1
|
Yin Y, Cao Y, Zhou Y, Xu Z, Luo P, Yang B, He Q, Yan H, Yang X. Downregulation of DDIT4 levels with borneol attenuates hepatotoxicity induced by gilteritinib. Biochem Pharmacol 2025; 236:116869. [PMID: 40081769 DOI: 10.1016/j.bcp.2025.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Gilteritinib, a multi-target kinase inhibitor, is currently used as standard therapy for acute myeloid leukemia. However, approximately half of the patients encounter liver-related adverse effects during the treatment with gilteritinib, which limiting its clinical applications. The underlying mechanisms of gilteritinib-induced hepatotoxicity and the development of strategies to prevent this toxicity are not well-reported. In our study, we utilized JC-1 dye, and MitoSOX to demonstrate that gilteritinib treatment leads to hepatocytes undergoing p53-mediated mitochondrial apoptosis. Furthermore, qRT-PCR analysis revealed that DNA damage-inducible transcript 4 (DDIT4), a downstream target of p53, was upregulated following gilteritinib administration and was identified as a key factor in gilteritinib-induced hepatotoxicity. After drug screening and western blot analysis, borneol, a bicyclic monoterpenoid, was found to decrease the protein level of DDIT4. This is the first compound found to downregulate DDIT4 levels and ameliorate hepatic injury caused by gilteritinib. Our findings suggest that high levels of DDIT4 are the primary driver behind gilteritinib-induced liver injury, and that borneol could potentially be a clinically safe and feasible therapeutic strategy by inhibiting DDIT4 levels.
Collapse
Affiliation(s)
- Yiming Yin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100 Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| |
Collapse
|
2
|
Yang Z, Zeng A, Yu B, Xie C, Zhu W, Liu H, Gu C, Fu M. P13-516M14.1 Regulates Autophagy Through miR-429 via Both a ceRNA Network and Direct Interaction. Biochem Genet 2025:10.1007/s10528-025-11143-x. [PMID: 40425995 DOI: 10.1007/s10528-025-11143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
Osteoarthritis (OA), characterized by progressive cartilage degradation, is a leading cause of chronic disability in older adults. Although the molecular mechanisms underlying OA remain incompletely understood, emerging evidence suggests that long non-coding RNAs (lncRNAs) play critical regulatory roles. Recently, we identified a previously uncharacterized lncRNA, RP13-516M14.1, that regulates autophagy in OA chondrocytes. In this study, we aimed to elucidate the mechanism of RP13-516M14.1 in OA pathogenesis. The expression of RP13-516M14.1 was assessed in OA cartilage samples. Its biological functions were investigated using RNA sequencing, RT-qPCR, western blotting, LC3 puncta imaging, transmission electron microscopy (TEM), and atomic force microscopy (AFM) nanoindentation. Its interactions with miR-429 were verified by RNA pull-down assays, RNA immunoprecipitation, fluorescence in situ hybridization (FISH), and dual-luciferase reporter assays. RP13-516M14.1 was identified as key regulator of autophagy, maintaining cartilage homeostasis through modulation of miR-429. Knockdown of RP13-516M14.1 exacerbated OA phenotypes both in vitro and in vivo, while its overexpression protected cartilage by promoting autophagy via miR-429/DDIT4 axis. Notebly, RP13-516M14.1 functioned both as a competitive endogenous RNA (ceRNA) sponging miR-429 and directly regulating its expression. Our study highlights the critical role of RP13-516M14.1 in regulating autophagy in chondrocytes and suggests its potential as a therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Zhijian Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Anyu Zeng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Baoxi Yu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chao Xie
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiwen Zhu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hailong Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cheng Gu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Second Road 58 Th, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Chicote‐González A, Solana‐Balaguer J, Garcia‐Segura P, Campoy‐Campos G, Pérez IP, Pérez‐Navarro E, Rodríguez MJ, Alberch J, Giralt A, Soria G, Malagelada C. Astrocytes, via RTP801, contribute to cognitive decline by disrupting GABAergic-regulated connectivity and driving neuroinflammation in an Alzheimer's disease mouse model. Alzheimers Dement 2025; 21:e70051. [PMID: 40329574 PMCID: PMC12056238 DOI: 10.1002/alz.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) pathogenesis involves astrocytic responses to extracellular amyloid beta deposits and phospho-tau neurofibrillary tangles, which drive inflammatory activation. RTP801, a stress-responsive protein, has been implicated in mediating neuroinflammation. Its levels are increased in AD hippocampal samples, correlating with disease severity and cognitive decline. METHODS Using astrocyte-specific RTP801 silencing in the hippocampus of 5xFAD mice, we evaluated cognition, neuroinflammation, and hippocampal connectivity by magnetic resonance spectroscopy (MRS) and resting-state functional connectivity analyses. Histological and biochemical analyses assessed microgliosis, astrogliosis, and inflammasome-related protein levels. RESULTS Astrocytic RTP801 silencing in 5xFAD mice preserved spatial memory, maintained hippocampal γ-aminobutyric acid (GABA) levels, and preserved resting-state brain networks. In addition, RTP801 silencing significantly reduced markers of microgliosis, astrogliosis, and inflammasome effectors. DISCUSSION Astrocytic RTP801 contributes to AD-associated cognitive decline by disrupting GABAergic-regulated connectivity and amplifying inflammatory responses. Targeting astrocytic RTP801 may therefore offer therapeutic potential to mitigate AD progression by preserving neural connectivity and reducing neuroinflammation. HIGHLIGHTS The 5xFAD mouse model of Alzheimer's disease presents higher levels of RTP801 in hippocampal astrocytes. Normalizing the levels of astrocytic RTP801 prevents cognitive decline and restores anxiety-like behavior in the 5xFAD mouse model. Knocking down astrocytic RTP801 preserves the resting-state functional connectivity in the 5xFAD mouse model. Astrocytic RTP801 mediates the loss of Parvalbumin+ interneurons, negatively affecting the levels of γ-aminobutyric acid (GABA) in the 5xFAD mouse model. Astrocytic RTP801 contributes to astro- and microgliosis and inflammasome expression in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Almudena Chicote‐González
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Júlia Solana‐Balaguer
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Pol Garcia‐Segura
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Genís Campoy‐Campos
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Inés Pérez Pérez
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Esther Pérez‐Navarro
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Manuel J. Rodríguez
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Jordi Alberch
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Faculty of Medicine and Health ScienceProduction and Validation Center of Advanced Therapies (Creatio)University of BarcelonaBarcelonaSpain
| | - Albert Giralt
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Faculty of Medicine and Health ScienceProduction and Validation Center of Advanced Therapies (Creatio)University of BarcelonaBarcelonaSpain
| | - Guadalupe Soria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
- Brain Connectivity and Neuroimaging LabNeuroscience InstituteUniversity of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, C. de Melchor Fernández Almagro, 3Fuencarral‐El PardoMadridSpain
| | - Cristina Malagelada
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| |
Collapse
|
4
|
Subrahmanian SM, Yerlikaya EI, Sunilkumar S, Toro AL, McCurry CM, Grillo SL, Barber AJ, Sundstrom JM, Dennis MD. Deletion of the stress response protein REDD1 prevents sodium iodate-induced RPE damage and photoreceptor loss. GeroScience 2025; 47:1789-1803. [PMID: 39367169 PMCID: PMC11979080 DOI: 10.1007/s11357-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in elderly populations, yet the molecular events that initiate the early retinal defects that lead to visual function deficits remain poorly understood. The studies here explored a role for the stress response protein Regulated in Development and DNA damage response 1 (REDD1) in the development of retinal pathology by using the oxidant stressor sodium iodate (NaIO3) to model dry AMD in mice. REDD1 protein abundance was increased in the retinal pigmented epithelium (RPE) and retina of mice administered NaIO3. In wild-type REDD1+/+ mice, reactive oxygen species (ROS) levels were robustly increased in the outer retinal layers 1 day after NaIO3 administration, with focal areas of increased ROS seen throughout the outer retina after 7 days. In contrast with REDD1+/+ mice, ROS levels were blunted in REDD1-/- mice after NaIO3 administration. REDD1 was also required for upregulated expression of pro-inflammatory factors in the RPE/retina and immune cell activation in the outer retina following NaIO3 administration. In REDD1+/+ mice, NaIO3 reduced RPE65 and rhodopsin levels in the RPE and photoreceptor layers, respectively. Unlike REDD1+/+ mice, REDD1-/- mice did not exhibit disrupted RPE integrity, retinal degeneration, or photoreceptor thinning. Overall, REDD1 deletion was sufficient to prevent retinal oxidative stress, RPE damage, immune cell activation, and photoreceptor loss in response to NaIO3. The findings support a potential role for REDD1 in the development of retinal complications in the context of dry AMD.
Collapse
Affiliation(s)
- Sandeep M Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Esma I Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Christopher M McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Stephanie L Grillo
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Alistair J Barber
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Jeffrey M Sundstrom
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
Dehghan Manshadi M, Tajik F, Saeednejad Zanjani L, Hashemi F, Rahimi M, Fattahi F, Safaei S, Madjd Z, Ghods R. Lower cytoplasmic expression of DDIT4 is associated with poor prognosis in gastric cancer patients. Discov Oncol 2025; 16:374. [PMID: 40120027 PMCID: PMC11929655 DOI: 10.1007/s12672-025-02065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
INTRODUCTION DNA damage-inducible transcript 4 (DDIT4), also known as Redd1, Dig2, and RTP801 was identified to be upregulated in response to a variety of cellular stresses, including DNA damage, endoplasmic reticulum stress, and energy stress. Several studies have discovered that dysregulation of DDIT4 involved in various cancers with paradoxical expression and roles. Hence, this study was designed to investigate the clinical significance and prognostic value of DDIT4 in different subtypes of gastric cancer (GC). MATERIALS AND METHODS To evaluate the expression pattern of DDIT4 in GC tissues as well as adjacent normal tissue, we utilized immunohistochemistry on tissue microarray (TMA) slides. RESULTS Our findings revealed that nuclear expression of DDIT4 was higher in GC tissues than in non-malignant samples. Also, the cytoplasmic and membranous expression of DDIT4 were significantly lower in tumor samples (P = 0.007 and P = 0.002, respectively). The results indicated that there was a statistically significant association between low cytoplasmic and membranous expression of DDIT4 and advanced histological grade (P = 0.001 and P = 0.016). The survival analysis revealed that lowered cytoplasmic expression of DDIT4 is significantly associated with worse DSS (P = 0.038). CONCLUSION Lower cytoplasmic expression of DDIT4 could serve as a promising prognostic biomarker in GC.
