1
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Gutzmann DJ, Kramer JJ, Toomey BM, Boone CHT, Atkin AL, Nickerson KW. Transcriptional regulation of the synthesis and secretion of farnesol in the fungus Candida albicans: examination of the Homann transcription regulator knockout collection. G3 (BETHESDA, MD.) 2023; 13:jkad172. [PMID: 37522561 PMCID: PMC10542173 DOI: 10.1093/g3journal/jkad172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Candida albicans is an efficient colonizer of human gastrointestinal tracts and skin and is an opportunistic pathogen. C. albicans exhibits morphological plasticity, and the ability to switch between yeast and filamentous morphologies is associated with virulence. One regulator of this switch is the quorum sensing molecule farnesol that is produced by C. albicans throughout growth. However, the synthesis, secretion, regulation, and turnover of farnesol are not fully understood. To address this, we used our improved farnesol assay to screen a transcription regulator knockout library for differences in farnesol accumulation in whole cultures, pellets, and supernatants. All screened mutants produced farnesol and they averaged 9.2× more farnesol in the pellet than the supernatant. Nineteen mutants had significant differences with ten mutants producing more farnesol than their SN152+ wild-type control strain while nine produced less. Seven mutants exhibited greater secretion of farnesol while two exhibited less. We examined the time course for farnesol accumulation in six mutants with the greatest accumulation differences and found that those differences persisted throughout growth and they were not time dependent. Significantly, two high-accumulating mutants did not exhibit the decay in farnesol levels during stationary phase characteristic of wild-type C. albicans, suggesting that a farnesol modification/degradation mechanism is absent in these mutants. Identifying these transcriptional regulators provides new insight into farnesol's physiological functions regarding cell cycle progression, white-opaque switching, yeast-mycelial dimorphism, and response to cellular stress.
Collapse
Affiliation(s)
- Daniel J Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Jaxon J Kramer
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Brigid M Toomey
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Cory H T Boone
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Audrey L Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kenneth W Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
3
|
The Role of Glycoside Hydrolases in S. gordonii and C. albicans Interactions. Appl Environ Microbiol 2022; 88:e0011622. [PMID: 35506689 DOI: 10.1128/aem.00116-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida albicans can coaggregate with Streptococcus gordonii and cocolonize in the oral cavity. Saliva provides a vital microenvironment for close interactions of oral microorganisms. However, the level of fermentable carbohydrates in saliva is not sufficient to support the growth of multiple species. Glycoside hydrolases (GHs) that hydrolyze glycoproteins are critical for S. gordonii growth in low-fermentable-carbohydrate environments such as saliva. However, whether GHs are involved in the cross-kingdom interactions between C. albicans and S. gordonii under such conditions remains unknown. In this study, C. albicans and S. gordonii were cocultured in heart infusion broth with a low level of fermentable carbohydrate. Planktonic growth, biofilm formation, cell aggregation, and GH activities of monocultures and cocultures were examined. The results revealed that the planktonic growth of cocultured S. gordonii in a low-carbohydrate environment was elevated, while that of cocultured C. albicans was reduced. The biomass of S. gordonii in dual-species biofilms was higher than that of monocultures, while that of cocultured C. albicans was decreased. GH activity was observed in S. gordonii, and elevated activity of GHs was detected in S. gordonii-C. albicans cocultures, with elevated expression of GH-related genes of S. gordonii. By screening a mutant library of C. albicans, we identified a tec1Δ/Δ mutant strain that showed reduced ability to promote the growth and GH activities of S. gordonii compared with the wild-type strain. Altogether, the findings of this study demonstrate the involvement of GHs in the cross-kingdom metabolic interactions between C. albicans and S. gordonii in an environment with low level of fermentable carbohydrates. IMPORTANCE Cross-kingdom interactions between Candida albicans and oral streptococci such as Streptococcus gordonii have been reported. However, their interactions in a low-fermentable-carbohydrate environment like saliva is not clear. The current study revealed glycoside hydrolase-related cross-kingdom communications between S. gordonii and C. albicans under the low-fermentable-carbohydrate condition. We demonstrate that C. albicans can promote the growth and metabolic activities of S. gordonii by elevating the activities of cell-wall-anchored glycoside hydrolases of S. gordonii. C. albicans gene TEC1 is critical for this cross-kingdom metabolic communication.
Collapse
|
4
|
Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res 2021; 20:5715912. [PMID: 31981355 PMCID: PMC7000152 DOI: 10.1093/femsyr/foaa005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Sonia Villa
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad Hamideh
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad N Qasim
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Adnane Sellam
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaron D Hernday
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.,Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
5
|
Qasim MN, Valle Arevalo A, Nobile CJ, Hernday AD. The Roles of Chromatin Accessibility in Regulating the Candida albicans White-Opaque Phenotypic Switch. J Fungi (Basel) 2021; 7:37. [PMID: 33435404 PMCID: PMC7826875 DOI: 10.3390/jof7010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as "white" and "opaque". These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively "simple" model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.
