1
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y, Kong QP. Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation. Aging Dis 2023:AD.2022.1217. [PMID: 37163432 PMCID: PMC10389835 DOI: 10.14336/ad.2022.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/17/2022] [Indexed: 05/12/2023] Open
Abstract
Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.
Collapse
Affiliation(s)
- Yaqun Huang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hong Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Lin Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Shun Ao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ji Li
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Pérez-Stuardo D, Frazão M, Ibaceta V, Brianson B, Sánchez E, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López FE, Toro-Ascuy D, Vidal EA, Reyes-Cerpa S. KLF17 is an important regulatory component of the transcriptomic response of Atlantic salmon macrophages to Piscirickettsia salmonis infection. Front Immunol 2023; 14:1264599. [PMID: 38162669 PMCID: PMC10755876 DOI: 10.3389/fimmu.2023.1264599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Piscirickettsia salmonis is the most important health problem facing Chilean Aquaculture. Previous reports suggest that P. salmonis can survive in salmonid macrophages by interfering with the host immune response. However, the relevant aspects of the molecular pathogenesis of P. salmonis have been poorly characterized. In this work, we evaluated the transcriptomic changes in macrophage-like cell line SHK-1 infected with P. salmonis at 24- and 48-hours post-infection (hpi) and generated network models of the macrophage response to the infection using co-expression analysis and regulatory transcription factor-target gene information. Transcriptomic analysis showed that 635 genes were differentially expressed after 24- and/or 48-hpi. The pattern of expression of these genes was analyzed by weighted co-expression network analysis (WGCNA), which classified genes into 4 modules of expression, comprising early responses to the bacterium. Induced genes included genes involved in metabolism and cell differentiation, intracellular transportation, and cytoskeleton reorganization, while repressed genes included genes involved in extracellular matrix organization and RNA metabolism. To understand how these expression changes are orchestrated and to pinpoint relevant transcription factors (TFs) controlling the response, we established a curated database of TF-target gene regulatory interactions in Salmo salar, SalSaDB. Using this resource, together with co-expression module data, we generated infection context-specific networks that were analyzed to determine highly connected TF nodes. We found that the most connected TF of the 24- and 48-hpi response networks is KLF17, an ortholog of the KLF4 TF involved in the polarization of macrophages to an M2-phenotype in mammals. Interestingly, while KLF17 is induced by P. salmonis infection, other TFs, such as NOTCH3 and NFATC1, whose orthologs in mammals are related to M1-like macrophages, are repressed. In sum, our results suggest the induction of early regulatory events associated with an M2-like phenotype of macrophages that drives effectors related to the lysosome, RNA metabolism, cytoskeleton organization, and extracellular matrix remodeling. Moreover, the M1-like response seems delayed in generating an effective response, suggesting a polarization towards M2-like macrophages that allows the survival of P. salmonis. This work also contributes to SalSaDB, a curated database of TF-target gene interactions that is freely available for the Atlantic salmon community.
Collapse
Affiliation(s)
- Diego Pérez-Stuardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Mateus Frazão
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Valentina Ibaceta
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Bernardo Brianson
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Evelyn Sánchez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - J. Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elena A. Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
3
|
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X. Allosteric autoregulation of DNA binding via a DNA-mimicking protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res 2023; 51:1674-1686. [PMID: 36660822 PMCID: PMC9976917 DOI: 10.1093/nar/gkac1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.
Collapse
Affiliation(s)
- Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Cao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gerd A Blobel
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Tao X, Du R, Guo S, Feng X, Yu T, OuYang Q, Chen Q, Fan X, Wang X, Guo C, Li X, Xue F, Chen S, Tong M, Lazarus M, Zuo S, Yu Y, Shen Y. PGE 2 -EP3 axis promotes brown adipose tissue formation through stabilization of WTAP RNA methyltransferase. EMBO J 2022; 41:e110439. [PMID: 35781818 DOI: 10.15252/embj.2021110439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Brown adipose tissue (BAT) functions as a thermogenic organ and is negatively associated with cardiometabolic diseases. N6 -methyladenosine (m6 A) modulation regulates the fate of stem cells. Here, we show that the prostaglandin E2 (PGE2 )-E-prostanoid receptor 3 (EP3) axis was activated during mouse interscapular BAT development. Disruption of EP3 impaired the browning process during adipocyte differentiation from pre-adipocytes. Brown adipocyte-specific depletion of EP3 compromised interscapular BAT formation and aggravated high-fat diet-induced obesity and insulin resistance in vivo. Mechanistically, activation of EP3 stabilized the Zfp410 mRNA via WTAP-mediated m6 A modification, while knockdown of Zfp410 abolished the EP3-induced enhancement of brown adipogenesis. EP3 prevented ubiquitin-mediated degradation of WTAP by eliminating PKA-mediated ERK1/2 inhibition during brown adipocyte differentiation. Ablation of WTAP in brown adipocytes abrogated the protective effect of EP3 overexpression in high-fat diet-fed mice. Inhibition of EP3 also retarded human embryonic stem cell differentiation into mature brown adipocytes by reducing the WTAP levels. Thus, a conserved PGE2 -EP3 axis promotes BAT development by stabilizing WTAP/Zfp410 signaling in a PKA/ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shumin Guo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangling Feng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian OuYang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Xutong Fan
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xueqi Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chen Guo
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Minghan Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Japan
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
ZNF410 represses fetal globin by singular control of CHD4. Nat Genet 2021; 53:719-728. [PMID: 33859416 PMCID: PMC8180380 DOI: 10.1038/s41588-021-00843-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Known fetal hemoglobin (HbF) silencers have potential on-target liabilities for rational β-hemoglobinopathy therapeutic inhibition. Here, through transcription factor (TF) CRISPR screening, we identify zinc-finger protein (ZNF) 410 as an HbF repressor. ZNF410 does not bind directly to the genes encoding γ-globins, but rather its chromatin occupancy is concentrated solely at CHD4, encoding the NuRD nucleosome remodeler, which is itself required for HbF repression. CHD4 has two ZNF410-bound regulatory elements with 27 combined ZNF410 binding motifs constituting unparalleled genomic clusters. These elements completely account for the effects of ZNF410 on fetal globin repression. Knockout of ZNF410 or its mouse homolog Zfp410 reduces CHD4 levels by 60%, enough to substantially de-repress HbF while eluding cellular or organismal toxicity. These studies suggest a potential target for HbF induction for β-hemoglobin disorders with a wide therapeutic index. More broadly, ZNF410 represents a special class of gene regulator, a conserved TF with singular devotion to regulation of a chromatin subcomplex.
