1
|
Khitun A, Brion C, Moqtaderi Z, Geisberg JV, Churchman LS, Struhl K. Elongation rate of RNA polymerase II affects pausing patterns across 3' UTRs. J Biol Chem 2023; 299:105289. [PMID: 37748648 PMCID: PMC10598743 DOI: 10.1016/j.jbc.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.
Collapse
Affiliation(s)
- Alexandra Khitun
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Brion
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zarmik Moqtaderi
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Geisberg
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Struhl
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Soles LV, Shi Y. Crosstalk Between mRNA 3'-End Processing and Epigenetics. Front Genet 2021; 12:637705. [PMID: 33613650 PMCID: PMC7890070 DOI: 10.3389/fgene.2021.637705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
The majority of eukaryotic genes produce multiple mRNA isoforms by using alternative poly(A) sites in a process called alternative polyadenylation (APA). APA is a dynamic process that is highly regulated in development and in response to extrinsic or intrinsic stimuli. Mis-regulation of APA has been linked to a wide variety of diseases, including cancer, neurological and immunological disorders. Since the first example of APA was described 40 years ago, the regulatory mechanisms of APA have been actively investigated. Conventionally, research in this area has focused primarily on the roles of regulatory cis-elements and trans-acting RNA-binding proteins. Recent studies, however, have revealed important functions for epigenetic mechanisms, including DNA and histone modifications and higher-order chromatin structures, in APA regulation. Here we will discuss these recent findings and their implications for our understanding of the crosstalk between epigenetics and mRNA 3'-end processing.
Collapse
Affiliation(s)
- Lindsey V Soles
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Page A, Fusil F, Cosset FL. Towards Physiologically and Tightly Regulated Vectored Antibody Therapies. Cancers (Basel) 2020; 12:E962. [PMID: 32295072 PMCID: PMC7226531 DOI: 10.3390/cancers12040962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancers represent highly significant health issues and the options for their treatment are often not efficient to cure the disease. Immunotherapy strategies have been developed to modulate the patient's immune system in order to eradicate cancerous cells. For instance, passive immunization consists in the administration at high doses of exogenously produced monoclonal antibodies directed either against tumor antigen or against immune checkpoint inhibitors. Its main advantage is that it provides immediate immunity, though during a relatively short period, which consequently requires frequent injections. To circumvent this limitation, several approaches, reviewed here, have emerged to induce in vivo antibody secretion at physiological doses. Gene delivery vectors, such as adenoviral vectors or adeno-associated vectors, have been designed to induce antibody secretion in vivo after in situ cell modification, and have driven significant improvements in several cancer models. However, anti-idiotypic antibodies and escape mutants have been detected, probably because of both the continuous expression of antibodies and their expression by unspecialized cell types. To overcome these hurdles, adoptive transfer of genetically modified B cells that secrete antibodies either constitutively or in a regulated manner have been developed by ex vivo transgene insertion with viral vectors. Recently, with the emergence of gene editing technologies, the endogenous B cell receptor loci of B cells have been modified with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas-9) system to change their specificity in order to target a given antigen. The expression of the modified BCR gene hence follows the endogenous regulation mechanisms, which may prevent or at least reduce side effects. Although these approaches seem promising for cancer treatments, major questions, such as the persistence and the re-activation potential of these engineered cells, remain to be addressed in clinically relevant animal models before translation to humans.
Collapse
Affiliation(s)
| | | | - François-Loïc Cosset
- CIRICentre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (A.P.); (F.F.)
| |
Collapse
|
4
|
Targeting the Polyadenylation Signal of Pre-mRNA: A New Gene Silencing Approach for Facioscapulohumeral Dystrophy. Int J Mol Sci 2018; 19:ijms19051347. [PMID: 29751519 PMCID: PMC5983732 DOI: 10.3390/ijms19051347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4 array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic strategies have been proposed among which the possibility to target the polyadenylation signal to silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an alteration of the transcription termination, a disruption of mRNA transport from the nucleus to the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how targeting polyadenylation signal may be a potential therapeutic approach for FSHD.
Collapse
|
5
|
Turner RE, Pattison AD, Beilharz TH. Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin Cell Dev Biol 2017; 75:61-69. [PMID: 28867199 DOI: 10.1016/j.semcdb.2017.08.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Transcriptional control shapes a cell's transcriptome composition, but it is RNA processing that refines its expression. The untranslated regions (UTRs) of mRNA are hotspots for regulatory control. Features in these can impact mRNA stability, localisation and translation. Here we describe how alternative cleavage and polyadenylation can change mRNA fate by changing the length of its 3'UTR.
