1
|
Tian Q, Xie X, Lai R, Cheng C, Zhang Z, Chen Y, XuHan X, Lin Y, Lai Z. Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:480. [PMID: 38498444 PMCID: PMC10891736 DOI: 10.3390/plants13040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Ran GTPases play essential roles in plant growth and development. Our previous studies revealed the nuclear localization of DlRan3A and DlRan3B proteins and proposed their functional redundancy and distinction in Dimocarpus longan somatic embryogenesis, hormone, and abiotic stress responses. To further explore the possible roles of DlRan3A and DlRan3B, gene expression analysis by qPCR showed that their transcripts were both more abundant in the early embryo and pulp in longan. Heterologous expression of DlRan3A driven by its own previously cloned promoter led to stunted growth, increased root hair density, abnormal fruits, bigger seeds, and enhanced abiotic stress tolerance. Conversely, constitutive promoter CaMV 35S (35S)-driven expression of DlRan3A, 35S, or DlRan3B promoter-controlled expression of DlRan3B did not induce the alterations in growth phenotype, while they rendered different hypersensitivities to abiotic stresses. Based on the transcriptome profiling of longan Ran overexpression in tobacco plants, we propose new mechanisms of the Ran-mediated regulation of genes associated with cell wall biosynthesis and expansion. Also, the transgenic plants expressing DlRan3A or DlRan3B genes controlled by 35S or by their own promoter all exhibited altered mRNA levels of stress-related and transcription factor genes. Moreover, DlRan3A overexpressors were more tolerant to salinity, osmotic, and heat stresses, accompanied by upregulation of oxidation-related genes, possibly involving the Ran-RBOH-CIPK network. Analysis of a subset of selected genes from the Ran transcriptome identified possible cold stress-related roles of brassinosteroid (BR)-responsive genes. The marked presence of genes related to cell wall biosynthesis and expansion, hormone, and defense responses highlighted their close regulatory association with Ran.
Collapse
Affiliation(s)
- Qilin Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Xiying Xie
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
- School of Media and Design, Nantong Institute of Technology, Nantong 226019, China
| | - Ruilian Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| |
Collapse
|
2
|
Wang J, Liu X, Wang H, Qin L, Feng A, Qi D, Wang H, Zhao Y, Kong L, Wang H, Wang L, Hu Z, Xu X. JMJD1C Regulates Megakaryopoiesis in In Vitro Models through the Actin Network. Cells 2022; 11:cells11223660. [PMID: 36429088 PMCID: PMC9688414 DOI: 10.3390/cells11223660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The histone demethylase JMJD1C is associated with human platelet counts. The JMJD1C knockout in zebrafish and mice leads to the ablation of megakaryocyte-erythroid lineage anemia. However, the specific expression, function, and mechanism of JMJD1C in megakaryopoiesis remain unknown. Here, we used cell line models, cord blood cells, and thrombocytopenia samples, to detect the JMJD1C expression. ShRNA of JMJD1C and a specific peptide agonist of JMJD1C, SAH-JZ3, were used to explore the JMJD1C function in the cell line models. The actin ratio in megakaryopoiesis for the JMJDC modulation was also measured. Mass spectrometry was used to identify the JMJD1C-interacting proteins. We first show the JMJD1C expression difference in the PMA-induced cell line models, the thrombopoietin (TPO)-induced megakaryocyte differentiation of the cord blood cells, and also the thrombocytopenia patients, compared to the normal controls. The ShRNA of JMJD1C and SAH-JZ3 showed different effects, which were consistent with the expression of JMJD1C in the cell line models. The effort to find the underlying mechanism of JMJD1C in megakaryopoiesis, led to the discovery that SAH-JZ3 decreases F-actin in K562 cells and increases F-actin in MEG-01 cells. We further performed mass spectrometry to identify the potential JMJD1C-interacting proteins and found that the important Ran GTPase interacts with JMJD1C. To sum up, JMJD1C probably regulates megakaryopoiesis by influencing the actin network.