Collapse
Affiliation(s)
- Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rahimi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Safaei
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Peixoto A, Ferreira D, Miranda A, Relvas-Santos M, Freitas R, Veth TS, Brandão A, Ferreira E, Paulo P, Cardoso M, Gaiteiro C, Cotton S, Soares J, Lima L, Teixeira F, Ferreira R, Palmeira C, Heck AJ, Oliveira MJ, Silva AM, Santos LL, Ferreira JA. Multilevel plasticity and altered glycosylation drive aggressiveness in hypoxic and glucose-deprived bladder cancer cells. iScience 2025; 28:111758. [PMID: 39906564 PMCID: PMC11791300 DOI: 10.1016/j.isci.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bladder tumors with aggressive characteristics often present microenvironmental niches marked by low oxygen levels (hypoxia) and limited glucose supply due to inadequate vascularization. The molecular mechanisms facilitating cellular adaptation to these stimuli remain largely elusive. Employing a multi-omics approach, we discovered that hypoxic and glucose-deprived cancer cells enter a quiescent state supported by mitophagy, fatty acid β-oxidation, and amino acid catabolism, concurrently enhancing their invasive capabilities. Reoxygenation and glucose restoration efficiently reversed cell quiescence without affecting cellular viability, highlighting significant molecular plasticity in adapting to microenvironmental challenges. Furthermore, cancer cells exhibited substantial perturbation of protein O-glycosylation, leading to simplified glycophenotypes with shorter glycosidic chains. Exploiting glycoengineered cell models, we established that immature glycosylation contributes to reduced cell proliferation and increased invasion. Our findings collectively indicate that hypoxia and glucose deprivation trigger cancer aggressiveness, reflecting an adaptive escape mechanism underpinned by altered metabolism and protein glycosylation, providing grounds for clinical intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Dylan Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Miranda
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rui Freitas
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Andreia Brandão
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Eduardo Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Paula Paulo
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Marta Cardoso
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Cristiana Gaiteiro
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia Cotton
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Janine Soares
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | | | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos Palmeira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Department of Immunology, Portuguese Oncology Institute of Porto, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - André M.N. Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Sadeghipour A, Fattahi F, Madjd Z, Tajik F, Sedaghati F, Saeednejad Zanjani L. Increased nuclear expression of DNA damage inducible transcript 4 can serve as a potential prognostic biomarker in patients with gliomas: a study based on data mining and experimental tools. Discov Oncol 2025; 16:124. [PMID: 39915428 PMCID: PMC11802953 DOI: 10.1007/s12672-025-01865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION DNA damage-inducible transcript 4 (DDIT4), induced under cellular stress conditions, has been implicated in malignancies due to its abnormal expression patterns. MATERIALS AND METHODS The expression of DDIT4 at the mRNA level and its potential role as a prognostic biomarker in gliomas were analyzed using the GEPIA tool. To validate these findings, DDIT4 protein expression levels and their prognostic significance were examined in tissue microarrays from glioma patients using immunohistochemistry in clinical samples. RESULTS Bioinformatics analysis revealed that DDIT4 overexpression in glioma tumors and its high mRNA expression levels are associated with poor outcomes, likely through mTOR signaling. At the protein level, positive nuclear DDIT4 expression was linked to higher histological grades and temozolomide treatment. Kaplan-Meier survival analysis demonstrated that positive nuclear DDIT4 expression is a significant predictor of poor disease-specific survival (DSS) and recurrence-free survival (RFS). Additionally, nuclear DDIT4 expression was identified as an independent prognostic factor for DSS. CONCLUSION Our findings suggest that nuclear DDIT4 expression may serve as a potential prognostic biomarker and therapeutic target in glioma patients. However, further studies with larger sample sizes and long-term follow-ups are needed to validate these observations and confirm their clinical relevance.
Collapse
Affiliation(s)
- Alireza Sadeghipour
- Department of Pathology, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Surgery, Irvine Medical Center, University of California, Orange, CA, USA
| | - Farnoosh Sedaghati
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Luo T, Ji W, Gong Y, Chen L, Liu C, Zhang D, Li X, Lv Y. REDD1 mediates HDM-induced nuclear-cytoplasmic translocation and release of IL-33 in airway epithelial cells by downregulating Nrf2. Respir Res 2025; 26:47. [PMID: 39893427 PMCID: PMC11786574 DOI: 10.1186/s12931-025-03119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aims to investigate whether REDD1 (Regulated in Development and DNA Damage Responses 1) mediates the nuclear-to-cytoplasmic translocation and release of IL-33 in airway epithelial cells induced by house dust mites (HDM). METHODS REDD1 expression levels in bronchial asthma patients were validated using public databases, followed by immunohistochemical analysis of REDD1 protein in airway epithelial cells from these patients. An asthma model was then established using HDM-induced 16HBE cell lines, with REDD1 gene knockout performed. The relationship between varying levels of REDD1 expression, Nrf2, and related inflammatory factors was assessed using Western blot and qPCR. To further investigate the role of the REDD1-Nrf2-IL-33 axis in the development of asthma, we employed Nrf2 activators and inhibitors to reassess the impact of REDD1 on IL-33. RESULTS At both mRNA and protein levels, we found that REDD1 was significantly overexpressed in samples from asthma patients (P < 0.05). In vitro, 24-hour exposure to HDM induced a notable nuclear-to-cytoplasmic translocation of IL-33 and increased its levels in the culture medium of 16HBE cells. In addition, HDM treatment significantly upregulated the expression of both REDD1 and Nrf2. Knockdown of REDD1 markedly suppressed HDM-induced IL-33 release and the expression of TNF-α, IL-6, and IL-1β, while enhancing Nrf2 expression. Moreover, treatment with the Nrf2 agonist curcumin inhibited HDM-induced nuclear-to-cytoplasmic translocation and extracellular secretion of IL-33, whereas the opposite effect was observed when using the Nrf2 antagonist ML385. CONCLUSION This study reveals the crucial regulatory role of the REDD1-Nrf2-IL-33 axis in the pathological process of bronchial asthma. REDD1 modulates the expression of IL-33 and other inflammatory factors through the Nrf2 signaling pathway, thereby influencing the onset and progression of asthma. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Tian Luo
- Zhongshan City People's Hospital, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Wentao Ji
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Foshan, Guangdong, 510280, China
| | - Lichang Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Foshan, Guangdong, 510280, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Dandan Zhang
- Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, China
| | - Xi Li
- Department of Respiratory and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528300, China.
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528300, China.
| |
Collapse
|
9
|
Çağan E, Kızmaz MA, Akalın EH, Oral HB, Tezcan G, Budak F. New biological markers in diagnosis and follow-up of brucellosis cases. Diagn Microbiol Infect Dis 2025; 111:116587. [PMID: 39550977 DOI: 10.1016/j.diagmicrobio.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Brucellosis remains a significant public health issue in some parts of the world. It is clear that new laboratory methods are needed to diagnose brucellosis. Currently, no test method meets the criteria of high specificity, sensitivity, reliability, and low cost for the diagnosis of brucellosis, which could also predict chronicity. This study was conducted based on the data from a study conducted in 2015, which aimed to reveal genes with different transcript levels in chronic and acute patients and to evaluate their effects on the progression to chronicity by studying mRNA microarray and miRNA array in peripheral blood mononuclear cells in acute, chronic brucellosis and healthy control groups. According to the data obtained in this study, a second study was conducted to determine new markers that could aid in diagnosis and/or predict chronicity, with the most prominent gene products being [ABI3 (ABL interactor), PIAS4 (Protein Inhibitor of Activated STAT 4), PPP2R4 (Protein Phosphatase 2 Phosphatase Activator), DDIT4L (DNA Damage Inducible Transcript 4 Like), WDR33 (WD Repeat-Containing Protein 33), and IDO (Indoleamine 2,3-Dioxygenase)]. The study speculates that increased levels of ABI3, CLEC12B, PPP2R4 and decreased levels of DDIT4L, PIAS4, and IDO may be used as markers for the diagnosis of acute brucellosis, decreased levels of ABI3, CLEC12B, PPP2R4 and increased levels of DDIT4L, PIAS4, IDO may be assessed for treatment response. The study also suggested that maintaining consistent levels of ABI3, CLEC12B, PIAS4, PPP2R4, and IDO in subsequent titers may serve as a potential marker to predict chronic progression.
Collapse
Affiliation(s)
- E Çağan
- Department of Pediatric Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey; Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - M A Kızmaz
- Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - E H Akalın
- Department of Infectious Diseases and Clinical Microbiology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - H B Oral
- Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - G Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - F Budak
- Department of Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey.
| |
Collapse
|
10
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
11
|
Sarantopoulos A, Ene C, Aquilanti E. Therapeutic approaches to modulate the immune microenvironment in gliomas. NPJ Precis Oncol 2024; 8:241. [PMID: 39443641 PMCID: PMC11500177 DOI: 10.1038/s41698-024-00717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Immunomodulatory therapies, including immune checkpoint inhibitors, have drastically changed outcomes for certain cancer types over the last decade. Gliomas are among the cancers that have seem limited benefit from these agents, with most trials yielding negative results. The unique composition of the glioma immune microenvironment is among the culprits for this lack of efficacy. In recent years, several efforts have been made to improve understanding of the glioma immune microenvironment, aiming to pave the way for novel therapeutic interventions. In this review, we discuss some of the main components of the glioma immune microenvironment, including macrophages, myeloid-derived suppressor cells, neutrophils and microglial cells, as well as lymphocytes. We then provide a comprehensive overview of novel immunomodulatory agents that are currently in clinical development, namely oncolytic viruses, vaccines, cell-based therapies such as CAR-T cells and CAR-NK cells as well as antibodies and peptides.
