1
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Liu N, Chen Y, Yang L, Shi Q, Lu Y, Ma W, Han X, Guo H, Li D, Gan W. Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma. Clin Transl Med 2022; 12:e797. [PMID: 35452181 PMCID: PMC9029019 DOI: 10.1002/ctm2.797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background The aggressiveness of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion (Xp11.2 translocation RCC [Xp11.2 tRCC]) is age‐dependent, which is similar to the overall trend of reproductive endocrine hormones. Therefore, this study focused on the effect and potential mechanism of androgen and androgen receptor (AR) on the progression of Xp11.2 tRCC. Methods The effects of androgen and AR on the proliferation and migration of Xp11.2 tRCC cells were first evaluated utilising Xp11.2 tRCC cell lines and tissues. Because Transcription factor enhancer 3 (TFE3) fusion proteins play a key role in Xp11.2 tRCC, we focused on the regulatory role of AR and TFE3 expression and transcriptional activity. Results When Xp11.2 tRCC cells were treated with dihydrotestosterone, increased cell proliferation, invasion and migration were observed. Compared with clear cell RCC, the positive rate of AR in Xp11.2 tRCC tissues was higher, and its expression was negatively associated with the progression‐free survival of Xp11.2 tRCC. Further studies revealed that AR could positively regulate the transcriptional activity of TFE3 fusion proteins by small ubiquitin‐related modifier (SUMO)‐specific protease 1, inducing the deSUMOylation of TFE3 fusion. On the other hand, UCHL1 negatively regulated by AR plays a role in the deubiquitination degradation of the PRCC‐TFE3 fusion protein. Therefore, the combination of the AR inhibitor MDV3100 and the UCHL1 inhibitor 6RK73 was effective in delaying the progression of Xp11.2 tRCC, especially PRCC‐TFE3 tRCC. Conclusions Androgen and AR function as facilitators in Xp11.2 tRCC progression and may be a novel therapeutic target for Xp11.2 tRCC. The combined use of AR antagonist MDV3100 and UCHL1 inhibitor 6RK73 increased both the SUMOylation and ubiquitination of the PRCC‐TFE3 fusion protein
Collapse
Affiliation(s)
- Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qiancheng Shi
- Department of Urology, Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Oppezzo A, Rosselli F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021; 11:18. [PMID: 33441180 PMCID: PMC7805242 DOI: 10.1186/s13578-021-00529-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Haematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks. Most TFs are highly pleiotropic; i.e., they are capable of influencing two or more apparently unrelated phenotypic traits, and the action of a single TF in a specific setting often depends on its interaction with other TFs and signalling pathway components. The microphthalmia-associated TF (MiTF) is a prototype TF in multiple situations. MiTF has been described extensively as a key regulator of melanocyte and melanoma development because it acts mainly as an oncogene. Mitf-mutated mice show a plethora of pleiotropic phenotypes, such as microphthalmia, deafness, abnormal pigmentation, retinal degeneration, reduced mast cell numbers and osteopetrosis, revealing a greater requirement for MiTF activity in cells and tissue. A growing amount of evidence has led to the delineation of key roles for MiTF in haematopoiesis and/or in cells of haematopoietic origin, including haematopoietic stem cells, mast cells, NK cells, basophiles, B cells and osteoclasts. This review summarizes several roles of MiTF in cells of the haematopoietic system and how MiTFs can impact BM development.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
4
|
Zhou S, Sakamoto K. Citric acid promoted melanin synthesis in B16F10 mouse melanoma cells, but inhibited it in human epidermal melanocytes and HMV-II melanoma cells via the GSK3β/β-catenin signaling pathway. PLoS One 2020; 15:e0243565. [PMID: 33332393 PMCID: PMC7746170 DOI: 10.1371/journal.pone.0243565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Melanin, a pigment synthesized by melanocytes in the skin, resists the damage caused by ultraviolet rays to cells. Citric acid, a well-known food additive, is commonly used as an antioxidant and is an important part of the tricarboxylic acid (TCA) cycle for energy production during cellular metabolism. Here, we aimed to investigate whether the addition of excess citric acid regulates melanin synthesis, and to delineate the underlying mechanism. First, we observed that citric acid exerts opposite redox effects on mouse and human cells. Interestingly, treatment with excess citric acid increased the melanin content in mouse cells but decreased it in human cells. Furthermore, the expression of factors important for melanin synthesis, such as microphthalmia-associated transcription factor (MITF), was also regulated by citric acid treatment-it was promoted in mouse cells and suppressed in human cells. Citric acid also impacted the upstream regulators of MITF, glycogen synthase kinase 3β (GSK3β), and β-catenin. Second, we determined the importance of GSK3β in the citric acid-mediated regulation of melanin synthesis, using a GSK3β inhibitor (BIO). To the best of our knowledge, this is the first study to show that citric acid regulates melanin synthesis via the GSK3β/β-catenin signaling pathway, and that equal amounts of exogenous citric acid exert opposing effects on mouse and human cells.