Collapse
Affiliation(s)
- Jialing Wang
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaodan Liu
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Haixia Wang
- Department of Blood Transfusion, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Lili Qin
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Anhua Feng
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Daoxin Qi
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Haihua Wang
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yao Zhao
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Lihua Kong
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Haiying Wang
- Department of Hematology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Lin Wang
- The School of Physics and Electronic Information, Weifang University, Weifang 261061, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- Correspondence: (Z.H.); (X.X.)
| | - Xin Xu
- Laboratory for Stem Cell and Regenerative Medicine, the Affiliated Hospital of Weifang Medical University, Weifang 261031, China
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
- Correspondence: (Z.H.); (X.X.)
| |
Collapse
|
3
|
Salas-Pino S, Daga RR. Spatiotemporal control of spindle disassembly in fission yeast. Cell Mol Life Sci 2019; 76:3543-3551. [PMID: 31129857 PMCID: PMC11105212 DOI: 10.1007/s00018-019-03139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Maintenance of genomic stability during cell division is one of the most important cellular tasks, and it critically depends on the faithful replication of the genetic material and its equal partitioning into daughter cells, gametes, or spores in the case of yeasts. Defective mitotic spindle assembly and disassembly both result in changes in cellular ploidy that ultimately impinge proliferation fitness and might increase tumor malignancy. Although a great progress has been made in understanding how spindles are assembled to orchestrate chromosome segregation, much less is known about how they are disassembled once completed their function. Here, we review two recently uncovered mechanisms of spindle disassembly that operate at different stages of the fission yeast life cycle.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| |
Collapse
|
4
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Lucena R, Dephoure N, Gygi SP, Kellogg DR, Tallada VA, Daga RR, Jimenez J. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly. ACTA ACUST UNITED AC 2015; 209:387-402. [PMID: 25963819 PMCID: PMC4427787 DOI: 10.1083/jcb.201412144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the membrane domain surrounding the mitotic spindle midzone promotes spindle midzone dissolution in fission yeast. During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.
Collapse
Affiliation(s)
- Rafael Lucena
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| |
Collapse
|
6
|
Hayashi H, Kimura K, Kimura A. Localized accumulation of tubulin during semi-open mitosis in the Caenorhabditis elegans embryo. Mol Biol Cell 2012; 23:1688-99. [PMID: 22398724 PMCID: PMC3338436 DOI: 10.1091/mbc.e11-09-0815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of microtubules inside the cell is controlled both spatially and temporally. During mitosis, microtubule assembly must be activated locally at the nascent spindle region for mitotic spindle assembly to occur efficiently. In this paper, we report that mitotic spindle components, such as free tubulin subunits, accumulated in the nascent spindle region, independent of spindle formation in the Caenorhabditis elegans embryo. This accumulation coincided with nuclear envelope permeabilization, suggesting that permeabilization might trigger the accumulation. When permeabilization was induced earlier by knockdown of lamin, tubulin also accumulated earlier. The boundaries of the region of accumulation coincided with the remnant nuclear envelope, which remains after nuclear envelope breakdown in cells that undergo semi-open mitosis, such as those of C. elegans. Ran, a small GTPase protein, was required for tubulin accumulation. Fluorescence recovery after photobleaching analysis revealed that the accumulation was accompanied by an increase in the immobile fraction of free tubulin inside the remnant nuclear envelope. We propose that this newly identified mechanism of accumulation of free tubulin-and probably of other molecules-at the nascent spindle region contributes to efficient assembly of the mitotic spindle in the C. elegans embryo.