Collapse
Affiliation(s)
- Rachael Emily Turner
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew David Pattison
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Traude Helene Beilharz
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
6
|
Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation. Mol Cell Biol 2015; 36:295-303. [PMID: 26527620 DOI: 10.1128/mcb.00898-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
Most mammalian genes produce transcripts whose 3' ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS2PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3' end processing.
Collapse
|
7
|
Morris DP, Lei B, Longo LD, Bomsztyk K, Schwinn DA, Michelotti GA. Temporal Dissection of Rate Limiting Transcriptional Events Using Pol II ChIP and RNA Analysis of Adrenergic Stress Gene Activation. PLoS One 2015; 10:e0134442. [PMID: 26244980 PMCID: PMC4526373 DOI: 10.1371/journal.pone.0134442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
In mammals, increasing evidence supports mechanisms of co-transcriptional gene regulation and the generality of genetic control subsequent to RNA polymerase II (Pol II) recruitment. In this report, we use Pol II Chromatin Immunoprecipitation to investigate relationships between the mechanistic events controlling immediate early gene (IEG) activation following stimulation of the α1a-Adrenergic Receptor expressed in rat-1 fibroblasts. We validate our Pol II ChIP assay by comparison to major transcriptional events assessable by microarray and PCR analysis of precursor and mature mRNA. Temporal analysis of Pol II density suggests that reduced proximal pausing often enhances gene expression and was essential for Nr4a3 expression. Nevertheless, for Nr4a3 and several other genes, proximal pausing delayed the time required for initiation of productive elongation, consistent with a role in ensuring transcriptional fidelity. Arrival of Pol II at the 3’ cleavage site usually correlated with increased polyadenylated mRNA; however, for Nfil3 and probably Gprc5a expression was delayed and accompanied by apparent pre-mRNA degradation. Intragenic pausing not associated with polyadenylation was also found to regulate and delay Gprc5a expression. Temporal analysis of Nr4a3, Dusp5 and Nfil3 shows that transcription of native IEG genes can proceed at velocities of 3.5 to 4 kilobases/min immediately after activation. Of note, all of the genes studied here also used increased Pol II recruitment as an important regulator of expression. Nevertheless, the generality of co-transcriptional regulation during IEG activation suggests temporal and integrated analysis will often be necessary to distinguish causative from potential rate limiting mechanisms.
Collapse
Affiliation(s)
- Daniel P. Morris
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lawrence D. Longo
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California, United States of America
| | - Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Debra A. Schwinn
- Department of Anesthesiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Gregory A. Michelotti
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
8
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res 2015; 43:3747-63. [PMID: 25779042 PMCID: PMC4402522 DOI: 10.1093/nar/gkv194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcin Knut
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Nicholas C P Cross
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
9
|
Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 2014; 15:163-75. [PMID: 24514444 DOI: 10.1038/nrg3662] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3' end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes.
Collapse
Affiliation(s)
- David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, MS8101, PO BOX 6511, Aurora, Colorado 80045, USA
| |
Collapse
|
10
|
Lenasi T, Barboric M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23184646 DOI: 10.1002/wrna.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation of messenger RNA (mRNA) in eukaryotes is achieved by transcription from the DNA template and pre-mRNA processing reactions of capping, splicing, and polyadenylation. Although RNA polymerase II (RNAPII) catalyzes the synthesis of pre-mRNA, it also serves as a principal coordinator of the processing reactions in the course of transcription. In this review, we focus on the interplay between transcription and cotranscriptional pre-mRNA maturation events, mediated by the recruitment of RNA processing factors to differentially phosphorylated C-terminal domain of Rbp1, the largest subunit of RNAPII. Furthermore, we highlight the bidirectional nature of the interplay by discussing the impact of RNAPII kinetics on pre-mRNA processing as well as how the processing events reach back to different phases of gene transcription.