Collapse
Affiliation(s)
- Siqi Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
5
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
6
|
Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chem Biol Interact 2018; 286:132-140. [DOI: 10.1016/j.cbi.2018.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 11/19/2022]
|
7
|
Pathways from senescence to melanoma: focus on MITF sumoylation. Oncogene 2017; 36:6659-6667. [PMID: 28825724 DOI: 10.1038/onc.2017.292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous melanoma is a deadly skin cancer that originates from melanocytes. The development of cutaneous melanoma involves a complex interaction between environmental factors, mainly ultraviolet radiation from sunlight, and genetic alterations. Melanoma can also occur from a pre-existing nevus, a benign lesion formed from melanocytes harboring oncogenic mutations that trigger proliferative arrest and senescence entry. Senescence is a potent barrier against tumor progression. As such, the acquisition of mutations that suppress senescence and promote cell division is mandatory for cancer development. This topic appears central to melanoma development because, in humans, several somatic and germline mutations are related to the control of cellular senescence and proliferative activity. Consequently, primary melanoma can be viewed as a paradigm of senescence evasion. In support of this notion, a sumoylation-defective germline mutation in microphthalmia-associated transcription factor (MITF), a master regulator of melanocyte homeostasis, is associated with the development of melanoma. Interestingly, this MITF variant has also been recently reported to negatively impact the program of senescence. This article reviews the genetic alterations that have been shown to be involved in melanoma and that alter the process of senescence to favor melanoma development. Then, the transcription factor MITF and its sumoylation-defective mutant are described. How sumoylation misregulation can change MITF activity and impact the process of senescence is discussed. Finally, the contribution of such information to the development of anti-malignant melanoma strategies is evaluated.
Collapse
|
8
|
Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res 2015; 28:390-406. [PMID: 25818589 PMCID: PMC4692100 DOI: 10.1111/pcmr.12370] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is a neoplasm of melanocytes, and the microphthalmia-associated transcription factor (MITF) is essential for the existence of melanocytes. MITF's relevance for this cell lineage is maintained in melanoma, where it is an important regulator of survival and balances melanoma cell proliferation with terminal differentiation (pigmentation). The MITF gene is amplified in ~20% of melanomas and MITF mutation can predispose to melanoma development. Furthermore, the regulation of MITF expression and function is strongly linked to the BRAF/MEK/ERK/MAP-kinase (MAPK) pathway, which is deregulated in >90% of melanomas and central target of current therapies. MITF expression in melanoma is heterogeneous, and recent findings highlight the relevance of this heterogeneity for the response of melanoma to MAPK pathway targeting drugs, as well as for MITF's role in melanoma progression. This review aims to provide an updated overview on the regulation of MITF function and plasticity in melanoma with a focus on its link to MAPK signaling.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Manchester Cancer Research CentreWellcome Trust Centre for Cell Matrix ResearchFaculty of Life SciencesThe University of ManchesterManchesterUK
| | - Imanol Arozarena
- Manchester Cancer Research CentreWellcome Trust Centre for Cell Matrix ResearchFaculty of Life SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
9
|
Tan B, Anaka M, Deb S, Freyer C, Ebert LM, Chueh AC, Al-Obaidi S, Behren A, Jayachandran A, Cebon J, Chen W, Mariadason JM. FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis. Oncotarget 2014; 5:264-76. [PMID: 24406338 PMCID: PMC3960207 DOI: 10.18632/oncotarget.1600] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Forkhead box P3 (FOXP3) transcription factor is the key driver of regulatory T cell (Treg cells) differentiation and immunosuppressive function. In addition, FOXP3 has been reported to be expressed in many tumors, including melanoma. However, its role in tumorigenesis is conflicting, with both tumor suppressive and tumor promoting functions described. The aim of the current study was to characterize the expression and function of FOXP3 in melanoma. FOXP3 expression was detected by immunohistochemistry (IHC) in 12% (18/146) of stage III and IV melanomas. However expression was confined to fewer than 1% of cells in these tumors. Stable over-expression of FOXP3 in the SK-MEL-28 melanoma cell line reduced cell proliferation and clonogenicity in vitro, and reduced xenograft growth in vivo. FOXP3 over-expression also increased pigmentation and the rate of apoptosis of SK-MEL-28 cells. Based on its infrequent expression in human melanoma, and its growth inhibitory and pro-apoptotic effect in over-expressing melanoma cells, we conclude that FOXP3 is not likely to be a key tumor suppressor or promoter in melanoma.
Collapse
Affiliation(s)
- BeeShin Tan
- Ludwig Institute for Cancer Research Ltd. Melbourne-Austin Branch, Heidelberg, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
11
|
Ruffini F, Tentori L, Dorio AS, Arcelli D, D'Amati G, D'Atri S, Graziani G, Lacal PM. Platelet-derived growth factor C and calpain-3 are modulators of human melanoma cell invasiveness. Oncol Rep 2013; 30:2887-96. [PMID: 24126726 DOI: 10.3892/or.2013.2791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms responsible for the elevated metastatic potential of malignant melanoma are still not fully understood. In order to shed light on the molecules involved in the acquisition by melanoma of a highly aggressive phenotype, we compared the gene expression profiles of two cell clones derived from the human cutaneous metastatic melanoma cell line M14: a highly invasive clone (M14C2/MK18) and a clone (M14C2/C4) with low ability to invade the extracellular matrix (ECM). The highly invasive phenotype of M14C2/MK18 cells was correlated with overexpression of neuropilin-1, activation of a vascular endothelial growth factor (VEGF)-A/VEGFR-2 autocrine loop and secretion of matrix metalloprotease-2. Moreover, in an in