Collapse
Affiliation(s)
- Mohammad N. Qasim
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| |
Collapse
|
6
|
Zhang Y, Wang L, Liang S, Zhang P, Kang R, Zhang M, Wang M, Chen L, Yuan H, Ding S, Li H. FpDep1, a component of Rpd3L histone deacetylase complex, is important for vegetative development, ROS accumulation, and pathogenesis in Fusarium pseudograminearum. Fungal Genet Biol 2019; 135:103299. [PMID: 31706014 DOI: 10.1016/j.fgb.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Histone deacetylases (HDACs) play essential roles in modulating chromatin structure to provide accessibility to gene regulators. Increasing evidence has linked HADCs to pathogenesis control in the filamentous plant fungi. However, its function remains unclear in Fusarium pseudograminearum, which has led to the emergence of the disease Fusarium crown rot in China. Here we identified the FpDEP1 gene, an orthologue of Saccharomyces cerevisiae DEP1 encoding a component of the Rpd3 histone deacetylase complex in F. pseudograminearum. The gene deletion mutant, ΔFpdep1, showed significantly retarded growth on PDA plates with reduced aerial hyphae formation. Pathogenicity tests displayed no typical leaf lesions and limited expansion capability of coleoptiles. Histopathological analysis indicated the ΔFpdep1 deletion mutant differentiated infectious hyphae and triggered massive reactive oxygen species (ROS) accumulation during the early infection stage, resulting in limited expansion to neighbor cells which was concurring with sensitivity to H2O2 and SDS tests in vitro. FM4-64 staining revealed that the ΔFpdep1 deletion mutant was delayed in endocytosis. The FpDEP1-GFP transgene complemented the mutant phenotypes and the fusion protein co-localized with DAPI staining, indicating that the FpDEP1 gene product is localized to the nucleus in spores and mycelia. Immunoprecipitation coupled with LC-MS/MS and yeast two-hybrid screening identified the Rpd3L-like HDAC complex containing at least FpDep1, FpSds3, FpSin3, FpRpd3, FpRxt3, FpCti6, FpRho23, and FpUme6. These results suggest that FpDep1 is involved in a HDAC complex functioning on fungal development and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450009 China
| | - Panpan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Ror S, Panwar SL. Sef1-Regulated Iron Regulon Responds to Mitochondria-Dependent Iron-Sulfur Cluster Biosynthesis in Candida albicans. Front Microbiol 2019; 10:1528. [PMID: 31354649 PMCID: PMC6630100 DOI: 10.3389/fmicb.2019.01528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
Iron homeostasis mechanisms allow the prime commensal-pathogen Candida albicans to cope with the profound shift in iron levels in the mammalian host. The regulators, Sef1 and Sfu1 influence activation and repression of genes required for iron uptake and acquisition by inducing the expression of iron regulon genes in iron-deplete conditions and inactivating them in iron-replete condition. Our study for the first time shows that C. albicans coordinates the activation of the iron regulon with the mitochondrial use of iron for Fe–S cluster biosynthesis, a cellular process that is connected to cellular iron metabolism. We took advantage of a mutant defective in mitochondrial biogenesis (fzo1Δ/Δ) to assess the aforesaid link as this mutant exhibited sustained expression of the Sef1 iron regulon, signifying an iron-starved state in the mutant. Our analysis demonstrates that mitochondrion is pivotal for regulation of Fe–S cluster synthesis such that the disruption of this cellular process in fzo1Δ/Δ cells lead to excessive mitochondrial iron accumulation and reduced activity of the Fe–S cluster-containing enzyme aconitase. Sef1 responds to defective Fe–S cluster synthesis by regulated changes in its subcellular localization; it was retained in the nucleus resulting in the induced expression of the iron regulon. We predict that the mitochondrial Fe–S assembly generates a molecule that is critical for ensuring iron-responsive transcriptional activation of the Sef1 regulon. All told, our data marks Fe–S biogenesis as a mechanism that meshes cellular iron procurement with mitochondrial iron metabolism resulting in regulating the Sef1 regulon in C. albicans.
