1
|
Gutiérrez-Millán E, Rodríguez-Aguilar ED, Rodríguez MH. Molecular antiviral responses, immune priming and inheritance in insects. Virology 2025; 605:110468. [PMID: 40049142 DOI: 10.1016/j.virol.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Viral diseases transmitted by insects to plants cause severe agricultural damage and arboviruses transmitted to humans cause severe disease outbreaks. The interaction between viruses and the insect defences is complex and has evolved into acting-counteracting molecular interplays. Viruses depict complex molecular mechanisms to ensure invasion, replication and exit the insect host cell, to invade other cells. On the other hand, insect cells use molecular strategies to recognize, halt replication and eliminate the invaders. In turn, virus counteract with evasive strategies. The main antiviral defence mechanism RNA interference (RNAi) recognizes and degrades viral RNA, thereby inhibiting viral replication. These in conjunction with other canonical immune pathways, Toll, IMD, JAK/STAT and Akt-ERK developed mainly to combat bacteria, fungi and protozoa, along with mechanisms to eliminate infected cells like apoptosis and phagocytosis comprise a multifactorial system. Insects exposed to an attenuated or sublethal viral infection could respond with faster and enhanced immune responses to the same pathogen (priming), which is like immunological memory in vertebrates. Several mechanisms have been proposed to explain priming, including endoreplication, epigenetic gene modifications by DNA methylation and histone acetylation. Priming could be inherited by the offspring (transgenerational immune priming, TGIP). However, the precise molecular mechanisms underlying TGIP remain to be elucidated. This article reviews the molecular mechanisms employed by insects to combat viral infections, discusses the current information and the outstanding research questions in the area.
Collapse
Affiliation(s)
| | | | - Mario Henry Rodríguez
- Centre for Research in Infectious Diseases, National Institute of Public Health, Mexico.
| |
Collapse
|
2
|
Rhodes VL, Waterhouse RM, Michel K. The molecular toll pathway repertoire in anopheline mosquitoes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105287. [PMID: 39522894 PMCID: PMC11717629 DOI: 10.1016/j.dci.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the Anopheles gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Yao X, Lin L, Ye Z, Huo M, Jin P, Ma F. NF-κB/Relish readjusts miR-100 expression and recovers immune homeostasis in Drosophila melanogaster. INSECT SCIENCE 2024. [PMID: 39688880 DOI: 10.1111/1744-7917.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
The regulation and maintenance of immune homeostasis are essential for animal survival, but the molecular mechanisms are not fully understood. Here, we used the model organism Drosophila melanogaster to uncover a potential mechanism by which the nuclear factor-κB transcription factor Relish and miR-100 cooperatively regulate innate immune homeostasis. We first demonstrated in vitro and in vivo that miR-100 can negatively regulate the immune responses of the Imd pathway by inhibiting the expression of TAK1-associated binding protein 2 (Tab2) gene. Second, we found that Relish, an important transcription factor in the Drosophila Imd pathway, could not only modulate the expressions of antimicrobial peptides (AMPs) to promote immune responses, but also bind to the promoter region of miR-100 and activate its transcription to inhibit immune responses. Third, the dynamic expression of genes profiling indicated that the Relish/miR-100/Tab2 regulatory axis could contribute to innate immune homeostasis in Drosophila. Together, our findings reveal the dual role of Relish in immune regulation, that is, Relish promotes the expression of AMPs to resist pathogen infection in the early immune response, while in the late immune stages, Relish readjusts the expression of miR-100 to negatively control immune responses to avoid excessive immunity thus maintaining immunohomeostasis. Meanwhile, our study provides a new perspective for further understanding the complex regulatory mechanism of immune homeostasis in animals.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zifeng Ye
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Miaomiao Huo
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
5
|
Rhodes VL, Waterhouse RM, Michel K. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612760. [PMID: 39345384 PMCID: PMC11429875 DOI: 10.1101/2024.09.12.612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles.
Collapse
Affiliation(s)
- Victoria L. Rhodes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Biology Department, Missouri Southern University, Joplin, MO 64801, USA
| | | | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Kodra AL, Singh AS, de la Cova C, Ziosi M, Johnston LA. The Drosophila tumor necrosis factor Eiger promotes Myc supercompetition independent of canonical Jun N-terminal kinase signaling. Genetics 2024; 228:iyae107. [PMID: 38985651 PMCID: PMC11373512 DOI: 10.1093/genetics/iyae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.
Collapse
Affiliation(s)
- Albana L Kodra
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Aditi Sharma Singh
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Claire de la Cova
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | | - Laura A Johnston
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of spinal muscular atrophy. BMC Biol 2024; 22:94. [PMID: 38664795 PMCID: PMC11044505 DOI: 10.1186/s12915-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Rebecca E Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address: Lake, Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Amanda C Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
- Present Address, Radford University, Radford, VA, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA.
| | - Ashlyn M Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
8
|
Garcia EL, Steiner RE, Raimer AC, Herring LE, Matera AG, Spring AM. Dysregulation of innate immune signaling in animal models of Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571739. [PMID: 38168196 PMCID: PMC10760185 DOI: 10.1101/2023.12.14.571739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Spinal Muscular Atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the Survival Motor Neuron (SMN) protein. SMA presents across broad spectrum of disease severity. Unfortunately, vertebrate models of intermediate SMA have been difficult to generate and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. Results Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the Immune Deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of an ubiquitylation complex that includes Traf6, Bendless and Diap2, and plays a pivotal role in several signaling networks. Conclusions In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.
Collapse
Affiliation(s)
- Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Chapel Hill
| | - Amanda C. Raimer
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- Department of Biology, University of North Carolina at Chapel Hill
- Department of Genetics, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Ashlyn M. Spring
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro NC, USA
| |
Collapse
|
9
|
Loudhaief R, Jneid R, Christensen CF, Mackay DJ, Andersen DS, Colombani J. The Drosophila tumor necrosis factor receptor, Wengen, couples energy expenditure with gut immunity. SCIENCE ADVANCES 2023; 9:eadd4977. [PMID: 37294765 DOI: 10.1126/sciadv.add4977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
It is well established that tumor necrosis factor (TNF) plays an instrumental role in orchestrating the metabolic disorders associated with late stages of cancers. However, it is not clear whether TNF/TNF receptor (TNFR) signaling controls energy homeostasis in healthy individuals. Here, we show that the highly conserved Drosophila TNFR, Wengen (Wgn), is required in the enterocytes (ECs) of the adult gut to restrict lipid catabolism, suppress immune activity, and maintain tissue homeostasis. Wgn limits autophagy-dependent lipolysis by restricting cytoplasmic levels of the TNFR effector, TNFR-associated factor 3 (dTRAF3), while it suppresses immune processes through inhibition of the dTAK1/TAK1-Relish/NF-κB pathway in a dTRAF2-dependent manner. Knocking down dTRAF3 or overexpressing dTRAF2 is sufficient to suppress infection-induced lipid depletion and immune activation, respectively, showing that Wgn/TNFR functions as an intersection between metabolism and immunity allowing pathogen-induced metabolic reprogramming to fuel the energetically costly task of combatting an infection.