vivo murine model, M14C2/MK18 cells displayed a higher growth rate as compared with M14C2/C4 cells, even though in vitro both clones possessed comparable proliferative potential. Microarray analysis in M14C2/MK18 cells showed a strong upregulation of platelet-derived growth factor (PDGF)-C, a cytokine that contributes to angiogenesis, and downregulation of calpain-3, a calcium-dependent thiol-protease that regulates specific signalling cascade components. Inhibition of PDGF-C with a specific antibody resulted in a significant decrease in ECM invasion by M14C2/MK18 cells, confirming the involvement of PDGF-C in melanoma cell invasiveness. Moreover, the PDGF-C transcript was found to be upregulated in a high percentage of human melanoma cell lines (17/20), whereas only low PDGF-C levels were detected in a few melanocytic cultures (2/6). By contrast, inhibition of calpain-3 activity in M14C2/C4 control cells, using a specific chemical inhibitor, markedly increased ECM invasion, strongly suggesting that downregulation of calpain-3 plays a role in the acquisition of a highly invasive phenotype. The results indicate that PDGF-C upregulation and calpain-3 downregulation are involved in the aggressiveness of malignant melanoma and suggest that modulators of these proteins or their downstream effectors may synergise with VEGF‑A therapies in combating tumour-associated angiogenesis and melanoma spread.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis. Cell Death Dis 2013; 4:e811. [PMID: 24052079 PMCID: PMC3789191 DOI: 10.1038/cddis.2013.333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022]
Abstract
Prostate cancer is one of the most frequently diagnosed cancers among men. Dietary intake of nutrients is considered crucial for preventing the initiation of events leading to the development of carcinoma. Many dietary compounds have been considered to contribute to cancer prevention including zinc, which has a pivotal role in modulating apoptosis. However, the mechanism for zinc-mediated prostate cancer chemoprevention remains enigmatic. In this study, we investigated the therapeutic effect of zinc in prostate cancer chemoprevention for the first time. Exposure to zinc induced apoptosis and resulted in transactivation of p21WAF1/Cip1 in a Smad-dependent and p53-independent manner in prostate cancer cells. Smad2 and PIAS1 proteins were significantly upregulated resulting in dramatically increased interactions between Smad2/4 and PIAS1 in the presence of zinc in LNCaP cells. Furthermore, it was found that the zinc-induced Smad4/2/PIAS1 transcriptional complex is responsible for Smad4 binding to SBE1 and SBE3 regions within the p21WAF1/Cip1 promoter. Exogenous expression of Smad2/4 and PIAS1 promotes zinc-induced apoptosis concomitant with Smad4 nuclear translocation, whereas endogenous Smad2/4 silencing inhibited zinc-induced apoptosis accompanying apparent p21WAF1/Cip1 reduction. Moreover, the knockdown of PIAS1 expression attenuated the zinc-induced recruitment of Smad4 on the p21WAF1/Cip1 promoter. The colony formation experiments demonstrate that PIAS1 and Smad2/4 silencing could attenuate zinc apoptotic effects, with a proliferation of promoting effects. We further demonstrate the correlation of apoptotic sensitivity to zinc and Smad4 and PIAS1 in multiple cancer cell lines, demonstrating that the important roles of PIAS1, Smad2, and Smad4 in zinc-induced cell death and p21WAF1/Cip1 transactivation were common biological events in different cancer cell lines. Our results suggest a new avenue for regulation of zinc-induced apoptosis, and provide a model that demonstrates zinc endorses the Smad2/4/PIAS1 complex to activate the p21WAF1/Cip1 gene that mediates apoptosis.
Collapse
|
13
|
Nallar SC, Kalakonda S, Lindner DJ, Lorenz RR, Lamarre E, Weihua X, Kalvakolanu DV. Tumor-derived mutations in the gene associated with retinoid interferon-induced mortality (GRIM-19) disrupt its anti-signal transducer and activator of transcription 3 (STAT3) activity and promote oncogenesis. J Biol Chem 2013; 288:7930-7941. [PMID: 23386605 DOI: 10.1074/jbc.m112.440610] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is critical for multiple cytokine and growth factor-induced biological responses in vivo. Its transcriptional activity is controlled by a transient phosphorylation of a critical tyrosine. Constitutive activation of STAT3 imparts resistance to apoptosis, promotes cell proliferation, and induces de novo micro-angiogenesis, three of the six cardinal hallmarks of a typical cancer cell. Earlier we reported the isolation of GRIM-19 as a growth suppressor using a genome-wide expression knockdown strategy. GRIM-19 binds to STAT3 and suppresses its transcriptional activity. To understand the pathological relevance of GRIM-19, we screened a set of primary head and neck tumors and identified three somatic mutations in GRIM-19. Wild-type GRIM-19 suppressed cellular transformation by a constitutively active form of STAT3, whereas tumor-derived mutants L71P, L91P and A95T significantly lost their ability to associate with STAT3, block gene expression, and suppress cellular transformation and tumor growth in vivo. Additionally, these mutants lost their capacity to prevent metastasis. These mutations define a mechanism by which STAT3 activity is deregulated in certain human head and neck tumors.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sudhakar Kalakonda
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Daniel J Lindner
- Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Robert R Lorenz
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Eric Lamarre
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiao Weihua
- University of Science Technology, 230027 Hefei, China
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
14
|
Tomar D, Sripada L, Prajapati P, Singh R, Singh AK, Singh R. Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-κB pathway. PLoS One 2012; 7:e48662. [PMID: 23152791 PMCID: PMC3495970 DOI: 10.1371/journal.pone.0048662] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/28/2012] [Indexed: 12/16/2022] Open
Abstract