Collapse
Affiliation(s)
- Hanako Hayashi
- Department of Genetics (Sokendai-Mishima), School of Life Science, Graduate University for Advanced Studies (Sokendai), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
7
|
Ciciarello M, Roscioli E, Di Fiore B, Di Francesco L, Sobrero F, Bernard D, Mangiacasale R, Harel A, Schininà ME, Lavia P. Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells. Chromosoma 2010; 119:651-68. [PMID: 20658144 DOI: 10.1007/s00412-010-0286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
Abstract
The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit. Here, we show that RanBP1 downregulation takes place in mid to late telophase, concomitant with the reformation of nuclei. Mild RanBP1 overexpression in murine cells causes RanBP1 to persist in late mitosis and hinders a set of events underlying the telophase to interphase transition, including chromatin decondensation, nuclear expansion and nuclear lamina reorganisation. Moreover, the reorganisation of nuclear pores fails associated with defective nuclear relocalisation of NLS cargoes. Co-expression of importin beta, together with RanBP1, however mitigates these defects. Thus, RanBP1 downregulation is required for nuclear reorganisation pathways operated by importin beta after mitosis.
Collapse
Affiliation(s)
- Marilena Ciciarello
- CNR National Research Council, Institute of Molecular Biology and Pathology, c/o Sapienza University of Rome, Rome, 00185, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sato M, Toda T. Space shuttling in the cell: nucleocytoplasmic transport and microtubule organization during the cell cycle. NUCLEUS (AUSTIN, TEX.) 2010; 1:231-6. [PMID: 21327068 DOI: 10.4161/nucl.1.3.11443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/31/2010] [Accepted: 02/08/2010] [Indexed: 12/12/2022]
Abstract
Microtubules form a multifunctional filamentous structure essential for the cell. In interphase, microtubules form networks in the cytoplasm and play pivotal roles in cell polarity and intracellular transport of various biomolecules. In mitosis, microtubules dramatically change their morphology to assemble the mitotic spindle, thereby pulling the chromosomes toward the spindle poles. One long-standing question is how microtubules are reorganized upon mitotic entry. Yeast cells undergo closed mitosis, in which the nuclear envelope persists, whereas higher eukaryotes undergo open mitosis, in which the nuclear envelope breaks down. Microtubule reorganization must be controlled by selective localization of microtubule-assembly factors. Recent findings in fission yeast indicate that several microtubule-associated proteins (MAPs) shuttle between the cytoplasm and the nucleus through regulation by Ran GTPase, the universal organizer of nucleocytoplasmic transport. Furthermore, the synergistic interplay of Ran and cyclin-dependent kinase (CDK) induces the critical spatiotemporal shift of modes in microtubule assembly from cytoplasmic arrays to nuclear spindles. A MAP complex Alp7/TACC-Alp14/TOG undergoes nucleocytoplasmic shuttling in interphase, whereas it is retained in the mitotic nucleus through a decrease of its nuclear export by CDK. Our understanding of how microtubules are reorganized during the cell cycle is beginning to emerge.
Collapse
Affiliation(s)
- Masamitsu Sato
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan.
| | | |
Collapse
|
9
|
Ptak C, Anderson AM, Scott RJ, Van de Vosse D, Rogers RS, Sydorskyy Y, Aitchison JD, Wozniak RW. A role for the karyopherin Kap123p in microtubule stability. Traffic 2009; 10:1619-34. [PMID: 19761543 DOI: 10.1111/j.1600-0854.2009.00978.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several components of the nuclear transport machinery play a role in mitotic spindle assembly in higher eukaryotes. To further investigate the role of this family of proteins in microtubule function, we screened for mutations in Saccharomyces cerevisiae that confer sensitivity to microtubule-destabilizing drugs. One mutant exhibiting this phenotype lacked the gene encoding the karyopherin Kap123p. Analysis of kap123Delta cells revealed that the drug sensitivity was caused by a defect in microtubule stability and/or assembly. In support of this idea, we demonstrated genetic interactions between the kap123Delta mutation and mutated alleles of genes encoding alpha-tubulins and factors controlling microtubule dynamics. Moreover, kap123Delta cells exhibit defects in spindle structure and dynamics as well as nuclear positioning defects during mitosis. Cultures of kap123Delta strains are enriched for mononucleated large-budded cells often containing short spindles and nuclei positioned away from the budneck, phenotypes indicative of defects in both cytoplasmic and nuclear microtubules. Finally, we identified a gene, CAJ1, which when deleted in combination with KAP123 exacerbated the microtubule-related defects of the kap123Delta mutants. We propose that Kap123p and Caj1p, a member of the Hsp40 family of proteins, together play an essential role in normal microtubule function.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lim H. W. G, Huber G, Torii Y, Hirata A, Miller J, Sazer S. Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast. PLoS One 2007; 2:e948. [PMID: 17895989 PMCID: PMC1993828 DOI: 10.1371/journal.pone.0000948] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/29/2007] [Indexed: 11/23/2022] Open
Abstract
It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the nucleus of interphase cells.
