, Chang CS, Yamamoto M, Tanimoto K, Engel JD. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J 2007; 26:2295-306. [PMID: 17431400 PMCID: PMC1864974 DOI: 10.1038/sj.emboj.7601676] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 03/12/2007] [Indexed: 11/09/2022] Open
Abstract
The TR2 and TR4 orphan nuclear receptors comprise the DNA-binding core of direct repeat erythroid definitive, a protein complex that binds to direct repeat elements in the embryonic and fetal beta-type globin gene promoters. Silencing of both the embryonic and fetal beta-type globin genes is delayed in definitive erythroid cells of Tr2 and Tr4 null mutant mice, whereas in transgenic mice that express dominant-negative TR4 (dnTR4), human embryonic epsilon-globin is activated in primitive and definitive erythroid cells. In contrast, human fetal gamma-globin is activated by dnTR4 only in definitive, but not in primitive, erythroid cells, implicating TR2/TR4 as a stage-selective repressor. Forced expression of wild-type TR2 and TR4 leads to precocious repression of epsilon-globin, but in contrast to induction of gamma-globin in definitive erythroid cells. These temporally specific, gene-selective alterations in epsilon- and gamma-globin gene expression by gain and loss of TR2/TR4 function provide the first genetic evidence for a role for these nuclear receptors in sequential, gene-autonomous silencing of the epsilon- and gamma-globin genes during development, and suggest that their differential utilization controls stage-specific repression of the human epsilon- and gamma-globin genes.
Collapse
Affiliation(s)
- Osamu Tanabe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David McPhee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shoko Kobayashi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yannan Shen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Brandt
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xia Jiang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew D Campbell
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yei-Tsung Chen
- Departments of Pathology, Urology, Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawn shang Chang
- Departments of Pathology, Urology, Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Keiji Tanimoto
- Centre for TARA, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel.: +1 734 615 7509; Fax: +1 734 763 1166; E-mail:
| |
Collapse
|
27
|
Zhang Y, Chen YT, Xie S, Wang L, Lee YF, Chang SS, Chang C. Loss of Testicular Orphan Receptor 4 Impairs Normal Myelination in Mouse Forebrain. Mol Endocrinol 2007; 21:908-20. [PMID: 17227886 DOI: 10.1210/me.2006-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Testicular orphan nuclear receptor 4 (TR4) has been suggested to play important roles in the development and functioning of the central nervous system (CNS). We find reduced myelination in TR4 knockout (TR4(-/-)) mice, which is particularly obvious in forebrains and in early developmental stages. Further analysis reveals that CC-1-positive (CC-1+) oligodendrocytes are decreased in TR4(-/-) forebrains. The O4+ signals are also reduced in TR4(-/-) forebrains when examined at postnatal d 7. However, the number and proliferation rate of platelet-derived growth factor receptor alpha-positive (PDGFalphaR+) oligodendrocyte precursor cells (OPCs) remain unaffected in these regions, suggesting that loss of TR4 interrupts oligodendrocyte differentiation. This is further supported by the observation that CC-1+ oligodendrocytes derived from 5-bromo-2'-deoxyuridine incorporating OPCs are significantly reduced in TR4(-/-) forebrains. We also find higher Jagged1 expression levels in axon fiber-enriched regions in TR4(-/-) forebrains, suggesting a more activated Notch signaling in these regions that correlates with previous reports showing that Notch activation inhibits oligodendrocyte differentiation. Together, our results suggest that TR4 is required for proper myelination in the CNS and is particularly important for oligodendrocyte differentiation and maturation in the forebrain regions. The altered Jagged1-Notch signaling in TR4(-/-) forebrain underlies a potential mechanism that contributes to the reduced myelination in the forebrain.
Collapse
Affiliation(s)
- Yanqing Zhang
- George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Gupta P, Park SW, Farooqui M, Wei LN. Orphan nuclear receptor TR2, a mediator of preadipocyte proliferation, is differentially regulated by RA through exchange of coactivator PCAF with corepressor RIP140 on a platform molecule GRIP1. Nucleic Acids Res 2007; 35:2269-82. [PMID: 17389641 PMCID: PMC1874640 DOI: 10.1093/nar/gkl1147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/12/2006] [Accepted: 12/15/2006] [Indexed: 01/15/2023] Open
Abstract
Orphan nuclear receptor TR2 is a preadipocyte proliferator. Knockdown of TR2 in 3T3-L1 preadipocytes reduced their proliferation efficiency, whereas specific elevation of TR2 in these cells facilitated their proliferation. All-trans retinoic acid (RA) stimulates cellular proliferation in 3T3-L1 preadipocytes by activating TR2 through an IR0-type RA response element, which further activates c-Myc expression. In post-differentiated adipocytes, RA becomes a repressive signal for TR2 and rapidly down-regulates its expression. The biphasic effect of RA on TR2 expression in 3T3-L1 is mediated by differential RA-dependent coregulator recruitment to the receptor/Glucocorticoid Receptor-Interacting Protein 1 (GRIP1) complex that binds IR0 on the TR2 promoter. RA induces the recruitment of histone acetyl transferase-containing/GRIP1/p300/CBP-associated factor (PCAF) complex to the TR2 promoter in undifferentiated cells, whereas it triggers recruitment of histone deacetylase-containing/GRIP1/receptor-interacting protein 140 (RIP140) complex in differentiated cells. GRIP1 directly interacts with RIP140 through its carboxyl terminal AD2 domain. GRIP1 interacts with PCAF and RIP140 directly and differentially, functioning as a platform molecule to mediate differential RA-induced coregulator recruitment to TR2 promoter target. This results in a biphasic effect of RA on the expression of TR2 in undifferentiated and differentiated cells, which is required for RA-stimulated preadipocyte proliferation.