TNF induced nuclear factor kappa B (NF-κB) is one of the central signaling pathways that plays a critical role in carcinogenesis and inflammatory diseases. Post-translational modification through ubiquitin plays important role in the regulation of this pathway. In the current study, we investigated the role of TRIM8, member of RING family ubiquitin ligase in regulation of NF-κB pathway. We observed that TRIM8 positively regulates TNF induced NF-κB pathway. Different domains of TRIM8 showed discrete functions at the different steps in regulation of TNF induced NF-κB pathway. Ubiquitin ligase activity of TRIM8 is essential for regulation of NF-κB activation in both cytoplasm as well as nucleus. TRIM8 negates PIAS3 mediated negative repression of NF-κB at p65 by inducing translocation of PIAS3 from nucleus to cytoplasm as well as its turnover. TNF induces translocation of TRIM8 from nucleus to cytoplasm, which positively regulates NF-κB. The cytoplasmic translocation of TRIM8 is essential for TNF induced NF-κB but not for p65 mediated NF-κB regulation. TRIM8 also enhanced the clonogenic and migration ability of cells by modulating NF-κB. The further study will help to understand the role of TRIM8 in inflammation and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
- * E-mail:
| |
Collapse
|
15
|
Thingnes J, Lavelle TJ, Gjuvsland AB, Omholt SW, Hovig E. Towards a quantitative understanding of the MITF-PIAS3-STAT3 connection. BMC SYSTEMS BIOLOGY 2012; 6:11. [PMID: 22316093 PMCID: PMC3341200 DOI: 10.1186/1752-0509-6-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/08/2012] [Indexed: 01/27/2023]
Abstract
Background Expression of the two transcription factors microphthalmia-associated transcription factor (MITF) and signal transducer and activator of transcription 3 (STAT3) are tightly connected to cell proliferation and survival, and are important for melanocyte development. The co-regulation of MITF and STAT3 via their binding to a common inhibitor Protein Inhibitor of Activated STAT3 (PIAS3) is intriguing. A better quantitative understanding of this regulation is likely to be important for elucidation of the melanocyte biology. Results We present a mathematical model describing the MITF-PIAS3-STAT3 signalling network. A default parameter set was developed, partly informed by the literature and partly by constraining the model to mimic reported behavioural features of the system. In addition, a set of experiment-specific parameters was derived for each of 28 experiments reported in the literature. The model seems capable of accounting for most of these experiments in terms of observed temporal development of protein amounts and phosphorylation states. Further, the results also suggest that this system possesses some regulatory features yet to be elucidated. Conclusions We find that the experimentally observed crosstalk between MITF and STAT3 via PIAS3 in melanocytes is faithfully reproduced in our model, offering mechanistic explanations for this behaviour, as well as providing a scaffold for further studies of MITF signalling in melanoma.
Collapse
Affiliation(s)
- Josef Thingnes
- Centre for Integrative Genetics, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway.
| | | | | | | | | |
Collapse
|
16
|
Liu LM, Yan MG, Yang DH, Sun WW, Zhang JX. The expression of protein inhibitor of activated signal transducers and activators of transcription 3 in the evolutionary process of gastric cancer. Eur J Intern Med 2011; 22:e31-e35. [PMID: 21925039 DOI: 10.1016/j.ejim.2011.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the expression of PIAS3 (protein inhibitor of activated signal transducers and activators of transcription 3) in the evolutionary process of gastric cancer. METHODS Samples were taken from the endoscopic biopsy specimens of 125 patients. Gastric mucosal lesions were diagnosed in HE staining, and chronic atrophic gastritis (CAG) with intestinal metaplasia (IM) were distinguished in AB-PAS and HID-AB staining. The expressions of PIAS3 gene in different types of gastric mucosal lesions were detected by immunocytochemistry and in situ hybridization. The results were analyzed using IPP 6.0 image analysis system, from which the average optical density was obtained of positive cells. RESULTS There were 25 patients with chronic superficial gastritis (CSG), 87 CAG (30 with complete intestinal IM, 27 with incomplete intestinal IM, 21 with complete colonic IM, 9 with incomplete colonic IM), 8 dysplasia (DYS) and 5 gastric cancer (GC). In the expressions of PIAS3 mRNA and protein, a difference was not found between the patients with CSG and those with CAG with complete or incomplete intestinal IM; however, a significant difference was statistically found among patients with CSG (or intestinal IM), complete colonic IM, incomplete colonic IM, DYS and GC, expression levels of which stepped down one by one. CONCLUSIONS There are differences in the PIAS3 expression from different stages of gastric precancerous conditions/lesions to GC, which may reveal a close relationship between expression reduction or loss of PIAS3 and gastric tumorigenesis.
Collapse
Affiliation(s)
- Liang-Ming Liu
- Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai 201600, China.
| | | | | | | | | |
Collapse
|
17
|
Liu LM, Yan MG, Yang DH, Sun WW, Zhang JX. PIAS3 expression in human gastric carcinoma and its adjacent non-tumor tissues. Clin Res Hepatol Gastroenterol 2011; 35:393-398. [PMID: 21334998 DOI: 10.1016/j.clinre.2010.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/27/2010] [Accepted: 12/02/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVE PIAS3 is the endogenous inhibitor of STAT3, which has been implicated in the pathogenesis of many cancers. However, the effect of PIAS3 on human tumors remains elusive. The aim of this article is to investigate the expression of PIAS3 in gastric carcinoma and its adjacent non-tumor tissues. METHODS Samples were taken from 30 patients with gastric cancer, which included tumor or non-tumor tissues in the excised sections. The expression of PIAS3 protein was detected by immunocytochemistry, and that of mRNA by in situ hybridization. The results were semi-quantitative analyzed by using cell count and color depth to stage. RESULTS The expression levels of PIAS3 protein and mRNA were significantly lower in gastric cancerous tissues than in its adjacent non-tumor tissues, and had a close relation with tumor size and differentiation, but not with age, gender and lymphatic metastasis in gastric carcinoma. The more large in size and poorly in differentiation, the more low PIAS3 expression was. CONCLUSION Loss of PIAS3 expression may be an important characteristic of gastric cancer and suggest vicious degree of the tumor.