Collapse
|
6
|
Identification of Potential Prognostic Biomarkers for Breast Cancer Based on lncRNA-TF-Associated ceRNA Network and Functional Module. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5257896. [PMID: 32802855 PMCID: PMC7411464 DOI: 10.1155/2020/5257896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
Breast cancer leads to most of cancer deaths among women worldwide. Systematically analyzing the competing endogenous RNA (ceRNA) network and their functional modules may provide valuable insight into the pathogenesis of breast cancer. In this study, we constructed a lncRNA-TF-associated ceRNA network via combining all the significant lncRNA-TF ceRNA pairs and TF-TF PPI pairs. We computed important topological features of the network, such as degree and average path length. Hub nodes in the lncRNA-TF-associated ceRNA network were extracted to detect differential expression in different subtypes and tumor stages of breast cancer. MCODE was used for identifying the closely connected modules from the ceRNA network. Survival analysis was further used for evaluating whether the modules had prognosis effects on breast cancer. TF motif searching analysis was performed for investigating the binding potentials between lncRNAs and TFs. As a result, a lncRNA-TF-associated ceRNA network in breast cancer was constructed, which had a scale-free property. Hub nodes such as MDM4, ZNF410, AC0842-19, and CTB-89H12 were differentially expressed between cancer and normal sample in different subtypes and tumor stages. Two closely connected modules were identified to significantly classify patients into a low-risk group and high-risk group with different clinical outcomes. TF motif searching analysis suggested that TFs, such as NFAT5, might bind to the promoter and enhancer regions of hub lncRNAs and function in breast cancer biology. The results demonstrated that the synergistic, competitive lncRNA-TF ceRNA network and their functional modules played important roles in the biological processes and molecular functions of breast cancer.
Collapse
|
7
|
Lan X, Ren R, Feng R, Ly LC, Lan Y, Zhang Z, Aboreden N, Qin K, Horton JR, Grevet JD, Mayuranathan T, Abdulmalik O, Keller CA, Giardine B, Hardison RC, Crossley M, Weiss MJ, Cheng X, Shi J, Blobel GA. ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression. Mol Cell 2020; 81:239-254.e8. [PMID: 33301730 DOI: 10.1016/j.molcel.2020.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023]
Abstract
Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lana C Ly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Yemin Lan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeremy D Grevet
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Babu H, Ambikan AT, Gabriel EE, Svensson Akusjärvi S, Palaniappan AN, Sundaraj V, Mupanni NR, Sperk M, Cheedarla N, Sridhar R, Tripathy SP, Nowak P, Hanna LE, Neogi U. Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. Front Immunol 2019; 10:1965. [PMID: 31507593 PMCID: PMC6718454 DOI: 10.3389/fimmu.2019.01965] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
The ART program in low- and middle-income countries (LMIC) like India, follows a public health approach with a standardized regimen for all people living with HIV (PLHIV). Based on the evidence from high-income countries (HIC), the risk of an enhanced, and accentuated onset of premature-aging or age-related diseases has been observed in PLHIV. However, very limited data is available on residual inflammation and immune activation in the populations who are on first-generation anti-HIV drugs like zidovudine and lamivudine that have more toxic side effects. Therefore, the aim of the present study was to evaluate the levels of systemic inflammation and understand the risk of age-associated diseases in PLHIV on long-term suppressive ART using a large number of biomarkers of inflammation and immune activation. Blood samples were obtained from therapy naïve PLHIV (Pre-ART, n = 43), PLHIV on ART for >5 years (ART, n = 53), and HIV-negative healthy controls (HIVNC, n = 41). Samples were analyzed for 92 markers of inflammation, sCD14, sCD163, and telomere length. Several statistical tests were performed to compare the groups under study. Multivariate linear regression was used to investigate the associations. Despite a median duration of 8 years of successful ART, sCD14 (p < 0.001) and sCD163 (p = 0.04) levels continued to be significantly elevated in ART group as compared to HIVNC. Eleven inflammatory markers, including 4E-BP1, ADA, CCL23, CD5, CD8A, CST5, MMP1, NT3, SLAMF1, TRAIL, and TRANCE, were found to be significantly different (p < 0.05) between the groups. Many of these markers are associated with age-related co-morbidities including cardiovascular disease, neurocognitive decline and some of these markers are being reported for the first time in the context of HIV-induced inflammation. Linear regression analysis showed a significant negative association between HIV-1-positivity and telomere length (p < 0.0001). In ART-group CXCL1 (p = 0.048) and TGF-α (p = 0.026) showed a significant association with the increased telomere length and IL-10RA was significantly associated with decreased telomere length (p = 0.042). This observation warrants further mechanistic studies to generate evidence to highlight the need for enhanced treatment monitoring and special interventions in HIV-infected individuals.
Collapse
Affiliation(s)
- Hemalatha Babu
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anoop T. Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erin E. Gabriel
- Department of Medical Epidemiology and Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Svensson Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Naveen Reddy Mupanni
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Narayanaiah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Srikanth P. Tripathy
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Piotr Nowak
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:97-128. [PMID: 31122396 DOI: 10.1016/bs.ircmb.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, cellular senescence has been viewed as an irreversible cell-cycle arrest process with distinctive phenotypic alterations that were implicated primarily in aging and tumor suppression. Recent discoveries suggest that cellular senescence represents a series of diverse, dynamic, and heterogeneous cellular states with the senescence-associated secretory phenotype (SASP). Although senescent cells typically contribute to aging and age-related diseases, accumulating evidence has shown that they also have important physiological functions during embryonic development, late pubertal bone growth cessation, and adulthood tissue remodeling. Here, we review the recent research on cellular senescence and SASP, highlighting the key pathways that mediate senescence cell-cycle arrest and initiate SASP. We also summarize recent literature on the role of cellular senescence in maintaining bone homeostasis and mediating age-associated osteoporosis, discussing both the beneficial and adverse roles of cellular senescence in bone during different physiological stages, including bone development, childhood bone growth, adulthood bone remodeling, and bone aging.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Vilas JM, Carneiro C, Da Silva-Álvarez S, Ferreirós A, González P, Gómez M, Ortega S, Serrano M, García-Caballero T, González-Barcia M, Vidal A, Collado M. Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell 2018; 17:e12834. [PMID: 30129215 PMCID: PMC6156495 DOI: 10.1111/acel.12834] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/25/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022] Open
Abstract
Aging is characterized by a gradual functional decline of tissues with age. Adult stem and progenitor cells are responsible for tissue maintenance, repair, and regeneration, but during aging, this population of cells is decreased or its activity is reduced, compromising tissue integrity and causing pathologies that increase vulnerability, and ultimately lead to death. The causes of stem cell exhaustion during aging are not clear, and whether a reduction in stem cell function is a cause or a consequence of aging remains unresolved. Here, we took advantage of a mouse model of induced adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion can promote premature aging. After a short period of partial repetitive depletion of this adult stem cell population in mice, we observed increased kyphosis and hair graying, and reduced fat mass, all of them signs of premature aging. It is interesting that cellular senescence was identified in kidney after this partial repetitive Sox2+ cell depletion. To confirm these observations, we performed a prolonged protocol of partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the analysis of the expression of genetic markers clearly corroborated that adult stem cell exhaustion can lead to cellular senescence induction and premature aging.