Collapse
Affiliation(s)
- Rihab Loudhaief
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, room 439, 2100 Copenhagen O, Denmark
| | - Rouba Jneid
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, room 439, 2100 Copenhagen O, Denmark
| | - Christian Fokdal Christensen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, room 439, 2100 Copenhagen O, Denmark
| | - Duncan J Mackay
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, room 439, 2100 Copenhagen O, Denmark
| | - Ditte S Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, room 439, 2100 Copenhagen O, Denmark
| | - Julien Colombani
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 15, Build. 3, 3rd floor, room 439, 2100 Copenhagen O, Denmark
| |
Collapse
|
10
|
OTU7B Modulates the Mosquito Immune Response to Beauveria bassiana Infection via Deubiquitination of the Toll Adaptor TRAF4. Microbiol Spectr 2023; 11:e0312322. [PMID: 36537797 PMCID: PMC9927300 DOI: 10.1128/spectrum.03123-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.
Collapse
|
11
|
Wang Z, Lincoln S, Nguyen AD, Li W, Young MW. Chronic sleep loss disrupts rhythmic gene expression in Drosophila. Front Physiol 2022; 13:1048751. [PMID: 36467698 PMCID: PMC9716074 DOI: 10.3389/fphys.2022.1048751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Genome-wide profiling of rhythmic gene expression has offered new avenues for studying the contribution of circadian clock to diverse biological processes. Sleep has been considered one of the most important physiological processes that are regulated by the circadian clock, however, the effects of chronic sleep loss on rhythmic gene expression remain poorly understood. In the present study, we exploited Drosophila sleep mutants insomniac 1 (inc 1 ) and wide awake D2 (wake D2 ) as models for chronic sleep loss. We profiled the transcriptomes of head tissues collected from 4-week-old wild type flies, inc 1 and wake D2 at timepoints around the clock. Analysis of gene oscillation revealed a substantial loss of rhythmicity in inc 1 and wake D2 compared to wild type flies, with most of the affected genes common to both mutants. The disruption of gene oscillation was not due to changes in average gene expression levels. We also identified a subset of genes whose loss of rhythmicity was shared among animals with chronic sleep loss and old flies, suggesting a contribution of aging to chronic, sleep-loss-induced disruption of gene oscillation.
Collapse
Affiliation(s)
- Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Andrew D. Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, United States
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY, United States
| |
Collapse
|
12
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Ko HJ, Patnaik BB, Park KB, Kim CE, Baliarsingh S, Jang HA, Lee YS, Han YS, Jo YH. TmIKKε Is Required to Confer Protection Against Gram-Negative Bacteria, E. coli by the Regulation of Antimicrobial Peptide Production in the Tenebrio molitor Fat Body. Front Physiol 2022; 12:758862. [PMID: 35069235 PMCID: PMC8777057 DOI: 10.3389/fphys.2021.758862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKβ, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.
Collapse
Affiliation(s)
- Hye Jin Ko
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bharat Bhusan Patnaik
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Chang Eun Kim
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Snigdha Baliarsingh
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
14
|
Ding X, Li Z, Lin G, Li W, Xue L. Toll-7 promotes tumour growth and invasion in Drosophila. Cell Prolif 2022; 55:e13188. [PMID: 35050535 PMCID: PMC8828261 DOI: 10.1111/cpr.13188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion. Materials and methods Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. Results Loss of Toll‐7 suppresses RasV12/lgl−/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level. Conclusions Our findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).
Collapse
Affiliation(s)
- Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
15
|
So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol 2021; 34:7-20. [PMID: 34453532 DOI: 10.1093/intimm/dxab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023] Open
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular signaling adaptors and control diverse signaling pathways mediated not only by the TNFR superfamily and the Toll-like receptor/interleukin-1 receptor superfamily but also by unconventional cytokine receptors such as IL-6 and IL-17 receptors. There are seven family members, TRAF1 to TRAF7, in mammals. Exaggerated immune responses induced through TRAF signaling downstream of these receptors often lead to inflammatory and autoimmune diseases including rheumatoid arthritis, inflammatory bowel disease, psoriasis and autoinflammatory syndromes, and thus those signals are major targets for therapeutic intervention. For this reason, it has been very important to understand signaling mechanisms regulated by TRAFs that greatly impact on life/death decisions and the activation, differentiation and survival of cells of the innate and adaptive immune systems. Accumulating evidence suggests that dysregulated cellular expression and/or signaling of TRAFs causes overproduction of proinflammatory cytokines, which facilitates aberrant activation of immune cells. In this review, I will explain the structural and functional aspects that are responsible for the cellular activity and disease outcomes of TRAFs, and summarize the findings of recent studies on TRAFs in terms of how individual TRAF family molecules regulates biological and disease processes in the body in both positive and negative ways. This review also discusses how TRAF mutations contribute to human disease.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
16
|
Ramesh P, Dey NS, Kanwal A, Mandal S, Mandal L. Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. eLife 2021; 10:67158. [PMID: 34292149 PMCID: PMC8363268 DOI: 10.7554/elife.67158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of Drosophila senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Nidhi Sharma Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Aditya Kanwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Molecular Cell and Developmental Biology Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
17
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
18
|
González-González A, Wayne ML. Immunopathology and immune homeostasis during viral infection in insects. Adv Virus Res 2020; 107:285-314. [PMID: 32711732 DOI: 10.1016/bs.aivir.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organisms clear infections by mounting an immune response that is normally turned off once the pathogens have been cleared. However, sometimes this immune response is not properly or timely arrested, resulting in the host damaging itself. This immune dysregulation may be referred to as immunopathology. While our knowledge of immune and metabolic pathways in insects, particularly in response to viral infections, is growing, little is known about the mechanisms that regulate this immune response and hence little is known about immunopathology in this important and diverse group of organisms. In this chapter we focus both on documenting the molecular mechanisms described involved in restoring immune homeostasis in insects after viral infections and on identifying potential mechanisms for future investigation. We argue that learning about the immunopathological consequences of an improperly regulated immune response in insects will benefit both insect and human health.
