1
|
Human Papillomavirus Replication Regulation by Acetylation of a Conserved Lysine in the E2 Protein. J Virol 2018; 92:JVI.01912-17. [PMID: 29142126 DOI: 10.1128/jvi.01912-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/25/2022] Open
Abstract
The papillomavirus (PV) E2 protein is a sequence-specific DNA binding protein that recruits cellular factors to its genome in infected epithelial cells. E2 also binds to and loads the viral E1 DNA helicase at the origin of replication. Posttranslational modifications (PTMs) of PV E2 have been identified as potential regulators of E2 functions. We recently reported lysine 111 (K111) as a target of p300 acetylation in bovine PV (BPV). The di-lysines at 111 and 112 are conserved in almost all papillomaviruses. We pursued a mutational approach to query the functional significance of lysine in human PV (HPV) E2. Amino acid substitutions that prevent acetylation, including arginine, were unable to stimulate transcription and E1-mediated DNA replication. The arginine K111 mutant retained E2 transcriptional repression, nuclear localization, DNA and chromatin binding, and association with E2 binding partners involved in PV transcription and replication. While the replication-defective E2-K111R mutant recruited E1 to the viral replication origin, surprisingly, unwinding of the duplex DNA did not occur. In contrast, the K111 glutamine (K111Q) mutant increased origin melting and stimulated replication compared to wild-type E2. These experiments reveal a novel activity of E2 necessary for denaturing the viral origin that likely depends on acetylation of highly conserved lysine 111.IMPORTANCE HPV is one of the most common sexually transmitted infections in the United States. Over 200 HPVs have been described, and they manifest in a variety of ways; they can be asymptomatic or can result in benign lesions (papillomas) or progress to malignancy. Although 90% of infections are asymptomatic and resolve easily, HPV16 and -18 alone are responsible for 70% of all cervical cancers, which are almost entirely caused by HPV infection. Interestingly, 60 to 90% of other cancers have been linked to HPV. The goal of this research is to further elucidate the mechanisms that regulate and mediate viral replication.
Collapse
|
2
|
Šterbenc A, Hošnjak L, Chouhy D, Bolatti EM, Oštrbenk A, Seme K, Kocjan BJ, Luzar B, Giri AA, Poljak M. Molecular characterization, tissue tropism, and genetic variability of the novel Mupapillomavirus type HPV204 and phylogenetically related types HPV1 and HPV63. PLoS One 2017; 12:e0175892. [PMID: 28426749 PMCID: PMC5398564 DOI: 10.1371/journal.pone.0175892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/02/2017] [Indexed: 11/18/2022] Open
Abstract
HPV204 is the only newly identified Mupapillomavirus (Mu-PV) type in more than a decade. To comprehensively characterize HPV204, we performed a detailed molecular analysis of the viral genome and evaluated its clinical relevance in comparison to the other Mu-PVs, HPV1 and HPV63. The 7,227-bp long genome of HPV204 exhibits typical genomic organization of Mu-PVs with eight open reading frames (ORFs) (E6, E7, E1, E2, E8, E4, L2, and L1). We developed three type-specific quantitative real-time PCRs and used them to test a representative collection (n = 1,006) of various HPV-associated benign and malignant neoplasms, as well as samples of clinically normal cutaneous, mucosal, and mucocutaneous origins. HPV204, HPV1, and HPV63 were detected in 1.1%, 2.7%, and 1.9% of samples tested, respectively, and were present in skin and mucosa, suggesting dual tissue tropism of all Mu-PVs. To evaluate the etiological role of Mu-PVs in the development of HPV-associated neoplasms, Mu-PV viral loads per single cell were estimated. HPV1 and HPV63 were present in high viral copy numbers in 3/43 and 1/43 cutaneous warts, respectively, and were identified as the most likely causative agents of these warts. HPV204 viral load was extremely low in a single HPV204-positive cutaneous wart (7.4 × 10−7 viral copies/cell). Hence, etiological association between HPV204 and the development of cutaneous warts could not be established. To the best of our knowledge, this is the first study to evaluate the genetic variability of Mu-PVs by sequencing complete LCR genomic regions of HPV204, HPV1, and HPV63. We detected several nucleotide substitutions and deletions within the LCR genomic regions of Mu-PVs and identified two genetic variants of HPV204 and HPV63 and five genetic variants of HPV1.