Collapse
Affiliation(s)
- Jéssica M. Vilas
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS); Santiago de Compostela Spain
| | - Carmen Carneiro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Sabela Da Silva-Álvarez
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS); Santiago de Compostela Spain
| | - Alba Ferreirós
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS); Santiago de Compostela Spain
| | - Patricia González
- Histopathology Core Unit; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - María Gómez
- Histopathology Core Unit; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Sagrario Ortega
- Trasgenic Mice Unit; Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Manuel Serrano
- Tumor Suppression Group; Spanish National Cancer Research Centre (CNIO); Madrid Spain
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology (BIST); Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA); Barcelona Spain
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina; USC, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS); Santiago de Compostela Spain
| | - Miguel González-Barcia
- Servicio de Farmacia; Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS); Santiago de Compostela Spain
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Universidade de Santiago de Compostela; Santiago de Compostela Spain
| | - Manuel Collado
- Laboratorio de Células Madre en Cáncer y Envejecimiento, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS); Santiago de Compostela Spain
| |
Collapse
|
11
|
Chen Y, Liu R, Chu Z, Le B, Zeng H, Zhang X, Wu Q, Zhu G, Chen Y, Liu Y, Sun F, Lu Z, Qiao Y, Wang J. High glucose stimulates proliferative capacity of liver cancer cells possibly via O-GlcNAcylation-dependent transcriptional regulation of GJC1. J Cell Physiol 2018; 234:606-618. [PMID: 30078215 DOI: 10.1002/jcp.26803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Although it is generally accepted that diabetes is one of the most important risk factors for liver cancer, the underlying mechanism is still not well understood. The purpose of the current study is to further investigate how high concentrations of glucose (HG), a major symptom of diabetes, stimulate the development of liver malignancy. Using data mining, gap junction protein gamma 1 (GJC1) was identified as a critical proto-oncoprotein that is essential for the HG stimulation of proliferative capacity in liver cancer cells. Furthermore, enhanced transcriptional expression of GJC1 might occur after stimulation by HG. A transcription factor zinc finger protein 410 (APA1)-binding motif was found to be located at the -82 to -77 nt region within the GJC1 promoter. Without APA1, HG was unable to increase GJC1 expression. Interestingly, APA1, but not GJC1, can be O-GlcNAcylated in liver cancer cells. Moreover, O-GlcNAcylation is essential for HG-induced APA1 binding to the GJC1 promoter. Notably, global O-GlcNAcylation and expression of APA1 and GJC1 were highly elevated in liver cancer patients with diabetes compared to those in patients without diabetes. The HG-stimulated proliferative capacity was abolished upon decreasing O-GlcNAcylation, which could be reversed gradually by the simultaneous overexpression of APA1 and GJC1. Therefore, GJC1 could be a potential target for preventing liver cancer in patients with diabetes.
Collapse
Affiliation(s)
- Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Liu
- Department of Scientific Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhexuan Chu
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Bu Le
- Department of Endocrinology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Zeng
- Department of Pathology, Sun Yet-Sen Memorial Hospital, Sun Yet-Sen University, Guangzhou, China
| | - Xiao Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoqing Zhu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuxin Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhicheng Lu
- Department of Medical Affairs Office, Shanghai seventh People's Hospital, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Susnik N, Sen P, Melk A, Schmitt R. Aging, Cellular Senescence, and Kidney Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Scurr LL, Haferkamp S, Rizos H. The Role of Sumoylation in Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:215-226. [PMID: 28197915 DOI: 10.1007/978-3-319-50044-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a program initiated by many stress signals including aberrant activation of oncogenes, DNA damage, oxidative lesions and telomere attrition. Once engaged senescence irreversibly limits cellular proliferation and potently prevents tumor formation in vivo. The precise mechanisms driving the onset of senescence are still not completely defined, although the pRb and p53 tumor suppressor pathways converge with the SUMO cascade to regulate cellular senescence. Sumoylation translocates p53 to PML nuclear bodies where it can co-operate with many sumoylated co-factors in a program that activates pRb and favors senescence. Once activated pRb integrates various proteins, many of them sumoylated, into a repressor complex that inhibits the transcription of proliferation-promoting genes and initiates chromatin condensation. Sumoylation is required for heterochromatin formation during senescence and may act as a scaffold to stabilize the pRb repressor complex. Thus, SUMO is a critical component of a tumor-suppressor network that limits aberrant cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Lyndee L Scurr
- Faculty of Medicine and Health Sciences, Macquarie University, NSW, Sydney, 2109, Australia
| | - Sebastian Haferkamp
- UKR - Universitätsklinikum Regensburg, Klinik und Poliklinik für Dermatologie, Franz-Josef-Strauss-Allee 11, D-93053, Regensburg, Germany
| | - Helen Rizos
- Faculty of Medicine and Health Sciences, Macquarie University, NSW, Sydney, 2109, Australia.
| |
Collapse
|
14
|
Abstract
The small ubiquitin-like modifier SUMO regulates many aspects of cellular physiology to maintain cell homeostasis, both under normal conditions and during cell stress. Components of the transcriptional apparatus and chromatin are among the most prominent SUMO substrates. The prevailing view is that SUMO serves to repress transcription. However, as we will discuss in this review, this model needs to be refined, because recent studies have revealed that SUMO can also have profound positive effects on transcription.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Aurélie Nguéa P
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Biology, Institute of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F, Dorandeu A, Pers YM, Piette J, Borzi RM, Jorgensen C, Noel D, Brondello JM. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 2014; 16:R58. [PMID: 24572376 PMCID: PMC4060445 DOI: 10.1186/ar4494] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs). METHODS We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis. RESULTS p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis. CONCLUSIONS We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.
Collapse
|
16
|
The paradox of FGFR3 signaling in skeletal dysplasia: Why chondrocytes growth arrest while other cells over proliferate. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 759:40-8. [DOI: 10.1016/j.mrrev.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/03/2013] [Accepted: 11/20/2013] [Indexed: 11/19/2022]
|
17
|
Correlation of increased hippocampal Sumo3 with spatial learning ability in old C57BL/6 mice. Neurosci Lett 2012; 518:75-9. [PMID: 22595540 DOI: 10.1016/j.neulet.2012.04.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 12/21/2022]
Abstract
Age-related impairment of learning and memory is a common phenomenon in humans and animals, yet the underlying mechanism remains unclear. We hypothesize that a small ubiquitin-related modifier (Sumo) might correlate with age-related loss of learning and memory. To test this hypothesis, the present study evaluated age-related spatial learning and memory in C57BL/6 mice (25 aged 7 months and 21 aged 25 months) using a radial six-arm water maze (RAWM). After the behavioral test, the protein expression of Sumo3 was determined in different brain regions using Western blotting. The results showed that the 25-month-old mice had longer latency and a higher number of errors in both learning and memory phases in the RAWM task than the 7-month-old mice. Compared to the latter, the former's level of Sumo3 protein was significantly increased in the dorsal and ventral hippocampus. For the 25-month-old mice, the number of errors and the latency in the learning phase negatively correlated with the Sumo3 level in the dorsal hippocampus. These results suggest that increased Sumo3 in the hippocampus may be correlated with spatial learning ability in old C57BL/6 mice.