Collapse
Affiliation(s)
- Gerald Lim H. W.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Greg Huber
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Mathematics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yoshihiro Torii
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Jonathan Miller
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shelley Sazer
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Abstract
Alp7/TACC has been identified as an important target for Ran GTPase in spindle formation in fission yeast. This discovery underlines a general role for Ran in orchestrating mitosis in all eukaryotes.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | |
Collapse
|
12
|
Sato M, Toda T. Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature 2007; 447:334-7. [PMID: 17476213 DOI: 10.1038/nature05773] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 03/23/2007] [Indexed: 11/09/2022]
Abstract
Microtubules are essential intracellular structures involved in several cellular phenomena, including polarity establishment and chromosome segregation. Because the nuclear envelope persists during mitosis (closed mitosis) in fission yeast (Schizosaccharomyces pombe), cytoplasmic microtubules must be reorganized into the spindle in the compartmentalized nucleus on mitotic entry. An ideal mechanism might be to take advantage of an evolutionarily conserved microtubule formation system that uses the Ran-GTPase nuclear transport machinery, but no targets of Ran for spindle formation have been identified in yeast. Here we show that a microtubule-associated protein, Alp7, which forms a complex with Alp14, is a target of Ran in yeast for spindle formation. The Ran-deficient pim1 mutant (pim1-F201S) failed to show mitosis-specific nuclear accumulation of Alp7. Moreover, this mutant exhibited compromised spindle formation and early mitotic delay. Importantly, these defects were suppressed by Alp7 that was artificially targeted to the nucleus by a Ran-independent and importin-alpha-mediated system. Thus, Ran targets Alp7-Alp14 to achieve nuclear spindle formation, and might differentiate its targets depending on whether the organism undergoes closed or open mitosis.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
13
|
Clément M, Deshaies F, de Repentigny L, Belhumeur P. The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein inSaccharomyces cerevisiae. Mol Microbiol 2006; 62:453-68. [PMID: 16956377 DOI: 10.1111/j.1365-2958.2006.05374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The small Ras-like GTPase Ran/Gsp1p is a highly conserved nuclear protein required for the nucleocytoplasmic trafficking of macromolecules. Recent findings suggest that the Ran/Gsp1p pathway may have additional roles in several aspects of nuclear structure and function, including spindle assembly, nuclear envelope formation, nuclear pore complex assembly and RNA processing. Here, we provide evidence that Gsp1p can regulate telomeric function in Saccharomyces cerevisiae. We show that overexpression of PRP20, encoding the Gsp1p GDP/GTP nuclear exchange factor, specifically weakens telomeric silencing without detectably affecting nucleocytoplasmic transport. In addition to this silencing defect, we show that Rap1p and Sir3p delocalize from their normal telomeric foci. Interestingly, Gsp1p was found to interact genetically and physically with the telomeric component Sir4p. Taken together, these results suggest that the GSP1 pathway could regulate proper telomeric function in yeast through Sir4p.