Collapse
Affiliation(s)
- Anja Šterbenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Chouhy
- Virology Area, School of Biochemistry and Pharmaceutical Sciences, Rosario National University, Rosario, Argentina
| | - Elisa M. Bolatti
- Virology Area, School of Biochemistry and Pharmaceutical Sciences, Rosario National University, Rosario, Argentina
| | - Anja Oštrbenk
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan Luzar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Adriana A. Giri
- Virology Area, School of Biochemistry and Pharmaceutical Sciences, Rosario National University, Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
3
|
Abstract
E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner.
Collapse
|
4
|
CK2 phosphorylation inactivates DNA binding by the papillomavirus E1 and E2 proteins. J Virol 2013; 87:7668-79. [PMID: 23637413 DOI: 10.1128/jvi.00345-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses have complex life cycles that are understood only superficially. Although it is well established that the viral E1 and E2 proteins play key roles in controlling viral transcription and DNA replication, how these factors are regulated is not well understood. Here, we demonstrate that phosphorylation by the protein kinase CK2 controls the biochemical activities of the bovine papillomavirus E1 and E2 proteins by modifying their DNA binding activity. Phosphorylation at multiple sites in the N-terminal domain in E1 results in the loss of sequence-specific DNA binding activity, a feature that is also conserved in human papillomavirus (HPV) E1 proteins. The bovine papillomavirus (BPV) E2 protein, when phosphorylated by CK2 on two specific sites in the hinge, also loses its site-specific DNA binding activity. Mutation of these sites in E2 results in greatly increased levels of latent viral DNA replication, indicating that CK2 phosphorylation of E2 is a negative regulator of viral DNA replication during latent viral replication. In contrast, mutation of the N-terminal phosphorylation sites in E1 has no effect on latent viral DNA replication. We propose that the phosphorylation of the N terminus of E1 plays a role only in vegetative viral DNA replication, and consistent with such a role, caspase 3 cleavage of E1, which has been shown to be necessary for vegetative viral DNA replication, restores the DNA binding activity to phosphorylated E1.
Collapse
|
5
|
Schuck S, Stenlund A. Mechanistic analysis of local ori melting and helicase assembly by the papillomavirus E1 protein. Mol Cell 2011; 43:776-87. [PMID: 21884978 DOI: 10.1016/j.molcel.2011.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/22/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
Abstract
Preparation of DNA templates for replication requires opening of the duplex to expose single-stranded (ss) DNA. The locally melted DNA is required for replicative DNA helicases to initiate unwinding. How local melting is generated in eukaryotic replicons is unknown, but initiator proteins from a handful of eukaryotic viruses can perform this function. Here we dissect the local melting process carried out by the papillomavirus E1 protein. We characterize the melting process kinetically and identify mutations in the E1 helicase and in the ori that arrest the local melting process. We show that a subset of these mutants have specific defects for melting of the center of the ori containing the binding sites for E1 and demonstrate that these mutants fail to untwist the ori DNA. This understanding of how E1 generates local melting suggests possible mechanisms for local melting in other replicons.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
6
|
Structure-based mutational analysis of the bovine papillomavirus E1 helicase domain identifies residues involved in the nonspecific DNA binding activity required for double trimer formation. J Virol 2010; 84:4264-76. [PMID: 20147403 DOI: 10.1128/jvi.02214-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E1 protein is a multifunctional initiator protein responsible for preparing the viral DNA template for initiation of DNA replication. The E1 protein encodes two DNA binding activities that are required for initiation of DNA replication. A well-characterized sequence-specific DNA binding activity resides in the E1 DBD and is used to tether E1 to the papillomavirus ori. A non-sequence-specific DNA binding activity is also required for formation of the E1 double trimer (DT) complex, which is responsible for the local template melting that precedes loading of the E1 helicase. This DNA binding activity is very poorly understood. We use a structure-based mutagenesis approach to identify residues in the E1 helicase domain that are required for the non-sequence-specific DNA binding and DT formation. We found that three groups of residues are involved in nonspecific DNA binding: the E1 beta-hairpin structure containing R505, K506, and H507; a hydrophobic loop containing F464; and a charged loop containing K461 together generate the binding surface involved in nonspecific DNA binding. These residues are well conserved in the T antigens from the polyomaviruses, indicating that the polyomaviruses share this nonspecific DNA binding activity.