Collapse
Affiliation(s)
- Liang-ming Liu
- Songjiang Hospital Affiliated to The First People's Hospital Shanghai Jiaotong University, Shanghai 201600, China.
| | | | | | | | | |
Collapse
|
18
|
Yagil Z, Nechushtan H, Kay G, Yang CM, Kemeny DM, Razin E. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol 2010; 31:199-204. [PMID: 20181527 DOI: 10.1016/j.it.2010.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/09/2023]
Abstract
Protein inhibitor of activated STAT3 (PIAS3), the main cellular inhibitor of signal transducers and activator of transcription 3 (STAT3), has been described as a modulator of DNA binding transcription factors. The exploration of the emerging roles of PIAS3 in immune regulation is a growing and fascinating field. Recent discoveries have shed new light on the key role of PIAS3 in the regulation of transcriptional activity, and on the molecular mechanism involved. These findings suggest that the known functions of this signalling molecule are merely the "tip of the iceberg". This article reviews the challenging questions regarding the link between PIAS3 and the intracellular signalling in immune cells. Some of the known functions of PIAS3 that potentially modulate key proteins in the immune system will also be discussed.
Collapse
Affiliation(s)
- Zohar Yagil
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Yagil Z, Kay G, Nechushtan H, Razin E. A Specific Epitope of Protein Inhibitor of Activated STAT3 Is Responsible for the Induction of Apoptosis in Rat Transformed Mast Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2168-75. [DOI: 10.4049/jimmunol.0803030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Kashiwakura JI, Xiao W, Kitaura J, Kawakami Y, Maeda-Yamamoto M, Pfeiffer JR, Wilson BS, Blank U, Kawakami T. Pivotal advance: IgE accelerates in vitro development of mast cells and modifies their phenotype. J Leukoc Biol 2008; 84:357-67. [PMID: 18477690 DOI: 10.1189/jlb.1207841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antigen-dependent activation of IgE-bound mast cells is critical for immediate hypersensitivity and other allergic disorders. Recent studies have revealed the effects of monomeric IgEs on mast cell survival and activation. Furthermore, IgE molecules exhibit a wide range of heterogeneity in the ability to induce mast cell activation in the absence of antigen. Highly cytokinergic (HC) IgEs can induce a variety of activation events including cell survival, degranulation, cytokine production, and migration, whereas poorly cytokinergic (PC) IgEs can do so inefficiently. Here, we show that culture of bone marrow cells in the presence of monomeric IgEs results in an increased number of mast cells compared with cultures grown without IgE. Furthermore, time in culture required to generate > or =80% pure mast cells is decreased. IgE molecules can directly influence mast cell progenitors to differentiate into mast cells. mRNA expression of several mast cell proteases and mast cell-related transcription factors is higher in mast cells cultured with an HC IgE than those cultured with a PC IgE or without IgE. Expression of early growth response factor-1, a transcription factor that is involved in the production of TNF-alpha in mast cells, is enhanced in cultures containing high and low concentrations of HC IgE and a high concentration of PC IgE. Consistent with this, expression of TNF-alpha is higher in mast cells cultured with HC IgE than PC IgE. Therefore, our results suggest that monomeric IgEs, especially HC IgEs, not only promote mast cell development but also modulate the mast cell phenotype.
Collapse
Affiliation(s)
- Jun-ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gelineau-van Waes J, Smith L, van Waes M, Wilberding J, Eudy JD, Bauer LK, Maddox J. Altered expression of the iron transporter Nramp1 (Slc11a1) during fetal development of the retinal pigment epithelium in microphthalmia-associated transcription factor Mitf(mi) and Mitf(vitiligo) mouse mutants. Exp Eye Res 2007; 86:419-33. [PMID: 18191835 DOI: 10.1016/j.exer.2007.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 10/30/2007] [Accepted: 11/28/2007] [Indexed: 11/29/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is expressed in neural crest cell-derived melanocytes, and in the retinal pigment epithelium (RPE) during ocular development. Mutations in Mitf are associated with auditory/visual/pigmentary syndromes in humans. Mitf(mi/mi) mouse mutants lack pigmentation, and are microphthalmic, while Mitf(vit/vit) mouse mutants display abnormal RPE pigmentation, and progressive retinal degeneration. Microarray analysis was used to identify novel downstream gene targets/pathways in the RPE that are altered by mutations in the transcription factor Mitf. Using the Affymetrix platform, gene expression profiles were generated using the eyes of E13.5 mouse fetuses that were wildtype, heterozygous, or homozygous for the Mitf(mi) mutation. In a separate experiment, eyes from E13.5 mouse fetuses homozygous for the Mitf(vit) mutation were compared to eyes from the C57BL/6 control background strain. Statistical analyses were performed using robust multiarray average, mixed-effects ANOVA and random-variance t-tests. Altered expression of genes involved in pigment formation, melanosome biogenesis/transport, and redox homeostasis were observed. Twelve genes were commonly mis-regulated in the eyes of both Mitf mutants: 10 of these genes were downregulated in both mutants relative to controls, while 2 of the genes (Nramp1 (Slc11a1) and epoxide hydrolase) were downregulated in Mitf(mi/mi) mutants, and conversely, upregulated in Mitf(vit/vit) mutants. Quantitative RT-PCR and immunohistochemistry were used to confirm altered gene/protein expression. RPE expression of the Fe(+2) iron transporter Nramp1 (Slc11a1) has not previously been reported. Fe(+2) is an important co-factor utilized by the iron-dependent isomerohydrolase RPE65 in the retinoid visual cycle. However, excess accumulation of Fe(+2) in the RPE has recently been associated with oxidative damage and age-related macular degeneration. Abnormal pigmentation and increased activity of Slc11a1 in the RPE of Mitf(vit) mice may contribute to the pathology and progressive retinal degeneration observed in these mutants.
Collapse
Affiliation(s)
- J Gelineau-van Waes
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The network of transcription factors in mast cells has not been investigated as widely as it has been in other differentiated hematopoietic cells. There are still many mechanisms of transcriptional regulation that need to be fully elucidated to understand how mast cell external stimuli lead to the appropriate physiological responses. Such information could be used to determine potential therapeutic targets for the control of mast cell activation in inflammatory diseases, allergy, and asthma. The aim of this article is to review hallmark studies in the field of transcription factor regulation in mast cells. We elaborate especially on several transcription factors studied in our laboratory in the past decade, including activator protein-1, microphthalmia-associated transcription factor, upstream stimulating factor-2, and signal transducer and activator of transcription 3.