Collapse
Affiliation(s)
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Wang X, Gao S, Hao Z, Tang T, Liu F. Involvement of TRAF6 in regulating immune defense and ovarian development in Musca domestica. Int J Biol Macromol 2020; 153:1262-1271. [DOI: 10.1016/j.ijbiomac.2019.10.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
|
20
|
Hou J, Pang Y, Li Q. Comprehensive Evolutionary Analysis of Lamprey TNFR-Associated Factors (TRAFs) and Receptor-Interacting Protein Kinase (RIPKs) and Insights Into the Functional Characterization of TRAF3/6 and RIPK1. Front Immunol 2020; 11:663. [PMID: 32373123 PMCID: PMC7179693 DOI: 10.3389/fimmu.2020.00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
TNFR-associated factors (TRAFs) and receptor-interacting protein kinases (RIPKs) are important immunological linker molecules in mammals and play important roles in the TNFα, TLR and IFN signaling pathways. However, the evolutionary origins of these genes in vertebrates have not previously been described in lampreys. In this study, we searched the genomes of Lampetra japonicum, Lethenteron reissneri, and Petromyzon marinus for genes encoding trafs and ripks and performed homologous sequence alignment, phylogenetic tree, functional domain, conserved motif, gene structure, and synteny analyses to determine their evolutionary relationships. The distribution of the lamprey traf and ripk families and the immune response of the gene families in lampreys stimulated by different pathogens were also demonstrated, suggesting a role of structural changes in expression and functional diversification. Additionally, the dual luciferase reporter gene assay showed that the addition of exogenous immunomodulator (TNFα or IFN) to the overexpression of LjLRIPK1a or LjTRAF3/6 significantly downregulated NF-κB or ISRE activation. LjRIPK1a can significantly enhance caspase-8 activity, and overexpression of LjRIPK1a or LjTRAF3a/6 in HEK293T cells results in cell apoptosis. In summary, this study makes an important contribution to the understanding of the traf and ripk gene families in different vertebrates. Our results also provide new evidence for the evolution of vertebrate TRAFs and RIPKs and their impacts on immune regulation.
Collapse
Affiliation(s)
- Jianqiang Hou
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
21
|
Ji S, Luo Y, Cai Q, Cao Z, Zhao Y, Mei J, Li C, Xia P, Xie Z, Xia Z, Zhang J, Sun Q, Chen D. LC Domain-Mediated Coalescence Is Essential for Otu Enzymatic Activity to Extend Drosophila Lifespan. Mol Cell 2019; 74:363-377.e5. [PMID: 30879902 DOI: 10.1016/j.molcel.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, RNA-binding proteins (RBPs) interact with RNAs to form ribonucleoprotein complexes (RNA granules) that have long been thought to regulate RNA fate or activity. Emerging evidence suggests that some RBPs not only bind RNA but also possess enzymatic activity related to ubiquitin regulation, raising important questions of whether these RBP-formed RNA granules regulate ubiquitin signaling and related biological functions. Here, we show that Drosophila Otu binds RNAs and coalesces to membrane-less biomolecular condensates via its intrinsically disordered low-complexity domain, and coalescence represents a functional state for Otu exerting deubiquitinase activity. Notably, coalescence-mediated enzymatic activity of Otu is positively regulated by its bound RNAs and co-partner Bam. Further genetic analysis reveals that the Otu/Bam deubiquitinase complex and dTraf6 constitute a feedback loop to maintain intestinal immune homeostasis during aging, thereby controlling longevity. Thus, regulated biomolecular condensates may represent a mechanism that controls dynamic enzymatic activities and related biological processes.
Collapse
Affiliation(s)
- Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yuewan Luo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhijie Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yuanyuan Zhao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jie Mei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Chenxiao Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Pengyan Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhongwen Xie
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jian Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Hehr CL, Halabi R, McFarlane S. Polarity and morphogenesis of the eye epithelium requires the adhesion junction associated adaptor protein Traf4. Cell Adh Migr 2018; 12:489-502. [PMID: 29961393 DOI: 10.1080/19336918.2018.1477900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
During development, neuroepithelial progenitors acquire apico-basal polarity and adhere to one another via apically located tight and adherens junction complexes. This polarized neuroepithelium must continue to integrate cells arising through cell divisions and intercalation, and allow for cell movements, at the same time as undergoing morphogenesis. Cell proliferation, migration and intercalation all occur in the morphing embryonic eye. To understand how eye development might depend on dynamic epithelial adhesion, we investigated the function of a known regulator of junctional plasticity, Tumour necrosis factor receptor-associated factor 4 (Traf4). traf4a mRNA is expressed in the developing eye vesicle over the period of optic cup morphogenesis, and Traf4a loss leads to disrupted evagination and elongation of the eye vesicles, and aberrant organization and apico-basal polarity of the eye epithelium. We propose a model whereby Traf4a regulates apical junction plasticity in nascent eye epithelium, allowing for its polarization and morphogenesis. Symbols and Abbreviations: AB: apico-basal; aPKC: atypical protein kinase-C; CRISPR: clustered regularly-interspaced short palindromic repeats; GFP: green fluorescent protein; hpf: hours post-fertilization; MO: antisense morpholino oligonucleotide; pHH3: phospho histone H3; ss: somite stage; Traf4: Tumour necrosis factor receptor-associated factor 4; ZO-1: zona occludens-1.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Rami Halabi
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Sarah McFarlane
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| |
Collapse
|
23
|
Lopez W, Page AM, Carlson DJ, Ericson BL, Cserhati MF, Guda C, Carlson KA. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 2018; 4:123-139. [PMID: 29707694 PMCID: PMC5915338 DOI: 10.3934/microbiol.2018.1.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Collapse
Affiliation(s)
- Wilfredo Lopez
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Alexis M Page
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Darby J Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Brad L Ericson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matyas F Cserhati
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kimberly A Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
24
|
Mondal T, Bag I, SNCVL P, Garikapati KR, Bhadra U, Pal Bhadra M. Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it. PLoS One 2018; 13:e0190548. [PMID: 29385168 PMCID: PMC5791970 DOI: 10.1371/journal.pone.0190548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/16/2017] [Indexed: 02/02/2023] Open
Abstract
Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Indira Bag
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Pushpavalli SNCVL
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Koteswara Rao Garikapati
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
| | - Utpal Bhadra
- Gene Silencing and Functional Genomics Group, CSIR-Centre For Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana State, India
| | - Manika Pal Bhadra
- Department of Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
25
|
Bushnell HL, Feiler CE, Ketosugbo KF, Hellerman MB, Nazzaro VL, Johnson RI. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Dev Biol 2018; 433:94-107. [PMID: 29133184 PMCID: PMC6010229 DOI: 10.1016/j.ydbio.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.
