1
|
Kulkarni S, Tebar F, Rentero C, Zhao M, Sáez P. Competing signaling pathways controls electrotaxis. iScience 2025; 28:112329. [PMID: 40292314 PMCID: PMC12032939 DOI: 10.1016/j.isci.2025.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding how cells follow exogenous cues is a key question for biology, medicine, and bioengineering. Growing evidence shows that electric fields represent a precise and programmable method to control cell migration. Most data suggest that the polarization of membrane proteins and the following downstream signaling are central to electrotaxis. Unfortunately, how these multiple mechanisms coordinate with the motile machinery of the cell is still poorly understood. Here, we develop a mechanistic model that explains electrotaxis across different cell types. Using the zebrafish proteome, we identify membrane proteins directly related to migration signaling pathways that polarize anodally and cathodally. Further, we show that the simultaneous and asymmetric distribution of these membrane receptors establish multiple cooperative and competing stimuli for directing the anodal and cathodal migration of the cell. Using electric fields, we enhance, cancel, or switch directed cell migration, with clear implications in promoting tissue regeneration or arresting tumor progression.
Collapse
Affiliation(s)
- S. Kulkarni
- Laboratori de Càlcul Numèric (LaCàN), ETS de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - F. Tebar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Cell Compartments and Signaling Group, Fundació de Recerca Clínic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - C. Rentero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Cell Compartments and Signaling Group, Fundació de Recerca Clínic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain
| | - M. Zhao
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - P. Sáez
- Laboratori de Càlcul Numèric (LaCàN), ETS de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, Barcelona, Spain
- IMTech (Institute of Mathematics), Universitat Politècnica de Catalunya-BarcelonaTech., 08034 Barcelona, Spain
| |
Collapse
|
2
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Zhang S, Elbs-Glatz Y, Tao S, Schmitt S, Li Z, Rottmar M, Maniura-Weber K, Ren Q. Probiotics promote cellular wound healing responses by modulating the PI3K and TGF-β/Smad signaling pathways. Cell Commun Signal 2025; 23:195. [PMID: 40269904 PMCID: PMC12016068 DOI: 10.1186/s12964-025-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Skin wound healing represents a dynamic and intricate biological process involving the coordinated efforts of various cellular and molecular components to restore tissue integrity and functionality. Among the myriads of cellular events orchestrating wound closure, fibroblast migration and the regulation of fibrosis play pivotal roles in determining the outcome of wound healing. In recent years, probiotic therapy has emerged as a promising strategy for modulating wound healing and fibrosis. Here, we aim to investigate the effect of bacterial probiotics on cell migration and anti-fibrotic response of human dermal fibroblast (HDFs). METHODS Probiotic mixture BioK was co-cultured with HDFs in vitro to assess its impact on fibroblast migration, gene expression, and protein production associated with important processes in wound healing. Gene expression was investigated by transcriptomic analysis and confirmed by RT-qPCR. Protein levels of the identified genes were evaluated by ELISA. The role of lactic acid, produced by BioK, in mediating pH-related effects on fibroblast activity was further examined. RESULTS We observed that BioK effectively promoted HDFs migration in vitro, which was found to be related to the up-regulation of genes involved in the phosphoinositide 3-kinase (PI3K) signaling pathways such as Paxillin, PI3K, PKC and ITG-β1. Interestingly, we also found that BioK down-regulated the expression of Nox-4, α-SMA and Col-I in TGF-Smad signaling pathways, which are involved in the differentiation of fibroblasts to myofibroblasts, and extracellular matrix type I collagen production, demonstrating its potential in reducing formation of fibrosis and scars. One of the acting factors for such down-regulation was identified to be BioK-produced lactic acid, which is known to lower the surrounding pH and to play a major role in fibroblast activity and wound healing. CONCLUSIONS This study demonstrates BioK's beneficial effects on fibroblast migration and its potential to mitigate fibrosis through pH modulation and pathway-specific gene regulation. These findings enhance our understanding of probiotic action on wound healing and offer promising therapeutic insights for the reduction of scar formation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sixuan Zhang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Yvonne Elbs-Glatz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Siyuan Tao
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Steven Schmitt
- ETH Zurich, D-BSSE (Department of Biosystems Science and Engineering), Basel, 4056, Switzerland
| | - Zhihao Li
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Qun Ren
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| |
Collapse
|
4
|
Aida S, Matsumoto T, Yamazaki Y, Limatola N, Santella L, Chiba K. Rac1 Temporarily Suppresses Fertilization Envelope Formation Immediately After 1-Methyladenine Stimulation. Cells 2025; 14:405. [PMID: 40136654 PMCID: PMC11941512 DOI: 10.3390/cells14060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
In starfish oocytes, the hormone 1-methyladenine (1-MA) induces germinal vesicle breakdown (GVBD) through a signaling cascade involving PI3K, SGK, Cdc25, and Cdk1/cyclin via G-proteinβγ subunit. Following GVBD, fertilization triggers an intracellular calcium increase, leading to the formation of the fertilization envelope (FE) via cortical granule exocytosis. While transient calcium elevations are known to occur after 1-MA stimulation even without fertilization, the inability of these calcium elevations to induce cortical granule exocytosis and FE formation remained unexplained. In this study, we found that co-treatment with 1-MA and calcium ionophore A23187 prevents FE formation, revealing a transient period termed the "no FE phase" persisting for several minutes. After no FE phase, the oocytes regain full competence to form the FE. Furthermore, we identified that the GEF/Rac1 signaling cascade is activated during the no FE phase. Notably, constitutively active Rac1 expressed in oocytes reproduces this inhibition even in the absence of 1-MA stimulation. These findings suggest that the GEF/Rac1 cascade, triggered by 1-MA, initiates the no FE phase and plays a critical role in coordinating the progression of subsequent fertilization events.
Collapse
Affiliation(s)
- Sakurako Aida
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (S.A.); (T.M.); (Y.Y.)
| | - Takako Matsumoto
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (S.A.); (T.M.); (Y.Y.)
| | - Yuna Yamazaki
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (S.A.); (T.M.); (Y.Y.)
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (N.L.); (L.S.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (N.L.); (L.S.)
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (S.A.); (T.M.); (Y.Y.)
| |
Collapse
|
5
|
Usuda J, Yagyu K, Tanaka H, Hori M, Ishikawa K, Takahashi Y. Nanoscale visualization of the anti-tumor effect of a plasma-activated Ringer's lactate solution. Faraday Discuss 2025; 257:212-223. [PMID: 39470167 DOI: 10.1039/d4fd00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Plasma-activated Ringer's lactate solutions (PALs), which are Ringer's lactate solutions treated with non-thermal atmospheric-pressure plasma, have an anti-tumor effect and can be used for chemotherapy. As the anti-tumor effect of the PAL is influenced by the cell-treatment time, it is necessary to monitor the structural changes of the cell surface with non-invasive, nanoscale, and time-lapse imaging to understand the anti-tumor effect. In this study, to characterize the anti-tumor effect of the PAL, we used scanning ion conductance microscopy (SICM), using glass nanopipettes as probes, to visualize the structural changes of the cell surface. SICM time-lapse topographic imaging visualized a decrease in the movement of lamellipodia in normal cells and cancer cells after the PAL treatment. Furthermore, in normal cells, protrusive structures were observed on the cell surface. Time-lapse imaging using SICM allowed us to characterize the differences in the morphological changes between the normal and cancer cells upon exposure to the PAL.