Collapse
Affiliation(s)
- Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Kakade P, Mahadik K, Balaji KN, Sanyal K, Nagaraja V. Two negative regulators of biofilm development exhibit functional divergence in conferring virulence potential toCandida albicans. FEMS Yeast Res 2018; 19:5057869. [DOI: 10.1093/femsyr/foy078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pallavi Kakade
- Department of Microbiology and Cell Biology, Indian Institute of Science, C V Raman Avenue, New Biological Sciences Building, Bangalore 560012, India
| | - Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, C V Raman Avenue, New Biological Sciences Building, Bangalore 560012, India
| | - Kithiganahalli Narayanaswamy Balaji
- Department of Microbiology and Cell Biology, Indian Institute of Science, C V Raman Avenue, New Biological Sciences Building, Bangalore 560012, India
| | - Kaustuv Sanyal
- Department of Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C V Raman Avenue, New Biological Sciences Building, Bangalore 560012, India
- Department of Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
9
|
Niessing D, Jansen RP, Pohlmann T, Feldbrügge M. mRNA transport in fungal top models. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28994236 DOI: 10.1002/wrna.1453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023]
Abstract
Eukaryotic cells rely on the precise determination of when and where proteins are synthesized. Spatiotemporal expression is supported by localization of mRNAs to specific subcellular sites and their subsequent local translation. This holds true for somatic cells as well as for oocytes and embryos. Most commonly, mRNA localization is achieved by active transport of the molecules along the actin or microtubule cytoskeleton. Key factors are molecular motors, adaptors, and RNA-binding proteins that recognize defined sequences or structures in cargo mRNAs. A deep understanding of this process has been gained from research on fungal model systems such as Saccharomyces cerevisiae and Ustilago maydis. Recent highlights of these studies are the following: (1) synergistic binding of two RNA-binding proteins is needed for high affinity recognition; (2) RNA sequences undergo profound structural rearrangements upon recognition; (3) mRNA transport is tightly linked to membrane trafficking; (4) mRNAs and ribosomes are transported on the cytoplasmic surface of endosomes; and (5) heteromeric protein complexes are, most likely, assembled co-translationally during endosomal transport. Thus, the study of simple fungal model organisms provides valuable insights into fundamental mechanisms of mRNA transport boosting the understanding of similar events in higher eukaryotes. WIREs RNA 2018, 9:e1453. doi: 10.1002/wrna.1453 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Dierk Niessing
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Thomas Pohlmann
- Centre of Excellence on Plant Sciences, Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Centre of Excellence on Plant Sciences, Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Srivastava A, Sircaik S, Husain F, Thomas E, Ror S, Rastogi S, Alim D, Bapat P, Andes DR, Nobile CJ, Panwar SL. Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans. Cell Microbiol 2017; 19. [PMID: 28745020 DOI: 10.1111/cmi.12767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
Fungal pathogens such as Candida albicans exhibit several survival mechanisms to evade attack by antifungals and colonise host tissues. Rta3, a member of the Rta1-like family of lipid-translocating exporters has a 7-transmembrane domain topology, similar to the G-protein-coupled receptors and is unique to the fungal kingdom. Our findings point towards a role for the plasma membrane localised Rta3 in providing tolerance to miltefosine, an analogue of alkylphosphocholine, by maintaining mitochondrial energetics. Concurrent with miltefosine susceptibility, the rta3Δ/Δ strain displays increased inward translocation (flip) of fluorophore-labelled phosphatidylcholine (PC) across the plasma membrane attributed to enhanced PC-specific flippase activity. We also assign a novel role to Rta3 in the Bcr1-regulated pathway for in vivo biofilm development. Transcriptome analysis reveals that Rta3 regulates expression of Bcr1 target genes involved in cell surface properties, adhesion, and hyphal growth. We show that rta3Δ/Δ mutant is biofilm-defective in a rat venous catheter model of infection and that BCR1 overexpression rescues this defect, indicating that Bcr1 functions downstream of Rta3 to mediate biofilm formation in C. albicans. The identification of this novel Rta3-dependent regulatory network that governs biofilm formation and PC asymmetry across the plasma membrane will provide important insights into C. albicans pathogenesis.
Collapse
Affiliation(s)
- Archita Srivastava
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Farha Husain
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Edwina Thomas
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sumit Rastogi
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Darakshan Alim
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Sneh L Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Messenger RNA transport in the opportunistic fungal pathogen Candida albicans. Curr Genet 2017; 63:989-995. [PMID: 28512683 DOI: 10.1007/s00294-017-0707-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Candida albicans, a common commensal fungus, can cause disease in immunocompromised hosts ranging from mild mucosal infections to severe bloodstream infections with high mortality rates. The ability of C. albicans cells to switch between a budding yeast form and an elongated hyphal form is linked to pathogenicity in animal models. Hyphal-specific proteins such as cell-surface adhesins and secreted hydrolases facilitate tissue invasion and host cell damage, but the specific mechanisms leading to asymmetric protein localization in hyphae remain poorly understood. In many eukaryotes, directional cytoplasmic transport of messenger RNAs that encode asymmetrically localized proteins allows efficient local translation at the site of protein function. Over the past two decades, detailed mechanisms for polarized mRNA transport have been elucidated in the budding yeast Saccharomyces cerevisiae and the filamentous fungus Ustilago maydis. This review highlights recent studies of RNA-binding proteins in C. albicans that have revealed intriguing similarities to and differences from known fungal mRNA transport systems. I also discuss outstanding questions that will need to be answered to reach an in-depth understanding of C. albicans mRNA transport mechanisms and the roles of asymmetric mRNA localization in polarized growth, hyphal function, and virulence of this opportunistic pathogen.