Collapse
Affiliation(s)
- Tina Lenasi
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
11
|
Peterson ML. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:92-105. [PMID: 21956971 DOI: 10.1002/wrna.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunoglobulin heavy chain (IgH) genes, which encode one of the two chains of antibody molecules, were the first cellular genes shown to undergo developmentally regulated alternative RNA processing. These genes produce two different mRNAs from a single primary transcript. One mRNA is cleaved and polyadenylated at an upstream poly(A) signal while the other mRNA removes this poly(A) signal by RNA splicing and is cleaved and polyadenylated at a downstream poly(A) site. A broad range of studies have been performed to understand the mechanism of IgH RNA processing regulation during B lymphocyte development. The model that has emerged is much more complex than envisioned by the earliest view of regulation through poly(A) signal choice. Regulation requires that the IgH gene contain competing splice and cleavage-polyadenylation reactions with balanced efficiencies. Because non-IgH genes with these structural features also can be regulated, IgH gene-specific sequence elements are not required for regulation. Changes in cleavage-polyadenylation and RNA splicing, as well as pol II elongation, all contribute to IgH developmental RNA processing regulation. Multiple factors are likely involved in the regulation during B lymphocyte maturation. Additional biologically relevant factors that contribute to IgH regulation remain to be identified and incorporated into a mechanistic model for regulation. Much of the work to date confirms the complex nature of IgH mRNA regulation and suggests that a thorough understanding of this control will remain a challenge. However, it is also likely that such understanding will help elucidate novel mechanisms of RNA processing regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc Natl Acad Sci U S A 2011; 108:17082-6. [PMID: 21969566 DOI: 10.1073/pnas.1114648108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orderly expression of specific genes is the basis for cell differentiation. Saccharomyces cerevisiae has two haploid mating types, a and α cells, in which the mating-specific genes are differentially expressed. When a and α cells are committed to mate, their growth is arrested. Here we show that a cryptic polyadenylation site is present inside the coding region of the a-specific STE2 gene, encoding the receptor for the α-factor. The two cell types produce an incomplete STE2 transcript, but only a cells generate full-length STE2 mRNA. We eliminated the cryptic poly(A) signal, thereby allowing the production of a complete STE2 mRNA in α cells. We mutagenized α cells and isolated a mutant producing full-length STE2 mRNA. The mutation occurred in the ITC1 gene, whose product, together with the product of ISW2, is known to repress STE2 transcriptional initiation. We propose that the regulation of the yeast mating genes is achieved through a concerted mechanism involving transcriptional and posttranscriptional events. In particular, the early poly(A) site in STE2 could contribute to a complete shutoff of its expression in α cells, avoiding autocrine activation and growth arrest. Remarkably, no cryptic poly(A) sites are present in the a-factor receptor STE3 gene, indicating that S. cerevisiae has devised different strategies to regulate the two receptor genes. It is predictable that a correlation between the repression of a gene and the presence of a cryptic poly(A) site could also be found in other organisms, especially when expression of that gene may be harmful.
Collapse
|
13
|
Diring J, Camuzeaux B, Donzeau M, Vigneron M, Rosa-Calatrava M, Kedinger C, Chatton B. A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity. PLoS One 2011; 6:e23351. [PMID: 21858082 PMCID: PMC3156760 DOI: 10.1371/journal.pone.0023351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.
Collapse
Affiliation(s)
- Jessica Diring
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Barbara Camuzeaux
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Mariel Donzeau
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Marc Vigneron
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Claude Kedinger
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
- * E-mail:
| |
Collapse
|
14
|
Milcarek C, Albring M, Langer C, Park KS. The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 protein modifications accompanying the shift to secretory immunoglobulin heavy chain mRNA production. J Biol Chem 2011; 286:33795-803. [PMID: 21832080 DOI: 10.1074/jbc.m111.272096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In plasma cells, immunoglobulin heavy chain (IgH) secretory-specific mRNA is made in high abundance as a result of both increased promoter proximal poly(A) site choice and weak splice-site skipping. Ell2, the eleven-nineteen lysine rich leukemia gene, is a transcription elongation factor that is induced ∼6-fold in plasma cells and has been shown to drive secretory-specific mRNA production. Reducing ELL2 by siRNA, which reduced processing to the secretion-specific poly(A) site, also influenced the methylations of histone H3K4 and H3K79 on the IgH gene and impacted positive transcription factor b (pTEFb), Ser-2 carboxyl-terminal phosphorylation, and polyadenylation factor additions to RNA polymerase II. The multiple lineage leukemia gene (MLL) and Dot1L associations with the IgH gene were also impaired in the absence of ELL2. To investigate the link between histone modifications, transcription elongation, and alternative RNA processing in IgH mRNA production, we performed chromatin immunoprecipitation on cultured mouse B and plasma cells bearing the identical IgH γ2a gene. In the plasma cells, as compared with the B cells, the H3K4 and H3K79 methylations extended farther downstream, past the IgH enhancer to the end of the transcribed region. Thus the downstream H3K4 and H3K79 methylation of the IgH associated chromatin in plasma cells is associated with increased polyadenylation and exon skipping, resulting from the actions of ELL2 transcription elongation factor.