Collapse
Affiliation(s)
- Junichi Usuda
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Kenshin Yagyu
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Hiromasa Tanaka
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masaru Hori
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kenji Ishikawa
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Matsuki T, Tabata H, Ueda M, Ito H, Nagata KI, Tsuneura Y, Eda S, Kasai K, Nakayama A. The MCPH7 Gene Product STIL Is Essential for Dendritic Spine Formation. Cells 2025; 14:62. [PMID: 39851490 PMCID: PMC11764357 DOI: 10.3390/cells14020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of Stil resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo. Rescue experiments indicated that the STIL requirement for spine formation/maintenance depended on its coiled coil domain that mediates the association with ARHGEF7. The overexpression of Rac1/Cdc42 compensated for the spine reduction caused by STIL knockdown. FRET experiments showed that Rac activation is impaired in STIL knockdown neurons. Chemical long-term potentiation, which triggers Rac activation, promoted STIL accumulation in the spine and its association with ARHGEF7. The dynamics of these proteins further supported their coordinated involvement in spine formation/maintenance. Based on these findings, we concluded that the centrosomal protein STIL is a novel regulatory factor essential for spine formation/maintenance by activating Rac and its downstream pathway, possibly through the association with ARHGEF7.
Collapse
Affiliation(s)
- Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan; (H.T.); (K.-i.N.)
| | - Masashi Ueda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Aichi, Japan (K.K.)
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan; (H.T.); (K.-i.N.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Aichi, Japan (K.K.)
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| |
Collapse
|
7
|
Kamiyama D, Nishida Y, Kamiyama R, Sego A, Vining G, Bui K, Fitch M, Do H, Avraham O, Chihara T. The VAPB Axis Precisely Coordinates the Timing of Motoneuron Dendritogenesis in Neural Map Development. RESEARCH SQUARE 2024:rs.3.rs-5684747. [PMID: 39801516 PMCID: PMC11722539 DOI: 10.21203/rs.3.rs-5684747/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In Drosophila motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process. In this report, we further identify the upstream factors that activate Cdc42. Using single-cell genetics, FRET-based imaging, and biochemical techniques, we demonstrate that the guanine nucleotide exchange factor Vav is anchored to the plasma membrane via the Eph receptor tyrosine kinase, enabling Cdc42 activation. VAMP-associated protein 33 (Vap33), an Eph ligand supplied non-cell-autonomously, may induce Eph autophosphorylation, initiating downstream signaling. Traditionally known as an ER-resident protein, Vap33 is secreted extracellularly at the onset of Cdc42 activation, acting as a temporal cue. In humans, VAPB-the ortholog of Vap33-is similarly secreted in the spinal cord, and its dysregulation leads to amyotrophic lateral sclerosis type 8 (ALS8) and spinal muscular atrophy (SMA). Our findings provide a framework linking VAPB signaling to motor circuitry formation in both health and disease.
Collapse
|
8
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Borsdorf S, Zeug A, Wu Y, Mitroshina E, Vedunova M, Gaitonde SA, Bouvier M, Wehr MC, Labus J, Ponimaskin E. The cell adhesion molecule CD44 acts as a modulator of 5-HT7 receptor functions. Cell Commun Signal 2024; 22:563. [PMID: 39580460 PMCID: PMC11585102 DOI: 10.1186/s12964-024-01931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic. METHODS Using a quantitative FRET (Förster resonance energy transfer) approach, we determined the affinities for the formation of homo- and heteromeric complexes of 5-HT7R and CD44. The impact of heteromerization on 5-HT7R-mediated cAMP signaling was assessed using a cAMP responsive luciferase assay and a FRET-based cAMP biosensor under basal conditions as well as upon pharmacological modulation of the 5-HT7R and/or CD44 with specific ligands. We also investigated receptor-mediated G protein activation using BRET (bioluminescence resonance energy transfer)-based biosensors in both, homo- and heteromeric conditions. Finally, we analyzed expression profiles for 5-HT7R and CD44 in the brain during development. RESULTS We found that homo- and heteromerization of the 5-HT7R and CD44 occur at similar extent. Functionally, heteromerization increased 5-HT7R-mediated cAMP production under basal conditions. In contrast, agonist-mediated cAMP production was decreased in the presence of CD44. Mechanistically, this might be explained by increased Gαs and decreased GαoB activation by 5-HT7R/CD44 heteromers. Unexpectedly, treatment of the heteromeric complex with the CD44 ligand hyaluronic acid boosted constitutive 5-HT7R-mediated cAMP signaling and receptor-mediated transcription, suggesting the existence of a transactivation mechanism. CONCLUSIONS Interaction with the hyaluronan receptor CD44 modulates both the constitutive activity of 5-HT7R as well as its agonist-mediated signaling. Heteromerization also results in the transactivation of 5-HT7R-mediated signaling via CD44 ligand.
Collapse
Affiliation(s)
- Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Systasy Bioscience GmbH, Planegg-Martinsried, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
11
|
Banerjee S, Vernon S, Ruchti E, Limoni G, Jiao W, Asadzadeh J, Van Campenhoudt M, McCabe BD. Trio preserves motor synapses and prolongs motor ability during aging. Cell Rep 2024; 43:114256. [PMID: 38795343 DOI: 10.1016/j.celrep.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/24/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024] Open
Abstract
The decline of motor ability is a hallmark feature of aging and is accompanied by degeneration of motor synaptic terminals. Consistent with this, Drosophila motor synapses undergo characteristic age-dependent structural fragmentation co-incident with diminishing motor ability. Here, we show that motor synapse levels of Trio, an evolutionarily conserved guanine nucleotide exchange factor (GEF), decline with age. We demonstrate that increasing Trio expression in adult Drosophila can abrogate age-dependent synaptic structural fragmentation, postpone the decline of motor ability, and maintain the capacity of motor synapses to sustain high-intensity neurotransmitter release. This preservative activity is conserved in transgenic human Trio, requires Trio Rac GEF function, and can also ameliorate synapse degeneration induced by depletion of miniature neurotransmission. Our results support a paradigm where the structural dissolution of motor synapses precedes and promotes motor behavioral diminishment and where intervening in this process can postpone the decline of motor function during aging.
Collapse
Affiliation(s)
- Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Marine Van Campenhoudt
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, VD 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Cui C, Huo Q, Xiong X, Na S, Mitsuda M, Minami K, Li B, Yokota H. P18: Novel Anticancer Peptide from Induced Tumor-Suppressing Cells Targeting Breast Cancer and Bone Metastasis. Cancers (Basel) 2024; 16:2230. [PMID: 38927935 PMCID: PMC11202002 DOI: 10.3390/cancers16122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The skeletal system is a common site for metastasis from breast cancer. In our prior work, we developed induced tumor-suppressing cells (iTSCs) capable of secreting a set of tumor-suppressing proteins. In this study, we examined the possibility of identifying anticancer peptides (ACPs) from trypsin-digested protein fragments derived from iTSC proteomes. METHODS The efficacy of ACPs was examined using an MTT-based cell viability assay, a Scratch-based motility assay, an EdU-based proliferation assay, and a transwell invasion assay. To evaluate the mechanism of inhibitory action, a fluorescence resonance energy transfer (FRET)-based GTPase activity assay and a molecular docking analysis were conducted. The efficacy of ACPs was also tested using an ex vivo cancer tissue assay and a bone microenvironment assay. RESULTS Among the 12 ACP candidates, P18 (TDYMVGSYGPR) demonstrated the most effective anticancer activity. P18 was derived from Arhgdia, a Rho GDP dissociation inhibitor alpha, and exhibited inhibitory effects on the viability, migration, and invasion of breast cancer cells. It also hindered the GTPase activity of RhoA and Cdc42 and downregulated the expression of oncoproteins such as Snail and Src. The inhibitory impact of P18 was additive when it was combined with chemotherapeutic drugs such as Cisplatin and Taxol in both breast cancer cells and patient-derived tissues. P18 had no inhibitory effect on mesenchymal stem cells but suppressed the maturation of RANKL-stimulated osteoclasts and mitigated the bone loss associated with breast cancer. Furthermore, the P18 analog modified by N-terminal acetylation and C-terminal amidation (Ac-P18-NH2) exhibited stronger tumor-suppressor effects. CONCLUSIONS This study introduced a unique methodology for selecting an effective ACP from the iTSC secretome. P18 holds promise for the treatment of breast cancer and the prevention of bone destruction by regulating GTPase signaling.