Collapse
|
12
|
Zhang Q, Tao L, Guan G, Yue H, Liang W, Cao C, Dai Y, Huang G. Regulation of filamentation in the human fungal pathogenCandida tropicalis. Mol Microbiol 2015; 99:528-45. [DOI: 10.1111/mmi.13247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Qiuyu Zhang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Li Tao
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Guobo Guan
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Huizhen Yue
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Weihong Liang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Chengjun Cao
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yu Dai
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Guanghua Huang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
13
|
Candida albicans mutant construction and characterization of selected virulence determinants. J Microbiol Methods 2015; 115:153-65. [DOI: 10.1016/j.mimet.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022]
|
14
|
Caballero-Lima D, Hautbergue GM, Wilson SA, Sudbery PE. In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles. Mol Microbiol 2014; 94:828-42. [PMID: 25231350 PMCID: PMC4278529 DOI: 10.1111/mmi.12799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans-Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
15
|
Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. EUKARYOTIC CELL 2013; 12:1316-25. [PMID: 23913542 DOI: 10.1128/ec.00094-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause disseminated infection in patients with indwelling catheters or other implanted medical devices. A common resident of the human microbiome, C. albicans responds to environmental signals, such as cell contact with catheter materials and exposure to serum or CO2, by triggering the expression of a variety of traits, some of which are known to contribute to its pathogenic lifestyle. Such traits include adhesion, biofilm formation, filamentation, white-to-opaque (W-O) switching, and two recently described phenotypes, finger and tentacle formation. Under distinct sets of environmental conditions and in specific cell types (mating type-like a [MTLa]/alpha cells, MTL homozygotes, or daughter cells), C. albicans utilizes (or reutilizes) a single signal transduction pathway-the Ras pathway-to affect these phenotypes. Ras1, Cyr1, Tpk2, and Pde2, the proteins of the Ras signaling pathway, are the only nontranscriptional regulatory proteins that are known to be essential for regulating all of these processes. How does C. albicans utilize this one pathway to regulate all of these phenotypes? The regulation of distinct and yet related processes by a single, evolutionarily conserved pathway is accomplished through the use of downstream transcription factors that are active under specific environmental conditions and in different cell types. In this minireview, we discuss the role of Ras signaling pathway components and Ras pathway-regulated transcription factors as well as the transcriptional regulatory networks that fine-tune gene expression in diverse biological contexts to generate specific phenotypes that impact the virulence of C. albicans.
Collapse
|
16
|
Chen C, Noble SM. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. PLoS Pathog 2012; 8:e1002956. [PMID: 23133381 PMCID: PMC3486892 DOI: 10.1371/journal.ppat.1002956] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022] Open
Abstract
The yeast Candida albicans transitions between distinct lifestyles as a normal component of the human gastrointestinal microbiome and the most common agent of disseminated fungal disease. We previously identified Sef1 as a novel Cys6Zn2 DNA binding protein that plays an essential role in C. albicans virulence by activating the transcription of iron uptake genes in iron-poor environments such as the host bloodstream and internal organs. Conversely, in the iron-replete gastrointestinal tract, persistence as a commensal requires the transcriptional repressor Sfu1, which represses SEF1 and genes for iron uptake. Here, we describe an unexpected, transcription-independent role for Sfu1 in the direct inhibition of Sef1 function through protein complex formation and localization in the cytoplasm, where Sef1 is destabilized. Under iron-limiting conditions, Sef1 forms an alternative complex with the putative kinase, Ssn3, resulting in its phosphorylation, nuclear localization, and transcriptional activity. Analysis of sfu1 and ssn3 mutants in a mammalian model of disseminated candidiasis indicates that these post-transcriptional regulatory mechanisms serve as a means for precise titration of C. albicans virulence. Candida albicans is a fungus that resides on the skin and in the gastrointestinal tract of humans and other mammals. However, this commensal organism is also capable of proliferating and causing disease in people who have received antibiotics, who are immunocompromised, or who have suffered injury to epithelial layers. We previously identified a novel transcription factor called Sef1 that promotes C. albicans virulence by activating the expression of iron uptake genes in iron-poor environments, such as the host bloodstream. However, in iron-replete environments such as the gastrointestinal niche, the SEF1 gene is repressed by a second transcription factor called Sfu1. Here, we report our discovery of a series of post-transcriptional regulatory events that determine the intracellular localization, stability, and activity of Sef1 protein. Mutants that disrupt these post-transcriptional events alter C. albicans virulence in a mammalian model of disseminated infection. The existence of multiple levels of regulation speaks to the importance of Sef1 in C. albicans virulence and suggests that close titration of Sef1 activity is important for adaptation to distinct microenvironments within the mammalian host.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Suzanne M. Noble
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR. Daughter-specific transcription factors regulate cell size control in budding yeast. PLoS Biol 2009; 7:e1000221. [PMID: 19841732 PMCID: PMC2756959 DOI: 10.1371/journal.pbio.1000221] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 09/11/2009] [Indexed: 12/31/2022] Open
Abstract
The asymmetric localization of cell fate determinants results in asymmetric cell cycle control in budding yeast. In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. Asymmetric cell division is a universal mechanism for generating differentiated cells. The progeny of such divisions can often display differential cell cycle regulation. This study addresses how differential regulation of gene expression in the progeny of a single division can alter cell cycle control. In budding yeast, asymmetric cell division yields a bigger ‘mother’ cell and a smaller ‘daughter’ cell. Regulation of gene expression is also asymmetric because two transcription factors, Ace2 and Ash1, are specifically localized to the daughter. Cell size has long been proposed as important for the regulation of the cell cycle in yeast. Our work shows that Ace2 and Ash1 regulate size control in daughter cells: daughters ‘interpret’ their size as smaller, making size control more stringent and delaying cell cycle commitment relative to mother cells of the same size. This asymmetric interpretation of cell size is associated with differential regulation of the G1 cyclin CLN3 by Ace2 and Ash1, at least in part via direct binding of these factors to the CLN3 promoter. CLN3 is the most upstream regulator of Start, the initiation point of the yeast cell cycle, and differential regulation of CLN3 accounts for most or all asymmetric regulation of Start in budding yeast mother and daughter cells.