Collapse
|
7
|
Papillomavirus DNA replication — From initiation to genomic instability. Virology 2009; 384:360-8. [DOI: 10.1016/j.virol.2008.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 12/25/2022]
|
8
|
Terenzi F, Saikia P, Sen GC. Interferon-inducible protein, P56, inhibits HPV DNA replication by binding to the viral protein E1. EMBO J 2008; 27:3311-21. [PMID: 19008854 DOI: 10.1038/emboj.2008.241] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/23/2008] [Indexed: 12/30/2022] Open
Abstract
Type I interferon (IFN) inhibits, by an unknown mechanism, the replication of human papillomaviruses (HPV), which are major human pathogens, Here, we present evidence that P56 (a protein), the expression of which is strongly induced by IFN, double-stranded RNA and viruses, mediates the anti-HPV effect of IFN. Ectopic expression of P56 inhibited HPV DNA replication and its ablation in IFN-treated cells alleviated the inhibitory effect of IFN on HPV DNA replication. Protein-protein interaction and mutational analyses established that the antiviral effect of P56 was mediated by its direct interaction with the DNA replication origin-binding protein E1 of several strains of HPV, through the tetratricopeptide repeat 2 in the N-terminal region of P56 and the C-terminal region of E1. In vivo, the interaction with P56, a cytoplasmic protein, caused translocation of E1 from the nucleus to the cytoplasm. In vitro, recombinant P56, or a small fragment derived from it, inhibited the DNA helicase activity of E1 and E1-mediated HPV DNA replication. These observations delineate the molecular mechanism of IFN's antiviral action against HPV.
Collapse
Affiliation(s)
- Fulvia Terenzi
- Department of Molecular Genetics, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
9
|
Abstract
Replication of the double-stranded, circular human papillomavirus (HPV) genomes requires the viral DNA replicase E1. Here, we report an initial characterization of the E1 cistron of HPV type 16 (HPV-16), the most common oncogenic mucosal HPV type found in cervical and some head and neck cancers. The first step in HPV DNA replication is an initial burst of plasmid viral DNA amplification. Complementation assays between HPV-16 genomes carrying mutations in the early genes confirmed that the expression of E1 was necessary for initial HPV-16 plasmid synthesis. The major early HPV-16 promoter, P97, was dispensable for E1 production in the initial amplification because cis mutations inactivating P97 did not affect the trans complementation of E1- mutants. In contrast, E1 expression was abolished by cis mutations in the splice donor site at nucleotide (nt) 226, the splice acceptor site at nt 409, or a TATAA box at nt 7890. The mapping of 5' mRNA ends using rapid amplification of cDNA ends defined a promoter with a transcription start site at HPV-16 nt 14, P14. P14-initiated mRNA levels were low and required intact TATAA (7890). E1 expression required the HPV-16 keratinocyte-dependent enhancer, since cis mutations in its AP-2 and TEF-1 motifs abolished the ability of the mutant genomes to complement E1- genomes, and it was further modulated by origin-proximal and -distal binding sites for the viral E2 gene products. We conclude that P14-initiated E1 expression is critical for and limiting in the initial amplification of the HPV-16 genome.
Collapse
|
10
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
11
|
Sanders CM. A DNA-binding activity in BPV initiator protein E1 required for melting duplex ori DNA but not processive helicase activity initiated on partially single-stranded DNA. Nucleic Acids Res 2008; 36:1891-9. [PMID: 18267969 PMCID: PMC2330243 DOI: 10.1093/nar/gkn041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The papillomavirus replication protein E1 assembles on the viral origin of replication (ori) as a series of complexes. It has been proposed that the ori DNA is first melted by a head-to-tail double trimer of E1 that evolves into two hexamers that encircle and unwind DNA bi-directionally. Here the role of a conserved lysine residue in the smaller tier or collar of the E1 helicase domain in ori processing is described. Unlike the residues of the AAA+ domain DNA-binding segments (β-hairpin and hydrophobic loop; larger tier), this residue functions in the initial melting of duplex ori DNA but not in the processive DNA unwinding of partially single-stranded test substrates. These data therefore define a new DNA-binding related activity in the E1 protein and demonstrate that separate functional elements for DNA melting and helicase activity can be distinguished. New insights into the mechanism of ori melting are elaborated, suggesting the coordinated involvement of rigid and flexible DNA-binding components in E1.