Collapse
Affiliation(s)
- Changpeng Cui
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Xue Xiong
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Masaru Mitsuda
- Frontier Research Institute, Chubu University, Aichi 487-8501, Japan;
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan;
| | - Baiyan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (C.C.); (Q.H.); (X.X.)
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Wu Y, Liu W, Li J, Shi H, Ma S, Wang D, Pan B, Xiao R, Jiang H, Liu X. Decreased Tiam1-mediated Rac1 activation is responsible for impaired directional persistence of chondrocyte migration in microtia. J Cell Mol Med 2024; 28:e18443. [PMID: 38837873 PMCID: PMC11149491 DOI: 10.1111/jcmm.18443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.
Collapse
Affiliation(s)
- Yi Wu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jia Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hang Shi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shize Ma
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Di Wang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyue Jiang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Kapitany V, Fatima A, Zickus V, Whitelaw J, McGhee E, Insall R, Machesky L, Faccio D. Single-sample image-fusion upsampling of fluorescence lifetime images. SCIENCE ADVANCES 2024; 10:eadn0139. [PMID: 38781345 PMCID: PMC11114222 DOI: 10.1126/sciadv.adn0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global correlations between the two "single-sample" measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared, for example, to standard bilinear interpolation. The general approach laid out by single-sample image-fusion upsampling can be applied to other image super-resolution problems where two different datasets are available.
Collapse
Affiliation(s)
- Valentin Kapitany
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Areeba Fatima
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | | | - Ewan McGhee
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | | | - Daniele Faccio
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Weeks R, Mehta S, Zhang J. Genetically encodable biosensors for Ras activity. RSC Chem Biol 2024; 5:312-320. [PMID: 38576721 PMCID: PMC10989514 DOI: 10.1039/d3cb00185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/02/2024] [Indexed: 04/06/2024] Open
Abstract
Genetically encoded Ras biosensors have been instrumental in illuminating the spatiotemporal dynamics of Ras activity since the beginning of the imaging revolution of the early 21st century. In general, these sensors employ Ras sensing units coupled with fluorescent proteins. These biosensors have not only helped elucidate Ras signalling dynamics at the plasma membrane but also revealed novel roles for Ras signalling within subcellular compartments such as the Golgi apparatus. In this review, we discuss the different classes of biosensors used to measure Ras activity and discuss their importance in uncovering new roles for Ras activity in cellular signalling and behavior.
Collapse
Affiliation(s)
- Ryan Weeks
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla CA 92093 USA +1 (858) 246-0602
- Department of Pharmacology, University of California, San Diego La Jolla CA 92093 USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego La Jolla CA 92093 USA
| | - Jin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla CA 92093 USA +1 (858) 246-0602
- Department of Pharmacology, University of California, San Diego La Jolla CA 92093 USA
- Department of Bioengineering, University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
16
|
Han S, Lee G, Kim D, Kim J, Kim I, Kim H, Kim D. Selective Suppression of Integrin-Ligand Binding by Single Molecular Tension Probes Mediates Directional Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306497. [PMID: 38311584 PMCID: PMC11005741 DOI: 10.1002/advs.202306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Cell migration interacting with continuously changing microenvironment, is one of the most essential cellular functions, participating in embryonic development, wound repair, immune response, and cancer metastasis. The migration process is finely tuned by integrin-mediated binding to ligand molecules. Although numerous biochemical pathways orchestrating cell adhesion and motility are identified, how subcellular forces between the cell and extracellular matrix regulate intracellular signaling for cell migration remains unclear. Here, it is showed that a molecular binding force across integrin subunits determines directional migration by regulating tension-dependent focal contact formation and focal adhesion kinase phosphorylation. Molecular binding strength between integrin αvβ3 and fibronectin is precisely manipulated by developing molecular tension probes that control the mechanical tolerance applied to cell-substrate interfaces. This data reveals that integrin-mediated molecular binding force reduction suppresses cell spreading and focal adhesion formation, attenuating the focal adhesion kinase (FAK) phosphorylation that regulates the persistence of cell migration. These results further demonstrate that manipulating subcellular binding forces at the molecular level can recapitulate differential cell migration in response to changes of substrate rigidity that determines the physical condition of extracellular microenvironment. Novel insights is provided into the subcellular mechanics behind global mechanical adaptation of the cell to surrounding tissue environments featuring distinct biophysical signatures.
Collapse
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Daesan Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - In‐San Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science in College of Dentistry & Department of Nanobiomedical Science in Graduate SchoolDankook UniversityCheonan31116Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
17
|
Mehl BP, Vairaprakash P, Li L, Hinde E, MacNevin CJ, Hsu CW, Gratton E, Liu B, Hahn KM. Live-cell biosensors based on the fluorescence lifetime of environment-sensing dyes. CELL REPORTS METHODS 2024; 4:100734. [PMID: 38503289 PMCID: PMC10985238 DOI: 10.1016/j.crmeth.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
In this work, we examine the use of environment-sensitive fluorescent dyes in fluorescence lifetime imaging microscopy (FLIM) biosensors. We screened merocyanine dyes to find an optimal combination of environment-induced lifetime changes, photostability, and brightness at wavelengths suitable for live-cell imaging. FLIM was used to monitor a biosensor reporting conformational changes of endogenous Cdc42 in living cells. The ability to quantify activity using phasor analysis of a single fluorophore (e.g., rather than ratio imaging) eliminated potential artifacts. We leveraged these properties to determine specific concentrations of activated Cdc42 across the cell.
Collapse
Affiliation(s)
- Brian P Mehl
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pothiappan Vairaprakash
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Hinde
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92617, USA
| | - Christopher J MacNevin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chia-Wen Hsu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92617, USA
| | - Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Newman D, Young LE, Waring T, Brown L, Wolanska KI, MacDonald E, Charles-Orszag A, Goult BT, Caswell PT, Sakuma T, Yamamoto T, Machesky LM, Morgan MR, Zech T. 3D matrix adhesion feedback controls nuclear force coupling to drive invasive cell migration. Cell Rep 2023; 42:113554. [PMID: 38100355 DOI: 10.1016/j.celrep.2023.113554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. βPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-βPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.