Collapse
Affiliation(s)
- Martin Clément
- Département de microbiologie et immunologie, Université de Montréal, C P 6128, succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
14
|
Otegui MS, Verbrugghe KJ, Skop AR. Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 2005; 15:404-13. [PMID: 16009554 PMCID: PMC3677513 DOI: 10.1016/j.tcb.2005.06.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/09/2005] [Accepted: 06/24/2005] [Indexed: 12/21/2022]
Abstract
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
15
|
Tanaka TU, Stark MJR, Tanaka K. Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 2005; 6:929-42. [PMID: 16341079 DOI: 10.1038/nrm1764] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kinetochores are large protein complexes that are formed on chromosome regions known as centromeres. For high-fidelity chromosome segregation, kinetochores must be correctly captured on the mitotic spindle before anaphase onset. During prometaphase, kinetochores are initially captured by a single microtubule that extends from a spindle pole and are then transported poleward along the microtubule. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles - this is known as bi-orientation. Here we discuss the molecular mechanisms of these processes, by focusing on budding yeast and drawing comparisons with other organisms.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dow Street, Dundee, DD1 5EH, UK.
| | | | | |
Collapse
|
16
|
Quimby BB, Arnaoutov A, Dasso M. Ran GTPase regulates Mad2 localization to the nuclear pore complex. EUKARYOTIC CELL 2005; 4:274-80. [PMID: 15701789 PMCID: PMC549331 DOI: 10.1128/ec.4.2.274-280.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In yeast and mammalian cells, the spindle assembly checkpoint proteins Mad1p and Mad2p localize to the nuclear pore complex (NPC) during interphase. Deletion of MAD1 or MAD2 did not affect steady-state nucleocytoplasmic distribution of a classical nuclear localization signal-containing reporter, a nuclear export signal-containing reporter, or Ran localization. We utilized cells with conditional mutations in the yeast Ran GTPase pathway to examine the relationship between Ran and targeting of checkpoint regulators to the NPC. Mutations that disrupt the concentration of Ran in the nucleus displaced Mad2p but not Mad1p from the NPC. The displacement of Mad2p in M-phase cells was correlated with activation of the spindle checkpoint. Our observations demonstrate that Mad2p localization at NPCs is sensitive to nuclear levels of Ran and suggest that release of Mad2p from NPCs is closely linked with spindle assembly checkpoint activation in yeast. This is the first evidence indicating that Ran affects the localization of Mad2p to the NPC.
Collapse
Affiliation(s)
- B Booth Quimby
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA.
| | | | | |
Collapse
|
17
|
Umeda M, Izaddoost S, Cushman I, Moore MS, Sazer S. The fission yeast Schizosaccharomyces pombe has two importin-alpha proteins, Imp1p and Cut15p, which have common and unique functions in nucleocytoplasmic transport and cell cycle progression. Genetics 2005; 171:7-21. [PMID: 15937127 PMCID: PMC1456536 DOI: 10.1534/genetics.105.042598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nuclear import of classical nuclear localization signal-containing proteins depends on importin-alpha transport receptors. In budding yeast there is a single importin-alpha gene and in higher eukaryotes there are multiple importin-alpha-like genes, but in fission yeast there are two: the previously characterized cut15 and the more recently identified imp1. Like other importin-alpha family members, Imp1p supports nuclear protein import in vitro. In contrast to cut15, imp1 is not essential for viability, but imp1delta mutant cells exhibit a telophase delay and mild temperature-sensitive lethality. Differences in the cellular functions that depend on Imp1p and Cut15p indicate that they each have unique physiological roles. They also have common roles because the imp1delta and the cut15-85 temperature-sensitive mutations are synthetically lethal; overexpression of cut15 partially suppresses the temperature sensitivity, but not the mitotic delay in imp1delta cells; and overexpression of imp1 partially suppresses the mitotic defect in cut15-85 cells but not the loss of viability. Both Imp1p and Cut15p are required for the efficient nuclear import of both an SV40 nuclear localization signal-containing reporter protein and the Pap1p component of the stress response MAP kinase pathway. Imp1p and Cut15p are essential for efficient nuclear protein import in S. pombe.