Collapse
Affiliation(s)
- Cyril M Sanders
- Institute for Cancer Studies, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK.
| |
Collapse
|
12
|
Schuck S, Stenlund A. ATP-dependent minor groove recognition of TA base pairs is required for template melting by the E1 initiator protein. J Virol 2007; 81:3293-302. [PMID: 17202221 PMCID: PMC1866042 DOI: 10.1128/jvi.02432-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Template melting is an essential step in the initiation of DNA replication, but the mechanism of template melting is unknown for any replicon. Here we demonstrate that melting of the bovine papillomavirus type 1 ori is a sequence-dependent process which relies on specific recognition of TA base pairs in the minor groove by the E1 initiator. We show that correct template melting is a prerequisite for the formation of a stable double hexamer with helicase activity and that ori mutants that fail to melt correctly are defective for ori unwinding and DNA replication in vivo. Our results also indicate that melting of the DNA is achieved by destabilization of the double helix along its length through multiple interactions with E1, each of which is responsible for melting of a few base pairs, resulting in the extensive melting that is required for initiation of DNA replication.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
13
|
Abstract
Carcinoma of the uterine cervix, a leading cause of cancer death in women worldwide, is initiated by infection with high-risk types of human papillomaviruses (HPVs). This review summarizes laboratory studies over the past 20 years that have elucidated the major features of the HPV life cycle, identified the functions of the viral proteins, and clarified the consequences of HPV infection for their host cells. This information has allowed the development of various strategies to prevent or treat infections, including prophylactic vaccination with virus-like particles, therapeutic vaccination against viral proteins expressed in cancer cells, and antiviral approaches to inhibit virus replication, spread, or pathogenesis. These strategies have the potential to cause a dramatic reduction in the incidence of cervical carcinoma and serve as the prototype for comprehensive efforts to combat virus-induced tumors.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
14
|
Schuck S, Stenlund A. Surface mutagenesis of the bovine papillomavirus E1 DNA binding domain reveals residues required for multiple functions related to DNA replication. J Virol 2006; 80:7491-9. [PMID: 16840329 PMCID: PMC1563737 DOI: 10.1128/jvi.00435-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 protein from papillomaviruses is a multifunctional protein with complex functions required for the initiation of viral DNA replication. We have performed a surface mutagenesis of the well-characterized E1 DNA binding domain (DBD). We demonstrate that substitutions of multiple residues on the surface of the E1 DBD are defective for DNA replication without affecting the DNA binding activity of the protein. The defects of individual substitutions include failure to form the double trimer that melts the ori and failure to form the double hexamer that unwinds the ori. These results demonstrate that the DBD plays an essential role in multiple DNA replication-related processes apart from DNA binding.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
15
|
Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006; 442:270-5. [PMID: 16855583 DOI: 10.1038/nature04943] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 06/01/2006] [Indexed: 11/09/2022]
Abstract
The E1 protein of papillomavirus is a hexameric ring helicase belonging to the AAA + family. The mechanism that couples the ATP cycle to DNA translocation has been unclear. Here we present the crystal structure of the E1 hexamer with single-stranded DNA discretely bound within the hexamer channel and nucleotides at the subunit interfaces. This structure demonstrates that only one strand of DNA passes through the hexamer channel and that the DNA-binding hairpins of each subunit form a spiral 'staircase' that sequentially tracks the oligonucleotide backbone. Consecutively grouped ATP, ADP and apo configurations correlate with the height of the hairpin, suggesting a straightforward DNA translocation mechanism. Each subunit sequentially progresses through ATP, ADP and apo states while the associated DNA-binding hairpin travels from the top staircase position to the bottom, escorting one nucleotide of single-stranded DNA through the channel. These events permute sequentially around the ring from one subunit to the next.