Collapse
Affiliation(s)
- Daniel Newman
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lorna E Young
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Waring
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Louise Brown
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ewan MacDonald
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Mark R Morgan
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tobias Zech
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
19
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
20
|
Machin PA, Johnsson AKE, Massey EJ, Pantarelli C, Chetwynd SA, Chu JY, Okkenhaug H, Segonds-Pichon A, Walker S, Malliri A, Fukui Y, Welch HCE. Dock2 generates characteristic spatiotemporal patterns of Rac activity to regulate neutrophil polarisation, migration and phagocytosis. Front Immunol 2023; 14:1180886. [PMID: 37383235 PMCID: PMC10293741 DOI: 10.3389/fimmu.2023.1180886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens. Methods Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control. Results All the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis. Discussion Collectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anna-Karin E. Johnsson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Ellie J. Massey
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Chiara Pantarelli
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Stephen A. Chetwynd
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Y. Chu
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anne Segonds-Pichon
- Bioinformatics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Simon Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Angeliki Malliri
- Cell Signalling, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
21
|
Mahlandt EK, Kreider-Letterman G, Chertkova AO, Garcia-Mata R, Goedhart J. Cell-based optimization and characterization of genetically encoded location-based biosensors for Cdc42 or Rac activity. J Cell Sci 2023; 136:jcs260802. [PMID: 37226883 PMCID: PMC10234108 DOI: 10.1242/jcs.260802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Rac (herein referring to the Rac family) and Cdc42 are Rho GTPases that regulate the formation of lamellipoda and filopodia, and are therefore crucial in processes such as cell migration. Relocation-based biosensors for Rac and Cdc42 have not been characterized well in terms of their specificity or affinity. In this study, we identify relocation sensor candidates for both Rac and Cdc42. We compared their (1) ability to bind the constitutively active Rho GTPases, (2) specificity for Rac and Cdc42, and (3) relocation efficiency in cell-based assays. Subsequently, the relocation efficiency was improved by a multi-domain approach. For Rac1, we found a sensor candidate with low relocation efficiency. For Cdc42, we found several sensors with sufficient relocation efficiency and specificity. These optimized sensors enable the wider application of Rho GTPase relocation sensors, which was showcased by the detection of local endogenous Cdc42 activity at assembling invadopodia. Moreover, we tested several fluorescent proteins and HaloTag for their influence on the recruitment efficiency of the Rho location sensor, to find optimal conditions for a multiplexing experiment. This characterization and optimization of relocation sensors will broaden their application and acceptance.
Collapse
Affiliation(s)
- Eike K. Mahlandt
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | - Anna O. Chertkova
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
22
|
VanderVorst K, Dreyer CA, Hatakeyama J, Bell GRR, Learn JA, Berg AL, Hernandez M, Lee H, Collins SR, Carraway KL. Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis. Breast Cancer Res 2023; 25:52. [PMID: 37147680 PMCID: PMC10163820 DOI: 10.1186/s13058-023-01651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/23/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis. METHODS Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model. RESULTS We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics. CONCLUSIONS We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George R R Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Julie A Learn
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
23
|
Kunida K, Takagi N, Aoki K, Ikeda K, Nakamura T, Sakumura Y. Decoding cellular deformation from pseudo-simultaneously observed Rho GTPase activities. Cell Rep 2023; 42:112071. [PMID: 36764299 DOI: 10.1016/j.celrep.2023.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Limitations in simultaneously observing the activity of multiple molecules in live cells prevent researchers from elucidating how these molecules coordinate the dynamic regulation of cellular functions. Here, we propose the motion-triggered average (MTA) algorithm to characterize pseudo-simultaneous dynamic changes in arbitrary cellular deformation and molecular activities. Using MTA, we successfully extract a pseudo-simultaneous time series from individually observed activities of three Rho GTPases: Cdc42, Rac1, and RhoA. To verify that this time series encoded information on cell-edge movement, we use a mathematical regression model to predict the edge velocity from the activities of the three molecules. The model accurately predicts the unknown edge velocity, providing numerical evidence that these Rho GTPases regulate edge movement. Data preprocessing using MTA combined with mathematical regression provides an effective strategy for reusing numerous individual observations of molecular activities.
Collapse
Affiliation(s)
- Katsuyuki Kunida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiro Takagi
- Graduate School of Information Science and Technology, Aichi Prefectural University, Nagakute, Aichi 480-1342, Japan
| | - Kazuhiro Aoki
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazushi Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Kyoto 619-0288, Japan
| | - Takeshi Nakamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara 8916-5, Japan.
| |
Collapse
|
24
|
Kin R, Hoshi D, Fujita H, Kosaka T, Takamura H, Kiyokawa E. Prognostic significance of p16, p21, and Ki67 expression at the invasive front of colorectal cancers. Pathol Int 2023; 73:81-90. [PMID: 36484761 DOI: 10.1111/pin.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Cancer cells at the invasive front are believed to be responsible for invasion/metastasis. This has led to examining various morphological features and protein expressions at the invasive front. However, accurate assessment of the pathological section requires long-time training, and inter-observer disagreement is problematic. Immunohistochemistry and digital imaging analysis may mitigate these problems; however, the choice of which proteins to stain and the best analysis method remains controversial. We used the "go-or-grow" hypothesis to select markers with the greatest prognostic relevance. Importantly, nonproliferating cells can migrate. We used Ki67 as a proliferation marker, with p16 and p21 designating nonproliferating cells. We established a semi-automated quantification workflow to study protein expression in serial pathological sections. A total of 51 patients with completely resected colorectal cancer (stages I-IV) were analyzed, and 44 patients were followed up. Patients with cancer cells with p16-high/p21-low or p21-low/Ki67-low at the deepest invasive front demonstrated a significantly worse prognosis than those who did not display these characteristics. These results suggest that the nonproliferating cancer cells at the invasion front possess invasion/metastatic property with heterogeneity of senescence.
Collapse
Affiliation(s)
- Ryosuke Kin
- Department of Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Hoshi
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan
| | - Hideto Fujita
- Department of Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Takeo Kosaka
- Department of Surgery, Kanazawa Medical University, Ishikawa, Japan.,Department of Surgery, Houju Memorial Hospital, Ishikawa, Japan
| | | | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
25
|
Zholudeva AO, Lomakina ME, Orlova EA, Wang Y, Fokin AI, Polesskaya A, Gautreau AM, Alexandrova AY. The Role of the Adapter Protein Anks1a in the Regulation of Breast Cancer Cell Motility. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1651-1661. [PMID: 36717454 DOI: 10.1134/s0006297922120203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression that leads to the acquisition by cancer cells the capacity for migration using the mesenchymal motility mode regulated by the Rac→WAVE→Arp2/3 signaling pathway. Earlier it was shown that proteins interacting with Rac can regulate mesenchymal migration and thus determine the metastatic potential of the cells. The search for new regulators of cell migration is an important theoretical and practical task. The adaptor protein Anks1a is one of the proteins interacting with Rac, whose expression is altered in many types of tumors. The aim of this study was to find whether Anks1a affects the migration of cancer cells and to identify the mechanism underlying this effect. It was suggested that Anks1a can influence cancer cell migration either as a Rac1 effector or by activating human epidermal growth factor receptor 2 (HER2) exchange. We investigated how upregulation and inhibition of Anks1a expression affected migration of breast cancer cells with different HER2 status. Anks1a was shown to interact with the activated form of Rac1. In the MDA-MB-231 cells (triple negative cancer), which lack HER2, Anks1a accumulated at the active cell edge, which is characterized by enrichment with active Rac1, whereas no such accumulation was observed in the HER2-overexpressing SK-BR-3 cells. Downregulation of the ANKS1a expression with esiRNA had almost no effect on the cancer cell motility, except a slight increase in the average migration rate of MDA-MB-231 cells. Among three cell lines tested, overexpression of Anks1a increased the migration rate of HER2-overexpressng SK-BR-3 cells only. We showed that Anks1a is an effector of activated Rac1, but its influence on the cell migration in this capacity was minimal, at least in the studied breast cancer cells. Anks1a affected the motility of breast cancer cells due to its involvement in the EGF receptor exchange.