Collapse
Affiliation(s)
- Henry L Bushnell
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Kwami F Ketosugbo
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Mark B Hellerman
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Valerie L Nazzaro
- Quantitative Analysis Center, Wesleyan University, 222 Church Street, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
26
|
Qu F, Xiang Z, Zhou Y, Qin Y. A molluscan TNF receptor-associated factor 2 (TRAF2) was involved in host defense against immune challenges. FISH & SHELLFISH IMMUNOLOGY 2017; 71:105-115. [PMID: 28986217 DOI: 10.1016/j.fsi.2017.09.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a member of the TRAF superfamily that acted as a key signal transduction protein and has been implicated in inflammatory and apoptosis processes in mammals. However, identification of TRAF2s in invertebrates is very limited and its function, in particular that under immune challenges, is still unknown. In this report, a molluscan TRAF2 gene (referred to as AwTRAF2) was cloned and characterized from the freshwater bivalve, Anodonta woodiana. The open reading frame (ORF) of AwTRAF2 was 1683 bp in length, which encoded a putative 560 amino acid-protein. The deduced AwTRAF2 sequence shared similar structural characteristics and close evolutionary relationship with mollusk TRAF2s. The tissue-specific expression analysis revealed that AwTRAF2 mRNA was broadly expressed in all tested tissues, with high expression in gill and hepatopancreas. In addition, in vivo injection experiments directly showed that AwTRAF2 mRNA levels in hepatopancreas were significantly up-regulated in response to bacterial pathogen (Vibrio alginolyticus and Staphylococcus aureus) and PAMPs (Lipopolysaccharides and Peptidoglycan) challenges. Moreover, fluorescence microscopy observations revealed that AwTRAF2 was mainly located in cytoplasm of HEK293T cells and its overexpression significantly increased the transcriptional activities of the NF-κB-Luc reporter gene in HEK293T cells. Taken together, this study provided the experimental evidence of the presence of a functional TRAF2 in freshwater bivalves, which revealed its involvement in host response to immune challenges in A. woodiana.
Collapse
Affiliation(s)
- Fufa Qu
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China; Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yanping Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| |
Collapse
|
27
|
Ketosugbo KF, Bushnell HL, Johnson RI. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning. PLoS One 2017; 12:e0187571. [PMID: 29117266 PMCID: PMC5678704 DOI: 10.1371/journal.pone.0187571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling.
Collapse
Affiliation(s)
- Kwami F. Ketosugbo
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Henry L. Bushnell
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
28
|
Frazier M, Helmkampf M, Bellinger MR, Geib SM, Takabayashi M. De novo metatranscriptome assembly and coral gene expression profile of Montipora capitata with growth anomaly. BMC Genomics 2017; 18:710. [PMID: 28893194 PMCID: PMC5594617 DOI: 10.1186/s12864-017-4090-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Scleractinian corals are a vital component of coral reef ecosystems, and of significant cultural and economic value worldwide. As anthropogenic and natural stressors are contributing to a global decline of coral reefs, understanding coral health is critical to help preserve these ecosystems. Growth anomaly (GA) is a coral disease that has significant negative impacts on coral biology, yet our understanding of its etiology and pathology is lacking. In this study we used RNA-seq along with de novo metatranscriptome assembly and homology assignment to identify coral genes that are expressed in three distinct coral tissue types: tissue from healthy corals (“healthy”), GA lesion tissue from diseased corals (“GA-affected”) and apparently healthy tissue from diseased corals (“GA-unaffected”). We conducted pairwise comparisons of gene expression among these three tissue types to identify genes and pathways that help us to unravel the molecular pathology of this coral disease. Results The quality-filtered de novo-assembled metatranscriptome contained 76,063 genes, of which 13,643 were identified as putative coral genes. Overall gene expression profiles of coral genes revealed high similarity between healthy tissue samples, in contrast to high variance among diseased samples. This indicates GA has a variety of genetic effects at the colony level, including on seemingly healthy (GA-unaffected) tissue. A total of 105 unique coral genes were found differentially expressed among tissue types. Pairwise comparisons revealed the greatest number of differentially expressed genes between healthy and GA-affected tissue (93 genes), followed by healthy and GA-unaffected tissue (33 genes), and GA-affected and -unaffected tissue (7 genes). The putative function of these genes suggests GA is associated with changes in the activity of genes involved in developmental processes and activation of the immune system. Conclusion This is one of the first transcriptome-level studies to investigate coral GA, and the first metatranscriptome assembly for the M. capitata holobiont. The gene expression data, metatranscriptome assembly and methodology developed through this study represent a significant addition to the molecular information available to further our understanding of this coral disease. Electronic supplementary material The online version of this article (10.1186/s12864-017-4090-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Frazier
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA
| | - Martin Helmkampf
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA
| | - M Renee Bellinger
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA
| | - Scott M Geib
- United States Department of Agriculture, Agriculture Research Service, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St, Hilo, HI, 96720, USA
| | - Misaki Takabayashi
- Tropical Conservation Biology and Environmental Science, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA. .,Marine Science Department, University of Hawai'i at Hilo, 200 West Kāwili Street, Hilo, HI, 96720, USA.
| |
Collapse
|
29
|
Jo J, Im SH, Babcock DT, Iyer SC, Gunawan F, Cox DN, Galko MJ. Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization. Cell Death Dis 2017; 8:e2786. [PMID: 28492538 PMCID: PMC5520682 DOI: 10.1038/cddis.2016.474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates.