Collapse
Affiliation(s)
- Makoto Umeda
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Kerres A, Vietmeier-Decker C, Ortiz J, Karig I, Beuter C, Hegemann J, Lechner J, Fleig U. The fission yeast kinetochore component Spc7 associates with the EB1 family member Mal3 and is required for kinetochore-spindle association. Mol Biol Cell 2004; 15:5255-67. [PMID: 15371542 PMCID: PMC532008 DOI: 10.1091/mbc.e04-06-0443] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A critical aspect of mitosis is the interaction of the kinetochore with spindle microtubules. Fission yeast Mal3 is a member of the EB1 family of microtubule plus-end binding proteins, which have been implicated in this process. However, the Mal3 interaction partner at the kinetochore had not been identified. Here, we show that the mal3 mutant phenotype can be suppressed by the presence of extra Spc7, an essential kinetochore protein associated with the central centromere region. Mal3 and Spc7 interact physically as both proteins can be coimmunoprecipitated. Overexpression of a Spc7 variant severely compromises kinetochore-microtubule interaction, indicating that the Spc7 protein plays a role in this process. Spc7 function seems to be conserved because, Spc105, a Saccharomyces cerevisiae homolog of Spc7, identified by mass spectrometry as a component of the conserved Ndc80 complex, can rescue mal3 mutant strains.
Collapse
Affiliation(s)
- Anne Kerres
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Baï SW, Rouquette J, Umeda M, Faigle W, Loew D, Sazer S, Doye V. The fission yeast Nup107-120 complex functionally interacts with the small GTPase Ran/Spi1 and is required for mRNA export, nuclear pore distribution, and proper cell division. Mol Cell Biol 2004; 24:6379-92. [PMID: 15226438 PMCID: PMC434257 DOI: 10.1128/mcb.24.14.6379-6392.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.
Collapse
|
20
|
Shi WY, Skeath JB. The Drosophila RCC1 homolog, Bj1, regulates nucleocytoplasmic transport and neural differentiation during Drosophila development. Dev Biol 2004; 270:106-21. [PMID: 15136144 DOI: 10.1016/j.ydbio.2004.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 02/10/2004] [Accepted: 02/12/2004] [Indexed: 11/18/2022]
Abstract
The Bj1 gene encodes the Drosophila homolog of RCC1, the guanine-nucleotide exchange factor for RanGTPase. Here, we provide the first phenotypic characterization of a RCC1 homolog in a developmental model system. We identified Bj1 (dRCC1) in a genetic screen to identify mutations that alter central nervous system development. We find that zygotic dRCC1 mutant embryos exhibit specific defects in the development and differentiation of lateral CNS neurons although cell division and the cell cycle appear grossly normal. dRCC1 mutant nerve cords contain abnormally large cells with compartmentalized nuclei and exhibit increased transcription in the lateral CNS. As RCC1 is an important component of the nucleocytoplasmic transport machinery, we find that dRCC1 function is required for nuclear import of nuclear localization signal sequence (NLS)-carrying cargo molecules. Finally, we show that dRCC1 is required for cell proliferation and/or survival during germline, eye and wing development and that dRCC1 appears to facilitate apoptosis.
Collapse
Affiliation(s)
- Wei-Yang Shi
- Program in Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
21
|
Chang F, Re F, Sebastian S, Sazer S, Luban J. HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes. Mol Biol Cell 2004; 15:1793-801. [PMID: 14767062 PMCID: PMC379276 DOI: 10.1091/mbc.e03-09-0691] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.