Collapse
|
23
|
Kim K, Lee J, Kim JH, Jin HM, Zhou B, Lee SY, Kim N. Protein inhibitor of activated STAT 3 modulates osteoclastogenesis by down-regulation of NFATc1 and osteoclast-associated receptor. THE JOURNAL OF IMMUNOLOGY 2007; 178:5588-94. [PMID: 17442941 DOI: 10.4049/jimmunol.178.9.5588] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein inhibitor of activated STAT3 (PIAS3) has been shown to regulate the activity of various transcription factors. In this study, we show that the overexpression of PIAS3 in bone marrow-derived monocyte/macrophage lineage cells attenuates osteoclast formation and down-regulates the expression of NFATc1 and osteoclast-associated receptor (OSCAR), which are important modulators in osteoclastogenesis. PIAS3 has been shown to associate with histone deacetylase 1 as well as with transcription factors, including the microphthalmia transcription factor, NFATc1, and c-Fos. Moreover, overexpression of PIAS3 inhibits the transactivation of target genes such as NFATc1 and OSCAR. This inhibitory effect of PIAS3 is possibly mediated by histone deacetylase 1 recruitment to the promoter regions of NFATc1 and OSCAR. Furthermore, silencing of PIAS3 by RNA interference in osteoclast precursors enhances osteoclast formation as well as gene expression of NFATc1 and OSCAR. Taken together, our results reveal that PIAS3 acts as a modulator in osteoclastogenesis.
Collapse
Affiliation(s)
- Kabsun Kim
- Research Institute of Medical Sciences and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hak-Dong 5, Dong-Ku, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Differential effects of phosphorylation on DNA binding properties of N Oct-3 are dictated by protein/DNA complex structures. J Mol Biol 2007; 370:687-700. [PMID: 17543985 DOI: 10.1016/j.jmb.2007.04.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/22/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
N Oct-3, a transcription factor member of the POU protein family, is implicated in normal central nervous system development but also in melanoma growth. Its DNA-binding domain (DBD) comprises two subdomains, POUs and POUh, joined by a linker peptide. We have previously shown that N Oct-3 can interact with the already described PORE and MORE DNA motifs, but also with a new structural element we have termed NORE. Having observed that both the PORE and NORE DNA-association modes depend on a strong anchoring of the POUh subdomain rigid arm into the DNA-target minor groove, in contrast to the MORE mode, we have formulated the hypothesis that phosphorylation of the conserved Ser101 residue located in the N Oct-3 POUh arm could lead to differential results in DNA binding according to the type of target. Here we demonstrate that, in vitro, Ser101 is phosphorylated by protein kinase A (PKA), either purified or contained in melanoma (624 mel) nuclear extract, and that this phosphorylation indeed significantly reduced N Oct-3 DBD binding to PORE and NORE motifs, most likely by hampering the POUh rigid arm insertion in the DNA minor groove. Conversely, no effect was observed on the binding of N Oct-3 DBD to MORE sequences. Finally, once bound to its DNA targets, N Oct-3 DBD is less susceptible to PKA activity. We conclude that transcription of genes exhibiting a MORE motif in their promoter should be less affected by N Oct-3 phosphorylation than that of genes switched on by PORE or NORE sequences.
Collapse
|
25
|
Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12:406-14. [PMID: 16899407 DOI: 10.1016/j.molmed.2006.07.008] [Citation(s) in RCA: 805] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/06/2006] [Accepted: 07/28/2006] [Indexed: 01/11/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell sarcoma. However, MITF also modulates the state of melanocyte differentiation. Several closely related transcription factors also function as translocated oncogenes in various human malignancies. These data place MITF between instructing melanocytes towards terminal differentiation and/or pigmentation and, alternatively, promoting malignant behavior. In this review, we survey the roles of MITF as a master lineage regulator in melanocyte development and its emerging activities in malignancy. Understanding the molecular function of MITF and its associated pathways will hopefully shed light on strategies for improving therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Carmit Levy
- Melanoma Program and Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
Murakami H, Arnheiter H. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. ACTA ACUST UNITED AC 2006; 18:265-77. [PMID: 16029420 PMCID: PMC1351050 DOI: 10.1111/j.1600-0749.2005.00234.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The microphthalmia transcription factor MITF plays important roles in several cell lineages including retinal and neural crest-derived pigment cells. Previous reports have shown that besides its regulation at the transcriptional level, MITF is also regulated post-translationally by phosphorylation and ubiquitination which affect the protein's activity and stability. Here we demonstrate that in addition, MITF is modified in melanoma cells by small ubiquitin-like modifier (SUMO). In vitro assays further show that sumoylation occurs at two lysine residues, K182 and K316, and depends on SUMO E1 activating enzyme (SAE I/SAE II) and E2 conjugating enzyme (Ubc9). Interestingly, MITF with double lysine 182/316 to arginine mutations, although displaying normal DNA binding, stability and nuclear localization, shows a substantial increase in the transcriptional stimulation of promoters containing multiple but not single MITF binding sites. MITF containing the double lysine-to-arginine substitution also shows enhanced cooperation with Sox10 on the Dct promoter. We conclude that SUMO modification of MITF regulates the protein's transcriptional activity especially with respect to synergistic activation. The results suggest that sumoylation plays a significant role among the multiple mechanisms that regulate MITF during development and in adulthood.