Collapse
Affiliation(s)
- Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Babcock
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srividya C Iyer
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Felona Gunawan
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Willsey HR, Zheng X, Carlos Pastor-Pareja J, Willsey AJ, Beachy PA, Xu T. Localized JNK signaling regulates organ size during development. eLife 2016; 5. [PMID: 26974344 PMCID: PMC4848088 DOI: 10.7554/elife.11491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/12/2016] [Indexed: 11/17/2022] Open
Abstract
A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control. DOI:http://dx.doi.org/10.7554/eLife.11491.001 A key challenge in biology is to understand what determines size. As an animal grows, signals are produced that control the size of its organs. Many of the signaling pathways that regulate size during normal animal development also contribute to the formation of tumors. Therefore, it is important to find out exactly how the signaling molecules that regulate size are linked to those that regulate tumor growth. A protein called JNK activates a signaling pathway that triggers tumor growth. JNK signaling also stimulates cells to multiply in tissues that need repair, but it is not known whether it also regulates the size of organs during animal development. Here, Willsey et al. investigate whether JNK is active in the developing wings of fruit flies, which are commonly used as models of animal development. The experiments show that JNK is active in a stripe across the developing wing and is required for the wing to grow to its proper size. A master signal protein called Hedgehog is responsible for establishing this stripe of JNK activity. Unexpectedly, rather than acting through its usual signaling pathway, JNK activates the Hippo pathway in the wing to control organ size during development. Willsey et al.’s findings highlight potential new targets for cancer therapies. A future challenge will be to find out whether small patches of JNK signaling are found in the developing organs of other animals, and whether they can help explain how size changes between species. DOI:http://dx.doi.org/10.7554/eLife.11491.002
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Xiaoyan Zheng
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - José Carlos Pastor-Pareja
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - A Jeremy Willsey
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Philip A Beachy
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Tian Xu
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Huang B, Zhang L, Du Y, Li L, Tang X, Zhang G. Molecular characterization and functional analysis of tumor necrosis factor receptor-associated factor 2 in the Pacific oyster. FISH & SHELLFISH IMMUNOLOGY 2016; 48:12-9. [PMID: 26621757 DOI: 10.1016/j.fsi.2015.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/02/2015] [Accepted: 11/22/2015] [Indexed: 05/11/2023]
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of crucial adaptors, playing vital roles in mediating signal transduction in immune signaling pathways, including RIG-I-like receptor (RLR) signaling pathway. In the present study, a new TRAF family member (CgTRAF2) was identified in the Pacific oyster, Crassostrea gigas. Comparison and phylogenetic analysis revealed that CgTRAF2 could be a new member of the invertebrate TRAF2 family. Quantitative real-time PCR revealed that CgTRAF2 mRNA was highly expressed in the digestive gland, gills, and hemocytes, and it was significantly up-regulated after Vibrio alginolyticus and ostreid herpesvirus 1 (OsHV-1) challenge. The CgTRAF2 mRNA expression profile in different developmental stages of oyster larvae suggested that CgTRAF2 could function in early larval development. CgTRAF2 mRNA expression pattern, after the silence of CgMAVS (Mitochondrial Antiviral Signaling) -like, indicated that CgTRAF2 might function downstream of CgMAVS-like. Moreover, the subcellular localization analysis revealed that CgTRAF2 was localized in cytoplasm, and it may play predominately important roles in signal transduction. Collectively, these results demonstrated that CgTRAF2 might play important roles in the innate immunity and larval development of the Pacific oyster.
Collapse
Affiliation(s)
- Baoyu Huang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linlin Zhang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yishuai Du
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xueying Tang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofan Zhang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
32
|
Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr Biol 2015; 26:38-51. [PMID: 26687625 PMCID: PMC4712172 DOI: 10.1016/j.cub.2015.11.034] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Embryogenesis is remarkably robust to segregating mutations and environmental variation; under a range of conditions, embryos of a given species develop into stereotypically patterned organisms. Such robustness is thought to be conferred, in part, through elements within regulatory networks that perform similar, redundant tasks. Redundant enhancers (or "shadow" enhancers), for example, can confer precision and robustness to gene expression, at least at individual, well-studied loci. However, the extent to which enhancer redundancy exists and can thereby have a major impact on developmental robustness remains unknown. Here, we systematically assessed this, identifying over 1,000 predicted shadow enhancers during Drosophila mesoderm development. The activity of 23 elements, associated with five genes, was examined in transgenic embryos, while natural structural variation among individuals was used to assess their ability to buffer against genetic variation. Our results reveal three clear properties of enhancer redundancy within developmental systems. First, it is much more pervasive than previously anticipated, with 64% of loci examined having shadow enhancers. Their spatial redundancy is often partial in nature, while the non-overlapping function may explain why these enhancers are maintained within a population. Second, over 70% of loci do not follow the simple situation of having only two shadow enhancers-often there are three (rols), four (CadN and ade5), or five (Traf1), at least one of which can be deleted with no obvious phenotypic effects. Third, although shadow enhancers can buffer variation, patterns of segregating variation suggest that they play a more complex role in development than generally considered.
Collapse
|
33
|
Wang J, Wang R, Wang S, Zhang M, Ma X, Liu P, Zhang M, Hu X, Zhang L, Wang S, Bao Z. Genome-wide identification and characterization of TRAF genes in the Yesso scallop (Patinopecten yessoensis) and their distinct expression patterns in response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 47:545-555. [PMID: 26434715 DOI: 10.1016/j.fsi.2015.09.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The tumor necrosis factor (TNF) receptor associated factors (TRAFs) are the major signal transducers for the TNF receptor superfamily and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily, which regulate a variety of cellular activities and innate immune responses. TRAF genes have been extensively studied in various species, including vertebrates and invertebrates. However, as one of the key component of NF-κB pathway, TRAF genes have not been systematically characterized in marine invertebrates. In this study, we identified and characterized five TRAF genes, PyTRAF2, PyTRAF3, PyTRAF4, PyTRAF6 and PyTRAF7, in the Yesso scallop (Patinopecten yessoensis). Phylogenetic and protein structural analyses were conducted to determine their identities and evolutionary relationships. In comparison with the TRAF genes from vertebrate species, the structural features were all relatively conserved in the PyTRAF genes. To gain insights into the roles of TRAF genes during scallop innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in the different stages of scallop development, in the healthy adult tissues, and in the hemocytes after bacterial infection with Micrococcus luteus and Vibrio anguillarum. Based on the qRT-PCR analysis, the expression of most of the PyTRAFs was significantly induced in the acute phases (3-6 h) after infection with Gram-positive (M. luteus) and Gram-negative (V. anguillarum) bacteria, and many more dramatic changes in PyTRAFs expression were observed after V. anguillarum challenge. Notably, the strong response in the up-regulation of PyTRAF6 post-bacterial challenge was distinct from that previously reported in scallops and crabs but was similar to that of other shellfish, Echinodermata and even teleost fish. The high level expressions of PyTRAFs in the hemocytes and the gill, and their specific expression patterns after challenges provide insights into the versatile roles and responses of TRAFs in the innate immune system against Gram-negative bacterial pathogens in bivalves.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruijia Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Shuyue Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengran Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Pingping Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Meiwei Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
34
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
35
|
Querenet M, Danjoy ML, Mollereau B, Davoust N. Expression of dengue virus NS3 protein in Drosophila alters its susceptibility to infection. Fly (Austin) 2015; 9:1-6. [PMID: 26267447 DOI: 10.1080/19336934.2015.1072662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We developed a Drosophila model in which the dengue virus NS3 protein is expressed in a tissue specific and inducible manner. Dengue virus NS3 is a multifunctional protein playing a major role during viral replication. Both protease and helicase domains of NS3 are interacting with human and insect host proteins including innate immune components of the host machinery. We characterized the NS3 transgenic flies showing that NS3 expression did not affect fly development. To further study the links between NS3 and the innate immune response, we challenge the flies with gram-positive and gram-negative bacteria. Interestingly, the Drosophila transgenic flies expressing NS3 were more susceptible to bacterial infections than control flies. However ubiquitous or immune-specific NS3 expression affected neither the life span nor the response to a non-infectious stress of the flies. In conclusion, we generated a new in vivo system to study the functional impact of DENV NS3 protein on the innate immune response.