Collapse
Affiliation(s)
- Eric J Enemark
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
16
|
Castella S, Bingham G, Sanders CM. Common determinants in DNA melting and helicase-catalysed DNA unwinding by papillomavirus replication protein E1. Nucleic Acids Res 2006; 34:3008-19. [PMID: 16738139 PMCID: PMC1474052 DOI: 10.1093/nar/gkl384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
E1 and T-antigen of the tumour viruses bovine papillomavirus (BPV-1) and Simian virus 40 (SV40) are the initiator proteins that recognize and melt their respective origins of replication in the initial phase of DNA replication. These proteins then assemble into processive hexameric helicases upon the single-stranded DNA that they create. In T-antigen, a characteristic loop and hairpin structure (the pre-sensor 1β hairpin, PS1βH) project into a central cavity generated by protein hexamerization. This channel undergoes large ATP-dependent conformational changes, and the loop/PS1βH is proposed to form a DNA binding site critical for helicase activity. Here, we show that conserved residues in BPV E1 that probably form a similar loop/hairpin structure are required for helicase activity and also origin (ori) DNA melting. We propose that DNA melting requires the cooperation of the E1 helicase domain (E1HD) and the origin binding domain (OBD) tethered to DNA. One possible mechanism is that with the DNA locked in the loop/PS1βH DNA binding site, ATP-dependent conformational changes draw the DNA inwards in a twisting motion to promote unwinding.
Collapse
Affiliation(s)
| | | | - Cyril M. Sanders
- To whom correspondence should be addressed. Tel: +1 14 2712482; Fax: +1 14 2713892;
| |
Collapse
|
17
|
Zawilak-PAWLIK A, Kois A, Majka J, Jakimowicz D, Smulczyk-Krawczyszyn A, Messer W, Zakrzewska-Czerwińska J. Architecture of bacterial replication initiation complexes: orisomes from four unrelated bacteria. Biochem J 2005; 389:471-81. [PMID: 15790315 PMCID: PMC1175125 DOI: 10.1042/bj20050143] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial chromosome replication is mediated by single initiator protein, DnaA, that interacts specifically with multiple DnaA boxes located within the origin (oriC). We compared the architecture of the DnaA-origin complexes of evolutionarily distantly related eubacteria: two Gram-negative organisms, Escherichia coli and Helicobacter pylori, and two Gram-positive organisms, Mycobacterium tuberculosis and Streptomyces coelicolor. Their origins vary in size (from approx. 200 to 1000 bp) and number of DnaA boxes (from 5 to 19). The results indicate that: (i) different DnaA proteins exhibit various affinities toward single DnaA boxes, (ii) spatial arrangement of two DnaA boxes is crucial for the H. pylori and S. coelicolor DnaA proteins, but not for E. coli and M. tuberculosis proteins, and (iii) the oriC regions are optimally adjusted to their cognate DnaA proteins. The primary functions of multiple DnaA boxes are to determine the positioning and order of assembly of the DnaA molecules. Gradual transition from the sequence-specific binding of the DnaA protein to binding through co-operative protein-protein interactions seems to be a common conserved strategy to generate oligomeric initiator complexes bound to multiple sites within the chromosomal, plasmid and virial origins.
Collapse
Affiliation(s)
- Anna Zawilak-PAWLIK
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Agnieszka Kois
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Jerzy Majka
- †Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, U.S.A
| | - Dagmara Jakimowicz
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
- ‡John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | - Aleksandra Smulczyk-Krawczyszyn
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Walter Messer
- §Max-Planck-Institut für Molekulare Genetik, Berlin-Dahlem, Ihnenstrasse 73, D-14195 Germany
| | - Jolanta Zakrzewska-Czerwińska
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Schuck S, Stenlund A. Assembly of a double hexameric helicase. Mol Cell 2005; 20:377-89. [PMID: 16285920 DOI: 10.1016/j.molcel.2005.09.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/02/2005] [Accepted: 09/23/2005] [Indexed: 11/21/2022]
Abstract
Viral initiators perform multiple functions in initiation of DNA replication including ori binding, melting, and unwinding, culminating in the formation of a double hexameric (DH) helicase. We have recapitulated the assembly of the papillomavirus E1 initiator DH helicase, providing the first description of how such a complex is formed. We have identified an intermediate, a double trimer (DT), which relies on two cooperating DNA binding activities to melt double-stranded DNA and generate a substrate for formation of the DH helicase. The formation of the DT is dependent on nucleotide binding, while formation of the DH also requires hydrolysable ATP. The DNA binding properties of the DT explain how E1, which binds to DNA as a dimer, can effect a transition to ring structures, such as the double hexamer. These results provide new insight into the intricate machinery that initiates DNA replication.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
19
|
Stillman B. Origin recognition and the chromosome cycle. FEBS Lett 2005; 579:877-84. [PMID: 15680967 DOI: 10.1016/j.febslet.2004.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 11/29/2022]
Abstract
Prior to the initiation of DNA replication, chromosomes must establish a biochemical mark that permits the recruitment in S phase of the DNA replication machinery that copies DNA. The process of chromosome replication in eukaryotes also must be coordinated with segregation of the duplicated chromosomes to daughter cells during mitosis. Protein complexes that utilize ATP coordinate events at origins of DNA replication and later they participate in the initiation of DNA replication. In eukaryotes, some of these proteins also play a part in later processes that ensure accurate inheritance of chromosomes in mitosis, including spindle attachment of chromosomes, accurate duplication of centrosomes and cytokinesis. A perspective of how ATP-dependent proteins accomplish this task in eukaryotes is discussed.