Collapse
Affiliation(s)
| | | | | | - L.-N. Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 2006; 14:68-75. [PMID: 17187077 DOI: 10.1038/nsmb1185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022]
Abstract
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor. SUMOylation of Tr2 induces an exchange of its coregulators: corepressor Rip140 replaces coactivator Pcaf, which switches Tr2 from an activator to a repressor. This involves dynamic partitioning of Tr2 into Pml-containing and Pml-free pools. These results support a model where SUMOylation-dependent partitioning and differential coregulator recruitment contribute to the maintenance of a homeostatic supply of activating, as opposed to repressive, Tr2, thus fine-tuning Oct4 expression and regulating stem-cell proliferation.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
30
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin YL, Wang YH, Lee HJ. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A. Biochem Biophys Res Commun 2006; 350:430-6. [PMID: 17010934 DOI: 10.1016/j.bbrc.2006.09.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/14/2006] [Indexed: 11/15/2022]
Abstract
The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.
Collapse
Affiliation(s)
- Yun-Lu Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | | | | |
Collapse
|
32
|
Huq MDM, Gupta P, Tsai NP, Wei LN. Modulation of testicular receptor 4 activity by mitogen-activated protein kinase-mediated phosphorylation. Mol Cell Proteomics 2006; 5:2072-82. [PMID: 16887930 DOI: 10.1074/mcp.m600180-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testicular receptor 4 (TR4) is an orphan member of the nuclear receptor superfamily. Despite the lack of identified ligands, its functional role has been demonstrated both in animals and cell cultures. However, it remains unclear how the biological activity of TR4 is regulated without specific ligands. In this study, we showed that in the absence of specific ligands the activity of TR4 could be modulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation of its activation function 1 (AF-1) domain. A mass spectrometry-based proteome analysis of TR4 expressed in insect cells revealed three phosphorylation sites in its AF-1 domain, specifically on Ser(19), Ser(55), and Ser(68). Site-directed mutagenesis studies demonstrated the functionality of phosphorylation on Ser(19) and Ser(68) but not Ser(55). We also demonstrated that MAPK-mediated phosphorylation of the AF-1 domain rendered TR4 a repressor, mediated through the preferential recruitment of corepressor RIP140. Dephosphorylation of its AF-1 made TR4 an activator due to its selective recruitment of coactivator, P300/cyclic AMP-responsive element binding protein-binding protein-associated factor (PCAF). The biological effects were validated by using the wild type TR4 and its constitutive negative (dephosphorylated) and constitutive positive (phosphorylated) mutants in the studies of regulation of its natural target gene, apoE. This study uncovered, for the first time, a ligand-independent mechanism underlying the biological activity of TR4 that was mediated by MAPK-mediated receptor phosphorylation of AF-1 domain.
Collapse
Affiliation(s)
- M D Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Mammalian spermatogenesis is a complex hormone-dependent developmental program in which a myriad of events must take place to ensure that germ cells reach their proper stage of development at the proper time. Many of these events are controlled by cell type- and stage-specific transcription factors. The regulatory mechanisms involved provide an intriguing paradigm for the field of developmental biology and may lead to the development of new contraceptives an and innovative routs to treat male infertility. In this review, we address three aspects of the genetic regulatory mechanism that drive spermatogenesis. First, we detail what is known about how steroid hormones (both androgens and estrogens) and their cognate receptors initiate and maintain mammalian spermatogenesis. Steroids act through three mechanistic routes: (i) direct activation of genes through hormone-dependent promoter elements, (ii) secondary transcriptional responses through activation of hormone-dependent transcription factors, and (iii) rapid, transcription-independent (nonclassical) events induced by steroid hormones. Second, we provide a survey of transcription factors that function in mammalian spermatogenesis, including homeobox, zinc-finger, heat-shock, and cAMP-response family members. Our survey is not intended to cover all examples but to give a flavor for the gamut of biological roles conferred by transcription factors in the testis, particularly those defined in knockout mice. Third, we address how testis-specific transcription is achieved. In particular, we cover the evidence for and against the idea that some testis-specific genes are transcriptionally silent in somatic tissues as a result of DNA methylation.