Collapse
Affiliation(s)
- Matthieu Querenet
- a Université de Lyon; Laboratory of Molecular Biology of the Cell; UMR5239 CNRS/Ecole Normale Supérieure de Lyon ; Lyon , France
| | | | | | | |
Collapse
|
36
|
Zhou SM, Li M, Yang N, Liu S, Yuan XM, Tao Z, Wang GL. First description and expression analysis of tumor necrosis factor receptor-associated factor 6 (TRAF6) from the swimming crab, Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:205-10. [PMID: 25882635 DOI: 10.1016/j.fsi.2015.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 05/11/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a cytoplasmic adapter protein that mediates signals induced by the tumor necrosis factor receptor (TNFR) superfamily and the interleukin-1 receptor (IL-1R). In the present study, the full-length cDNA of TRAF6 (Pt-TRAF6) was identified in a marine crab, Portunus trituberculatus. Pt-TRAF6 ORF is predicted to encode a 599-amino acid protein, including a RING type zinc finger, two TRAF-type zinc fingers, and a meprin and TRAF homology (MATH) domain. The overall amino acid sequence identity between Pt-TRAF6 and other TRAF6s ranged from 50.9 to 51.3% for shrimp and from 16.1 to 19.4% for insects. The Pt-TRAF6 gene contains six exons and five introns, which is different from the organization of the insect TRAF6 gene. Pt-TRAF6 transcripts were broadly expressed in all tissues tested, and their expression was higher in hemocytes, gills, the intestine, and heart than in muscle. Interestingly, the level of Pt-TRAF6 transcript differed between male and female crabs. After Vibrio alginolyticus or lipopolysaccharide (LPS) challenge, the Pt-TRAF6 transcript was down-regulated in hemocytes and up-regulated in gills. Moreover, Pt-TRAF6 expression was altered sooner in the LPS challenge group than in the V. alginolyticus challenge group. These results indicate that Pt-TRAF6 may respond to Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Su-Ming Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Meng Li
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Ning Yang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Shun Liu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Xue-Mei Yuan
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Zhen Tao
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Guo-Liang Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, School of Marine Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
37
|
Lund VK, Delotto R. Regulation of Toll and Toll-like receptor signaling by the endocytic pathway. Small GTPases 2014; 2:95-98. [PMID: 21776409 DOI: 10.4161/sgtp.2.2.15378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 12/21/2022] Open
Abstract
The Toll/TLR receptor family plays a central role in both vertebrate and insect immunity, driving the activation of humoral immunity in response to pathogens. In Drosophila, Toll is also responsible for directing the formation of the Dorsal/NFkappaB gradient specifying dorsoventral patterning of the embryo. Two recent studies have revealed that endocytosis and elements of the molecular machinery governing endosomal progression are required for Drosophila Toll signaling in development and immunity. We demonstrated that Toll is not only present at the plasma membrane but also in a Rab5(+) early endosomal compartment in the embryo and that the distribution of constitutively active Toll(10B) is shifted towards endosomes. Localized inhibition of Rab5 function on the ventral side leads to a reduction of nuclear Dorsal levels, while locally increasing Rab5 function leads to potentiation of signaling. Independently, another laboratory identified the endosomal protein Mop as a potentiator of Toll signaling in Drosophila cell culture and fat-body tissue. Mop functions together with the ESCRT 0 component, Hrs, previously reported to stimulate endosomal progression and the signaling ability of internalized EGFR. We discuss these studies and briefly summarize the most significant findings concerning the role of intracellular localization and trafficking in mammalian TLR function.
Collapse
Affiliation(s)
- Viktor K Lund
- Department of Biology; University of Copenhagen; Denmark
| | | |
Collapse
|
38
|
Mishra AK, Sachan N, Mutsuddi M, Mukherjee A. TRAF6 is a novel regulator of Notch signaling in Drosophila melanogaster. Cell Signal 2014; 26:3016-26. [PMID: 25280943 DOI: 10.1016/j.cellsig.2014.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 01/26/2023]
Abstract
Notch signaling pathway unravels a fundamental cellular communication system that plays an elemental role in development. It is evident from different studies that the outcome of Notch signaling depends on signal strength, timing, cell type, and cellular context. Since Notch signaling affects a spectrum of cellular activity at various developmental stages by reorganizing itself in more than one way to produce different intensities in the signaling output, it is important to understand the context dependent complexity of Notch signaling and different routes of its regulation. We identified, TRAF6 (Drosophila homolog of mammalian TRAF6) as an interacting partner of Notch intracellular domain (Notch-ICD). TRAF6 genetically interacts with Notch pathway components in trans-heterozygous combinations. Immunocytochemical analysis shows that TRAF6 co-localizes with Notch in Drosophila third instar larval tissues. Our genetic interaction data suggests that the loss-of-function of TRAF6 leads to the rescue of previously identified Kurtz-Deltex mediated wing notching phenotype and enhances Notch protein survival. Co-expression of TRAF6 and Deltex results in depletion of Notch in the larval wing discs and down-regulates Notch targets, Wingless and Cut. Taken together, our results suggest that TRAF6 may function as a negative regulator of Notch signaling.
Collapse
Affiliation(s)
- Abhinava K Mishra
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221 005, India
| | - Nalani Sachan
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221 005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221 005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
39
|
Huang G, Huang S, Yan X, Yang P, Li J, Xu W, Zhang L, Wang R, Yu Y, Yuan S, Chen S, Luo G, Xu A. Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proc Natl Acad Sci U S A 2014; 111:13469-13474. [PMID: 25187559 PMCID: PMC4169980 DOI: 10.1073/pnas.1405414111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals exploit different germ-line-encoded proteins with various domain structures to detect the signature molecules of pathogenic microbes. These molecules are known as pathogen-associated molecular patterns (PAMPs), and the host proteins that react with PAMPs are called pattern recognition proteins (PRPs). Here, we present a novel type of protein domain structure capable of binding to bacterial peptidoglycan (PGN) and the minimal PGN motif muramyl dipeptide (MDP). This domain is designated as apextrin C-terminal domain (ApeC), and its presence was confirmed in several invertebrate phyla and subphyla. Two apextrin-like proteins (ALP1 and ALP2) were identified in a basal chordate, the Japanese amphioxus Branchiostoma japonicum (bj). bjALP1 is a mucosal effector secreted into the gut lumen to agglutinate the Gram-positive bacterium Staphylococcus aureus via PGN binding. Neutralization of secreted bjALP1 by anti-bjALP1 monoclonal antibodies caused serious damage to the gut epithelium and rapid death of the animals after bacterial infection. bjALP2 is an intracellular PGN sensor that binds to TNF receptor-associated factor 6 (TRAF6) and prevents TRAF6 from self-ubiquitination and hence from NF-κB activation. MDP was found to compete with TRAF6 for bjALP2, which released TRAF6 to activate the NF-κB pathway. BjALP1 and bjALP2 therefore play distinct and complementary functions in amphioxus gut mucosal immunity. In conclusion, discovery of the ApeC domain and the functional analyses of amphioxus ALP1 and ALP2 allowed us to define a previously undocumented type of PRP that is represented across different animal phyla.