Collapse
Affiliation(s)
- Christine Milcarek
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
15
|
Khaladkar M, Smyda M, Hannenhalli S. Epigenomic and RNA structural correlates of polyadenylation. RNA Biol 2011; 8:529-37. [PMID: 21508683 DOI: 10.4161/rna.8.3.15194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Polyadenylation (poly(A)) of mRNA plays a critical role in regulating gene expression. Identifying the sequence, structural, and epigenomic determinants of poly(A) site usage is an important long term goal. Several cis elements that mediate poly(A) regulation have been identified. Highly used poly(A) sites are also known to have a greater nucleosome occupancy in the immediate downstream. However, a detailed exploration of additional epigenomic and mRNA structural correlates of poly(A) site usage has not been reported. Importantly, functional interaction between sequence, structure, and the epigenome in determining the poly(A) site usage is not known. We show that highly used poly(A) sites are positively associated with an mRNA structure that is energetically more favorable and one that better exposes a critical polyadenylation cis element. In exploring potential interplay between RNA and chromatin structure, we found that a stronger nucleosome occupancy downstream of poly(A) site strongly correlated with (1) a more favorable mRNA structure, and (2) a greater accumulation of RNA Polymerase II (PolII) at the poly(A) site. Further analysis suggested a causal relationship pointing from PolII accumulation to a stable RNA structure. Additionally, we found that distinct patterns of histone modifications characterize poly(A) sites and these epigenetic patterns alone can distinguish true poly(A) sites with ~76% accuracy and also discriminate between high and low usage poly(A) sites with ~74% accuracy. Our results suggest a causative link between chromatin structure and mRNA structure whereby a compacted chromatin downstream of the poly(A) site slows down the elongating transcript, thus facilitating the folding of nascent mRNA in a favorable structure at poly(A) site during transcription. Additionally we report hitherto unknown epigenomic correlates for poly(A) site usage.
Collapse
Affiliation(s)
- Mugdha Khaladkar
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
16
|
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res 2009; 38:2757-74. [PMID: 20044349 PMCID: PMC2874999 DOI: 10.1093/nar/gkp1176] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) 3′ end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a mature mRNA is essential for its functions, including stability, translocation to the cytoplasm and translation. In addition, this process serves as a bridge in the network connecting the different transcription, capping, splicing and export machineries. It also participates in the quantitative and qualitative regulation of gene expression in a variety of biological processes through the selection of single or alternative poly(A) signals in transcription units. A large number of protein factors associates with this machinery to regulate the efficiency and specificity of this process and to mediate its interaction with other nuclear events. Here, we review the eukaryotic 3′ end processing machineries as well as the comprehensive set of regulatory factors and discuss the different molecular mechanisms of 3′ end processing regulation by proposing several overlapping models of regulation.
Collapse
Affiliation(s)
- Stefania Millevoi
- Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France.
| | | |
Collapse
|
17
|
Spies N, Nielsen CB, Padgett RA, Burge CB. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 2009; 36:245-54. [PMID: 19854133 DOI: 10.1016/j.molcel.2009.10.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 12/29/2022]
Abstract
Core RNA-processing reactions in eukaryotic cells occur cotranscriptionally in a chromatin context, but the relationship between chromatin structure and pre-mRNA processing is poorly understood. We observed strong nucleosome depletion around human polyadenylation sites (PAS) and nucleosome enrichment just downstream of PAS. In genes with multiple alternative PAS, higher downstream nucleosome affinity was associated with higher PAS usage, independently of known PAS motifs that function at the RNA level. Conversely, exons were associated with distinct peaks in nucleosome density. Exons flanked by long introns or weak splice sites exhibited stronger nucleosome enrichment, and incorporation of nucleosome density data improved splicing simulation accuracy. Certain histone modifications, including H3K36me3 and H3K27me2, were specifically enriched on exons, suggesting active marking of exon locations at the chromatin level. Together, these findings provide evidence for extensive functional connections between chromatin structure and RNA processing.