Collapse
|
18
|
Knopfová L, Beneš P, Pekarčíková L, Hermanová M, Masařík M, Pernicová Z, Souček K, Smarda J. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer 2012; 11:15. [PMID: 22439866 PMCID: PMC3325857 DOI: 10.1186/1476-4598-11-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The c-Myb transcription factor is essential for the maintenance of stem-progenitor cells in bone marrow, colon epithelia, and neurogenic niches. c-Myb malfunction contributes to several types of malignancies including breast cancer. However, the function of c-Myb in the metastatic spread of breast tumors remains unexplored. In this study, we report a novel role of c-Myb in the control of specific proteases that regulate the matrix-dependent invasion of breast cancer cells. Results Ectopically expressed c-Myb enhanced migration and ability of human MDA-MB-231 and mouse 4T1 mammary cancer cells to invade Matrigel but not the collagen I matrix in vitro. c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1. The gene coding for cathepsin D was suggested as the c-Myb-responsive gene and downstream effector of the migration-promoting function of c-Myb. Finally, we demonstrated that c-Myb delayed the growth of mammary tumors in BALB/c mice and affected the metastatic potential of breast cancer cells in an organ-specific manner. Conclusions This study identified c-Myb as a matrix-dependent regulator of invasive behavior of breast cancer cells.
Collapse
Affiliation(s)
- Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, and International Clinical Research Center, CBCE, St. Anne's University Hospital, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang ML, Walsh R, Robinson KL, Burchard J, Bartz SR, Cleary M, Galloway DA, Grandori C. Gene expression signature of c-MYC-immortalized human fibroblasts reveals loss of growth inhibitory response to TGFβ. Cell Cycle 2011; 10:2540-8. [PMID: 21720214 DOI: 10.4161/cc.10.15.16309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer cells exhibit the ability to proliferate indefinitely, but paradoxically, overexpression of cellular oncogenes in primary cells can result in a rapid and irreversible cell cycle arrest known as oncogene-induced senescence (OIS). However, we have shown that constitutive overexpression of the oncogene c-MYC in primary human foreskin fibroblasts results in a population of cells with unlimited lifespan; these immortalized cells are henceforth referred to as iMYC. Here, in order to further elucidate the mechanisms underlying the immortalization process, a gene expression signature of three independently established iMYC cell lines compared to matched early passage c-MYC overexpressing cells was derived. Network analysis of this "iMYC signature" indicated that a large fraction of the down-regulated genes were functionally connected and major nodes centered around the TGFβ, IL-6 and IGF-1 signaling pathways. Here, we focused on the functional validation of the alteration of TGFβ response during c-MYC-mediated immortalization. The results demonstrate loss of sensitivity of iMYC cells to activation of TGFβ signaling upon ligand addition. Furthermore, we show that aberrant regulation of the p27 tumor suppressor protein in iMYC cells is a key event that contributes to loss of response to TGFβ. These findings highlight the potential to reveal key pathways contributing to the self-renewal of cancer cells through functional mining of the unique gene expression signature of cells immortalized by c-MYC.
Collapse
Affiliation(s)
- Myra L Wang
- Program in Cancer Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sanaat Z, Nouri M, Hajipour B, Dolatkhah R, Asvadi I, Vaez J, Eivazi J, Nikanfar A, Esfahani A, Chavoshi SH, Biorani H. Evaluation of Copper, Zinc, Cu/Zn, and VEGF in Patients with AML in Iran. IRANIAN JOURNAL OF CANCER PREVENTION 2011; 4:151-3. [PMID: 26322191 PMCID: PMC4551284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/12/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Copper and zinc are the elements with numerous physiological activities. Copper (Cu) has an important role in angiogenesis and acts by increasing Vascular Endothelial Growth Factor (VEGF). Serum levels of copper will be increased in cancer incidence, progression and recurrence. The aim of this study was to measure blood levels of copper, zinc, and the ratio of Cu /Zn, as well as VEGF levels before and after treatment of acute myeloid leukemia. METHODS Thirty patients who were recently diagnosed with Acute Myeloblastic Leukemia (AML) in Shahid Ghazi Tabatabai oncology hospital enrolled in this clinical trial. On the first day, blood samples were taken for copper, zinc, and VEGF assay and flowcytometry. Treatment protocol was (7×3) regimen. Blood samples were collected for evaluation of copper, zinc, and VEGF. They were sent to Biochemistry Laboratory in medicine faculty for analysis. RESULTS Amongst 30 AML patients, 14 (46.7%) were female and 16 (53.3%) were male. Patients of various ages ranged from 16 to 53 years, with a median age of 9.1±9.35 years. The mean serum level of copper, zinc, and mean Cu/Zn ratio before and after treatment showed significant difference (p<0.05) There was also significant difference between the mean VEGF level before and after treatment (p<0.05). CONCLUSION This study reveals that there is no significant relationship between copper, zinc serum levels, their ratio, and VEGF in AML patients. We hypothesize that increased serum copper is associated with increase of VEGF levels which can indicate the impact of copper in malignancies including AML.
Collapse
Affiliation(s)
- Z Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Nouri
- Department of Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - B Hajipour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - R Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - I Asvadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Vaez
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Eivazi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Nikanfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Esfahani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - SH Chavoshi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Biorani
- Department of Mathematic, Tabriz University, Tabriz, Iran
| |
Collapse
|
21
|
Okano K, Tsuruta Y, Yamashita T, Takano M, Echida Y, Nitta K. Suppression of renal fibrosis by galectin-1 in high glucose-treated renal epithelial cells. Exp Cell Res 2010; 316:3282-91. [PMID: 20828557 DOI: 10.1016/j.yexcr.2010.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/24/2010] [Accepted: 08/29/2010] [Indexed: 12/27/2022]
Abstract
Diabetic nephropathy is the most common cause of chronic kidney disease. We investigated the ability of intracellular galectin-1 (Gal-1), a prototype of endogenous lectin, to prevent renal fibrosis by regulating cell signaling under a high glucose (HG) condition. We demonstrated that overexpression of Gal-1 reduces type I collagen (COL1) expression and transcription in human renal epithelial cells under HG conditions and transforming growth factor-β1 (TGF-β1) stimulation. Matrix metalloproteinase 1 (MMP1) is stimulated by Gal-1. HG conditions and TGF-β1 treatment augment expression and nuclear translocation of Gal-1. In contrast, targeted inhibition of Gal-1 expression reduces COL1 expression and increases MMP1 expression. The Smad3 signaling pathway is inhibited, whereas two mitogen-activated protein kinase (MAPK) pathways, p38 and extracellular signal-regulated kinase (ERK), are activated by Gal-1, indicating that Gal-1 regulates these signaling pathways in COL1 production. Using specific inhibitors of Smad3, ERK, and p38 MAPK, we showed that ERK MAPK activated by Gal-1 plays an inhibitory role in COL1 transcription and that activation of the p38 MAPK pathway by Gal-1 plays a negative role in MMP1 production. Taken together, two MAPK pathways are stimulated by increasing levels of Gal-1 in the HG condition, leading to suppression of COL1 expression and increase of MMP1 expression.