Collapse
Affiliation(s)
- Anna O Zholudeva
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Maria E Lomakina
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Evgeniya A Orlova
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Yanan Wang
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Artem I Fokin
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Anna Polesskaya
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | | |
Collapse
|
26
|
Kim E, Suh JS, Jang YK, Kim H, Choi G, Kim TJ. Harmine inhibits proliferation and migration of glioblastoma via ERK signalling. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Clark AG, Maitra A, Jacques C, Bergert M, Pérez-González C, Simon A, Lederer L, Diz-Muñoz A, Trepat X, Voituriez R, Vignjevic DM. Self-generated gradients steer collective migration on viscoelastic collagen networks. NATURE MATERIALS 2022; 21:1200-1210. [PMID: 35637338 DOI: 10.1038/s41563-022-01259-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.
Collapse
Affiliation(s)
- Andrew G Clark
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany.
| | - Ananyo Maitra
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, Paris, France.
- Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France.
| | - Cécile Jacques
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Anthony Simon
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Luc Lederer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université and CNRS, Paris, France
| | | |
Collapse
|
28
|
Grubisha MJ, DeGiosio RA, Wills ZP, Sweet RA. Trio and Kalirin as unique enactors of Rho/Rac spatiotemporal precision. Cell Signal 2022; 98:110416. [PMID: 35872089 DOI: 10.1016/j.cellsig.2022.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/18/2022]
Abstract
Rac1 and RhoA are among the most widely studied small GTPases. The classic dogma surrounding their biology has largely focused on their activity as an "on/off switch" of sorts. However, the advent of more sophisticated techniques, such as genetically-encoded FRET-based sensors, has afforded the ability to delineate the spatiotemporal regulation of Rac1 and RhoA. As a result, there has been a shift from this simplistic global view to one incorporating the precision of spatiotemporal modularity. This review summarizes emerging data surrounding the roles of Rac1 and RhoA as cytoskeletal regulators and examines how these new data have led to a revision of the traditional dogma which placed Rac1 and RhoA in antagonistic pathways. This more recent evidence suggests that rather than absolute activity levels, it is the tight spatiotemporal regulation of Rac1 and RhoA across multiple roles, from oppositional to complementary, that is necessary to execute coordinated cytoskeletal processes affecting cell structure, function, and migration. We focus on how Kalirin and Trio, as dual GEFs that target Rac1 and RhoA, are uniquely designed to provide the spatiotemporally-precise shifts in Rac/Rho balance which mediate changes in neuronal structure and function, particularly by way of cytoskeletal rearrangements. Finally, we review how alterations in Trio and/or Kalirin function are associated with cellular abnormalities and neuropsychiatric disease.
Collapse
Affiliation(s)
- M J Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z P Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Khan A, Ni W, Baltazar T, Lopez-Giraldez F, Pober JS, Pierce RW. ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor-induced leak. FASEB J 2022; 36:e22254. [PMID: 35294066 PMCID: PMC9103844 DOI: 10.1096/fj.202101873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.
Collapse
Affiliation(s)
- Alamzeb Khan
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Weiming Ni
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Tania Baltazar
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | |
Collapse
|
30
|
Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity. Sci Rep 2022; 12:5291. [PMID: 35351946 PMCID: PMC8964680 DOI: 10.1038/s41598-022-09364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Genetically encoded, Förster resonance energy transfer (FRET) biosensors enable live-cell optical imaging of signaling molecules. Small conformational changes often limit the dynamic range of biosensors that combine fluorescent proteins (FPs) and sensing domains into a single polypeptide. To address this, we developed FRET and lanthanide-based FRET (LRET) biosensors of Rac1 activation with two key features that enhance sensitivity and dynamic range. For one, alpha helical linker domains separate FRET partners and ensure a large conformational change and FRET increase when activated Rac1 at the biosensor C-terminus interacts with an amino-terminal Rac binding domain. Incorporation of a luminescent Tb(III) complex with long (~ ms) excited state lifetime as a LRET donor enabled time-gated luminescence measurements of Rac1 activity in cell lysates. The LRET dynamic range increased with ER/K linker length up to 1100% and enabled robust detection of Rac1 inhibition in 96-well plates. The ER/K linkers had a less pronounced, but still significant, effect on conventional FRET biosensors (with FP donors and acceptors), and we were able to dynamically image Rac1 activation at cell edges using fluorescence microscopy. The results herein highlight the potential of FRET and LRET biosensors with ER/K linkers for cell-based imaging and screening of protein activities.
Collapse
|
31
|
Tsuda M, Horio R, Wang L, Takenami T, Moriya J, Suzuka J, Sugino H, Tanei Z, Tanino M, Tanaka S. Novel rapid immunohistochemistry using an alternating current electric field identifies Rac and Cdc42 activation in human colon cancer FFPE tissues. Sci Rep 2022; 12:1733. [PMID: 35110666 PMCID: PMC8810803 DOI: 10.1038/s41598-022-05892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
It is important to determine the activation status of Rac and Cdc42 in cancer tissues for the prediction of metastasis and patient prognosis. However, it has been impossible to detect their spatial activation on formalin-fixed paraffin embedded (FFPE) surgical specimens thus far. Here, we established a novel detection technique for activated Rac/Cdc42 in human colon cancer FFPE tissues by using a p21-activated kinase (PAK)-Rac binding domain (RBD) detection probe fused with glutathione S-transferase (GST), designated GST-PAK-RBD, and novel rapid-immunohistochemistry (R-IHC) systems using noncontact alterating-current electric field mixing, although there is a technical limitation in that it may not distinguish between Rac members and Cdc42. In 50 cases of colon cancer, various activation patterns of Rac/Cdc42 were observed, which were designated plasma membrane, cytoplasm, mixed pattern, and polarized distribution. The activity was striking in the invasive fronts of tumors and significantly correlated with tumor invasion properties evaluated by TNM classification. Of note, in tissue microarray (TMA) samples, 29 of 33 cases demonstrated higher Rac1/Cdc42 activity in the tumor area than the corresponding normal mucosa. In addition, positive correlations were detected between Rac/Cdc42 activity and clinicopathological factors such as venous and lymphatic vessel invasion. These results suggest that understanding Rac and Cdc42 activations in cancer tissues would be valuable as an option for molecular therapy as personalized medicine.
Collapse
Affiliation(s)
- Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Runa Horio
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tomoko Takenami
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Jun Moriya
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Jun Suzuka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Hirokazu Sugino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Zenichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Mishie Tanino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, 060-8638, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
32
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
33
|
Baker MJ, Kazanietz MG. The anti-Rac1-GTP antibody and the detection of active Rac1: a tool with a fundamental flaw. Small GTPases 2022; 13:136-140. [PMID: 33910489 PMCID: PMC9707529 DOI: 10.1080/21541248.2021.1920824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rac1 is a member of the Rho GTPase family and is involved in many cellular processes, particularly the formation of actin-rich membrane protrusions, such as lamellipodia and ruffles. With such a widely studied protein, it is essential that the research community has reliable tools for detecting Rac1 activation both in cellular models and tissues. Using a series of cancer cellular models, we recently demonstrated that a widely used antibody for visualizing active Rac1 (Rac1-GTP) does not recognize Rac1 but instead recognizes vimentin filaments (Baker MJ, J. Biol. Chem. 295:13698-13710, 2020). We believe that this tool has misled the field and impose on the GTPase research community the need to validate published results using this antibody as well as to continue the development of new resources to visualize endogenous active Rac1.