Collapse
Affiliation(s)
- Stefano Di Talia
- The Rockefeller University, New York, New York, United States of America
| | - Hongyin Wang
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Jan M. Skotheim
- The Rockefeller University, New York, New York, United States of America
| | - Adam P. Rosebrock
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | - Frederick R. Cross
- The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Elson SL, Noble SM, Solis NV, Filler SG, Johnson AD. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLoS Genet 2009; 5:e1000664. [PMID: 19779551 PMCID: PMC2739428 DOI: 10.1371/journal.pgen.1000664] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/26/2009] [Indexed: 11/18/2022] Open
Abstract
Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species.
Collapse
Affiliation(s)
- Sarah L. Elson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Suzanne M. Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. EUKARYOTIC CELL 2008; 7:980-7. [PMID: 18424510 DOI: 10.1128/ec.00357-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is a dimorphic fungus that can interconvert between yeast and filamentous forms. Its ability to regulate morphogenesis is strongly correlated with virulence. Tup1, a transcriptional repressor, and the signaling molecule farnesol are both capable of negatively regulating the yeast to filamentous conversion. Based on this overlap in function, we tested the hypothesis that the cellular response to farnesol involves, in part, the activation of Tup1. Tup1 functions with the DNA binding proteins Nrg1 and Rfg1 as a transcription regulator to repress the expression of hypha-specific genes. The tup1/tup1 and nrg1/nrg1 mutants, but not the rfg1/rfg1 mutant, failed to respond to farnesol. Treatment of C. albicans cells with farnesol caused a small but consistent increase in both TUP1 mRNA and protein levels. Importantly, this increase corresponds with the commitment point, beyond which added farnesol no longer blocks germ tube formation, and it correlates with a strong decrease in the expression of two Tup1-regulated hypha-specific genes, HWP1 and RBT1. Tup1 probably plays a direct role in the response to farnesol because farnesol suppresses the haploinsufficient phenotype of a TUP1/tup1 heterozygote. Farnesol did not affect EFG1 (a transcription regulator of filament development), NRG1, or RFG1 mRNA levels, demonstrating specific gene regulation in response to farnesol. Furthermore, the tup1/tup1 and nrg1/nrg1 mutants produced 17- and 19-fold more farnesol, respectively, than the parental strain. These levels of excess farnesol are sufficient to block filamentation in a wild-type strain. Our data are consistent with the role of Tup1 as a crucial component of the response to farnesol in C. albicans.
Collapse
|
20
|
Zarnack K, Feldbrügge M. mRNA trafficking in fungi. Mol Genet Genomics 2007; 278:347-59. [PMID: 17768642 DOI: 10.1007/s00438-007-0271-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 12/19/2022]
Abstract
Fungal growth depends on active transport of macromolecules along the actin and/or microtubule cytoskeleton. Thereby, molecular cargo such as proteins, lipids, and mRNAs is targeted to defined subcellular regions. Active transport and localisation of mRNAs mediate localised translation so that protein synthesis occurs where protein function is required. In Saccharomyces cerevisiae, actomyosin-dependent mRNA trafficking participates in polar growth, asymmetric cell division, targeting of membrane proteins and import of mitochondrial proteins. The best-understood example is transport of ASH1 mRNA to the distal pole of the incipient daughter cell. cis-acting RNA sequences are recognised by the RNA-binding protein She2p that is connected via the adaptor She3p to the molecular motor Myo4p. Local translation at the poles of daughter cells causes Ash1p to accumulate predominantly in nuclei of daughter cells, where this transcription factor inhibits mating-type switching. Recently, it was also shown that actomyosin-dependent ASH1 mRNA transport directs tip cell-specific gene expression in filaments of the human pathogen Candida albicans. Furthermore, in the plant pathogen Ustilago maydis microtubule-dependent shuttling of the RNA-binding protein Rrm4 is essential to determine the axis of polarity in infectious filaments. Thus, mRNA trafficking appears to be universally required for polar growth of fungi.
Collapse
Affiliation(s)
- Kathi Zarnack
- Department for Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043, Marburg, Germany
| | | |
Collapse
|
21
|
Abstract
Candida albicans is termed a dimorphic fungus because it proliferates in either a yeast form or a hyphal form. The switch between these forms is the result of a complex interplay of external and internal factors and is coordinated in part by polarity-regulating proteins that are conserved among eukaryotic cells. However, yeast and hyphal cells are not the only morphological states of C. albicans. The opaque form required for mating, the pseudohyphal cell, and the chlamydospore represent distinct cell types that form in response to specific genetic or environmental conditions. In addition, hyperextended buds can form as a result of various cell cycle-related stresses. Recent studies are beginning to shed light on some of the molecular controls regulating the various morphogenetic forms of this fascinating human pathogen.