Collapse
Affiliation(s)
- Kazuhiro Okano
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Krejci P, Prochazkova J, Smutny J, Chlebova K, Lin P, Aklian A, Bryja V, Kozubik A, Wilcox WR. FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone 2010; 47:102-10. [PMID: 20362703 PMCID: PMC3087869 DOI: 10.1016/j.bone.2010.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/05/2010] [Accepted: 03/24/2010] [Indexed: 11/24/2022]
Abstract
Oncogenic activation of the RAS-ERK MAP kinase signaling pathway can lead to uncontrolled proliferation but can also result in apoptosis or premature cellular senescence, both regarded as natural protective barriers to cell immortalization and transformation. In FGFR3-related skeletal dyplasias, oncogenic mutations in the FGFR3 receptor tyrosine kinase cause profound inhibition of cartilage growth resulting in severe dwarfism, although many of the precise mechanisms of FGFR3 action remain unclear. Mutated FGFR3 induces constitutive activation of the ERK pathway in chondrocytes and, remarkably, can also cause both increased proliferation and apoptosis in growing cartilage, depending on the gestational age. Here, we demonstrate that FGFR3 signaling is also capable of inducing premature senescence in chondrocytes, manifested as reversible, ERK-dependent growth arrest accompanied by alteration of cellular shape, loss of the extracellular matrix, upregulation of senescence markers (alpha-GLUCOSIDASE, FIBRONECTIN, CAVEOLIN 1, LAMIN A, SM22alpha and TIMP 1), and induction of senescence-associated beta-GALACTOSIDASE activity. Our data support a model whereby FGFR3 signaling inhibits cartilage growth via exploiting cellular responses originally designed to eliminate cells harboring activated oncogenes.
Collapse
Affiliation(s)
- Pavel Krejci
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics ASCR, 61265 Brno, Czech Republic
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jirina Prochazkova
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
| | - Jiri Smutny
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
| | - Katarina Chlebova
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
| | - Patricia Lin
- Flow-cytometry Core Facility, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anie Aklian
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vitezslav Bryja
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics ASCR, 61265 Brno, Czech Republic
| | - Alois Kozubik
- Institute of Experimental Biology, Masaryk University, 61137 Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics ASCR, 61265 Brno, Czech Republic
| | - William R. Wilcox
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Fazzio TG, Panning B. Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. ACTA ACUST UNITED AC 2010; 188:491-503. [PMID: 20176923 PMCID: PMC2828918 DOI: 10.1083/jcb.200908026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Loss of the condensin complex components Smc2 and -4 disrupts epigenetic modifications required for embryonic stem cell survival. In an RNA interference screen interrogating regulators of mouse embryonic stem (ES) cell chromatin structure, we previously identified 62 genes required for ES cell viability. Among these 62 genes were Smc2 and -4, which are core components of the two mammalian condensin complexes. In this study, we show that for Smc2 and -4, as well as an additional 49 of the 62 genes, knockdown (KD) in somatic cells had minimal effects on proliferation or viability. Upon KD, Smc2 and -4 exhibited two phenotypes that were unique to ES cells and unique among the ES cell–lethal targets: metaphase arrest and greatly enlarged interphase nuclei. Nuclear enlargement in condensin KD ES cells was caused by a defect in chromatin compaction rather than changes in DNA content. The altered compaction coincided with alterations in the abundance of several epigenetic modifications. These data reveal a unique role for condensin complexes in interphase chromatin compaction in ES cells.
Collapse
Affiliation(s)
- Thomas G Fazzio
- Biochemistry and Biophysics Department, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
24
|
Roles for SUMO modification during senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:160-71. [PMID: 20886763 DOI: 10.1007/978-1-4419-7002-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SUMOylation is a reversible post-translational modification, where a small peptide (SUMO) is covalently attached to a target protein and changes its activity, subcellular localization and/or interaction with other macromolecules. SUMOylation substrates are numerous and diverse and modification by SUMO is involved in many biological functions, including the response to stress. The SUMO pathway has recently been implicated in the process of cellular senescence, the irreversible loss of cell replication potential that occurs during aging in vivo and in vitro. SUMO peptides, a SUMO E3 ligase and a SUMO-specific peptidase can induce or hinder the onset of senescence, thus supporting an association of SUMOylation with cell growth arrest and organismal aging. Preliminary results on comparative analysis ofproteomics and mRNA levels between young and old human and murine tissues show elevated levels of global protein SUMOylation and a decrease in components of the SUMOylation process with age. Further connections between the SUMO pathway and the aging process remain to be elucidated.
Collapse
|
25
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
26
|
Host cell sumoylation level influences papillomavirus E2 protein stability. Virology 2009; 387:176-83. [PMID: 19251296 DOI: 10.1016/j.virol.2009.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/09/2009] [Accepted: 02/02/2009] [Indexed: 11/23/2022]
Abstract
The stability of papillomavirus E2 proteins is regulated by proteasomal degradation, and regulation of degradation could contribute to the higher expression levels of E2 proteins observed in suprabasal layers of differentiated skin. We have recently shown that the E2 proteins are modified by sumoylation [Wu Y-C, Roark AA, Bian X-L, Wilson, VG (2008) Virol 378:329-338], and that sumoylation levels are up-regulated during keratinocyte differentiation [Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG (2007) J Cell Sci 120:125-136]. These observations, coupled with the known ability of sumoylation to prevent proteasomal degradation of certain proteins, suggested that this modification might contribute to stabilizing E2 proteins in suprabasal keratinocytes. Conditions that increased overall sumoylation were found to increase the intracellular amounts of the HPV11, 16, and 18 E2 proteins. No effect of sumoylation was seen on E2 transcripts, and the increased levels of E2 proteins resulted from a greatly increased half-life for the E2 proteins. In vitro studies confirmed that sumoylation could block the proteasomal degradation of the 16E2 protein. Interestingly, this stabilization effect was indirect as it did not require sumoylation of 16E2 itself and must be acting through sumoylation of a cellular target(s). This sumoylation-dependent, indirect stabilization of E2 proteins is a novel process that may couple E2 levels to changes in the cellular environment. Specifically, our results suggest that the levels of papillomavirus E2 protein could be up-regulated in differentiating keratinocytes in response to the increased overall sumoylation that accompanies differentiation.