Collapse
Affiliation(s)
- Martin J. Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,CONTACT Marcelo G. Kazanietz Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 1256 Biomedical Research Building II/III, 421 Curie Blvd., Philadelphia, PA19104-6160, USA
| |
Collapse
|
34
|
Koh SP, Pham NP, Piekny A. Seeing is believing: tools to study the role of Rho GTPases during cytokinesis. Small GTPases 2022; 13:211-224. [PMID: 34405757 PMCID: PMC9707540 DOI: 10.1080/21541248.2021.1957384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis is required to cleave the daughter cells at the end of mitosis and relies on the spatiotemporal control of RhoA GTPase. Cytokinesis failure can lead to changes in cell fate or aneuploidy, which can be detrimental during development and/or can lead to cancer. However, our knowledge of the pathways that regulate RhoA during cytokinesis is limited, and the role of other Rho family GTPases is not clear. This is largely because the study of Rho GTPases presents unique challenges using traditional cell biological and biochemical methods, and they have pleiotropic functions making genetic studies difficult to interpret. The recent generation of optogenetic tools and biosensors that control and detect active Rho has overcome some of these challenges and is helping to elucidate the role of RhoA in cytokinesis. However, improvements are needed to reveal the role of other Rho GTPases in cytokinesis, and to identify the molecular mechanisms that control Rho activity. This review examines some of the outstanding questions in cytokinesis, and explores tools for the imaging and control of Rho GTPases.
Collapse
Affiliation(s)
- Su Pin Koh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Nhat Phi Pham
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada,CONTACT Alisa Piekny Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
35
|
Xue R, Wang Y, Wang T, Lyu M, Mo G, Fan X, Li J, Yen K, Yu S, Liu Q, Xu J. Functional Verification of Novel ELMO1 Variants by Live Imaging in Zebrafish. Front Cell Dev Biol 2021; 9:723804. [PMID: 34993193 PMCID: PMC8724260 DOI: 10.3389/fcell.2021.723804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
ELMO1 (Engulfment and Cell Motility1) is a gene involved in regulating cell motility through the ELMO1-DOCK2-RAC complex. Contrary to DOCK2 (Dedicator of Cytokinesis 2) deficiency, which has been reported to be associated with immunodeficiency diseases, variants of ELMO1 have been associated with autoimmune diseases, such as diabetes and rheumatoid arthritis (RA). To explore the function of ELMO1 in immune cells and to verify the functions of novel ELMO1 variants in vivo, we established a zebrafish elmo1 mutant model. Live imaging revealed that, similar to mammals, the motility of neutrophils and T-cells was largely attenuated in zebrafish mutants. Consequently, the response of neutrophils to injury or bacterial infection was significantly reduced in the mutants. Furthermore, the reduced mobility of neutrophils could be rescued by the expression of constitutively activated Rac proteins, suggesting that zebrafish elmo1 mutant functions via a conserved mechanism. With this mutant, three novel human ELMO1 variants were transiently and specifically expressed in zebrafish neutrophils. Two variants, p.E90K (c.268G>A) and p.D194G (c.581A>G), could efficiently recover the motility defect of neutrophils in the elmo1 mutant; however, the p.R354X (c.1060C>T) variant failed to rescue the mutant. Based on those results, we identified that zebrafish elmo1 plays conserved roles in cell motility, similar to higher vertebrates. Using the transient-expression assay, zebrafish elmo1 mutants could serve as an effective model for human variant verification in vivo.
Collapse
Affiliation(s)
- Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | - Mei Lyu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiling Mo
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Xijie Fan
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Jianchao Li
- Laboratory of Molecular and Structural Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Shihui Yu
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Jin Xu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| |
Collapse
|
36
|
STK25 and MST3 Have Overlapping Roles to Regulate Rho GTPases during Cortical Development. J Neurosci 2021; 41:8887-8903. [PMID: 34518307 DOI: 10.1523/jneurosci.0523-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Precise control of neuronal migration is required for the laminar organization of the neocortex and critical for brain function. We previously reported that the acute disruption of the Stk25 gene (Stk25 conditional knock-out; cKO) during mouse embryogenesis causes anomalous neuronal migration in the neocortex, but paradoxically the Stk25 cKO did not have a cortical phenotype, suggesting some forms of compensation exist. In this study, we report that MST3, another member of the GCKIII subgroup of the Ste20-like kinase family, compensates for loss of Stk25 and vice versa with sex independent manner. MST3 overexpression rescued neuronal migration deficit and abnormal axonogenesis in Stk25 cKO brains. Mechanistically, STK25 leads to Rac1 activation and reduced RhoA levels in the developing brain, both of which are required to fully restore neuronal migration in the Stk25 cKO brain. Abnormal migration phenotypes are also rescued by overexpression of Bacurd1and Cul3, which target RhoA for degradation, and activate Rac1. This study reveals that MST3 upregulation is capable of rescuing acute Stk25 deficiency and resolves details of signaling downstream STK25 required for corticogenesis both common to and distinct from MST3 signaling.SIGNIFICANCE STATEMENT Proper neuronal migration during cortical development is required for normal neuronal function. Here, we show that STK25 and MST3 kinases regulate neuronal migration and polarization in a mutually compensatory manner. Furthermore, STK25 balances Rac1 activity and RhoA level through forming complexes with α-PIX and β-PIX, GTPase regulatory enzymes, and Cullin3-Bacurd1/Kctd13, a pair of RhoA ubiquitination molecules in a kinase activity-independent manner. Our findings demonstrate the importance of overlapping and unique roles of STK25 and MST3 to regulate Rho GTPase activities in cortical development.
Collapse
|
37
|
Apoptotic Cells Trigger Calcium Entry in Phagocytes by Inducing the Orai1-STIM1 Association. Cells 2021; 10:cells10102702. [PMID: 34685684 PMCID: PMC8534458 DOI: 10.3390/cells10102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Swift and continuous phagocytosis of apoptotic cells can be achieved by modulation of calcium flux in phagocytes. However, the molecular mechanism by which apoptotic cells modulate calcium flux in phagocytes is incompletely understood. Here, using biophysical, biochemical, pharmaceutical, and genetic approaches, we show that apoptotic cells induced the Orai1-STIM1 interaction, leading to store-operated calcium entry (SOCE) in phagocytes through the Mertk-phospholipase C (PLC) γ1-inositol 1,4,5-triphosphate receptor (IP3R) axis. Apoptotic cells induced calcium release from the endoplasmic reticulum, which led to the Orai1-STIM1 association and, consequently, SOCE in phagocytes. This association was attenuated by masking phosphatidylserine. In addition, the depletion of Mertk, which indirectly senses phosphatidylserine on apoptotic cells, reduced the phosphorylation levels of PLCγ1 and IP3R, resulting in attenuation of the Orai1-STIM1 interaction and inefficient SOCE upon apoptotic cell stimulation. Taken together, our observations uncover the mechanism of how phagocytes engulfing apoptotic cells elevate the calcium level.
Collapse
|
38
|
Floerchinger A, Murphy KJ, Latham SL, Warren SC, McCulloch AT, Lee YK, Stoehr J, Mélénec P, Guaman CS, Metcalf XL, Lee V, Zaratzian A, Da Silva A, Tayao M, Rolo S, Phimmachanh M, Sultani G, McDonald L, Mason SM, Ferrari N, Ooms LM, Johnsson AKE, Spence HJ, Olson MF, Machesky LM, Sansom OJ, Morton JP, Mitchell CA, Samuel MS, Croucher DR, Welch HCE, Blyth K, Caldon CE, Herrmann D, Anderson KI, Timpson P, Nobis M. Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: Guidance using optical window intravital FRET imaging. Cell Rep 2021; 36:109689. [PMID: 34525350 DOI: 10.1016/j.celrep.2021.109689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 07/06/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.