Collapse
Affiliation(s)
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Elisa Aquilanti
- Center for Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
12
|
Campoy-Campos G, Solana-Balaguer J, Guisado-Corcoll A, Chicote-González A, Garcia-Segura P, Pérez-Sisqués L, Torres A, Canal M, Molina-Porcel L, Fernández-Irigoyen J, Santamaria E, de Pouplana L, Alberch J, Martí E, Giralt A, Pérez-Navarro E, Malagelada C. RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease. Nucleic Acids Res 2024; 52:11158-11176. [PMID: 39268577 PMCID: PMC11472047 DOI: 10.1093/nar/gkae776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Julia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Anna Guisado-Corcoll
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Leticia Pérez-Sisqués
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Adrian Gabriel Torres
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
| | - Mercè Canal
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona 08036, Catalonia, Spain
- Neurological Tissue Bank, Biobank-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Catalonia, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Lluís Ribas de Pouplana
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Albert Giralt
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| |
Collapse
|
13
|
Sunilkumar S, Dennis MD. REDD1 Is a Promising Therapeutic Target to Combat the Development of Diabetes Complications: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:1553-1562. [PMID: 38976480 PMCID: PMC11417436 DOI: 10.2337/dbi24-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Here, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetes complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
14
|
Padilha SF, Ibelli AMG, Peixoto JO, Cantão ME, Moreira GCM, Fernandes LT, Tavernari FC, Morés MAZ, Bastos APA, Dias LT, Teixeira RA, Ledur MC. Novel Candidate Genes Involved in an Initial Stage of White Striping Development in Broiler Chickens. Animals (Basel) 2024; 14:2379. [PMID: 39199913 PMCID: PMC11350825 DOI: 10.3390/ani14162379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
White striping (WS) is a myopathy characterized by the appearance of white stripes parallel to the muscle fibers in the breast of broiler chickens, composed of adipose and connective tissues. This condition causes economic losses and, although common, its etiology remains poorly understood. Hence, the objective was to identify genes and biological mechanisms involved in the early stages of WS using a paternal broiler line that grows slightly slower than commercial ones, at 35 days of age, through the RNA sequencing of the pectoralis major muscle. Thirty genes were differentially expressed between normal and WS-affected chickens, with 23 upregulated and 7 downregulated in the affected broilers. Of these, 14 genes are novel candidates for WS and are implicated in biological processes related to muscle development (CEPBD, DUSP8, METTL21EP, NELL2, and UBE3D), lipid metabolism (PDK4, DDIT4, FKBP5, DGAT2, LIPG, TDH, and RGCC), and collagen (COL4A5 and COL4A6). Genes related to changes in muscle fiber type and the processes of apoptosis, autophagy, proliferation, and differentiation are possibly involved with the initial stage of WS development. In contrast, the genes linked to lipid metabolism and collagen may have their expression altered due to the progression of the myopathy.
Collapse
Affiliation(s)
- Suelen Fernandes Padilha
- Departamento de Zootecnia, Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil; (S.F.P.); (L.T.D.); (R.A.T.)
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Jane Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
| | | | - Lana Teixeira Fernandes
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
| | - Fernando Castro Tavernari
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó 89815-630, SC, Brazil
| | - Marcos Antônio Zanella Morés
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
| | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Laila Talarico Dias
- Departamento de Zootecnia, Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil; (S.F.P.); (L.T.D.); (R.A.T.)
| | - Rodrigo Almeida Teixeira
- Departamento de Zootecnia, Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil; (S.F.P.); (L.T.D.); (R.A.T.)
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (J.O.P.); (M.E.C.); (L.T.F.); (F.C.T.); (M.A.Z.M.); (A.P.A.B.)
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó 89815-630, SC, Brazil
| |
Collapse
|
15
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
16
|
Xia WF, Zheng XL, Liu WY, Huang YT, Wen CJ, Zhou HH, Wu QC, Wu LX. Romidepsin exhibits anti-esophageal squamous cell carcinoma activity through the DDIT4-mTORC1 pathway. Cancer Gene Ther 2024; 31:778-789. [PMID: 38480975 DOI: 10.1038/s41417-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common human malignancies worldwide and is associated with high morbidity and mortality. Current treatment options are limited, highlighting the need for development of novel effective agents. Here, a high-throughput drug screening (HTS) was performed using ESCC cell lines in both two- and three-dimensional culture systems to screen compounds that have anti-ESCC activity. Our screen identified romidepsin, a histone deactylase inhibitor, as a potential anti-ESCC agent. Romidepsin treatment decreased cell viability, induced apoptosis and cell cycle arrest in ESCC cell lines, and these findings were confirmed in ESCC cell line-derived xenografted (CDX) mouse models. Mechanically, romidepsin induced transcriptional upregulation of DNA damage-inducible transcript 4 (DDIT4) gene by histone hyperacetylation at its promoter region, leading to the inhibition of mammalian target of rapamycin complex 1 (mTORC1) pathway. Furthermore, romidepsin exhibited better efficacy and safety compared to the conventional therapeutic drugs in ESCC patient-derived xenografted (PDX) mouse models. These data indicate that romidepsin may be a novel option for anti-ESCC therapy.
Collapse
Affiliation(s)
- Wei-Feng Xia
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao-Li Zheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wen-Yi Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Tang Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Jie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hong-Hao Zhou
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Yang S, Wang Y, Jia J, Fang Y, Yang Y, Yuan W, Hu J. Advances in Engineered Macrophages: A New Frontier in Cancer Immunotherapy. Cell Death Dis 2024; 15:238. [PMID: 38561367 PMCID: PMC10985090 DOI: 10.1038/s41419-024-06616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Macrophages, as pivotal cells within the tumour microenvironment, significantly influence the impact of and reactions to treatments for solid tumours. The rapid evolution of bioengineering technology has revealed the vast potential of engineered macrophages in immunotherapy, disease diagnosis, and tissue engineering. Given this landscape, the goal of harnessing and innovating macrophages as a novel strategy for solid tumour immunotherapy cannot be overstated. The diverse strategies for engineered macrophages in the realm of cancer immunotherapy, encompassing macrophage drug delivery systems, chimeric antigen receptor macrophage therapy, and synergistic treatment approaches involving bacterial outer membrane vesicles and macrophages, are meticulously examined in this review. These methodologies are designed to enhance the therapeutic efficacy of macrophages against solid tumours, particularly those that are drug-resistant and metastatic. Collectively, these immunotherapies are poised to supplement and refine current solid tumour treatment paradigms, thus heralding a new frontier in the fight against malignant tumours.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yabing Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
18
|
Li F, Miao J, Liu R, Zhang R, He A. Pan-cancer analysis of DDIT4 identifying its prognostic value and function in acute myeloid leukemia. J Cancer Res Clin Oncol 2024; 150:144. [PMID: 38507057 PMCID: PMC10954950 DOI: 10.1007/s00432-024-05676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy derived from the accumulation of abnormal proliferation of infantile leukocytes in the hematopoietic system. DNA-damage-inducible transcript 4 (DDIT4) acting as a negative regulator of rapamycin inhibitor is involved in various cellular functions. Many studies have suggested that DDIT4 plays a key role in tumorigenesis. However, the role of DDIT4 in AML has been poorly studied. METHOD In this study, we analyzed the expression of DDIT4 in AML patients using The Cancer Genome Atlas and real-time polymerase chain reaction. The Chi-square test was used to assess the correlation between DDIT4 and clinical characters in AML patients. Loss-of-function experiments were implemented to investigate the role of DDIT4 in AML carcinogenesis. The R package was applied to evaluate the correlation between DDIT4 expression and immune cells. RESULTS Results showed that the expression of DDIT4 was associated with Age, Cytogenetic risk, Cytogenetics and OS event. Moreover, high expression of DDIT4 led to a terrible prognosis. KEGG analysis showed that differently expressed genes (DEGs) were involved in the PI3-Akt signaling pathway. GSEA enrichment analysis displayed DEGs were correlated with apoptosis. Functional experiments presented that knocking down DDIT4 suppressed cell cycle transition/proliferation and facilitated apoptosis. In addition, DDIT4 is associated with immune infiltration. CONCLUSION Our research verified that DDIT4 can be used as a prognostic marker and a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Road, Lianhu District, Xi'an City, 710004, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Road, Lianhu District, Xi'an City, 710004, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Road, Lianhu District, Xi'an City, 710004, China
| | - Ru Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Road, Lianhu District, Xi'an City, 710004, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Road, Lianhu District, Xi'an City, 710004, China.
- Xi'an Key Laboratory of Diagnosis and Treatment of Hematological Diseases, Xi'an, China.