Collapse
|
27
|
Yates KE, Korbel GA, Shtutman M, Roninson IB, DiMaio D. Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell 2008; 7:609-21. [PMID: 18616636 PMCID: PMC2745089 DOI: 10.1111/j.1474-9726.2008.00411.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proliferative lifespan of normal somatic human cells in culture terminates in a permanent growth-arrested state known as replicative senescence. In this study, we show that RNA interference-mediated repression of the genes encoding the small ubiquitin-related modifier (SUMO)-specific proteases, Senp1, Senp2, and Senp7, induced low passage primary human fibroblasts to senesce rapidly. Following Senp1 repression, we observed a global increase in sumoylated proteins and in the number and size of nuclear SUMO-containing promyelocytic leukemia (PML) bodies. SUMO/PML bodies also increased during replicative senescence. p53 transcriptional activity was enhanced towards known p53 target genes following repression of Senp1, and inhibition of p53 function prevented senescence after Senp1 repression. These data indicate that Senp1 repression induces p53-mediated premature senescence and that SUMO proteases may thus be required for proliferation of normal human cells.
Collapse
Affiliation(s)
- Kristin E. Yates
- Department of Genetics, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
| | - Gregory A. Korbel
- Department of Genetics, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
| | | | | | - Daniel DiMaio
- Department of Genetics, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
- Departments of Therapeutic Radiology, and Molecular Biophysics & Biochemistry, Yale University School of Medicine P.O. Box 208005 New Haven, CT 06520-8005
| |
Collapse
|
28
|
Fazzio TG, Huff JT, Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 2008; 134:162-74. [PMID: 18614019 PMCID: PMC4308735 DOI: 10.1016/j.cell.2008.05.031] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/04/2008] [Accepted: 05/01/2008] [Indexed: 01/30/2023]
Abstract
Proper regulation of chromatin structure is necessary for the maintenance of cell type-specific gene expression patterns. The embryonic stem cell (ESC) expression pattern governs self-renewal and pluripotency. Here, we present an RNAi screen in mouse ESCs of 1008 loci encoding chromatin proteins. We identified 68 proteins that exhibit diverse phenotypes upon knockdown (KD), including seven subunits of the Tip60-p400 complex. Phenotypic analyses revealed that Tip60-p400 is necessary to maintain characteristic features of ESCs. We show that p400 localization to the promoters of both silent and active genes is dependent upon histone H3 lysine 4 trimethylation (H3K4me3). Furthermore, the Tip60-p400 KD gene expression profile is enriched for developmental regulators and significantly overlaps with that of the transcription factor Nanog. Depletion of Nanog reduces p400 binding to target promoters without affecting H3K4me3 levels. Together, these data indicate that Tip60-p400 integrates signals from Nanog and H3K4me3 to regulate gene expression in ESCs.
Collapse
Affiliation(s)
- Thomas G. Fazzio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason T. Huff
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Cheung CTY, Hasan MK, Widodo N, Kaul SC, Wadhwa R. CARF: an emerging regulator of p53 tumor suppressor and senescence pathway. Mech Ageing Dev 2008; 130:18-23. [PMID: 18555516 DOI: 10.1016/j.mad.2008.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/08/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Replicative senescence, a major outcome of normal cells with finite lifespan, is a widely accepted in vitro model for ageing studies. Limited repair and defense mechanisms of normal cells, in addition to DNA alterations and oncogene inductions under stress, are believed to result in senescence as a protective mechanism to prevent undesirable proliferation of cells. The ARF/p53/p21(cip1/waf1) tumor suppression pathway acts as a molecular sensor and regulator of cellular stress, senescence, and immortalization. Understanding the molecular regulation of this pathway by intrinsic and extrinsic signals is extremely important to address unsolved questions in senescence and cancer. CARF was first discovered as a binding partner of ARF and has since been shown to have both ARF-dependent and -independent functions that converge to regulate p53 pathway. CARF directly binds to p53 and HDM2, and functions in a negative feedback pathway. Whereas CARF transcriptionally represses HDM2 to increase p53 activity, HDM2 in return degrades CARF. Thus, CARF may act as a novel key regulator of the p53 pathway at multiple checkpoints. The aim of this article is to discuss the current knowledge about functions of CARF and its impact on p53 pathway in regulation of senescence and carcinogenesis.
Collapse
Affiliation(s)
- Caroline T Y Cheung
- National Institute of Advanced Industrial Science & Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | |
Collapse
|
30
|
Benanti JA, Wang ML, Myers HE, Robinson KL, Grandori C, Galloway DA. Epigenetic down-regulation of ARF expression is a selection step in immortalization of human fibroblasts by c-Myc. Mol Cancer Res 2007; 5:1181-9. [PMID: 17982115 DOI: 10.1158/1541-7786.mcr-06-0372] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor c-Myc is implicated in the pathogenesis of many cancers. Among the multiple functions of c-Myc, activation of hTert and other genes involved in cellular life span contributes to its role as an oncogene. However, the ability of c-Myc to directly immortalize human cells remains controversial. We show here that overexpression of c-Myc reproducibly immortalizes freshly isolated human foreskin fibroblasts. c-Myc-immortalized cells displayed no gross karyotypic abnormalities but consisted of an oligoclonal population, suggesting that additional events cooperated to achieve immortalization. Levels of p53 and p16 were increased, but both p53-dependent DNA damage response and growth arrest in response to p16 overexpression remained intact. A marked decrease in expression of the tumor suppressor ARF occurred in several independently established c-Myc-immortalized cell lines. Methylation-specific PCR showed that the ARF gene was methylated in immortalized but not early-passage c-Myc cells, whereas p16 was unmethylated in both cell populations. Restoration of ARF expression by treatment with a demethylating agent or overexpression by a retroviral vector coincided with inhibition of proliferation and senescence of c-Myc-immortalized cells. Our findings predict that epigenetic events play a significant role in human tumors that express high levels of c-Myc.
Collapse
Affiliation(s)
- Jennifer A Benanti
- Program in Cancer Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, C1-015, P. O. Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kidd M, Nadler B, Mane S, Eick G, Malfertheiner M, Champaneria M, Pfragner R, Modlin I. GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol Genomics 2007; 30:363-70. [PMID: 17456737 DOI: 10.1152/physiolgenomics.00251.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Accurate quantitation of target genes depends on correct normalization. Use of genes with variable tissue transcription (GAPDH) is problematic, particularly in clinical samples, which are derived from different tissue sources. Using a large-scale gene database (Affymetrix U133A) data set of 36 gastrointestinal (GI) tumors and normal tissues, we identified 8 candidate reference genes and established expression levels by real-time RT-PCR in an independent data set (n = 42). A geometric averaging method (geNorm) identified ALG9, TFCP2, and ZNF410 as the most robustly expressed control genes. Examination of raw C(T) values demonstrated that these genes were tightly correlated between themselves (R2 > 0.86, P < 0.0001), with low variability [coefficient of variation (CV) <12.7%] and high interassay reproducibility (r = 0.93, P = 0.001). In comparison, the alternative control gene, GAPDH, exhibited the highest variability (CV = 18.1%), was significantly differently expressed between tissue types (P = 0.05), was poorly correlated with the three reference genes (R2 < 0.4), and was considered the least stable gene. To illustrate the importance of correct normalization, the target gene, MTA1, was significantly overexpressed (P = 0.0006) in primary GI neuroendocrine tumor (NET) samples (vs. normal GI samples) when normalized by geNorm(ATZ) but not when normalized using GAPDH. The geNorm(ATZ) approach was, in addition, applicable to adenocarcinomas; MTA1 was overexpressed (P < 0.04) in malignant colon, pancreas, and breast tumors compared with normal tissues. We provide a robust basis for the establishment of a reference gene set using GeneChip data and provide evidence for the utility of normalizing a malignancy-associated gene (MTA1) using novel reference genes and the geNorm approach in GI NETs as well as in adenocarcinomas and breast tumors.