Collapse
Affiliation(s)
- Hideki Murakami
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
27
|
Levy C, Lee YN, Nechushtan H, Schueler-Furman O, Sonnenblick A, Hacohen S, Razin E. Identifying a common molecular mechanism for inhibition of MITF and STAT3 by PIAS3. Blood 2005; 107:2839-45. [PMID: 16368885 DOI: 10.1182/blood-2005-08-3325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein inhibitor of activated STAT3 (PIAS3) functions in vivo as a key molecule in suppressing the transcriptional activity of both microphthalmia transcription factor (MITF) and signal transducer and activator of transcription 3 (STAT3), 2 transcription factors that play a major role in the regulation of growth and function in mast cells and melanocytes. Previously, we have demonstrated binding of PIAS3 to MITF leading to the inhibition of MITF transcriptional activity. Following cellular activation, PIAS3 is released from MITF and binds to STAT3. Now we have localized a common binding motif in PIAS3 for MITF and STAT3. This motif (PIAS82-132), which contains 50 amino acids, is sufficient for the inhibition of both MITF and STAT3. Three-dimensional protein modeling demonstrated that this motif contains 2 alpha helices. Disruption of one of the helices led to the loss of PIAS3 inhibitory activity. In addition to contributing to our understanding of the mechanisms of PIAS3 activity, these results could pave the way toward the formulation of an antioncogenic agent for the inhibition of both STAT3 and MITF.
Collapse
Affiliation(s)
- Carmit Levy
- Department of Biochemistry, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Kawai-Kowase K, Kumar MS, Hoofnagle MH, Yoshida T, Owens GK. PIAS1 activates the expression of smooth muscle cell differentiation marker genes by interacting with serum response factor and class I basic helix-loop-helix proteins. Mol Cell Biol 2005; 25:8009-23. [PMID: 16135793 PMCID: PMC1234309 DOI: 10.1128/mcb.25.18.8009-8023.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although a critical component of vascular disease is modulation of the differentiated state of vascular smooth muscle cells (SMC), the mechanisms governing SMC differentiation are relatively poorly understood. We have previously shown that E-boxes and the ubiquitously expressed class I basic helix-loop-helix (bHLH) proteins, including E2-2 and E12, are important in regulation of the SMC differentiation marker gene, the SM alpha-actin gene. The aim of the present study was to identify proteins that bind to class I bHLH proteins in SMC and modulate transcriptional regulation of SMC differentiation marker genes. Herein we report that members of the protein inhibitor of activated STAT (PIAS) family interact with class I bHLH factors as well as serum response factor (SRF). PIAS1 interacted with E2-2 and E12 based on yeast two-hybrid screens, mammalian two-hybrid assays, and/or coimmunoprecipitation assays. Overexpression of PIAS1 significantly activated the SM alpha-actin promoter and mRNA expression, as well as SM myosin heavy chain and SM22alpha, whereas a small interfering RNA for PIAS1 decreased activity of these promoters, as well as endogenous mRNA expression, and SRF binding to SM alpha-actin promoter within intact chromatin in cultured SMC. Of significance, PIAS1 bound to SRF and activated SM alpha-actin promoter expression in wild-type but not SRF(-/-) embryonic stem cells. These results provide novel evidence that PIAS1 modulates transcriptional activation of SMC marker genes through cooperative interactions with both SRF and class I bHLH proteins.
Collapse
Affiliation(s)
- Keiko Kawai-Kowase
- Department of Molecular Physiology and Biological Physics, University of Virginia, 415 Lane Road, MR5, Room 1220, P.O. Box 801394, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
29
|
Larribere L, Hilmi C, Khaled M, Gaggioli C, Bille K, Auberger P, Ortonne JP, Ballotti R, Bertolotto C. The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev 2005; 19:1980-5. [PMID: 16140982 PMCID: PMC1199569 DOI: 10.1101/gad.335905] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) M-form is a melanocyte-specific transcription factor that plays a key role in melanocyte development, survival, and differentiation. Here, we identified MITF as a new substrate of caspases and we characterized the cleavage site after Asp 345 in the C-terminal domain. We show that expression of a noncleavable form of MITF renders melanoma cells resistant to apoptotic stimuli, and we found that the C-terminal fragment generated upon caspase cleavage is endowed with a proapoptotic activity that sensitizes melanoma cells to death signals. The proapoptotic function gained by MITF following its processing by caspases provides a tissue-restricted means to modulate death in melanocyte and melanoma cells.
Collapse
Affiliation(s)
- Lionel Larribere
- INSERM U597, Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée aux mélanomes, Ligue Nationale contre le Cancer, Equipe labellisée 2001, 06107 NICE Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 2005; 5:593-605. [PMID: 16056253 DOI: 10.1038/nri1667] [Citation(s) in RCA: 323] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein inhibitor of activated STAT (PIAS) family of proteins has been proposed to regulate the activity of many transcription factors, including signal transducer and activator of transcription proteins (STATs), nuclear factor-kappaB, SMA- and MAD-related proteins (SMADs), and the tumour-suppressor protein p53. PIAS proteins regulate transcription through several mechanisms, including blocking the DNA-binding activity of transcription factors, recruiting transcriptional corepressors or co-activators, and promoting protein sumoylation. Recent genetic studies support an in vivo function for PIAS proteins in the regulation of innate immune responses. In this article, we review the current understanding of the molecular basis, specificity and physiological roles of PIAS proteins in the regulation of gene-activation pathways in the immune system.