| |
Collapse
|
19
|
Fang C, Zhu S, Zhong R, Yu G, Lu S, Liu Z, Gao J, Yan C, Wang Y, Feng X. CDKN1A regulation on chondrogenic differentiation of human chondrocytes in osteoarthritis through single-cell and bulk sequencing analysis. Heliyon 2024; 10:e27466. [PMID: 38463824 PMCID: PMC10923839 DOI: 10.1016/j.heliyon.2024.e27466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Objective Chondrocyte death is the hallmark of cartilage degeneration during osteoarthritis (OA). However, the specific pathogenesis of cell death in OA chondrocytes has not been elucidated. This study aims to validate the role of CDKN1A, a key programmed cell death (PCD)-related gene, in chondrogenic differentiation using a combination of single-cell and bulk sequencing approaches. Design OA-related RNA-seq data (GSE114007, GSE55235, GSE152805) were downloaded from Gene Expression Omnibus database. PCD-related genes were obtained from GeneCards database. RNA-seq was performed to annotate the cell types in OA and control samples. Differentially expressed genes (DEGs) among those cell types (scRNA-DEGs) were screened. A nomogram of OA was constructed based on the featured genes, and potential drugs targeting the featured genes were predicted. The presence of key genes was confirmed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Western blot (WB), and immunohistochemistry (IHC). Micromass culture and Alcian blue staining were used to determine the effect of CDKN1A on chondrogenesis. Results Six cell types, namely HomC, HTC, RepC, preFC, FC, and RegC, were annotated in scRNA-seq data. Five featured genes (JUN, CDKN1A, HMGB2, DDIT3, and DDIT4) were screened by multiple biological information analysis methods. TAXOTERE had the highest ability to dock with DDIT3. Functional analysis indicated that CDKN1A was enriched in processes related to collagen catabolism and acts as a positive regulator of autophagy. Additionally, CDKN1A was found to be associated with several KEGG pathways, including those involved in acute myeloid leukemia and autoimmune thyroid disease. CDKN1A was confirmed down-regulated in the joint tissues of OA mouse model and OA model cell. Inhibiting the expression of CDKN1A can significantly suppress the differentiation of OA chondrocytes. Conclusion Our findings highlight the critical role of CDKN1A in promoting cartilage formation in both in vivo and in vitro and suggest its potential as a therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Shanbang Zhu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, No 305 Zhongshandonglu Road, Nanjing, 210002, China
| | - Rui Zhong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Gang Yu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Shuai Lu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Zhilin Liu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jingyu Gao
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Chengyuan Yan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Yingming Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
20
|
Michalski C, Cheung C, Oh JH, Ackermann E, Popescu CR, Archambault AS, Prusinkiewicz MA, Da Silva R, Majdoubi A, Viñeta Paramo M, Xu RY, Reicherz F, Patterson AE, Golding L, Sharma AA, Lim CJ, Orban PC, Klein Geltink RI, Lavoie PM. DDIT4L regulates mitochondrial and innate immune activities in early life. JCI Insight 2024; 9:e172312. [PMID: 38319716 PMCID: PMC11143921 DOI: 10.1172/jci.insight.172312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Pattern recognition receptor responses are profoundly attenuated before the third trimester of gestation in the relatively low-oxygen human fetal environment. However, the mechanisms regulating these responses are uncharacterized. Herein, genome-wide transcription and functional metabolic experiments in primary neonatal monocytes linked the negative mTOR regulator DDIT4L to metabolic stress, cellular bioenergetics, and innate immune activity. Using genetically engineered monocytic U937 cells, we confirmed that DDIT4L overexpression altered mitochondrial dynamics, suppressing their activity, and blunted LPS-induced cytokine responses. We also showed that monocyte mitochondrial function is more restrictive in earlier gestation, resembling the phenotype of DDIT4L-overexpressing U937 cells. Gene expression analyses in neonatal granulocytes and lung macrophages in preterm infants confirmed upregulation of the DDIT4L gene in the early postnatal period and also suggested a potential protective role against inflammation-associated chronic neonatal lung disease. Taken together, these data show that DDIT4L regulates mitochondrial activity and provide what we believe to be the first direct evidence for its potential role supressing innate immune activity in myeloid cells during development.
Collapse
Affiliation(s)
- Christina Michalski
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
| | - Claire Cheung
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
| | - Ju Hee Oh
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emma Ackermann
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Constantin R. Popescu
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
- Department of Pediatrics, Université Laval, Quebec, Quebec, Canada
| | - Anne-Sophie Archambault
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin A. Prusinkiewicz
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
| | - Rachel Da Silva
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Abdelilah Majdoubi
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
| | - Marina Viñeta Paramo
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Women+ and Children′s Health, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Yang Xu
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Women+ and Children′s Health, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frederic Reicherz
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
| | - Annette E. Patterson
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam Golding
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
- Women+ and Children′s Health, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashish A. Sharma
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Chinten J. Lim
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
| | - Paul C. Orban
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ramon I. Klein Geltink
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal M. Lavoie
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics and
- Women+ and Children′s Health, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Tajik F, Fattahi F, Rezagholizadeh F, Bouzari B, Babaheidarian P, Baghai Wadji M, Madjd Z. Nuclear overexpression of DNA damage-inducible transcript 4 (DDIT4) is associated with aggressive tumor behavior in patients with pancreatic tumors. Sci Rep 2023; 13:19403. [PMID: 37938616 PMCID: PMC10632485 DOI: 10.1038/s41598-023-46484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. Several studies showed that the dysregulation of DDIT4 is involved in different malignancies with paradoxical expressions and roles. Therefore, this study investigated the clinical significance, prognostic, and diagnostic value of DDIT4 in different types of pancreatic tumors (PT). The expression of DDIT4 and long non-coding RNA (TPTEP1) in mRNA level was examined in 27 fresh PT samples using Real-time quantitative PCR (RT-qPCR). Moreover, 200 formalin-fixed paraffin-embedded PT tissues, as well as 27 adjacent normal tissues, were collected to evaluate the clinical significance, prognostic, and diagnosis value of DDIT4 expression by immunohistochemistry (IHC) on tissue microarrays (TMA) slides. The results of RT-qPCR showed that the expression of DDIT4 in tumor samples was higher than in normal samples which was associated with high tumor grade (P = 0.015) and lymphovascular invasion (P = 0.048). Similar to this, IHC findings for nucleus, cytoplasm, and membrane localization showed higher expression of DDIT4 protein in PT samples rather than in nearby normal tissues. A statistically significant association was detected between a high level of nuclear expression of DDIT4 protein, and lymphovascular invasion (P = 0.025), as well as advanced TNM stage (P = 0.034) pancreatic ductal adenocarcinoma (PDAC) and in pancreatic neuroendocrine tumor (PNET), respectively. In contrast, a low level of membranous expression of DDIT4 protein showed a significant association with advanced histological grade (P = 0.011), margin involvement (P = 0.007), perineural invasion (P = 0.023), as well as lymphovascular invasion (P = 0.005) in PDAC. No significant association was found between survival outcomes and expression of DDIT4 in both types. It was found that DDIT4 has rational accuracy and high sensitivity as a diagnostic marker. Our results revealed a paradoxical role of DDIT4 expression protein based on the site of nuclear and membranous expression. The findings of this research indicated that there is a correlation between elevated nuclear expression of DDIT4 and the advancement and progression of disease in patients with PT. Conversely, high membranous expression of DDIT4 was associated with less aggressive tumor behavior in patients with PDAC. However, further studies into the prognostic value and biological function of DDIT4 are needed in future studies.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Baghai Wadji
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Pan X, Liu C, Wang X, Zhao M, Zhang Z, Zhang X, Wang C, Song G. Resveratrol improves palmitic acid‑induced insulin resistance via the DDIT4/mTOR pathway in C2C12 cells. Mol Med Rep 2023; 28:181. [PMID: 37594055 PMCID: PMC10463219 DOI: 10.3892/mmr.2023.13068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
The present study aimed to establish a model of palmitic acid (PA)‑induced insulin resistance (IR) in C2C12 cells and to determine the mechanism underlying how resveratrol (RSV) improves IR. C2C12 cells were divided into the control (CON), PA, PA + RSV, PA + RSV + DNA damage‑inducible transcript 4 (DDIT4)‑small interfering (si)RNA and PA + RSV + MHY1485 (mTOR agonist) groups. Glucose contents in culture medium and triglyceride contents in cells were determined. Oil red O staining was performed to observe the pathological changes in the cells. Reverse transcription‑quantitative PCR and western blotting were conducted to evaluate the mRNA and protein expression levels, respectively, of DDIT4, mTOR, p70 ribosomal protein S6 kinase (p70S6K), insulin receptor substrate (IRS)‑1, PI3K, AKT and glucose transporter 4 (GLUT4). Compared with in the CON group, glucose uptake was decreased, cellular lipid deposition was increased, phosphorylated (p)‑IRS‑1, p‑mTOR and p‑p70S6K protein expression levels were increased, and p‑PI3K, p‑AKT, GLUT4 and DDIT4 protein expression levels were decreased in the PA group. By contrast, compared with in the PA group, culture medium glucose content and cellular lipid deposition were decreased, p‑PI3K, p‑AKT, GLUT4 and DDIT4 protein expression levels were increased, p‑IRS‑1 protein expression levels were decreased, and mTOR and p70S6K mRNA and protein expression levels were decreased in the PA + RSV group. Compared with in the PA + RSV group, DDIT4 protein and mRNA expression levels were reduced in the PA + RSV + DDIT4‑siRNA group, but showed no change in the PA + RSV + MHY1485 group. Following transfection with DDIT4‑siRNA or treatment with MHY1485, the effects of RSV on improving IR and lipid metabolism were weakened, mTOR and p70S6K protein expression levels were upregulated, p‑PI3K, p‑AKT and GLUT4 protein expression levels were down‑regulated, p‑IRS‑1 protein expression levels were upregulated, and culture medium glucose content and cellular lipid deposition were increased. In conclusion, RSV may improve PA‑induced IR in C2C12 cells through the DDIT4/mTOR/IRS‑1/PI3K/AKT/GLUT4 signaling pathway, as well as via improvements in glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xinyan Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chunqiao Liu
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Ming Zhao
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhimei Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xuemei Zhang
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
23
|
Wang X, Yang J, Wang W, Li Y, Yang Y. Decreasing REDD1 expression protects against high glucose-induced apoptosis, oxidative stress and inflammatory injury in podocytes through regulation of the AKT/GSK-3β/Nrf2 pathway. Immunopharmacol Immunotoxicol 2023; 45:527-538. [PMID: 36883011 DOI: 10.1080/08923973.2023.2183351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Our goal in this work was to investigate the possible role and mechanism of regulated in development and DNA damage response 1 (REDD1) in mediating high glucose (HG)-induced podocyte injury in vitro. MATERIALS AND METHODS Mouse podocytes were stimulated with HG to establish HG injury model. Protein expression was examined by Western blotting. Cell viability was measured by cell counting kit-8 assay. Cell apoptosis was assessed by annexin V-FITC/propidium iodide and TUNEL apoptotic assays. Levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were quantified by commercial kits. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were measured by ELISA. RESULTS A marked increase in REDD1 expression was observed in podocytes stimulated with HG. Reduced REDD1 expression strikingly restrained HG-induced increases in apoptosis, oxidative stress, and inflammation response in cultured podocytes. Decreasing REDD1 expression enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) activation in HG-exposed podocytes via regulation of the AKT/glycogen synthase kinase-3 beta (GSK-3β) pathway. Inhibition of AKT or reactivation of GSK-3β prominently abolished Nrf2 activation induced by decreasing REDD1 expression. Pharmacological repression of Nrf2 markedly reversed the protective effects of decreasing REDD1 expression in HG-injured podocytes. CONCLUSION Our data demonstrate that decreasing REDD1 expression protects cultured podocytes from HG-induced injuries by potentiating Nrf2 signaling through regulation of the AKT/GSK-3β pathway. Our work underscores the potential role of REDD1-mediated podocyte injury during the development of diabetic kidney disease.