Collapse
Affiliation(s)
- Noah Spies
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
18
|
Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci U S A 2008; 105:6004-9. [PMID: 18413612 DOI: 10.1073/pnas.0710748105] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pre-mRNA splicing and polyadenylation are tightly connected to transcription, and transcriptional stimuli and elongation dynamics can affect mRNA maturation. However, whether this regulatory mechanism has a physio/pathological impact is not known. In cancer, where splice variant expression is often deregulated, many mutated oncogenes are transcriptional regulators. In particular, the Ewing sarcoma (EwSa) oncogene, resulting from a fusion of the EWS and FLI1 genes, encodes a well characterized transcription factor. EWS-FLI1 directly stimulates transcription of the CCND1 protooncogene encoding cyclin D1a and a less abundant but more oncogenic splice isoform, D1b. We show that, although both EWS and EWS-FLI1 enhance cyclin D1 gene expression, they regulate the D1b/D1a transcript ratio in an opposite manner. Detailed analyses of RNA polymerase dynamics along the gene and of the effects of an inhibitor of elongation show that EWS-FLI1 favors D1b isoform expression by decreasing the elongation rate, whereas EWS has opposite effects. As a result, the D1b/D1a ratio is elevated in EwSa cell lines and tumors. The endogenous D1b protein is enriched in nuclei, where the oncogenic activity of cyclin D1 is known to occur, and depleting D1b in addition to D1a results in a stronger reduction of EwSa cell growth than depleting D1a only. These data show that elevated expression of a splice isoform in cancer can be due to an alteration of the transcription process by a mutated transcriptional regulator and provide evidence for a physio/pathological impact of the coupling between transcription and mRNA maturation.
Collapse
|
19
|
Peterson ML. Mechanisms controlling production of membrane and secreted immunoglobulin during B cell development. Immunol Res 2007; 37:33-46. [PMID: 17496345 DOI: 10.1007/bf02686094] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
Abstract
The immunoglobulin gene which encodes both membrane-associated and secreted proteins through alternative RNA processing reactions has been a model system used for over 25 yr to better understand the regulatory mechanisms governing alternative RNA processing. This gene contains competing cleavage-polyadenylation and RNA splicing reactions and the relative use of the two pathways is differentially regulated between B cells and plasma cells. General cleavage-polyadenylation and RNA splicing reactions are both altered during B cell maturation to affect immunoglobulin expression. However, the specific factors involved in this regulation have yet to be identified clearly. As transcriptional regulators stimulate the developmental RNA processing switch, microarray analysis is a promising approach to identify candidate regulators of this complex RNA processing mechanism.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
20
|
Ke J, Gururajan M, Kumar A, Simmons A, Turcios L, Chelvarajan RL, Cohen DM, Wiest DL, Monroe JG, Bondada S. The role of MAPKs in B cell receptor-induced down-regulation of Egr-1 in immature B lymphoma cells. J Biol Chem 2006; 281:39806-18. [PMID: 17065146 DOI: 10.1074/jbc.m604671200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking of the B cell receptor (BCR) on the immature B lymphoma cell line BKS-2 induces growth inhibition and apoptosis accompanied by rapid down-regulation of the immediate-early gene egr-1. In these lymphoma cells, egr-1 is expressed constitutively and has a prosurvival role, as Egr-1-specific antisense oligonucleotides or expression of a dominant-negative inhibitor of Egr-1 also prevented the growth of BKS-2 cells. Moreover, enhancement of Egr-1 protein with phorbol 12-myristate 13-acetate or an egr-1 expression vector rescued BKS-2 cells from BCR signal-induced growth inhibition. Nuclear run-on and mRNA stability assays indicated that BCR-derived signals act at the transcriptional level to reduce egr-1 expression. Inhibitors of ERK and JNK (but not of p38 MAPK) reduced egr-1 expression at the protein level. Transcriptional regulation appears to have a role because egr-1 promoter-driven luciferase expression was reduced by ERK and JNK inhibitors. Promoter truncation experiments suggested that several serum response elements are required for MAPK-mediated egr-1 expression. Our study suggests that BCR signals reduce egr-1 expression by inhibiting activation of ERK and JNK. Unlike ERK and JNK, p38 MAPK reduces constitutive expression of egr-1. Unlike the immature B lymphoma cells, normal immature B cells did not exhibit constitutive MAPK activation. BCR-induced MAPK activation was modest and transient with a small increase in egr-1 expression in normal immature B cells consistent with their inability to proliferate in response to BCR cross-linking.