Collapse
Affiliation(s)
- Alessia Floerchinger
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sharissa L Latham
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sean C Warren
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew T McCulloch
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Cris S Guaman
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Xanthe L Metcalf
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Victoria Lee
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Andrew Da Silva
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sonia Rolo
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Monica Phimmachanh
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ghazal Sultani
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Susan M Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK
| | - Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | | | - Heather J Spence
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto ON, M5B 2K3, Canada
| | - Laura M Machesky
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia; and the School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, Cambridge CB223AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G111QH, UK
| | - C Elizabeth Caldon
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Kurt I Anderson
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G611BD, UK; Francis Crick Institute, London NW11AT, UK
| | - Paul Timpson
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| | - Max Nobis
- The Garvan Institute of Medical Research, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia.
| |
Collapse
|
39
|
Madhivanan K, Ramadesikan S, Hsieh WC, Aguilar MC, Hanna CB, Bacallao RL, Aguilar RC. Lowe syndrome patient cells display mTOR- and RhoGTPase-dependent phenotypes alleviated by rapamycin and statins. Hum Mol Genet 2021; 29:1700-1715. [PMID: 32391547 DOI: 10.1093/hmg/ddaa086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
Lowe syndrome (LS) is an X-linked developmental disease characterized by cognitive deficiencies, bilateral congenital cataracts and renal dysfunction. Unfortunately, this disease leads to the early death of affected children often due to kidney failure. Although this condition was first described in the early 1950s and the affected gene (OCRL1) was identified in the early 1990s, its pathophysiological mechanism is not fully understood and there is no LS-specific cure available to patients. Here we report two important signaling pathways affected in LS patient cells. While RhoGTPase signaling abnormalities led to adhesion and spreading defects as compared to normal controls, PI3K/mTOR hyperactivation interfered with primary cilia assembly (scenario also observed in other ciliopathies with compromised kidney function). Importantly, we identified two FDA-approved drugs able to ameliorate these phenotypes. Specifically, statins mitigated adhesion and spreading abnormalities while rapamycin facilitated ciliogenesis in LS patient cells. However, no single drug was able to alleviate both phenotypes. Based on these and other observations, we speculate that Ocrl1 has dual, independent functions supporting proper RhoGTPase and PI3K/mTOR signaling. Therefore, this study suggest that Ocrl1-deficiency leads to signaling defects likely to require combinatorial drug treatment to suppress patient phenotypes and symptoms.
Collapse
Affiliation(s)
- Kayalvizhi Madhivanan
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Wen-Chieh Hsieh
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Mariana C Aguilar
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Claudia B Hanna
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Robert L Bacallao
- Division of Nephrology, Indiana University School of Medicine, 340 W 10th St #6200, Indianapolis, IN 46202, USA
| | - R Claudio Aguilar
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
Chang TJ, Lai WQ, Chang YF, Wang CL, Yang DM. Development and optimization of heavy metal lead biosensors in biomedical and environmental applications. J Chin Med Assoc 2021; 84:745-753. [PMID: 34225337 DOI: 10.1097/jcma.0000000000000574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The detrimental impact of the heavy metal lead (Pb) on human health has been studied for years. The fact that Pb impairs human body has been established from countless painful and sad historical events. Nowadays, World Health Organization and many developmental countries have established regulations concerning the use of Pb. Measuring the blood lead level (BLL) is so far the only way to officially evaluate the degree of Pb exposure, but the so-called safety value (10 μg/dL in adults and 5 μg/dL in children) seems unreliable to represent the security checkpoint for children through daily intake of drinking water or physical contact with a lower contaminated level of Pb contents. In general, unsolved mysteries about the Pb toxicological mechanisms still remain. In this review article, we report on the methods to prevent Pb poison for further Pb toxicological research. We establish high-sensitivity Pb monitoring, and also report on the use of fluorescent biosensors such as genetically-encoded fluorescence resonance energy transfer-based biosensors built for various large demands such as the detection of severe acute respiratory syndrome coronavirus 2. We also contribute to the development and optimization of the FRET-based Pb biosensors. Our well-performed version of Met-lead 1.44 M1 has achieved a limit of detection of 10 nM (2 ppb; 0.2 μg/dL) and almost 5-fold in dynamic range (DR) supported for the real practical applications-that is, the in-cell Pb sensing device for blood and blood-related samples, and the Pb environmental detections in vitro. The perspective of our powerful Pb biosensor incorporated with a highly sensitive bio-chip of the portable device for quick Pb measurements will be addressed for further manipulation.
Collapse
Affiliation(s)
- Tai-Jay Chang
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Qun Lai
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - De-Ming Yang
- Microscopy Service Laboratory, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
41
|
Keller-Pinter A, Gyulai-Nagy S, Becsky D, Dux L, Rovo L. Syndecan-4 in Tumor Cell Motility. Cancers (Basel) 2021; 13:cancers13133322. [PMID: 34282767 PMCID: PMC8268284 DOI: 10.3390/cancers13133322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell migration is crucial fReaor metastasis formation and a hallmark of malignancy. The primary cause of high mortality among oncology patients is the ability of cancer cells to metastasize. To form metastasis, primary tumor cells must be intrinsically able to move. The transmembrane, heparan sulfate proteoglycan syndecan-4 (SDC4) exhibits multiple functions in signal transduction by regulating Rac1 GTPase activity and consequently actin remodeling, as well as regulating focal adhesion kinase, protein kinase C-alpha and the level of intracellular calcium. By affecting several signaling pathways and biological processes, SDC4 is involved in cell migration under physiological and pathological conditions as well. In this review, we discuss the SDC4-mediated cell migration focusing on the role of SDC4 in tumor cell movement. Abstract Syndecan-4 (SDC4) is a ubiquitously expressed, transmembrane proteoglycan bearing heparan sulfate chains. SDC4 is involved in numerous inside-out and outside-in signaling processes, such as binding and sequestration of growth factors and extracellular matrix components, regulation of the activity of the small GTPase Rac1, protein kinase C-alpha, the level of intracellular calcium, or the phosphorylation of focal adhesion kinase. The ability of this proteoglycan to link the extracellular matrix and actin cytoskeleton enables SDC4 to contribute to biological functions like cell adhesion and migration, cell proliferation, cytokinesis, cellular polarity, or mechanotransduction. The multiple roles of SDC4 in tumor pathogenesis and progression has already been demonstrated; therefore, the expression and signaling of SDC4 was investigated in several tumor types. SDC4 influences tumor progression by regulating cell proliferation as well as cell migration by affecting cell-matrix adhesion and several signaling pathways. Here, we summarize the general role of SDC4 in cell migration and tumor cell motility.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
- Correspondence:
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
42
|
Murphy KJ, Reed DA, Trpceski M, Herrmann D, Timpson P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr Opin Cell Biol 2021; 72:41-53. [PMID: 34091131 DOI: 10.1016/j.ceb.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022]
Abstract
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time 'as it happens' has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.
Collapse
Affiliation(s)
- Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Daniel A Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Michael Trpceski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Theme, Sydney, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
43
|
Laskaratou D, Fernández GS, Coucke Q, Fron E, Rocha S, Hofkens J, Hendrix J, Mizuno H. Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. Nat Commun 2021; 12:2541. [PMID: 33953187 PMCID: PMC8099864 DOI: 10.1038/s41467-021-22816-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.