Collapse
Affiliation(s)
- Fred Chang
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
22
|
Seewald MJ, Kraemer A, Farkasovsky M, Körner C, Wittinghofer A, Vetter IR. Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction? Mol Cell Biol 2003; 23:8124-36. [PMID: 14585972 PMCID: PMC262373 DOI: 10.1128/mcb.23.22.8124-8136.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RanBP type proteins have been reported to increase the catalytic efficiency of the RanGAP-mediated GTPase reaction on Ran. Since the structure of the Ran-RanBP1-RanGAP complex showed RanBP1 to be located away from the active site, we reinvestigated the reaction using fluorescence spectroscopy under pre-steady-state conditions. We can show that RanBP1 indeed does not influence the rate-limiting step of the reaction, which is the cleavage of GTP and/or the release of product P(i). It does, however, influence the dynamics of the Ran-RanGAP interaction, its most dramatic effect being the 20-fold stimulation of the already very fast association reaction such that it is under diffusion control (4.5 x 10(8) M(-1) s(-1)). Having established a valuable kinetic system for the interaction analysis, we also found, in contrast to previous findings, that the highly conserved acidic C-terminal end of RanGAP is not required for the switch-off reaction. Rather, genetic experiments in Saccharomyces cerevisiae demonstrate a profound effect of the acidic tail on microtubule organization during mitosis. We propose that the acidic tail of RanGAP is required for a process during mitosis.
Collapse
Affiliation(s)
- Michael J Seewald
- Max-Planck Institut für Molekulare Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Le Masson I, Yu DY, Jensen K, Chevalier A, Courbeyrette R, Boulard Y, Smith MM, Mann C. Yaf9, a novel NuA4 histone acetyltransferase subunit, is required for the cellular response to spindle stress in yeast. Mol Cell Biol 2003; 23:6086-102. [PMID: 12917332 PMCID: PMC180919 DOI: 10.1128/mcb.23.17.6086-6102.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yaf9 is one of three proteins in budding yeast containing a YEATS domain. We show that Yaf9 is part of a large complex and that it coprecipitates with three known subunits of the NuA4 histone acetyltransferase. Although Esa1, the catalytic subunit of NuA4, is essential for viability, we found that yaf9 Delta mutants are viable but hypersensitive to microtubule depolymerizing agents and synthetically lethal with two different mutants of the mitotic apparatus. Microtubules depolymerized more readily in the yaf9Delta mutant compared to the wild type in the presence of nocodazole, and recovery of microtubule polymerization and cell division from limiting concentrations of nocodazole was inhibited. Two other NuA4 mutants (esa1-1851 and yng2 Delta) and nonacetylatable histone H4 mutants were also sensitive to benomyl. Furthermore, wild-type budding yeast were more resistant to benomyl when grown in the presence of trichostatin A, a histone deacetylase inhibitor. These results strongly suggest that acetylation of histone H4 by NuA4 is required for the cellular resistance to spindle stress.
Collapse
Affiliation(s)
- Ivan Le Masson
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Lutz W, Frank EM, Craig TA, Thompson R, Venters RA, Kojetin D, Cavanagh J, Kumar R. Calbindin D28K interacts with Ran-binding protein M: identification of interacting domains by NMR spectroscopy. Biochem Biophys Res Commun 2003; 303:1186-92. [PMID: 12684061 DOI: 10.1016/s0006-291x(03)00499-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calbindin D(28K) is an EF-hand containing protein that plays a vital role in neurological function. We now show that calcium-loaded calbindin D(28K) interacts with Ran-binding protein M, a protein known to play a role in microtubule function. Using NMR methods, we show that a peptide, LASIKNR, derived from Ran-binding protein M, interacts with several regions of the calcium-loaded protein including the amino terminus and two other regions that exhibit conformational exchange on the NMR timescale. We suggest that the interaction between calbindin D(28K) and Ran-binding protein M may be important in calbindin D(28K) function.
Collapse
Affiliation(s)
- Ward Lutz
- Department of Biochemistry, Research Center, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|