Collapse
Affiliation(s)
- Malcolm Whiteway
- National Research Council of Canada, Biotechnology Research Institute, Montreal, Quebec, H4P 2R2, Canada.
| | | |
Collapse
|
22
|
Wang A, Lane S, Tian Z, Sharon A, Hazan I, Liu H. Temporal and spatial control of HGC1 expression results in Hgc1 localization to the apical cells of hyphae in Candida albicans. EUKARYOTIC CELL 2006; 6:253-61. [PMID: 17172437 PMCID: PMC1797949 DOI: 10.1128/ec.00380-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human fungal pathogen Candida albicans can undergo a morphological transition from a unicellular yeast growth form to a multicellular hyphal growth form. During hyphal growth, cell division is asymmetric. Only the apical cell divides, whereas subapical cells remain in G(1), and cell surface growth is highly restricted to the tip of the apical cell. Hgc1, a hypha-specific, G(1) cyclin-like protein, is essential for hyphal development. Here, we report, using indirect immunofluorescence, that Hgc1 is preferentially localized to the dividing apical cells of hyphae. Hgc1 protein is rapidly degraded in a cell cycle-independent manner, and the protein turnover likely occurs in both the apical and the subapical cells of hyphae. In addition to rapid protein turnover, the HGC1 transcript is also dynamically regulated during cell cycle progression in hyphal growth. It is induced upon germ tube formation in early G(1); the transcript level is reduced during the G(1)/S transition and peaks again around the G(2)/M phase in the subsequent cell cycles. Transcription from the HGC1 promoter is essential for its apical cell localization, as Hgc1 no longer exhibits preferential apical localization when expressed under the MAL2 promoter. Using fluorescence in situ hybridization, the HGC1 transcript is detected only in the apical cells of hyphae, suggesting that HGC1 is transcribed in the apical cell. Therefore, the preferential localization of Hgc1 to the apical cells of hyphae results from the dynamic temporal and spatial control of HGC1 expression.
Collapse
Affiliation(s)
- Allen Wang
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS Pathog 2006; 2:e21. [PMID: 16552442 PMCID: PMC1401495 DOI: 10.1371/journal.ppat.0020021] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 01/31/2006] [Indexed: 01/01/2023] Open
Abstract
The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI) genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes. For microbial pathogens, the cell wall is critical for interaction with both host and environment. The major fungal pathogen, Candida albicans, has a cell wall that resembles that of the model yeast Saccharomyces cerevisiae, and much of what is known about C. albicans cell wall biogenesis and repair comes via extrapolation from S. cerevisiae. Here, Bruno and colleagues inquired directly into the mechanisms that C. albicans uses to respond to disruption of cell wall biogenesis by the antifungal drug caspofungin, using a genetic strategy newly developed for C. albicans. They found that the response itself has many similarities to that of S. cerevisiae, but the regulatory circuitry is distinct: the major C. albicans regulatory gene has no clear counterpart among S. cerevisiae genes. Their findings provide a new example of a unique C. albicans regulatory function and one that may prove useful in identifying new drugs and in understanding possible resistance mechanisms.
Collapse
Affiliation(s)
- Vincent M Bruno
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, New York, New York, United States of America
| | - Sergey Kalachikov
- Columbia Genome Center, Columbia University, New York, New York, United States of America
| | - Ryan Subaran
- Department of Microbiology, Columbia University, New York, New York, United States of America
| | - Clarissa J Nobile
- Biological Sciences Program, Columbia University, New York, New York, United States of America
| | - Christos Kyratsous
- Department of Microbiology, Columbia University, New York, New York, United States of America
| | - Aaron P Mitchell
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, New York, New York, United States of America
- Department of Microbiology, Columbia University, New York, New York, United States of America
- Biological Sciences Program, Columbia University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Forche A, Magee PT, Magee BB, May G. Genome-wide single-nucleotide polymorphism map for Candida albicans. EUKARYOTIC CELL 2005; 3:705-14. [PMID: 15189991 PMCID: PMC420121 DOI: 10.1128/ec.3.3.705-714.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) are essential tools for studying a variety of organismal properties and processes, such as recombination, chromosomal dynamics, and genome rearrangement. This paper describes the development of a genome-wide SNP map for Candida albicans to study mitotic recombination and chromosome loss. C. albicans is a diploid yeast which propagates primarily by clonal mitotic division. It is the leading fungal pathogen that causes infections in humans, ranging from mild superficial lesions in healthy individuals to severe, life-threatening diseases in patients with suppressed immune systems. The SNP map contains 150 marker sequences comprising 561 SNPs and 9 insertions-deletions. Of the 561 SNPs, 437 were transition events while 126 were transversion events, yielding a transition-to-transversion ratio of 3:1, as expected for a neutral accumulation of mutations. The average SNP frequency for our data set was 1 SNP per 83 bp. The map has one marker placed every 111 kb, on average, across the 16-Mb genome. For marker sequences located partially or completely within coding regions, most contained one or more nonsynonymous substitutions. Using the SNP markers, we identified a loss of heterozygosity over large chromosomal fragments in strains of C. albicans that are frequently used for gene manipulation experiments. The SNP map will be useful for understanding the role of heterozygosity and genome rearrangement in the response of C. albicans to host environments.