Collapse
Affiliation(s)
- Mark Kidd
- Gastrointestinal Research Group, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Du XL, Hu H, Lin DC, Xia SH, Shen XM, Zhang Y, Luo ML, Feng YB, Cai Y, Xu X, Han YL, Zhan QM, Wang MR. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med (Berl) 2007; 85:863-75. [PMID: 17318615 DOI: 10.1007/s00109-007-0159-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 11/18/2006] [Accepted: 12/20/2006] [Indexed: 12/27/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer death in China. In the present study, proteins in tumors and adjacent normal esophageal tissues from 41 patients with ESCC were extracted, and two-dimensional electrophoresis (2-DE) was performed using the pH 3-10 and 4-7 immobilized pH gradient strips. The protein spots expressed differentially between tumors and normal tissues were identified by matrix-assisted laser desorption/ionization and liquid chromatography electrospray/ionization ion trap mass spectrometry. A total of 22 proteins differentially expressed between ESCC and normal esophageal tissues were identified, in which 17 proteins were upregulated and 5 downregulated in tumors. Biological functions of these proteins are related to cell signal transduction, cell proliferation, cell motility, glycolysis, regulation of transcription, oxidative stress processes, and protein folding. Some of the proteins obtained were confirmed by Western blotting and immunohistochemical staining. We showed that high expression of calreticulin and 78-kDa glucose-regulated protein (GRP78) were correlated with poor prognosis by Kaplan-Meier analysis and log rank analysis. Zinc finger protein 410, annexin V, similar to the ubiquitin-conjugating enzyme E2 variant 1 isoform c, mutant hemoglobin beta chain, TPM4-ALK fusion oncoprotein type 2, similar to heat shock congnate 71-kDa protein, GRP78, and pyruvate kinase M2 (M2-PK) were for the first time observed to be dysregulated in human ESCC tissues. The proteins here identified will contribute to the understanding of the tumorigenesis and progression of Chinese ESCC and may potentially provide useful markers for diagnosis or targets for therapeutic intervention and drug development.
Collapse
MESH Headings
- Asian People
- Blotting, Western
- Carcinoma, Squamous Cell/ethnology
- Carcinoma, Squamous Cell/metabolism
- China
- Chromatography, Liquid
- Electrophoresis, Gel, Two-Dimensional
- Endoplasmic Reticulum Chaperone BiP
- Esophageal Neoplasms/ethnology
- Esophageal Neoplasms/metabolism
- Humans
- Immunohistochemistry
- Proteome/analysis
- Proteomics/methods
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Xiao-Li Du
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Haga K, Ohno SI, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M, Galloway DA, Kiyono T. Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 2007; 98:147-54. [PMID: 17233832 PMCID: PMC11158394 DOI: 10.1111/j.1349-7006.2006.00373.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of telomerase is sufficient for immortalization of some types of human cells but additional factors may also be essential. It has been proposed that stress imposed by inadequate culture conditions induces senescence due to accumulation of p16(INK4a). Here, we present evidence that many human cell types undergo senescence by activation of the p16(INK4a)/Rb pathway, and that introduction of Bmi-1 can inhibit p16(INK4a) expression and extend the life span of human epithelial cells derived from skin, mammary gland and lung. Introduction of p16(INK4a)-specific short hairpin RNA, as well as Bmi-1, suppressed p16(INK4a) expression in human mammary epithelial cells without promoter methylation, and extended their life span. Subsequent introduction of hTERT, the telomerase catalytic subunit, into cells with low p16(INK4a) levels resulted in efficient immortalization of three cell types without crisis or growth arrest. The majority of the human mammary epithelial cells thus immortalized showed almost normal ploidy as judged by G-banding and spectral karyotyping analysis. Our data suggest that inhibition of p16(INK4a) and introduction of hTERT can immortalize many human cell types with little chromosomal instability.
Collapse
Affiliation(s)
- Kei Haga
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuoku 104-0045, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang X, Kim J, Ruthazer R, McDevitt MA, Wazer DE, Paulson KE, Yee AS. The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol Cell Biol 2006; 26:8252-66. [PMID: 16966377 PMCID: PMC1636767 DOI: 10.1128/mcb.00604-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Previous work shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have not been identified. Here, we demonstrate that the HBP1 transcriptional repressor participates in RAS- and p38 MAPK-induced premature senescence. In cell lines, we had previously isolated HBP1 as a retinoblastoma (RB) target but have determined that it functions as a proliferation regulator by inhibiting oncogenic pathways as a transcriptional repressor. In primary cells, the results indicate that HBP1 is a necessary component of premature senescence by RAS and p38 MAPK. Similarly, a knockdown of WIP1 (a p38 MAPK phosphatase) induced premature senescence that also required HBP1. Furthermore, HBP1 requires regulation by RB, in which few transcriptional regulators for premature senescence have been shown. Together, the data suggest a model in which RAS and p38 MAPK signaling engage HBP1 and RB to trigger premature senescence. As an initial step toward clinical relevance, a bioinformatics approach shows that the relative expression levels of HBP1 and WIP1 correlated with decreased relapse-free survival in breast cancer patients. Together, these studies highlight p38 MAPK, HBP1, and RB as important components for a premature-senescence pathway with possible clinical relevance to breast cancer.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Henderson EA. The potential effect of fibroblast senescence on wound healing and the chronic wound environment. J Wound Care 2006; 15:315-8. [PMID: 16869200 DOI: 10.12968/jowc.2006.15.7.26932] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Bevilacqua MA, Iovine B, Zambrano N, D'Ambrosio C, Scaloni A, Russo T, Cimino F. Fibromodulin Gene Transcription Is Induced by Ultraviolet Irradiation, and Its Regulation Is Impaired in Senescent Human Fibroblasts. J Biol Chem 2005; 280:31809-17. [PMID: 16002407 DOI: 10.1074/jbc.m414677200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells undergoing replicative senescence display an altered pattern of gene expression. Senescent fibroblasts show significant changes in the expression of mRNAs encoding extracellular matrix-remodeling proteins; among these mRNAs, the mRNA encoding fibromodulin is highly decreased in these cells. To understand the molecular basis of this phenomenon, we explored the regulatory mechanisms of the human fibromodulin gene. We found that fibromodulin gene promoter contains a cis-element, crucial for its basal expression, that forms a DNA-protein complex when exposed to nuclear extracts from exponentially growing human fibroblasts and not to extracts from cells undergoing senescence by repeated in vitro passages or by mild oxidative stress. The purification of this complex showed that it contains the damage-specific DNA-binding protein DDB-1. The latter is known to be induced by UV irradiation; therefore we checked whether fibromodulin gene promoter is regulated upon the exposure of the cells to UV rays. The results showed that, in exponentially growing fibroblasts, the promoter efficiency is increased by UV irradiation and the DDB-1-containing complex is robustly enriched in cells exposed to UV light. Accordingly, in these experimental conditions the endogenous fibromodulin mRNA accumulates to very high levels. On the contrary, senescent cells did not show any activation of the fibromodulin gene promoter, any induction of the DDB-1-containing complex, or any accumulation of fibromodulin mRNA. These phenomena are accompanied in senescent cells by a decrease of the UV-damaged DNA binding activity.