Collapse
Affiliation(s)
- Xiaojing Wang
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Shanxi Yuncheng Central Hospital, Yuncheng, China
| | - Jing Yang
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wenxing Wang
- Department of Endocrinology, Shanxi Yuncheng Central Hospital, Yuncheng, China
| | - Yun Li
- Department of Endocrinology, Shanxi Yuncheng Central Hospital, Yuncheng, China
| | - Yue Yang
- Department of Endocrinology, Shanxi Yuncheng Central Hospital, Yuncheng, China
| |
Collapse
|
24
|
Kim JY, Kwon YG, Kim YM. The stress-responsive protein REDD1 and its pathophysiological functions. Exp Mol Med 2023; 55:1933-1944. [PMID: 37653030 PMCID: PMC10545776 DOI: 10.1038/s12276-023-01056-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023] Open
Abstract
Regulated in development and DNA damage-response 1 (REDD1) is a stress-induced protein that controls various cellular functions, including metabolism, oxidative stress, autophagy, and cell fate, and contributes to the pathogenesis of metabolic and inflammatory disorders, neurodegeneration, and cancer. REDD1 usually exerts deleterious effects, including tumorigenesis, metabolic inflammation, neurodegeneration, and muscle dystrophy; however, it also exhibits protective functions by regulating multiple intrinsic cell activities through either an mTORC1-dependent or -independent mechanism. REDD1 typically regulates mTORC1 signaling, NF-κB activation, and cellular pro-oxidant or antioxidant activity by interacting with 14-3-3 proteins, IκBα, and thioredoxin-interacting protein or 75 kDa glucose-regulated protein, respectively. The diverse functions of REDD1 depend on cell type, cellular context, interaction partners, and cellular localization (e.g., mitochondria, endomembrane, or cytosol). Therefore, comprehensively understanding the molecular mechanisms and biological roles of REDD1 under pathophysiological conditions is of utmost importance. In this review, based on the published literature, we highlight and discuss the molecular mechanisms underlying the REDD1 expression and its actions, biological functions, and pathophysiological roles.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
25
|
Lin X, Yoshikawa N, Liu W, Matsukawa T, Nakamura K, Yoshihara M, Koya Y, Sugiyama M, Tamauchi S, Ikeda Y, Yokoi A, Shimizu Y, Kajiyama H. DDIT4 Facilitates Lymph Node Metastasis via the Activation of NF-κB Pathway and Epithelial-Mesenchymal Transition. Reprod Sci 2023; 30:2829-2841. [PMID: 37016173 DOI: 10.1007/s43032-023-01230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
This study was aimed to identify a novel metastasis-promoting molecule and elucidate its functional and prognostic roles in cervical cancer. DDIT4 (DNA-damage-inducible transcript 4), a hypoxia-inducible gene, was identified by analyzing multiple microarray databases. The correlation between DDIT4 expression in immunohistochemistry and clinicopathological characteristics in the public database and our cohort was evaluated by statistical analysis. Transwell® assay and wound-healing assay to determine cell migration and invasion were performed. DDIT4 was knocked down using siRNA or lentiviral vectors. The potential downstream pathways of DDIT4 were explored and verified by a gene set enrichment analysis and western blotting. The in vivo metastatic capability was determined with the use of an intraperitoneal injection mouse model. In the analysis of the public database and our cohort, DDIT4 high expression was significantly related to short overall survival and lymph node metastasis in patients with early-stage cervical cancer. The knockdown of DDIT4 attenuated the migration and invasion activity of tumor cells in vitro and reduced the expression of epithelial-mesenchymal transition (EMT)-related proteins and the NF-κB pathway in cervical cancer cells. DDIT4 also promoted tumor progression in the mouse model. Our results indicate that DDIT4 can be a prognostic indicator in cervical cancer and promote lymph node metastasis, augmenting malignancy via the EMT and NF-kB pathways.
Collapse
Affiliation(s)
- Xinxin Lin
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Wenting Liu
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Matsukawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kae Nakamura
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
26
|
Kong X, Liu W, Zhang X, Zhou C, Sun X, Cheng L, Lin J, Xie Z, Li J. HIF-1α inhibition in macrophages preserves acute liver failure by reducing IL-1β production. FASEB J 2023; 37:e23140. [PMID: 37584647 DOI: 10.1096/fj.202300428rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The development of acute liver failure (ALF) is dependent on its local inducer. Inflammation is a high-frequency and critical factor that accelerates hepatocyte death and liver failure. In response to injury stress, the expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages is promoted by both oxygen-dependent and oxygen-independent mechanisms, thus promoting the expression and secretion of the cytokine interleukin-1β (IL-1β). IL-1β further induces hepatocyte apoptosis or necrosis by signaling through the receptor (IL-1R) on hepatocyte. HIF-1α knockout in macrophages or IL-1R knockout in hepatocytes protects against liver failure. However, whether HIF-1α inhibition in macrophages has a protective role in ALF is unclear. In this study, we revealed that the small molecule HIF-1α inhibitor PX-478 inhibits the expression and secretion of IL-1β, but not tumor necrosis factor α (TNFα), in bone marrow-derived macrophages (BMDMs). PX-478 pretreatment alleviates liver injury in LPS/D-GalN-induced ALF mice by decreasing the hepatic inflammatory response. In addition, preventive or therapeutic administration of PX-478 combined with TNFα neutralizing antibody markedly improved LPS/D-GalN-induced ALF. Taken together, our data suggest that PX-478 administration leads to HIF-1α inhibition and decreased IL-1β secretion in macrophages, which represents a promising therapeutic strategy for inflammation-induced ALF.
Collapse
Affiliation(s)
- Xiangrong Kong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Wei Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xinwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Chendong Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Long Cheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinxia Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou, P.R. China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
27
|
Zhang Y, Wang Y, Chen J, Xia Y, Huang Y. A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma. Front Immunol 2023; 14:1183230. [PMID: 37671155 PMCID: PMC10475728 DOI: 10.3389/fimmu.2023.1183230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Background lung adenocarcinoma (LUAD) remains one of the most common and lethal malignancies with poor prognosis. Programmed cell death (PCD) is an evolutionarily conserved cell suicide process that regulates tumorigenesis, progression, and metastasis of cancer cells. However, a comprehensive analysis of the role of PCD in LUAD is still unavailable. Methods We analyzed multi-omic variations in PCD-related genes (PCDRGs) for LUAD. We used cross-validation of 10 machine learning algorithms (101 combinations) to synthetically develop and validate an optimal prognostic cell death score (CDS) model based on the PCDRGs expression profile. Patients were classified based on their median CDS values into the high and low-CDS groups. Next, we compared the differences in the genomics, biological functions, and tumor microenvironment of patients between both groups. In addition, we assessed the ability of CDS for predicting the response of patients from the immunotherapy cohort to immunotherapy. Finally, functional validation of key genes in CDS was performed. Results We constructed CDS based on four PCDRGs, which could effectively and consistently stratify patients with LUAD (patients with high CDS had poor prognoses). The performance of our CDS was superior compared to 77 LUAD signatures that have been previously published. The results revealed significant genetic alterations like mutation count, TMB, and CNV were observed in patients with high CDS. Furthermore, we observed an association of CDS with immune cell infiltration, microsatellite instability, SNV neoantigens. The immune status of patients with low CDS was more active. In addition, CDS could be reliable to predict therapeutic response in multiple immunotherapy cohorts. In vitro experiments revealed that high DNA damage inducible transcript 4 (DDIT4) expression in LUAD cells mediated protumor effects. Conclusion CDS was constructed based on PCDRGs using machine learning. This model could accurately predict patients' prognoses and their responses to therapy. These results provide new promising tools for clinical management and aid in designing personalized treatment strategies for patients with LUAD.
Collapse
Affiliation(s)
- Yi Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yuzhi Wang
- Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Jianlin Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yu Xia
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central Laboratory, Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, China
| |
Collapse
|
28
|
Chen X, Li Z, Liang M, Zhang Z, Zhu D, Lin B, Zhou R, Lu Y. Identification of DDIT4 as a potential prognostic marker associated with chemotherapeutic and immunotherapeutic response in triple-negative breast cancer. World J Surg Oncol 2023; 21:194. [PMID: 37391802 DOI: 10.1186/s12957-023-03078-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treatment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and data mining using data from public databases. METHODS RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R package "edgeR" and "clusterProfiler" to identify the profile of differentially expressed genes (DEGs) and annotate gene functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by published online data resources, including TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics, and GeneMANIA and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively. RESULTS Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infiltrating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients. CONCLUSION In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeutic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Xuanzhao Chen
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeyan Li
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meihua Liang
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziyang Zhang
- Guangzhou Huayin Medical Laboratory Center, Ltd., Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Biyun Lin
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Renyu Zhou
- School of Medicine, Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
29
|
Zhang Z, Zhu H, Zhao C, Liu D, Luo J, Ying Y, Zhong Y. DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog 2023; 62:332-347. [PMID: 36453700 DOI: 10.1002/mc.23489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
This study investigated the cancer-promoting effect of ferroptosis regulator DNA damage-inducible transcript 4 (DDIT4) and its relevant mechanisms. Vital ferroptosis-related genes were identified using bioinformatic methods on the basis of data collected from TCGA and seven other online databases. Cell Counting Kit-8 (CCK8), colony formation, wound-healing and transwell assays, and western blot analysis were conducted for verifying the biological role of DDIT4 in vitro. The immune score and tumor purity were calculated using R package "estimate." The relationship was identified between DDIT4 expression and immune cell infiltration using ssGSEA and CIBERSORT algorithms. R package "Seurat" was used to perform unsupervised clustering of the single cells, and "SingleR" was utilized for annotation. R package "STUtility" was employed to plot the spatial expression of DDIT4. For trajectory analysis, monocle was used to predict cell differentiation and demonstrate the expression of DDIT4 at each state. Here, DDIT4 overexpression was observed in Head and Neck Squamous Cell Carcinoma (HNSCC) cohort, and DDIT4 upregulation showed a positive correlation with larger tumor size, lymph node metastasis, more advanced TNM stage and higher tumor mutational burden (TMB). Moreover, DDIT4 knockdown could markedly inhibit the proliferation, colony formation, invasion and migration of HNSCC cells, as well as suppress the expression of HIF-1a, VEGF and vimentin. In comparison, DDIT4 overexpression showed a negative correlation with immune score and infiltrations of several immune cells. DDIT4 played crucial roles in the differentiation of CAFs and T cells. Collectively, this study demonstrates that DDIT4 contributes a critical role in HNSCC progression. The positive feedback regulation between DDIT4 and HIF-1a may be a potential target for HNSCC treatment.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Haoran Zhu
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Chifeng Zhao
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Dong Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Luo
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yukang Ying
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yuan Zhong
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| |
Collapse
|
30
|
Li L, Xi L, Wu J, Zhao Z, Chen Y, Liu W, Pan Z, Liu M, Yang D, Chen Z, Fang Y. The regulatory roles of DDIT4 in TDCIPP-induced autophagy and apoptosis in PC12 cells. J Environ Sci (China) 2023; 125:823-830. [PMID: 36375964 DOI: 10.1016/j.jes.2022.02.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 06/16/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is a commonly used organophosphate-based flame retardant and can bio-accumulate in human tissues and organs. As its structure is similar to that of neurotoxic organophosphate pesticides, the neurotoxicity of TDCIPP has raised widespread concerns. TDCIPP can increase neuronal apoptosis and induce autophagy. However, its regulatory mechanism remains unclear. In this study, we found that the expression upregulation of the DNA Damage-Inducible Transcript 4 (DDIT4) protein, which might play essential roles in TDCIPP-induced neuronal autophagy and apoptosis, was observed in TDCIPP-treated differentiated rat PC12 cells. Furthermore, we determined the protective effect of the DDIT4 suppression on the autophagy and apoptosis induced by TDCIPP using Western blot (WB) and Flow cytometry (FACS) analysis. We observed that TDCIPP treatment increased the DDIT4, the autophagy marker Beclin-1, and the microtubule-associated protein light chain 3-II (LC3II) expressions and decreased the mTOR phosphorylation levels. Conversely, the suppression of DDIT4 expression increased the p-mTOR expression and decreased cell autophagy and apoptosis. Collectively, our results revealed the function of DDIT4 in cell death mechanisms triggered by TDCIPP through the mTOR signaling axis in differentiated PC12 cells. Thus, this study provided vital evidence necessary to explain the mechanism of TDCIPP-induced neurotoxicity in differentiated PC12 cells.