Collapse
Affiliation(s)
- Jiyuan Ke
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Peterson ML, Bingham GL, Cowan C. Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation. Mol Cell Biol 2006; 26:6762-71. [PMID: 16943419 PMCID: PMC1592873 DOI: 10.1128/mcb.00889-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory-specific poly(A) signal (mus) of the immunoglobulin mu gene plays a central role in regulating alternative RNA processing to produce RNAs that encode membrane-associated and secreted immunoglobulins. This poly(A) signal is in direct competition with a splice reaction, and regulation requires that these two reaction efficiencies be balanced. The mus poly(A) signal has several unique sequence features that may contribute to its strength and regulation. Site-directed mutations and small internal deletions made in the intact mu gene show that an extensive AU/A-rich sequence surrounding AAUAAA enhances signal use and that, of the two potential downstream GU-rich elements, both of which appear suboptimally located, only the proximal GU-rich sequence contributes substantially to use of this signal. A GU-rich sequence placed at a more standard location did not improve mus poly(A) signal use. All mu genes tested that contained modified mus poly(A) signals were developmentally regulated, indicating that the GU-rich sequences, the sequences between them previously identified as suboptimal U1A binding sites, and an upstream suboptimal U1A site do not contribute to mu mRNA processing regulation. Expression of wild-type and modified mu genes in HeLa cells overexpressing U1A also failed to demonstrate that U1A contributes to mus poly(A) signal regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., 108A Combs Building, Lexington, KY 40536-0096, USA.
| | | | | |
Collapse
|
22
|
Nag A, Narsinh K, Kazerouninia A, Martinson HG. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA (NEW YORK, N.Y.) 2006; 12:1534-44. [PMID: 16775304 PMCID: PMC1524889 DOI: 10.1261/rna.103206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In vivo the poly(A) signal not only directs 3'-end processing but also controls the rate and extent of transcription. Thus, upon crossing the poly(A) signal RNA polymerase II first pauses and then terminates. We show that the G/U-rich region of the poly(A) signal, although required for termination in vivo, is not required for poly(A)-dependent pausing either in vivo or in vitro. Consistent with this, neither CstF, which recognizes the G/U-rich element, nor the polymerase CTD, which binds CstF, is required for pausing. The only part of the poly(A) signal required to direct the polymerase to pause is the AAUAAA hexamer. The effect of the hexamer on the polymerase is long lasting--in many situations polymerases over 1 kb downstream of the hexamer continue to exhibit delayed progress down the template in vivo. The hexamer is the first part of the poly(A) signal to emerge from the polymerase and may play a role independent of the rest of the poly(A) signal in paving the way for subsequent events such as 3'-end processing and termination of transcription.
Collapse
Affiliation(s)
- Anita Nag
- Department of Chemistry and Biochemistry, University of California at Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
23
|
West S, Zaret K, Proudfoot NJ. Transcriptional termination sequences in the mouse serum albumin gene. RNA (NEW YORK, N.Y.) 2006; 12:655-65. [PMID: 16581808 PMCID: PMC1421085 DOI: 10.1261/rna.2232406] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Poly(A) signals are required for efficient 3' end formation and transcriptional termination of most protein-encoding genes transcribed by RNA polymerase II. However, transcription can extend far beyond the poly(A) site before termination occurs. This implies the existence of further downstream termination signals. In mammals, a variety of sequence elements, in addition to the poly(A) site, have been implicated in the termination process. For example, termination of the human beta- and epsilon-globin genes is mediated by a sequence downstream of the poly(A) site that promotes an RNA cotranscriptional cleavage (CoTC). Here we report the identification of multiple termination sequences in the mouse serum albumin (MSA) 3' flanking region. Many transcripts from this region are cleaved cotranscriptionally, implying that such cleavage of pre-mRNA may be a more general feature of transcriptional termination.