Collapse
Affiliation(s)
- Maria Assunta Bevilacqua
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, CEINGE Biotecnologie avanzate, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Gurkan C, Lapp H, Alory C, Su AI, Hogenesch JB, Balch WE. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell 2005; 16:3847-64. [PMID: 15944222 PMCID: PMC1182321 DOI: 10.1091/mbc.e05-01-0062] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rab GTPases and SNARE fusion proteins direct cargo trafficking through the exocytic and endocytic pathways of eukaryotic cells. We have used steady state mRNA expression profiling and computational hierarchical clustering methods to generate a global overview of the distribution of Rabs, SNAREs, and coat machinery components, as well as their respective adaptors, effectors, and regulators in 79 human and 61 mouse nonredundant tissues. We now show that this systems biology approach can be used to define building blocks for membrane trafficking based on Rab-centric protein activity hubs. These Rab-regulated hubs provide a framework for an integrated coding system, the membrome network, which regulates the dynamics of the specialized membrane architecture of differentiated cells. The distribution of Rab-regulated hubs illustrates a number of facets that guides the overall organization of subcellular compartments of cells and tissues through the activity of dynamic protein interaction networks. An interactive website for exploring datasets comprising components of the Rab-regulated hubs that define the membrome of different cell and organ systems in both human and mouse is available at http://www.membrome.org/.
Collapse
Affiliation(s)
- Cemal Gurkan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The small ubiquitin-like modifier (SUMO) is covalently attached to lysine residues in target proteins and in doing so changes the properties of the modified protein. Here we examine the role of SUMO modification in transcriptional regulation. SUMO addition to components of the transcriptional apparatus does not have a common consequence as it can both activate and repress transcription. In most cases, however, SUMO modification of transcription factors leads to repression and various models to explain this, ranging from retention in nuclear bodies to recruitment of histone deacetylases are discussed.
Collapse
Affiliation(s)
- David W H Girdwood
- Centre for Biomolecular Sciences, School of Biology, University of St. Andrews, North Haugh, St Andrews KY16 9ST, UK
| | | | | |
Collapse
|
39
|
Abstract
Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated beta-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS.
Collapse
Affiliation(s)
- Jennifer A Benanti
- Program in Cancer Biology, Fred Hutchinson Cancer Research Center. Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
40
|
Yerlikaya A, Stanley BA. S-adenosylmethionine decarboxylase degradation by the 26 S proteasome is accelerated by substrate-mediated transamination. J Biol Chem 2004; 279:12469-78. [PMID: 14718534 DOI: 10.1074/jbc.m312625200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The short-lived enzyme S-adenosylmethionine decarboxylase uses a covalently bound pyruvoyl cofactor to catalyze the formation of decarboxylated S-adenosylmethionine, which then donates an aminopropyl group for polyamine biosynthesis. Here we demonstrate that S-adenosylmethionine decarboxylase is ubiquitinated and degraded by the 26 S proteasome in vivo, a process that is accelerated by inactivation of S-adenosylmethionine decarboxylase by substrate-mediated transamination of its pyruvoyl cofactor. Proteasome inhibition in COS-7 cells prevents the degradation of S-adenosylmethionine decarboxylase antigen; however, even brief inhibition of the 26 S proteasome caused substantial losses of S-adenosylmethionine decarboxylase activity despite accumulation of S-adenosylmethionine decarboxylase antigen. Levels of the enzyme's substrate (S-adenosylmethionine) increased rapidly after 26 S proteasome inhibition, and this increase in substrate level is consistent with the observed loss of activity arising from an increased rate of inactivation by substrate-mediated transamination. Evidence is also presented that this substrate-mediated transamination accelerates normal degradation of S-adenosylmethionine decarboxylase, as the rate of degradation of the enzyme was increased in the presence of AbeAdo (5'-([(Z)-4-amino-2-butenyl]methylamino]-5'-deoxyadenosine) (a substrate analogue that transaminates the enzyme); conversely, when the intracellular substrate level was reduced by methionine deprivation, the rate of degradation of the enzyme was decreased. Ubiquitination of S-adenosylmethionine decarboxylase is demonstrated by isolation of His-tagged AdoMetDC (S-adenosylmethionine decarboxylase) from COS-7 cells co-transfected with hemagglutinin-tagged ubiquitin and showing bands that were immunoreactive to both anti-AdoMetDC antibody and anti-hemagglutinin antibody. This is the first study to demonstrate that AdoMetDC is ubiquitinated and degraded by the 26 S proteasome, and substrate-mediated acceleration of degradation is a unique finding.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
41
|
Anti-aging medicine literaturewatch. JOURNAL OF ANTI-AGING MEDICINE 2003; 6:45-64. [PMID: 12971397 DOI: 10.1089/109454503765361588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Blagosklonny MV. Cell senescence and hypermitogenic arrest. EMBO Rep 2003; 4:358-62. [PMID: 12671679 PMCID: PMC1319162 DOI: 10.1038/sj.embor.embor806] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 01/30/2003] [Indexed: 11/09/2022] Open
Abstract
A diverse range of conditions, from mitogenic stimuli to cytotoxic stress, can induce cell senescence. Here, I propose that simultaneous stimulation of mitogen-activated pathways and downstream inhibition of cyclin-dependent kinases leads, ultimately, to cell senescence. This model distinguishes between two types of growth arrest: first, exit to G0 phase, which is caused by the withdrawal of mitogens and can lead to apoptosis; and second, hypermitogenic arrest, which is stimulated by mitogens and can lead to senescence. The concept of hypermitogenic arrest defines cell senescence as a functionally active, stable and conditionally reversible state.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Brander Cancer Research Institute, New York Medical College, Hawthorne, New York 10532, USA.
| |
Collapse
|