Collapse
Affiliation(s)
- Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
20
|
Abstract
Initiator proteins are key components of the DNA replication machinery that determine where initiation will occur. In the past few years, due to a greatly improved understanding of what viral initiators look like and how they function, we can now identify the basic tasks that are required of initiators, as well as begin to comprehend what activities are required to perform these tasks. The improved knowledge of the viral initiators also demonstrates an unexpected level of conservation between different viral initiators, which might extend also to their cellular counterparts.
Collapse
Affiliation(s)
- Arne Stenlund
- Cold Spring Harbor Laboratory, P.O. Box 100, 1 Bungtown Rd, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
21
|
Auster AS, Joshua-Tor L. The DNA-binding domain of human papillomavirus type 18 E1. Crystal structure, dimerization, and DNA binding. J Biol Chem 2003; 279:3733-42. [PMID: 14593106 DOI: 10.1074/jbc.m311681200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High risk types of human papillomavirus, such as type 18 (HPV-18), cause cervical carcinoma, one of the most frequent causes of cancer death in women worldwide. DNA replication is one of the central processes in viral maintenance, and the machinery involved is an excellent target for the design of antiviral therapy. The papillomaviral DNA replication initiation protein E1 has origin recognition and ATP-dependent DNA melting and helicase activities, and it consists of a DNA-binding domain and an ATPase/helicase domain. While monomeric in solution, E1 binds DNA as a dimer. Dimerization occurs via an interaction of hydrophobic residues on a single alpha-helix of each monomer. Here we present the crystal structure of the monomeric HPV-18 E1 DNA-binding domain refined to 1.8-A resolution. The structure reveals that the dimerization helix is significantly different from that of bovine papillomavirus type 1 (BPV-1). However, we demonstrate that the analogous residues required for E1 dimerization in BPV-1 and the low risk HPV-11 are also required for HPV-18 E1. We also present evidence that the HPV-18 E1 DNA-binding domain does not share the same nucleotide and amino acid requirements for specific DNA recognition as BPV-1 and HPV-11 E1.
Collapse
MESH Headings
- Base Sequence
- Binding, Competitive
- Blotting, Western
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- Dimerization
- Glutathione Transferase/metabolism
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/metabolism
- Precipitin Tests
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Viral Proteins/chemistry
Collapse
Affiliation(s)
- Anitra S Auster
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
22
|
Stenlund A. E1 initiator DNA binding specificity is unmasked by selective inhibition of non-specific DNA binding. EMBO J 2003; 22:954-63. [PMID: 12574131 PMCID: PMC145451 DOI: 10.1093/emboj/cdg091] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Initiator proteins are critical components of the DNA replication machinery and mark the site of initiation. This activity probably requires highly selective DNA binding; however, many initiators display modest specificity in vitro. We demonstrate that low specificity of the papillomavirus E1 initiator results from the presence of a non-specific DNA-binding activity, involved in melting, which masks the specificity intrinsic to the E1 DNA-binding domain. The viral factor E2 restores specificity through a physical interaction with E1 that suppresses non-specific binding. We propose that this arrangement, where one DNA-binding activity tethers the initiator to ori while another alters DNA structure, is a characteristic of other viral and cellular initiator proteins. This arrangement would provide an explanation for the low selectivity observed for DNA binding by initiator proteins.
Collapse
Affiliation(s)
- Arne Stenlund
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|