Collapse
Affiliation(s)
- Steven West
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
24
|
Kaneko S, Manley JL. The Mammalian RNA Polymerase II C-Terminal Domain Interacts with RNA to Suppress Transcription-Coupled 3′ End Formation. Mol Cell 2005; 20:91-103. [PMID: 16209948 DOI: 10.1016/j.molcel.2005.08.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/18/2005] [Accepted: 08/29/2005] [Indexed: 11/19/2022]
Abstract
RNA polymerase II plays a critical role not only in transcription of mRNA precursors but also in their subsequent processing. This later function is mediated primarily by the C-terminal domain (CTD) of the enzyme's largest subunit, a unique, repetitive structure conserved throughout eukaryotes and known to interact with a number of different proteins during the transcription cycle. Here, we show that the mammalian CTD also interacts with RNA in a sequence-specific manner. We use a variety of RNA binding assays, including SELEX, to characterize the interaction in vitro and a modified chromatin immunoprecipitation (ChIP) assay to provide evidence that it also occurs in vivo. Transfection assays with the CTD binding consensus situated downstream of a polyadenylation signal indicate that the sequence can suppress mRNA 3' end formation and transcription termination, and in vitro assays indicate that the inhibition of processing is CTD dependent. Our results provide an unexpected function for CTD in modulating gene expression.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
25
|
Plant KE, Dye MJ, Lafaille C, Proudfoot NJ. Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human Ggamma-globin gene. Mol Cell Biol 2005; 25:3276-85. [PMID: 15798211 PMCID: PMC1069604 DOI: 10.1128/mcb.25.8.3276-3285.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human gamma-globin genes form part of a 5-kb tandem duplication within the beta-globin gene cluster on chromosome 11. Despite a high degree of identity between the two genes, we show that while the upstream Ggamma-globin gene terminates transcription efficiently, termination in the Agamma gene is inefficient. This is primarily due to the different strengths of the polyA signals of the two genes; Ggamma-globin has a functionally stronger polyA signal than the Agamma gene. The probable cause of this difference in polyA efficiency characteristics lies with a number of base changes which reduce the G/U content of the GU/U-rich region of the Agamma polyA signal relative to that of Ggamma. The 3' flanking regions of the two gamma-globin genes have similar abilities to promote transcription termination. We found no evidence to suggest a cotranscriptional cleavage event, such as that seen in the human beta-globin gene, occurs in either gamma-globin 3' flank. Instead we find evidence that the 3' flank of the Ggamma-globin gene contains multiple weak pause elements which, combined with the strong polyA signal the gene possesses, are likely to cause gradual termination across the 3' flank.
Collapse
Affiliation(s)
- Kathryn E Plant
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
26
|
Abstract
Plasma cells are the terminally differentiated, non-dividing effector cells of the B-cell lineage. They are cellular factories devoted to the task of synthesizing and secreting thousands of molecules of clonospecific antibody each second. To respond to microbial pathogens with the necessary specificity and rapidity, B cells are exquisitely regulated with respect to both development in the bone marrow and activation in the periphery. This review focuses on the terminal differentiation of B cells into plasma cells, including the different subsets of B cells that become plasma cells, the mechanism of regulation of this transition, the transcription factors that control each developmental stage and the characteristics of long-lived plasma cells.
Collapse
Affiliation(s)
- Miriam Shapiro-Shelef
- Departments of Microbiology, and Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
27
|
Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA (NEW YORK, N.Y.) 2004; 10:1489-98. [PMID: 15383674 PMCID: PMC1370635 DOI: 10.1261/rna.7100104] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Ciudad Universitaria, Pabellón II (C1428EHA) Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
28
|
Park NJ, Tsao DC, Martinson HG. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain. Mol Cell Biol 2004; 24:4092-103. [PMID: 15121832 PMCID: PMC400489 DOI: 10.1128/mcb.24.10.4092-4103.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxyl-terminal repeat domain (CTD) of RNA polymerase II is thought to help coordinate events during RNA metabolism. The mammalian CTD consists of 52 imperfectly repeated heptads followed by 10 additional residues at the C terminus. The CTD is required for cleavage and polyadenylation in vitro. We studied poly(A)-dependent termination in vivo using CTD truncation mutants. Poly(A)-dependent termination occurs in two steps, pause and release. We found that the CTD is required for release, the first 25 heptads being sufficient. Neither the final 10 amino acids nor the variant heptads of the second half of the CTD were required. No part of the CTD was required for poly(A)-dependent pausing--the poly(A) signal could communicate directly with the body of the polymerase. By removing the CTD, pausing could be observed without being obscured by release. Poly(A)-dependent pausing appeared to operate by slowing down the polymerase, such as by down-regulation of a positive elongation factor. Although the first 25 heptads supported undiminished poly(A)-dependent termination, they did not efficiently support events near the promoter involved in abortive elongation. However, the second half of the CTD, including the final 10 amino acids, was sufficient for these functions.