Collapse
Affiliation(s)
- Li Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, China
| | - Lingyi Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zunquan Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Youliang Chen
- China Academy of Safety Science and Technology, Beijing 100012, China
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhihui Pan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Mingzhu Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danfeng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
31
|
Gai C, Xing X, Song Y, Zhao Y, Jiang Z, Cheng Y, Xiao Y, Wang Z. Up-Regulation of miR-9-5p Inhibits Hypoxia-Ischemia Brain Damage Through the DDIT4-Mediated Autophagy Pathways in Neonatal Mice. Drug Des Devel Ther 2023; 17:1175-1189. [PMID: 37113470 PMCID: PMC10128084 DOI: 10.2147/dddt.s393362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Hypoxia-ischemia (HI) remains the leading cause of cerebral palsy and long-term neurological sequelae in infants. Despite intensive research and many therapeutic approaches, there are limited neuroprotective strategies against HI insults. Herein, we reported that HI insult significantly down-regulated microRNA-9-5p (miR-9-5p) level in the ipsilateral cortex of neonatal mice. Methods The biological function and expression patterns of protein in the ischemic hemispheres were evaluated by qRT-PCR, Western Blotting analysis, Immunofluorescence and Immunohistochemistry. Open field test and Y-maze test were applied to detect locomotor activity and exploratory behavior and working memory. Results Overexpression of miR-9-5p effectively alleviated brain injury and improved neurological behaviors following HI insult, accompanying with suppressed neuroinflammation and apoptosis. MiR-9-5p directly bound to the 3' untranslated region of DNA damage-inducible transcript 4 (DDIT4) and negatively regulated its expression. Furthermore, miR-9-5p mimics treatment down-regulated light chain 3 II/light chain 3 I (LC3 II/LC3 I) ratio and Beclin-1 expression and decreased LC3B accumulation in the ipsilateral cortex. Further analysis showed that DDIT4 knockdown conspicuously inhibited the HI-up-regulated LC3 II/ LC3 I ratio and Beclin-1 expression, associating with attenuated brain damage. Conclusion The study indicates that miR-9-5p-mediated HI injury is regulated by DDIT4-mediated autophagy pathway and up-regulation of miR-9-5p level may provide a potential therapeutic effect on HI brain damage.
Collapse
Affiliation(s)
- Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaohui Xing
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
- Liaocheng Neuroscience Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China
- Correspondence: Yilei Xiao, Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, People’s Republic of China, Email
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, People’s Republic of China
- Zhen Wang, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People’s Republic of China, Email
| |
Collapse
|
32
|
Song X, Liu B, Zhao G, Pu X, Liu B, Ding M, Xue Y. Streptococcus pneumoniae promotes migration and invasion of A549 cells in vitro by activating mTORC2/AKT through up-regulation of DDIT4 expression. Front Microbiol 2022; 13:1046226. [PMID: 36601406 PMCID: PMC9806147 DOI: 10.3389/fmicb.2022.1046226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Dysbiosis of the lower airway flora is associated with lung cancer, of which the relationship between Streptococcus, especially pathogenic Streptococcus pneumoniae (S. pneumoniae), and the progression of lung cancer are unclear. Methods Bronchoalveolar lavage fluid (BALF) samples were prospectively collected from patients with pulmonary nodules during diagnostic bronchoscopy, and finally included 70 patients diagnosed with primary lung cancer and 20 patients with benign pulmonary nodules as the disease control group. The differential flora was screened by 16S ribosomal RNA (rRNA) gene amplicon sequencing. An in vitro infection model of lung adenocarcinoma (LUAD) cells exposed to S.pneumoniae was established to observe its effects on cell migration and invasion ability. Exploring the molecular mechanisms downstream of DDIT4 through its loss- and gain-of-function experiments. Results 16S rRNA sequencing analysis showed that the abundance of Streptococcus in the lower airway flora of lung cancer patients was significantly increased. After exposure to S. pneumoniae, A549 and H1299 cells significantly enhanced their cell migration and invasion ability. The results of DDIT4 loss- and gain-of-function experiments in A549 cells suggest that up-regulation of DDIT4 activates the mTORC2/Akt signaling pathway, thereby enhancing the migration and invasion of A549 cells while not affecting mTORC1. Immunofluorescence (IF) and fluorescence in situ hybridization (FISH) showed that S. pneumoniae was enriched in LUAD tissues, and DDIT4 expression was significantly higher in cancer tissues than in non-cancerous tissues. The increased expression of DDIT4 was also related to the poor prognosis of patients with LUAD. Discussion The data provided by this study show that S. pneumoniae enriched in the lower airway of patients with lung cancer can up-regulate DDIT4 expression and subsequently activate the mTORC2/AKT signal pathway, thereby increasing the migration and invasion abilities of A549 cells. Our study provides a potential new mechanism for targeted therapy of LUAD.
Collapse
Affiliation(s)
- Xiaojie Song
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Qingdao, China
| | - Baohong Liu
- Department of Hospital Infection Management, Qilu Hospital of Shandong University, Qingdao, China
| | - Guanghui Zhao
- Medical Laboratory Center and Oncology Laboratory, Qilu Hospital of Shandong University, Qingdao, China
| | - Xiaoxin Pu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Qingdao, China
| | - Baoyi Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Qingdao, China
| | - Meiling Ding
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Qingdao, China
| | - Yuwen Xue
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China,*Correspondence: Yuwen Xue,
| |
Collapse
|
33
|
Coleman C, Martin I. Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues? JOURNAL OF PARKINSON'S DISEASE 2022; 12:2321-2338. [PMID: 36278358 PMCID: PMC9837701 DOI: 10.3233/jpd-223363] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is the greatest risk factor for Parkinson's disease (PD), suggesting that mechanisms driving the aging process promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+ consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism, aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration drawing on evidence from cellular and animal models.
Collapse
Affiliation(s)
- Colin Coleman
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA
| | - Ian Martin
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA,Correspondence to: Ian Martin, Jungers Center for Neurosciences Research, Department of Neurology - Mail Code L623, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; E-mail:
| |
Collapse
|
34
|
Miller WP, Sha CM, Sunilkumar S, Toro AL, VanCleave AM, Kimball SR, Dokholyan NV, Dennis MD. Activation of Disulfide Redox Switch in REDD1 Promotes Oxidative Stress Under Hyperglycemic Conditions. Diabetes 2022; 71:2764-2776. [PMID: 36170669 PMCID: PMC9750946 DOI: 10.2337/db22-0355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/21/2022] [Indexed: 02/03/2023]
Abstract
The stress response protein regulated in development and DNA damage response 1 (REDD1) has been implicated in visual deficits in patients with diabetes. The aim here was to investigate the mechanism responsible for the increase in retinal REDD1 protein content that is observed with diabetes. We found that REDD1 protein expression was increased in the retina of streptozotocin-induced diabetic mice in the absence of a change in REDD1 mRNA abundance or ribosome association. Oral antioxidant supplementation reduced retinal oxidative stress and suppressed REDD1 protein expression in the retina of diabetic mice. In human retinal Müller cell cultures, hyperglycemic conditions increased oxidative stress, enhanced REDD1 expression, and inhibited REDD1 degradation independently of the proteasome. Hyperglycemic conditions promoted a redox-sensitive cross-strand disulfide bond in REDD1 at C150/C157 that was required for reduced REDD1 degradation. Discrete molecular dynamics simulations of REDD1 structure revealed allosteric regulation of a degron upon formation of the disulfide bond that disrupted lysosomal proteolysis of REDD1. REDD1 acetylation at K129 was required for REDD1 recognition by the cytosolic chaperone HSC70 and degradation by chaperone-mediated autophagy. Disruption of REDD1 allostery upon C150/C157 disulfide bond formation prevented the suppressive effect of hyperglycemic conditions on REDD1 degradation and reduced oxidative stress in cells exposed to hyperglycemic conditions. The results reveal redox regulation of REDD1 and demonstrate the role of a REDD1 disulfide switch in development of oxidative stress.