Collapse
Affiliation(s)
- Anja Forche
- Department Genetics, Cell Biology, Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
25
|
Carrozza MJ, Florens L, Swanson SK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL. Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. ACTA ACUST UNITED AC 2005; 1731:77-87; discussion 75-6. [PMID: 16314178 DOI: 10.1016/j.bbaexp.2005.09.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/21/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Histone deacetylation by Saccharomyces cerevisiae Rpd3 represses genes regulated by the Ash1 and Ume6 DNA-binding proteins. Rpd3 exists in a small 0.6 MDa (Rpd3S) and large 1.2 MDa (Rpd3L) corepressor complex. In this report, we identify by mass spectrometry and MudPIT the subunits of the Rpd3L complex. These included Rpd3, Sds3, Pho23, Dep1, Rxt2, Sin3, Ash1, Ume1, Sap30, Cti6, Rxt3 and Ume6. Dep1 and Sds3, unique components of Rpd3L, were required for Rpd3L integrity and HDAC activity. Similar to RPD3, deletion of DEP1 enhanced telomeric silencing and derepressed INO1. Two sequence-specific repressors, Ash1 and Ume6, were stably associated with Rpd3L. While both of these proteins localized to the INO1 and HO promoters, the repression of these genes were dependent only on Ume6 and Ash1, respectively. Thus, the Rpd3L complex is directly recruited to specific promoters through multiple integral DNA-binding proteins.
Collapse
Affiliation(s)
- Michael J Carrozza
- Stowers Institute for Medical Research1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shieh JC, White A, Cheng YC, Rosamond J. Identification and functional characterization of Candida albicans CDC4. J Biomed Sci 2005; 12:913-24. [PMID: 16228290 DOI: 10.1007/s11373-005-9027-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022] Open
Abstract
The CDC4 gene of Saccharomyces cerevisiae encodes an essential function that is required for G1-S and G2-M transitions during mitosis and at various stages during meiosis. We have isolated a functional homologue of CDC4 (CaCDC4) from the pathogenic yeast Candida albicans by complementing the S. cerevisiae cdc4-3 mutation with CaCDC4 expressed from its own promoter on a single-copy vector. The predicted product of CaCDC4 has 37% overall identity to the S. cerevisiae Cdc4 protein, although this identity is biased towards the C-terminal region of the two proteins which contains eight copies of the degenerate WD-40 motif, an element found in proteins that regulate diverse biological processes and an F-box domain proximal to the first iteration of the WD-40 motif. Both the F-box domain and WD-40 motifs appear necessary for the mitotic functions of Cdc4 in both yeasts. In contrast to its conserved role in mitosis, C. albicans CDC4 is unable to rescue the meiotic deficiency in a S. cerevisiae cdc4 homozygous diploid under restrictive conditions, even when expressed from an efficient S. cerevisiae promoter. In opposition to S. cerevisiae CDC4 being essential, C. albicans CDC4 appears to be nonessential and in its absence is critical for filamentous growth in C. albicans.
Collapse
Affiliation(s)
- Jia-Ching Shieh
- Department of Life Sciences, Chung Shan Medical University, No. 110, Sec. 1, Janguo N. Road, Taichung City, Taiwan, 40242, ROC.
| | | | | | | |
Collapse
|
27
|
Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. EUKARYOTIC CELL 2005; 3:900-9. [PMID: 15302823 PMCID: PMC500875 DOI: 10.1128/ec.3.4.900-909.2004] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine auxotrophy, based on disruption of both URA3 alleles in diploid Candida albicans strain SC5314, has been widely used to select gene deletion mutants created in this fungus by "Ura-blasting" and PCR-mediated disruption. We compared wild-type URA3 expression with levels in mutant strains where URA3 was positioned either within deleted genes or at the highly expressed RPS10 locus. URA3 expression levels differed significantly and correlated with the specific activity of Ura3p, orotidine 5'-monophosphate decarboxylase. Reduced URA3 expression following integration at the GCN4 locus was associated with an attenuation of virulence. Furthermore, a comparison of the SC5314 (URA3) and CAI-4 (ura3) proteomes revealed that inactivation of URA3 caused significant changes in the levels of 14 other proteins. The protein levels of all except one were partially or fully restored by the reintegration of a single copy of URA3 at the RPS10 locus. Transcript levels of genes expressed ectopically at this locus in reconstituted heterozygous mutants also matched the levels found when the genes were expressed at their native loci. Therefore, phenotypic changes in C. albicans can be associated with the selectable marker rather than the target gene. Reintegration of URA3 at an appropriate expression locus such as RPS10 can offset most problems related to the phenotypic changes associated with gene knockout methodologies.