Collapse
Affiliation(s)
- Guangrui Huang
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China; School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ping Yang
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Weiya Xu
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Lingling Zhang
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yingcai Yu
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Guangbin Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Open Laboratory for Marine Functional Genomics of the State High-Tech Development Program, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China; School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; and
| |
Collapse
|
40
|
Alternative splicing and immune response of Crassostrea gigas tumor necrosis factor receptor-associated factor 3. Mol Biol Rep 2014; 41:6481-91. [DOI: 10.1007/s11033-014-3531-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/19/2014] [Indexed: 11/26/2022]
|
41
|
Igaki T, Miura M. The Drosophila TNF ortholog Eiger: emerging physiological roles and evolution of the TNF system. Semin Immunol 2014; 26:267-74. [PMID: 24981286 DOI: 10.1016/j.smim.2014.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022]
Abstract
The TNF and TNFR superfamilies of proteins are conserved throughout evolution. The first invertebrate orthologs of TNF and TNFR, Eiger and Wengen, were identified in Drosophila, which enabled us to take advantage of its powerful genetics. Indeed, genetic studies on Eiger in the last decade have discovered their signaling mechanisms through activation of the JNK pathway and unveiled the role of Eiger-JNK signaling in a variety of cellular and tissue processes such as cell death, cell proliferation, tissue growth regulation, host defense, pain sensitization, and canalization. In this review, we will describe the in vivo signaling of Eiger and its physiological roles in fly development and homeostasis, and will discuss the evolution of the TNF/TNFR systems.
Collapse
Affiliation(s)
- Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Basic Research Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Basic Research Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
42
|
Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci 2014; 34:2797-812. [PMID: 24553922 DOI: 10.1523/jneurosci.2982-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inherited mutations that lead to misfolding of the visual pigment rhodopsin (Rho) are a prominent cause of photoreceptor neuron (PN) degeneration and blindness. How Rho proteotoxic stress progressively impairs PN viability remains unknown. To identify the pathways that mediate Rho toxicity in PNs, we performed a comprehensive proteomic profiling of retinas from Drosophila transgenics expressing Rh1(P37H), the equivalent of mammalian Rho(P23H), the most common Rho mutation linked to blindness in humans. Profiling of young Rh1(P37H) retinas revealed a coordinated upregulation of energy-producing pathways and attenuation of energy-consuming pathways involving target of rapamycin (TOR) signaling, which was reversed in older retinas at the onset of PN degeneration. We probed the relevance of these metabolic changes to PN survival by using a combination of pharmacological and genetic approaches. Chronic suppression of TOR signaling, using the inhibitor rapamycin, strongly mitigated PN degeneration, indicating that TOR signaling activation by chronic Rh1(P37H) proteotoxic stress is deleterious for PNs. Genetic inactivation of the endoplasmic reticulum stress-induced JNK/TRAF1 axis as well as the APAF-1/caspase-9 axis, activated by damaged mitochondria, dramatically suppressed Rh1(P37H)-induced PN degeneration, identifying the mitochondria as novel mediators of Rh1(P37H) toxicity. We thus propose that chronic Rh1(P37H) proteotoxic stress distorts the energetic profile of PNs leading to metabolic imbalance, mitochondrial failure, and PN degeneration and therapies normalizing metabolic function might be used to alleviate Rh1(P37H) toxicity in the retina. Our study offers a glimpse into the intricate higher order interactions that underlie PN dysfunction and provides a useful resource for identifying other molecular networks that mediate Rho toxicity in PNs.
Collapse
|
43
|
Antiviral autophagy restrictsRift Valley fever virus infection and is conserved from flies to mammals. Immunity 2013; 40:51-65. [PMID: 24374193 DOI: 10.1016/j.immuni.2013.10.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023]
Abstract
Autophagy has been implicated as a component of host defense, but the significance of antimicrobial autophagy in vivo and the mechanism by which it is regulated during infection are poorly defined. Here we found that antiviral autophagy was conserved in flies and mammals during infection with Rift Valley fever virus (RVFV), a mosquito-borne virus that causes disease in humans and livestock. In Drosophila, Toll-7 limited RVFV replication and mortality through activation of autophagy. RVFV infection also elicited autophagy in mouse and human cells, and viral replication was increased in the absence of autophagy genes. The mammalian Toll-like receptor adaptor, MyD88, was required for anti-RVFV autophagy, revealing an evolutionarily conserved requirement for pattern-recognition receptors in antiviral autophagy. Pharmacologic activation of autophagy inhibited RVFV infection in mammalian cells, including primary hepatocytes and neurons. Thus, autophagy modulation might be an effective strategy for treating RVFV infection, which lacks approved vaccines and therapeutics.
Collapse
|
44
|
TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration. PLoS Biol 2013; 11:e1001726. [PMID: 24311986 PMCID: PMC3848981 DOI: 10.1371/journal.pbio.1001726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022] Open
Abstract
The cancer-associated TRAF4 protein has a TRAF domain that is a bona fide phosphoinositide-binding domain and involved in the modulation of tight junctions and cell migration. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration. Tumor necrosis factor (TNF) receptor-associated factor 4, also known as TRAF4, is an unusual member of the TRAF protein family. While TRAFs are primarily known as regulators of inflammation, antiviral responses, and apoptosis, research on TRAF4 has identified its involvement in development and cancer. Importantly TRAF4 overexpression has been associated with a poor prognosis in breast cancers. TRAF4 has multiple subcellular localizations: to the plasma membrane in tight junctions (TJs), cytoplasmic and nuclear. The recruitment mechanisms and the functional impact of these distinct localizations are not completely understood. Here we investigate how TRAF4 is recruited to TJs and its involvement in cell–cell contacts in mammary epithelial cells (MECs). We show that the TRAF domain of all TRAFs contains a lipid binding module, and that TRAF4 uses this domain to form a trimeric complex that associates with phosphoinositides at the plasma membrane. Moreover this interaction is necessary for its recruitment to TJs. Additionally, we show that through its interaction with lipids TRAF4 delays TJ assembly and increases cell migration. We propose that TRAF4 has an important function in cancer progression by destabilizing TJs and favoring cell migration.