Collapse
Affiliation(s)
- James A Maclean
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Collins LL, Lee YF, Heinlein CA, Liu NC, Chen YT, Shyr CR, Meshul CK, Uno H, Platt KA, Chang C. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci U S A 2004; 101:15058-63. [PMID: 15477591 PMCID: PMC524065 DOI: 10.1073/pnas.0405700101] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular orphan nuclear receptor 4 (TR4) is a member of the nuclear receptor superfamily for which a ligand has not yet been found. In vitro data obtained from various cell lines suggest that TR4 functions as a master regulator to modulate many signaling pathways, yet the in vivo physiological roles of TR4 remain unclear. Here, we report the generation of mice lacking TR4 by means of targeted gene disruption (TR4(-/-)). The number of TR4(-/-) pups generated by the mating of TR4(+/-) mice is well under that predicted by the normal Mendelian ratio, and TR4(-/-) mice demonstrate high rates of early postnatal mortality, as well as significant growth retardation. Additionally, TR4(-/-) females show defects in reproduction and maternal behavior, with pups of TR4(-/-) dams dying soon after birth with no indication of milk intake. These results provide in vivo evidence that TR4 plays important roles in growth, embryonic and early postnatal pup survival, female reproductive function, and maternal behavior.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Complementary/genetics
- Eye/pathology
- Female
- Fetal Death/genetics
- Fetal Death/metabolism
- Growth Disorders/genetics
- Growth Disorders/metabolism
- Growth Hormone/blood
- Infertility, Female/genetics
- Infertility, Female/metabolism
- Insulin-Like Growth Factor I/metabolism
- Male
- Maternal Behavior/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pregnancy
- Receptors, Steroid/deficiency
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/deficiency
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/physiology
- Testis/metabolism
Collapse
Affiliation(s)
- Loretta L Collins
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Radiation Oncology, and Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sanyal S, Handschin C, Podvinec M, Song KH, Kim HJ, Kim JY, Seo YW, Kim SA, Kwon HB, Lee K, Kim WS, Meyer UA, Choi HS. Molecular cloning and characterization of chicken orphan nuclear receptor cTR2. Gen Comp Endocrinol 2003; 132:474-84. [PMID: 12849971 DOI: 10.1016/s0016-6480(03)00116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Orphan nuclear receptors belong to the nuclear receptor superfamily of liganded transcription factors, whose ligands either do not exist or remain to be identified. We report here the cloning and characterization of the chicken orphan nuclear receptor, cTR2 (chicken testicular receptor 2). The cTR2 gene encodes a protein of 569 amino acids which shows approximately 72% overall identity with TR2 (NR2C1) and 95% identity in the DNA-binding domain (DBD). The cTR2 gene is expressed in almost all adult tissues and embryonic stages examined unlike its mammalian relative TR2, which is specifically expressed in testis. Electrophoretic mobility shift assays demonstrate that cTR2 binds the canonical direct repeat DNA recognition sequences spaced by one, four, and five nucleotides (DR1, DR4, and DR5), and in consistence with the results with canonical DNA-binding sequences, cTR2 forms specific DNA-protein complex with chicken phenobarbital response elements containing DR4 motifs. Both in vitro and in vivo interaction studies demonstrate that cTR2 forms homodimer. Moreover, transient transfection studies reveal its capability to transactivate canonical DR1, DR4, and DR5 sequences and the constitutive activity of cTR2 is mapped to the N-terminal region of this orphan receptor. Finally, cTR2 represses transactivation of estrogen receptor in a dose-dependent manner.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chick Embryo
- Chickens/genetics
- Chickens/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Developmental
- Molecular Sequence Data
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Tissue Distribution
- Transcriptional Activation
Collapse
Affiliation(s)
- Sabyasachi Sanyal
- Hormone Research Center, Chonnam National University, 500-757 Kwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee YF, Lee HJ, Chang C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J Steroid Biochem Mol Biol 2002; 81:291-308. [PMID: 12361719 DOI: 10.1016/s0960-0760(02)00118-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human testicular receptor 2 (TR2) and TR4 orphan receptors are two evolutionarily related proteins belonging to the nuclear receptor superfamily. Numerous TR2 and TR4 variants and homologs have been identified from different species, including vertebrates (e.g. human, murine, rabbit, fish, and amphibian) and invertebrates (e.g. Drosophila, sea urchin, and nematode) since TR2 was initially isolated over a decade ago. Specific tissue distribution, genomic organization, and chromosomal assignment of both orphan receptors have been investigated. In order to reveal the physiological functions played by both TR2 and TR4, upstream modulators of TR2 and TR4 gene expression, their downstream target gene regulation, feedback mechanisms, and differential modulation mediated by the recruitment of other nuclear receptors and coregulators have been investigated. Studies summarized in the present report have provided unexpected insights into the TR2 and TR4 functions in a variety of biological processes. The essential and difficult tasks of identifying orphan receptor ligands, agonist/antagonist assignment, their physiological functions, and mechanisms of action will continue to challenge nuclear receptor researchers in the future.
Collapse
Affiliation(s)
- Yi-Fen Lee
- George Whipple Laboratory for Cancer Research, Department of Urology, University of Rochester, NY 14642, USA
| | | | | |
Collapse
|