Collapse
Affiliation(s)
- Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Xu M, Wang Z, Locksley RM. Innate immune responses in peptidoglycan recognition protein L-deficient mice. Mol Cell Biol 2004; 24:7949-57. [PMID: 15340057 PMCID: PMC515053 DOI: 10.1128/mcb.24.18.7949-7957.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) constitute a family of innate immune recognition molecules. In Drosophila, distinct PGRPs bind to peptidoglycans on gram-positive or gram-negative bacteria and provide essential signals upstream of the Toll and Imd pathways required for immunity against infection. Four PGRPs, PGRP-L, -S, -Ialpha, and -Ibeta, are expressed from three genes in mammals. In this paper, we provide direct evidence that the longest family member, PGRP-L, is a secreted serum protein with the capacity to multimerize. Using gene targeting to create PGRP-L-deficient mice, we demonstrate little contribution by PGRP-L to systemic challenge using gram-negative bacteria (Escherichia coli, slightly less susceptible), Gram-positive bacteria (Staphylococcus aureus), or yeast (Candida albicans). Peritoneal macrophages from PGRP-L-deficient mice produced decreased amounts of the inflammatory cytokines interleukin 6 and tumor necrosis factor alpha when stimulated with E. coli or lipopolysaccharide, but comparable amounts when stimulated with S. aureus, C. albicans, or their cell wall components. Additionally, these cells produced similar amounts of cytokines when challenged with gram-positive or -negative peptidoglycans. In contrast to its critical role in immunity in flies, PGRP-L is largely dispensable for mammalian immunity against bacteria and fungi.
Collapse
Affiliation(s)
- Min Xu
- Howard Hughes Medical Institute, Department of Medicine, University of California San Francisco, 94143-0654, USA
| | | | | |
Collapse
|
29
|
Abstract
The human fungal pathogen Candida albicans has many morphological forms. Recent advances in genomics and cell biology are providing an improved understanding of the molecular regulation of cell shape, and providing insights into the relationships between morphogenesis and virulence. This understanding may improve our ability to develop strategies to combat Candida infections.
Collapse
Affiliation(s)
- Malcolm Whiteway
- Health Sector, Biotechnology Research Institute, 6100 Royalmount, Montreal, H4P 2R2, Canada.
| | | |
Collapse
|
30
|
Krueger KE, Ghosh AK, Krom BP, Cihlar RL. Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans. MICROBIOLOGY-SGM 2004; 150:229-240. [PMID: 14702416 DOI: 10.1099/mic.0.26792-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Candida albicans NOT4 gene was disrupted in order to investigate the role of Not4p in growth, morphogenesis and pathogenicity. Heterozygote (NOT4/not4), null (not4/not4) and reconstructed heterozygote ([NOT4]/not4) strains of C. albicans, as well as CAF2-1, the parental strain, were grown under conditions that promote hyphal formation. When cultured in liquid medium 199 the heterozygote, reconstructed and wild-type strains began the yeast-to-hyphal transition within 3 h and continued hyphal growth for the duration of experiments. The null mutant also began hyphal growth within 3-5 h but hyphae tended to be shorter and distorted. Subsequently, hyphal growth was arrested and growth returned predominantly to the yeast form. Similar differences were observed when strains were grown on solid Spider medium and medium 199. The parental, heterozygote and reconstructed strains formed normal filamentous networks emanating from colonies. In contrast, the null mutant failed to form hyphae on all solid media tested. The ability of the NOT4 null strain to form biofilms was also investigated, and it was observed that biofilm development does not readily occur for this strain. Virulence of each strain was examined utilizing the mouse model of systemic candidiasis. Mice infected with CAF2-1 succumbed to infection within 3-7 days. All mice infected with the null strain survived for the duration of experiments, while the heterozygote and reconstructed heterozygote strains showed an intermediate level of virulence. These findings suggest that NOT4 may play a role in affecting strain pathogenicity, possibly by regulating expression of certain genes that effect cellular morphogenesis and virulence.
Collapse
Affiliation(s)
- Karl E Krueger
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Anup K Ghosh
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Bastiaan P Krom
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Ronald L Cihlar
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
31
|
Warenda AJ, Kauffman S, Sherrill TP, Becker JM, Konopka JB. Candida albicans septin mutants are defective for invasive growth and virulence. Infect Immun 2003; 71:4045-51. [PMID: 12819094 PMCID: PMC161988 DOI: 10.1128/iai.71.7.4045-4051.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyphal growth of Candida albicans is implicated as an important virulence factor for this opportunistic human pathogen. Septin proteins, a family of cytoskeletal elements that regulate membrane events and are important for proper morphogenesis of C. albicans, were examined for their role in tissue invasion and virulence in the mouse model of systemic infection. In vitro, septin mutants are only mildly defective for hyphal growth in liquid culture but display pronounced defects for invasive growth into agar. In vivo, the septin mutants were found to exhibit attenuated virulence. However, mice infected with the mutants displayed high fungal burdens in their kidneys without obvious symptoms of disease. Histological examination of infected kidneys revealed defects in organ invasion for the cdc10 Delta and cdc11 Delta deletion mutants, which displayed both reduced tissue penetration and noninvasive fungal masses. Thus, the septin proteins are necessary for invasive growth, which appears to be more important to the successful pathogenesis of C. albicans than hyphal growth alone.
Collapse
Affiliation(s)
- Amy J Warenda
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York 11794-5222, USA
| | | | | | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|