Collapse
|
45
|
Zhang X, Wen Z, Mi X. Expression and anti-apoptotic function of TRAF4 in human breast cancer MCF-7 cells. Oncol Lett 2013; 7:411-414. [PMID: 24396457 PMCID: PMC3881200 DOI: 10.3892/ol.2013.1703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 11/12/2013] [Indexed: 11/12/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) was initially identified as a gene amplified and overexpressed in breast carcinoma. The present study investigated the expression and anti-apoptotic function of TRAF4 in human breast cancer MCF-7 cells. TRAF4 was found to be localized in the cytoplasm and nuclei of MCF-7 cells by immunofluorescence staining and western blotting. The expression of TRAF4 in normal MCF-10A breast cells was found to be lower than in MCF-7 and MDA-MB-231 breast cancer cells. Following TNF-α treatment, TRAF4 depletion by siRNA in the MCF-7 cells was observed to suppress cell proliferation and the nuclear expression of nuclear factor κB was significantly reduced. The percentage of early apoptotic cells in the MCF-7 cells was augmented upon TRAF4-knockdown, and an increase in G1 phase cells and a decrease in S phase cells was detected. These results indicate that TRAF4 has anti-apoptotic effects on apoptosis induced by TNF-α in MCF-7 cells.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China ; Department of Assisted Reproduction, Shenyang Women's and Children's Hospital, Shenyang, Liaoning 110001, P.R. China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoyi Mi
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
46
|
Tang HW, Liao HM, Peng WH, Lin HR, Chen CH, Chen GC. Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell 2013; 27:489-503. [PMID: 24268699 DOI: 10.1016/j.devcel.2013.10.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 09/09/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved catabolic process that degrades and recycles intracellular components through the lysosomes. Atg9 is the only integral membrane protein among autophagy-related (Atg) proteins thought to carry the membrane source for forming autophagosomes. Here we show that Drosophila Atg9 interacts with Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2) to regulate the c-Jun N-terminal kinase (JNK) signaling pathway. Significantly, depletion of Atg9 and dTRAF2 compromised JNK-mediated intestinal stem cell proliferation and autophagy induction upon bacterial infection and oxidative stress stimulation. In mammalian cells, mAtg9 interacts with TRAF6, the homolog of dTRAF2, and plays an essential role in regulating oxidative stress-induced JNK activation. Moreover, we found that ROS-induced autophagy acts as a negative feedback regulator of JNK activity by dissociating Atg9/mAtg9 from dTRAF2/TRAF6 in Drosophila and mammalian cells, respectively. Our findings indicate a dual role for Atg9 in the regulation of JNK signaling and autophagy under oxidative stress conditions.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hsiao-Man Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hong-Ru Lin
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Hong Chen
- Institute of Molecular and Genomic Medicine, National Heath Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
47
|
Cloning, promoter analysis and expression of the tumor necrosis factor receptor-associated factor 6 (TRAF6) in Japanese scallop (Mizuhopecten yessoensis). Mol Biol Rep 2013; 40:4769-79. [DOI: 10.1007/s11033-013-2573-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
|
48
|
Ríos-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: The drosophila jun N-terminal kinase pathway. Genesis 2012; 51:147-62. [DOI: 10.1002/dvg.22354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/14/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Luis Daniel Ríos-Barrera
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobioloy and Neurophysiology Department; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Boulevard Juriquilla #3001; Querétaro, Querétaro; México; c.p. 76230
| |
Collapse
|
49
|
Huang XD, Liu WG, Guan YY, Shi Y, Wang Q, Zhao M, Wu SZ, He MX. Molecular cloning, characterization and expression analysis of tumor necrosis factor receptor-associated factor 3 (TRAF3) from pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2012; 33:652-658. [PMID: 22796485 DOI: 10.1016/j.fsi.2012.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
TRAF3 is a highly versatile regulator that negatively regulates JNK and alternative nuclear factor-κB signalling, but positively controls type I interferon production. To investigate TRAF3 function in innate immune responses among invertebrate especially mollusk, we characterized TRAF3 (PfTRAF3) from pearl oyster Pinctada fucata, one of the most important bivalve mollusks for seawater pearl production. PfTRAF3 cDNA is 2261 bp with an open reading frame of 1623 bp encoding a putative protein of 541 amino acids. The deduced PfTRAF3 contains a RING finger domain, two TRAF domains with zinc finger domains and a conserved C-terminal meprin and TRAF homology (MATH) domain. Comparison and phylogenetic analysis revealed that PfTRAF3 from mollusk shared a higher identity with Ciona intestinalis TRAF3 from urochordata, Branchiostoma belcheri TRAF3 from cephalochordate, and even TRAF3 from vertebrate than with insect homologues. Furthermore, gene expression analyses suggested that PfTRAF3 was involved in the immune response to Vibrio alginolyticus.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics 2012; 44:764-77. [DOI: 10.1152/physiolgenomics.00042.2012] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to respond rapidly to changes in temperature is critical for insects and other ectotherms living in variable environments. In a physiological process termed rapid cold-hardening (RCH), exposure to nonlethal low temperature allows many insects to significantly increase their cold tolerance in a matter of minutes to hours. Additionally, there are rapid changes in gene expression and cell physiology during recovery from cold injury, and we hypothesize that RCH may modulate some of these processes during recovery. In this study, we used a combination of transcriptomics and metabolomics to examine the molecular mechanisms of RCH and cold shock recovery in the flesh fly, Sarcophaga bullata. Surprisingly, out of ∼15,000 expressed sequence tags (ESTs) measured, no transcripts were upregulated during RCH, and likewise RCH had a minimal effect on the transcript signature during recovery from cold shock. However, during recovery from cold shock, we observed differential expression of ∼1,400 ESTs, including a number of heat shock proteins, cytoskeletal components, and genes from several cell signaling pathways. In the metabolome, RCH had a slight yet significant effect on several metabolic pathways, while cold shock resulted in dramatic increases in gluconeogenesis, amino acid synthesis, and cryoprotective polyol synthesis. Several biochemical pathways showed congruence at both the transcript and metabolite levels, indicating that coordinated changes in gene expression and metabolism contribute to recovery from cold shock. Thus, while RCH had very minor effects on gene expression, recovery from cold shock elicits sweeping changes in gene expression and metabolism along numerous cell signaling and biochemical pathways.
Collapse
Affiliation(s)
| | - Justin T. Peyton
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio
| | - Gregory J. Ragland
- Environmental Change Initiative and Department of Biology, University of Notre Dame, Notre Dame, Indiana
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - Herve Colinet
- Université de Rennes 1, Unite Mixté de Recherche Centre National de la Recherche Scientifique 6553 Ecobio, Rennes Cedex, France
- Earth and Life Institute ELI, Biodiversity Research Centre BDIV, Catholic University of Louvain, Louvain-la-Neuve, Belgium; and
| | - David Renault
- Université de Rennes 1, Unite Mixté de Recherche Centre National de la Recherche Scientifique 6553 Ecobio, Rennes Cedex, France
| | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - David L. Denlinger
- Department of Entomology, Ohio State University, Columbus, Ohio
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio
| |
Collapse
|