Collapse
Affiliation(s)
- Danai Laskaratou
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | | | - Quinten Coucke
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Eduard Fron
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
- KU Leuven Core Facility for Advanced Spectroscopy, KU Leuven, Heverlee, Belgium
| | - Susana Rocha
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Johan Hofkens
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Jelle Hendrix
- Chem & Tech-Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Heverlee, Belgium
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Diepenbeek, Belgium
| | - Hideaki Mizuno
- Laboratory for Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
44
|
D'Andrea L, Lucato CM, Marquez EA, Chang YG, Civciristov S, Mastos C, Lupton CJ, Huang C, Elmlund H, Schittenhelm RB, Mitchell CA, Whisstock JC, Halls ML, Ellisdon AM. Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. Sci Signal 2021; 14:14/681/eabc4078. [PMID: 33947796 DOI: 10.1126/scisignal.abc4078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gβγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gβγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.
Collapse
Affiliation(s)
- Laura D'Andrea
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Christina M Lucato
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Elsa A Marquez
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Yong-Gang Chang
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Cheng Huang
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia
| | - Hans Elmlund
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Ralf B Schittenhelm
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia
| | - Christina A Mitchell
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, 3800 Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia.
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.
| |
Collapse
|
45
|
Wang Y, Hsu AY, Walton EM, Park SJ, Syahirah R, Wang T, Zhou W, Ding C, Lemke AP, Zhang G, Tobin DM, Deng Q. A robust and flexible CRISPR/Cas9-based system for neutrophil-specific gene inactivation in zebrafish. J Cell Sci 2021; 134:237799. [PMID: 33722979 DOI: 10.1242/jcs.258574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9-based tissue-specific knockout techniques are essential for probing the functions of genes in embryonic development and disease using zebrafish. However, the lack of capacity to perform gene-specific rescue or live imaging in the tissue-specific knockout background has limited the utility of this approach. Here, we report a robust and flexible gateway system for tissue-specific gene inactivation in neutrophils. Using a transgenic fish line with neutrophil-restricted expression of Cas9 and ubiquitous expression of single guide (sg)RNAs targeting rac2, specific disruption of the rac2 gene in neutrophils is achieved. Transient expression of sgRNAs targeting rac2 or cdk2 in the neutrophil-restricted Cas9 line also results in significantly decreased cell motility. Re-expressing sgRNA-resistant rac2 or cdk2 genes restores neutrophil motility in the corresponding knockout background. Moreover, active Rac and force-bearing F-actins localize to both the cell front and the contracting tail during neutrophil interstitial migration in an oscillating fashion that is disrupted when rac2 is knocked out. Together, our work provides a potent tool that can be used to advance the utility of zebrafish in identifying and characterizing gene functions in a tissue-specific manner.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Eric M Walton
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sung Jun Park
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Abby Pei Lemke
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
47
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Callenberg C, Lyons A, Brok DD, Fatima A, Turpin A, Zickus V, Machesky L, Whitelaw J, Faccio D, Hullin MB. Super-resolution time-resolved imaging using computational sensor fusion. Sci Rep 2021; 11:1689. [PMID: 33462284 PMCID: PMC7813875 DOI: 10.1038/s41598-021-81159-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Imaging across both the full transverse spatial and temporal dimensions of a scene with high precision in all three coordinates is key to applications ranging from LIDAR to fluorescence lifetime imaging. However, compromises that sacrifice, for example, spatial resolution at the expense of temporal resolution are often required, in particular when the full 3-dimensional data cube is required in short acquisition times. We introduce a sensor fusion approach that combines data having low-spatial resolution but high temporal precision gathered with a single-photon-avalanche-diode (SPAD) array with data that has high spatial but no temporal resolution, such as that acquired with a standard CMOS camera. Our method, based on blurring the image on the SPAD array and computational sensor fusion, reconstructs time-resolved images at significantly higher spatial resolution than the SPAD input, upsampling numerical data by a factor \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$12 \times 12$$\end{document}12×12, and demonstrating up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4 \times 4$$\end{document}4×4 upsampling of experimental data. We demonstrate the technique for both LIDAR applications and FLIM of fluorescent cancer cells. This technique paves the way to high spatial resolution SPAD imaging or, equivalently, FLIM imaging with conventional microscopes at frame rates accelerated by more than an order of magnitude.
Collapse
Affiliation(s)
- C Callenberg
- Institute of Computer Science, University of Bonn, Bonn, Germany
| | - A Lyons
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | - D den Brok
- Institute of Computer Science, University of Bonn, Bonn, Germany
| | - A Fatima
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - A Turpin
- School of Computing Science, University of Glasgow, G12 8LT, Glasgow, United Kingdom
| | - V Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - L Machesky
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | - J Whitelaw
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | - D Faccio
- School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | - M B Hullin
- Institute of Computer Science, University of Bonn, Bonn, Germany.
| |
Collapse
|
49
|
Pickering KA, Gilroy K, Cassidy JW, Fey SK, Najumudeen AK, Zeiger LB, Vincent DF, Gay DM, Johansson J, Fordham RP, Miller B, Clark W, Hedley A, Unal EB, Kiel C, McGhee E, Machesky LM, Nixon C, Johnsson AE, Bain M, Strathdee D, van Hoof SR, Medema JP, Anderson KI, Brachmann SM, Stucke VM, Malliri A, Drysdale M, Turner M, Serrano L, Myant K, Campbell AD, Sansom OJ. A RAC-GEF network critical for early intestinal tumourigenesis. Nat Commun 2021; 12:56. [PMID: 33397922 PMCID: PMC7782582 DOI: 10.1038/s41467-020-20255-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.
Collapse
Affiliation(s)
- K A Pickering
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - K Gilroy
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - J W Cassidy
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - S K Fey
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - A K Najumudeen
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - L B Zeiger
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - D F Vincent
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - D M Gay
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - J Johansson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - R P Fordham
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - B Miller
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - W Clark
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - A Hedley
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - E B Unal
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - C Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
| | - E McGhee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - L M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - C Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - A E Johnsson
- The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB22 3AT, UK
| | - M Bain
- IBAHCM and School of Veterinary Medicine, 464 Bearsden Road, Bearsden, Glasgow, G61 1QH, UK
| | - D Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - S R van Hoof
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - J P Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - K I Anderson
- The Francis Crick Institute, Mill Hill Laboratory, London, NW7 1AA, UK
| | - S M Brachmann
- Novartis Institutes for BioMedical Research, Klybeckstrasse, 141, 4002, Basel, Switzerland
| | - V M Stucke
- Novartis Institutes for BioMedical Research, Klybeckstrasse, 141, 4002, Basel, Switzerland
| | - A Malliri
- CRUK Manchester Institute, 553 Wilmslow Road, Manchester, M20 4BX, UK
| | - M Drysdale
- Broad Institute, 415 Main St, Cambridge, MA, 02142, United States
| | - M Turner
- The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB22 3AT, UK
| | - L Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
| | - K Myant
- Edinburgh Research Centre, The Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, EH4 2XR, UK.
| | - A D Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - O J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
50
|
Rho GTPases Signaling in Zebrafish Development and Disease. Cells 2020; 9:cells9122634. [PMID: 33302361 PMCID: PMC7762611 DOI: 10.3390/cells9122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Cells encounter countless external cues and the specificity of their responses is translated through a myriad of tightly regulated intracellular signals. For this, Rho GTPases play a central role and transduce signals that contribute to fundamental cell dynamic and survival events. Here, we review our knowledge on how zebrafish helped us understand the role of some of these proteins in a multitude of in vivo cellular behaviors. Zebrafish studies offer a unique opportunity to explore the role and more specifically the spatial and temporal dynamic of Rho GTPases activities within a complex environment at a level of details unachievable in any other vertebrate organism.
Collapse
|