Collapse
Affiliation(s)
- Noh Jin Park
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
29
|
Robson-Dixon ND, Garcia-Blanco MA. MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb. J Biol Chem 2004; 279:29075-84. [PMID: 15126509 DOI: 10.1074/jbc.m312747200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) gene exons IIIb and IIIc are alternatively spliced in a mutually exclusive and cell type-specific manner. FGFR2 exon choice depends on both activation and silencing. Exon IIIb silencing requires cis-acting elements upstream and downstream of the exon. To examine the influence of transcription on exon IIIb silencing, the putative RNA polymerase II (RNAPII)-pausing MAZ4 element was inserted at different positions within the FGFR2 minigene construct. MAZ4 insertions 5' to the upstream silencing elements or between exon IIIb and downstream silencing elements result in decreased silencing. An insertion 3' of the downstream silencing elements, however, has no effect on splicing. An RT-PCR elongation assay shows that the MAZ4 site in these constructs is likely to be a RNAPII pause site. Insertion of another RNAPII pause site into the minigene has a similar effect on exon IIIb silencing. Transfection of in vitro transcribed RNA demonstrates that the cell type specificity of FGFR2 alternative splicing requires co-transcriptional splicing. Additionally, changing the promoter alters both FGFR2 minigene splicing and the MAZ4 effect. We propose that RNAPII pauses at the MAZ4 elements resulting in a change in the transcription elongation complex that influences alternative splicing decisions downstream.
Collapse
Affiliation(s)
- Nicole D Robson-Dixon
- Departments of Molecular Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
30
|
|
31
|
Cui Y, Denis CL. In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol Cell Biol 2003; 23:7887-901. [PMID: 14560031 PMCID: PMC207619 DOI: 10.1128/mcb.23.21.7887-7901.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While a number of proteins are involved in elongation processes, the mechanism for action of most of these factors remains unclear primarily because of the lack of suitable in vivo model systems. We identified in yeast several genes that contain internal poly(A) sites whose full-length mRNA formation is reduced by mutations in RNA polymerase II subunit RPB2, elongation factor SPT5, or TFIIS. RPB2 and SPT5 defects also promoted the utilization of upstream poly(A) sites for genes that contain multiple 3' poly(A) signaling sequences, supporting a role for elongation in differential poly(A) site choice. Our data suggest that elongation defects cause increased transcriptional pausing or arrest that results in increased utilization of internal or upstream poly(A) sites. Transcriptional pausing or arrest can therefore be visualized in vivo if a gene contains internal poly(A) sites, allowing biochemical and genetic study of the elongation process.
Collapse
Affiliation(s)
- Yajun Cui
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | |
Collapse
|
32
|
Orozco IJ, Kim SJ, Martinson HG. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J Biol Chem 2002; 277:42899-911. [PMID: 12196547 DOI: 10.1074/jbc.m207415200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes encoding polyadenylated mRNAs depend on their poly(A) signals for termination of transcription. Typically, transcription downstream of the poly(A) signal gradually declines to zero, but often there is a transient increase in polymerase density immediately preceding the decline. Special elements called pause sites are traditionally invoked to account for this increase. Using run-on transcription from the nuclei of transfected cells, we show that both the pause and the gradual decline that follow a poly(A) site are generated entirely by the poly(A) signal itself in a series of model constructs. We found no other elements to be involved and argue that the elements called pause sites do not function through pausing. Both the poly(A)-dependent pause and the subsequent decline occurred earlier for a stronger poly(A) signal than for a weaker one. Because the gradual decline resembles the abortive elongation that occurs downstream of many promoters, one model has proposed that the poly(A) signal flips the polymerase from the elongation mode to the abortive mode like a binary switch. We compared abortive elongators with poly(A) terminators and found a 4-fold difference in processivity. We conclude that poly(A) terminating polymerases do not merely revert to their prior state of low processivity but rather convert to a new termination-prone condition.
Collapse
Affiliation(s)
- Ian J Orozco
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|