Collapse
Affiliation(s)
- William P. Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Congzhou M. Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
35
|
Li F, Niu Y, Zhao W, Yan C, Qi Y. Construction and validation of a prognostic model for lung adenocarcinoma based on endoplasmic reticulum stress-related genes. Sci Rep 2022; 12:19857. [PMID: 36400857 PMCID: PMC9674626 DOI: 10.1038/s41598-022-23852-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most universal types of cancer all over the world and its morbidity continues to rise year by year. Growing evidence has demonstrated that endoplasmic reticulum stress is highly activated in cancer cells and plays a key role in regulating the fate of cancer cells. However, the role and mechanism of endoplasmic reticulum stress in lung adenocarcinoma genesis and development remains unclear. In this research, we developed a prognostic model to predict the overall survival of patients with LUAD utilizing endoplasmic reticulum stress-related genes and screened out potential small molecular compounds, which could assist the clinician in making accurate decisions and better treat LUAD patients. Firstly, we downloaded 419 endoplasmic reticulum stress-related genes (ERSRGs) from Molecular Signatures Database (MSigDB). Secondly, we obtained information about the transcriptome profiling and corresponding clinical data of 59 normal samples and 535 lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) database. Next, we used the DESeq2 package to identify differentially expressed genes related to endoplasmic reticulum stress. We performed univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis to establish a prognostic model for LUAD patients based on ERSRGs. Then, we carried out univariate and multivariate independent prognostic analysis of endoplasmic reticulum stress-related gene (ERSRG) score and some clinical traits of lung adenocarcinoma. Additionally, we developed a clinically applicable nomogram for predicting survival for LUAD patients over one, three, and five years. Moreover, we carried out a drug sensitivity analysis to identify novel small molecule compounds for LUAD treatment. Finally, we examined the tumor microenvironment (TME) and immune cell infiltrating analysis to explore the interactions between immune and cancer cells. 142 differentially expressed ERSRGs were identified by using the DESeq2 package. A prognostic model was built based on 7 differentially expressed ERSRGs after performing univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. According to the results of univariate and multivariate independent prognostic analysis, we found ERSRG score can be used as an independent prognostic maker. Using the Kaplan-Meier curves, we found low-risk patients had higher survival probability than high-risk patients in both training set and test set. A nomogram was drawn to predict 1-, 3-, and 5-year survival probability. The calibration curves explained good performance of the model for the prediction of survival. Phenformin, OSU-03012, GSK-650394 and KIN001-135 were identified as the drugs most likely to provide important information to clinicians about the treatment of LUAD patients. A prognostic prediction model was established based on 7 differentially expressed ERSRGs (PDX1, IGFBP1, DDIT4, PPP1R3G, CFTR, DERL3 and NUPR1), which could effectively predict the prognosis of LUAD patients and give a reference for clinical doctors to help LUAD patients to make better treatment tactics. Based on the 4 small molecule compounds (Phenformin, OSU-03012, GSK-650394 and KIN001-135) we discovered, targeting endoplasmic reticulum stress-related genes may also be a therapeutic approach for LUAD patients.
Collapse
Affiliation(s)
- Feng Li
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Yandie Niu
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Wei Zhao
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Cheng Yan
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Yonghua Qi
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| |
Collapse
|
36
|
Therapeutic Implications of microRNAs in Depressive Disorders: A Review. Int J Mol Sci 2022; 23:ijms232113530. [PMID: 36362315 PMCID: PMC9658840 DOI: 10.3390/ijms232113530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are hidden players in complex psychophysical phenomena such as depression and anxiety related disorders though the activation and deactivation of multiple proteins in signaling cascades. Depression is classified as a mood disorder and described as feelings of sadness, loss, or anger that interfere with a person’s everyday activities. In this review, we have focused on exploration of the significant role of miRNAs in depression by affecting associated target proteins (cellular and synaptic) and their signaling pathways which can be controlled by the attachment of miRNAs at transcriptional and translational levels. Moreover, miRNAs have potential role as biomarkers and may help to cure depression through involvement and interactions with multiple pharmacological and physiological therapies. Taken together, miRNAs might be considered as promising novel therapy targets themselves and may interfere with currently available antidepressant treatments.
Collapse
|
37
|
Sunilkumar S, Toro AL, McCurry CM, VanCleave AM, Stevens SA, Miller WP, Kimball SR, Dennis MD. Stress response protein REDD1 promotes diabetes-induced retinal inflammation by sustaining canonical NF-κB signaling. J Biol Chem 2022; 298:102638. [PMID: 36309088 PMCID: PMC9694114 DOI: 10.1016/j.jbc.2022.102638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented increased pro-inflammatory cytokine expression in response to hyperglycemic conditions. REDD1 deletion promoted nuclear factor erythroid-2-related factor 2 (Nrf2) hyperactivation; however, Nrf2 was not required for reduced inflammatory cytokine expression in REDD1-deficient cells. Rather, REDD1 enhanced inflammatory cytokine expression by promoting activation of nuclear transcription factor κB (NF-κB). In WT cells exposed to tumor necrosis factor α (TNFα), inflammatory cytokine expression was increased in coordination with activating transcription factor 4 (ATF4)-dependent REDD1 expression and sustained activation of NF-κB. In both Müller cell cultures exposed to TNFα and in the retina of STZ-diabetic mice, REDD1 deletion promoted inhibitor of κB (IκB) expression and reduced NF-κB DNA-binding activity. We found that REDD1 acted upstream of IκB by enhancing both K63-ubiquitination and auto-phosphorylation of IκB kinase complex. In contrast with STZ-diabetic REDD1+/+ mice, IκB kinase complex autophosphorylation and macrophage infiltration were not observed in the retina of STZ-diabetic REDD1-/- mice. The findings provide new insight into how diabetes promotes retinal inflammation and support a model wherein REDD1 sustains activation of canonical NF-κB signaling.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher M. McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Shaunaci A. Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - William P. Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, USA,For correspondence: Michael D. Dennis
| |
Collapse
|
38
|
Chen Q, Xin G, Li S, Dong Y, Yu X, Wan C, Wei Z, Zhu Y, Zhang K, Wang Y, Li F, Zhang C, Wen E, Li Y, Niu H, Huang W. Berberine-mediated REDD1 down-regulation ameliorates senescence of retinal pigment epithelium by interrupting the ROS-DDR positive feedback loop. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154181. [PMID: 35792445 DOI: 10.1016/j.phymed.2022.154181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Accumulation of age-associated senescent cells accompanied with increased reactive oxygen species (ROS) and inflammatory factors contributes to the progression of age-related macular degeneration (AMD), the main cause of blindness in the elderly. Berberine (BBR) has shown efficacy in the treatment of age-related diseases including diabetes and obesity by decreasing ROS. However, the pharmacological effect of BBR on alleviating retinal aging remains largely unknown. PURPOSE Our study aimed to investigate the pharmacological effect of BBR as an anti-aging agent in retinal aging and its further molecular mechanisms. METHODS D-galactose (DG)-induced ARPE-19 cell senescence and retinal aging were employed to evaluate the anti-aging effect of BBR in vivo and in vitro. The siRNA transfection, Western-Blot analyses, SA-β-Gal assay and immunofluorescence were performed to investigate the potential mechanisms of BBR on anti-aging of RPE. RESULTS In RPE-choroid of both natural aged and DG-induced accelerated aged mice, oxidative stress was increased along with the up-regulation of p21 expression, which was ameliorated by BBR treatment. BBR down-regulated the expression of REDD1 to decrease intracellular ROS content, attenuating DG-induced senescence in vitro and in vivo. Furthermore, p53 instead of HIF-1α was identified as the transcriptional regulator of REDD1 in DG-induced premature senescence. Importantly, NAC and BBR reversed the expression of p53 and the content of 8-OHdG, indicating that the positive feedback loop of ROS-DNA damage response (DDR) was formed, and BBR interrupted this feedback loop to alleviate DG-induced premature senescence by reducing REDD1 expression. In addition, BBR restored DG-damaged autophagy flux by up-regulating TFEB-mediated lysosomal biosynthesis by inhibiting REDD1 expression, thereby attenuating cellular senescence. CONCLUSION BBR down-regulates REDD1 expression to interrupt the ROS-DDR positive feedback loop and restore autophagic flux, thereby reducing premature senescence of RPE. Our findings elucidate the promising effects of REDD1 on cellular senescence and the great potential of BBR as a therapeutic approach.
Collapse
Affiliation(s)
- Qingqiu Chen
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuman Dong
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuxian Yu
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengyu Wan
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuda Zhu
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Zhang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yilan Wang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cuicui Zhang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - E Wen
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yulong Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci 2022; 23:ijms23179686. [PMID: 36077083 PMCID: PMC9456073 DOI: 10.3390/ijms23179686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.
Collapse
|
40
|
The role of the PTEN/mTOR axis in clinical response of rectal cancer patients. Mol Biol Rep 2022; 49:8461-8472. [PMID: 35729481 DOI: 10.1007/s11033-022-07665-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Preoperative chemoradiotherapy has long been accepted as a method to improve survival and lifetime quality of rectal cancer patients. However, physiologic effects of these therapies largely depend on the resistance of cells to the radiation, type of chemotherapeutic agents and individual responses. As one of the signaling cascades involved in chemo- or radiation- resistance, the present study focused on several proteins involved in pTEN/Akt/mTOR pathway to explore their prognostic significance. MATERIALS AND METHODS Samples from advanced stage rectal cancer patients were analyzed to detect expression levels of pTEN/Akt/mTOR pathway related proteins pTEN, mLST8, REDD1, BNIP3, SAG and NOXA, together with p53, by RT-qPCR. Kaplan-Meier analysis was used to assess expression-survival relation and correlations among all proteins and clinicopathological features were statistically analyzed. RESULTS Except p53, none of the proteins showed prognostic significance. High p53 expression presented clear impact on overall survival and disease free survival. It was also significantly related to pathologic complete response. p53 showed high correlation to local recurrence as well. On the other hand, strong correlation was observed with PTEN expression and tumor response, but not with survival. High associations were also observed between mLST8/REDD1, PTEN and NOXA, confirming their role in the same cascade. CONCLUSION The contentious role of p53 as a prognostic biomarker in colorectal cancer was further affirmed, while PTEN and REDD1 could be suggested as potential candidates. Additionally, NOXA emerges as a conjunctive element for different signaling pathways.
Collapse
|
41
|
REDD1 is a gatekeeper of murine hematopoietic stem cell functions during stress responses. Leukemia 2022; 36:2140-2143. [PMID: 35641638 DOI: 10.1038/s41375-022-01609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
|
42
|
Zhang D, Wu J, Zhang S, Wu J. Identification of Immune Infiltration-Related ceRNAs as Novel Biomarkers for Prognosis of Patients With Primary Open-Angle Glaucoma. Front Genet 2022; 13:838220. [PMID: 35692841 PMCID: PMC9184720 DOI: 10.3389/fgene.2022.838220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally; hence, relevant clinical biomarkers are necessary to enable diagnosis, early detection, and development of novel therapies. The differentially expressed genes were annotated and visualized using Gene Ontology and Kyoto Encyclopedia. In addition, a competitive endogenous ribonucleic acids network was constructed using Cytoscape, which explained the regulation of gene expression in glaucoma. The CIBERSORT algorithm was employed to analyze the immune microenvironment. We validated that the core genes could predict glaucoma occurrence and development and identified potential molecular mechanism pathways, which were associated with immune infiltration and participated in endogenous regulation networks. Our data may partially explain the pathogenesis of glaucoma and they provide potential theoretical support for targeted therapy.
Collapse
Affiliation(s)
- Daowei Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| | - Jihong Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| |
Collapse
|
43
|
Sinha I, Goel R, Bitzer ZT, Trushin N, Liao J, Sinha R. Evaluating electronic cigarette cytotoxicity and inflammatory
responses in vitro. Tob Induc Dis 2022; 20:45. [PMID: 35611070 PMCID: PMC9081552 DOI: 10.18332/tid/147200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, United States
| | - Reema Goel
- Department of Public Health Sciences, Penn State College of Medicine, United States
| | - Zachary T. Bitzer
- Department of Public Health Sciences, Penn State College of Medicine, United States
| | - Neil Trushin
- Department of Public Health Sciences, Penn State College of Medicine, United States
| | - Jason Liao
- Department of Public Health Sciences, Penn State College of Medicine, United States
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, United States
| |
Collapse
|
44
|
APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome. Int J Mol Sci 2022; 23:ijms23095189. [PMID: 35563580 PMCID: PMC9102673 DOI: 10.3390/ijms23095189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is a ubiquitous protein whose expression is transiently increased in response to various stressors. Chronic expression has been linked to various pathologies, including neurodegeneration, inflammation, and cancer. DDIT4 is best recognized for repressing mTORC1, an essential protein complex activated by nutrients and hormones. Accordingly, DDIT4 regulates metabolism, oxidative stress, hypoxic survival, and apoptosis. Despite these well-defined biological functions, little is known about its interacting partners and their unique molecular functions. Here, fusing an enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to DDIT4 combined with mass spectrometry, the proteins in the immediate vicinity of DDIT4 in either unstressed or acute stress conditions were identified in situ. The context-dependent interacting proteomes were quantitatively but not functionally distinct. DDIT4 had twice the number of interaction partners during acute stress compared to unstressed conditions, and while the two protein lists had minimal overlap in terms of identity, the proteins’ molecular function and classification were essentially identical. Moonlighting keratins and ribosomal proteins dominated the proteomes in both unstressed and stressed conditions, with many of their members having established non-canonical and indispensable roles during stress. Multiple keratins regulate mTORC1 signaling via the recruitment of 14-3-3 proteins, whereas ribosomal proteins control translation, cell cycle progression, DNA repair, and death by sequestering critical proteins. In summary, two potentially distinct mechanisms of DDIT4 molecular function have been identified, paving the way for additional research to confirm and consolidate these findings.
Collapse
|
45
|
Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI JOURNAL 2022; 21:454-469. [PMID: 35391921 PMCID: PMC8983852 DOI: 10.17179/excli2021-4622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.
Collapse
Affiliation(s)
- Maciej Jaskiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszynska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA, Birmingham, AL 35233
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
46
|
Zhang W, Deng X, Liu H, Ke J, Xiang M, Ma Y, Zhang L, Yang M, Liu Y, Huang F. Identification and Verification of Potential Hub Genes in Amphetamine-Type Stimulant (ATS) and Opioid Dependence by Bioinformatic Analysis. Front Genet 2022; 13:837123. [PMID: 35432486 PMCID: PMC9006114 DOI: 10.3389/fgene.2022.837123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Amphetamine-type stimulant (ATS) and opioid dependencies are chronic inflammatory diseases with similar symptoms and common genomics. However, their coexpressive genes have not been thoroughly investigated. We aimed to identify and verify the coexpressive hub genes and pathway involved in the pathogenesis of ATS and opioid dependencies. Methods: The microarray of ATS- and opioid-treatment mouse models was obtained from the Gene Expression Omnibus database. GEO2R and Venn diagram were performed to identify differentially expressed genes (DEGs) and coexpressive DEGs (CDEGs). Functional annotation and protein–protein interaction network detected the potential functions. The hub genes were screened using the CytoHubba and MCODE plugin with different algorithms, and further validated by receiver operating characteristic analysis in the GSE15774 database. We also validated the hub genes mRNA levels in BV2 cells using qPCR. Result: Forty-four CDEGs were identified between ATS and opioid databases, which were prominently enriched in the PI3K/Akt signaling pathway. The top 10 hub genes were mainly enriched in apoptotic process (CD44, Dusp1, Sgk1, and Hspa1b), neuron differentiation, migration, and proliferation (Nr4a2 and Ddit4), response to external stimulation (Fos and Cdkn1a), and transcriptional regulation (Nr4a2 and Npas4). Receiver operating characteristic (ROC) analysis found that six hub genes (Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, and Nr4a2) have an area under the curve (AUC) of more than 0.70 in GSE15774. The mRNA levels of Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, PI3K, and Akt in BV2 cells and GSE15774 with METH and heroin treatments were higher than those of controls. However, the Nr4a2 mRNA levels increased in BV2 cells and decreased in the bioinformatic analysis. Conclusions: The identification of hub genes was associated with ATS and opioid dependencies, which were involved in apoptosis, neuron differentiation, migration, and proliferation. The PI3K/Akt signaling pathway might play a critical role in the pathogenesis of substance dependence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaodong Deng
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huan Liu
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ke
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Mingliang Xiang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Zhang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ming Yang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Criminal Investigation, Nanchong Municipal Public Security Bureau, Nanchong, China
| | - Yun Liu
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| |
Collapse
|
47
|
Kim JH, Kim KM, Yang JH, Cho SS, Lee JH, Ki SH. Regulated in Development and DNA Damage Response 1 Protects Hepatocytes Against Palmitate-induced Lipotoxicity. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
49
|
Lv K, Kong L, Yang M, Zhang L, Chu S, Zhang L, Yu J, Zhong G, Shi Y, Wang X, Yang N. An ApoA-I Mimic Peptide of 4F Promotes SDF-1α Expression in Endothelial Cells Through PI3K/Akt/ERK/HIF-1α Signaling Pathway. Front Pharmacol 2022; 12:760908. [PMID: 35111045 PMCID: PMC8801807 DOI: 10.3389/fphar.2021.760908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis (AS) seriously impairs the health of human beings and is manifested initially as endothelial cells (ECs) impairment and dysfunction in vascular intima, which can be alleviated through mobilization of endothelial progenitor cells (EPCs) induced by stromal-cell-derived factor-1α (SDF-1α). A strong inverse correlation between HDL and AS has been proposed. The aim of the present work is to investigate whether 4F, an apolipoprotein A-I (apoA-I, major component protein of HDL) mimic peptide, can upregulate SDF-1α in mice and human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. The protein levels of SDF-1α were measured by ELISA assay. Protein levels of HIF-1α, phosphorylated Akt (p-Akt), and phosphorylated ERK (p-ERK) were evaluated by Western blotting analysis. The results show that L-4F significantly upregulates protein levels of HIF-1α, Akt, and ERK, which can be inhibited by the PI3K inhibitor, LY294002, or ERK inhibitor, PD98059, respectively. Particularly, LY294002 can downregulate the levels of p-ERK, while PD98059 cannot suppress that of p-Akt. D-4F can upregulate the levels of HIF, p-Akt, and p-ERK in the abdominal aorta and inferior vena cava from mice. These results suggest that 4F promotes SDF-1α expression in ECs through PI3K/Akt/ERK/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lingyu Kong
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Mei Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Shangmin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lichun Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China.,Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| | - Guoshen Zhong
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Xia Wang
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China.,School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China.,Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| |
Collapse
|
50
|
Pei XJ, Bai TT, Zhang ZF, Chen N, Li S, Fan YL, Liu TX. Two putative fatty acid synthetic genes of BgFas3 and BgElo1 are responsible for respiratory waterproofing in Blattella germanica. INSECT SCIENCE 2022; 29:33-50. [PMID: 33543834 DOI: 10.1111/1744-7917.12900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 05/12/2023]
Abstract
Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investigated, we know little about other mechanisms for preventing water loss in insects. Here, we report two fatty acid synthetic genes that are independent of hydrocarbon production but crucial for water retention in the German cockroach Blattella germanica (L.). First, an integument enriched fatty acid elongase gene (BgElo1) was identified as a critical gene for desiccation resistance in B. germanica; however, knockdown of BgElo1 surprisingly failed to cause a decline in cuticular lipids. In addition, RNA interference (RNAi)-knockdown of an upstream fatty acid synthase gene (BgFas3) showed a similar phenotype, and transmission electron microscopy analysis revealed that BgFas3- or BgElo1-RNAi did not affect cuticle architecture. Bodyweight loss test showed that repression of BgFas3 and BgElo1 significantly increased the weight loss rate, but the difference disappeared when the respiration was closed by freeze killing the cockroaches. A water immersion test was performed, and we found that BgFas3- and BgElo1-RNAi made it difficult for cockroaches to recover from drowning, which was supported by the upregulation of hypoxia-related genes after a 10-h recovery from drowning. Moreover, a dyeing assay with water-soluble Eosin Y showed that this was caused by the entry of water into the respiratory system. Our research suggests that BgFas3 and BgElo1 are required for both inward and outward waterproofing of the respiratory system. This study benefits the understanding of water retention mechanisms in insects.
Collapse
Affiliation(s)
- Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|