Collapse
Affiliation(s)
- Ke Shuai
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
31
|
Tatzel J, Poser I, Schroeder J, Bosserhoff AK. Inhibition of melanoma inhibitory activity (MIA) expression in melanoma cells leads to molecular and phenotypic changes. ACTA ACUST UNITED AC 2005; 18:92-101. [PMID: 15760338 DOI: 10.1111/j.1600-0749.2005.00212.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secreted protein melanoma inhibitory activity (MIA) is highly expressed in malignant melanoma but not in melanocytes and is associated with tumor progression in vivo. Here, we further investigated the functional role of MIA by inhibiting MIA expression of the human melanoma cell line HMB2 via stable antisense MIA cDNA transfection, and subsequent analysis of the cell clones. MIA-deficient cell clones showed several changes in cell morphology and growth pattern. In monolayer and three-dimensional culture enhanced cell-cell contacts were formed. Furthermore, a re-induction of pigment synthesis in comparison with the amelanotic parental cell line HMB2 was observed. Molecular analyses revealed a re-expression of tyrosinase-related protein 1 (Trp-1) and tyrosinase in the MIA-deficient cell clones necessary for melanin synthesis. In accordance, re-expression of MIA in the MIA-deficient melanoma cell clones resulted in downregulation of Trp-1. To identify the molecular mechanisms of MIA regulating pigmentation, MITF and PAX3, two positive regulators of Trp-1 and tyrosinase transcription, and PIAS3, a negative regulator of MITF activity, were analyzed. Only in MIA-deficient cells, expression of PAX3 mRNA and MITF protein was found. In contrast, strong expression of PIAS3 was detected in HMB2 but not in the MIA-deficient cells. To our knowledge this is the first report demonstrating a correlation between MIA expression and pigmentation and morphology of melanocytic cells.
Collapse
Affiliation(s)
- Jutta Tatzel
- Institute of Pathology, University of Regensburg, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
32
|
Abstract
The first mouse microphthalmia transcription factor (Mitf ) mutation was discovered over 60 years ago, and since then over 24 spontaneous and induced mutations have been identified at the locus. Mitf encodes a member of the Myc supergene family of basic helix-loop-helix zipper (bHLH-Zip) transcription factors. Like Myc, Mitf regulates gene expression by binding to DNA as a homodimer or as a heterodimer with another related family member, in the case of Mitf the Tfe3, Tfeb, and Tfec proteins. The study of Mitf has provided many insights into the biology of melanocytes and helped to explain how melanocyte-specific gene expression and signaling is regulated. The human homologue of MITF is mutated in patients with the pigmentary and deafness disorder Waardenburg Syndrome Type 2A (WS2A). The mouse Mitf mutations therefore serve as a model for the study of this human disease. Mutations and/or aberrant expression of several MITF family member genes have also been reported in human cancer, including melanoma (MITF), papillary renal cell carcinoma (TFE3, TFEB), and alveolar soft part sarcoma (TFE3). Genes in the MITF/TFE pathway may therefore also represent valuable therapeutic targets for the treatment of human cancer. Here we review recent developments in the analysis of Mitf function in vivo and in vitro and show how traditional genetics, modern forward genetics and in vitro biochemical analyses have combined to produce an intriguing story on the role and actions of a gene family in a living organism.
Collapse
Affiliation(s)
- Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, University of Iceland, 101 Reykjavik, Iceland.
| | | | | |
Collapse
|
33
|
Abstract
The enormous variety of pigmentation phenotypes in nature reflects a series of remarkable events that begin in the neural crest and end with the manufacture and distribution of pigment by mature melanocytes located in the epidermis and hair follicles. While the origins of melanoblasts from multipotent precursors in the neural crest is striking in itself, yet more so is the fact that these pioneer melanoblasts manage to undertake and survive their long migration, and in doing so proliferate and maintain their identity before ultimately arriving at their destination and undergoing differentiation. With the application of the powerful combination of genetics and molecular and cell biology the mystery surrounding the genesis of the melanocyte lineage is slowly being unravelled. At its heart is the powerful alliance between signal transduction and transcription that coordinates the program of gene expression that confers on a cell its identity, provides its passport for migration, and instructs it in the arts of survival and timely reproduction. The realization that the proliferation and migration of melanoblasts during development resembles closely the proliferation and metastasis of melanoma, a highly dangerous and increasingly common cancer, serves to highlight the value of the melanocyte system as a model for addressing key issues of general significance in both development and cancer.
Collapse
Affiliation(s)
- Keith W Vance
- Signalling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey, UK
| | | |
Collapse
|
34
|
Miller AJ, Levy C, Davis IJ, Razin E, Fisher DE. Sumoylation of MITF and Its Related Family Members TFE3 and TFEB. J Biol Chem 2005; 280:146-55. [PMID: 15507434 DOI: 10.1074/jbc.m411757200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MITF and its related family members TFE3 and TFEB heterodimerize with each other, recognize the same DNA sequences, and are subject to many of the same post-translational modifications. We show that lysine residues within conserved small ubiquitin-like modifier (SUMO) consensus sites in these family members are subject to SUMO modification. Mutation of these sites significantly affects the transcriptional activity of MITF but does not alter dimerization, DNA binding, stability, or nuclear localization. Mutagenesis reducing the number of MITF binding sites in the promoter of TRPM1 from three to one eliminated the difference in transcriptional activity between the MITF mutants. Among other MITF target gene promoter constructs, differences in transcriptional activity between wild type and non-sumoylatable MITF were only seen in promoters with multiple MITF binding sites. These data support a synergy control model in which the functional consequences of MITF sumoylation depend on promoter context. Sumoylation, thus, provides a possible mechanism for altering the effects of MITF by affecting the target genes that it activates.
Collapse
Affiliation(s)
- Arlo J Miller
- Dana-Farber Cancer Institute and Children's Hospital, Department of Pediatric Hematology/Oncology, Melanoma Program in Medical Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Sonnenblick A, Levy C, Razin E. Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes. Mol Cell Biol 2004; 24:10584-92. [PMID: 15572665 PMCID: PMC533964 DOI: 10.1128/mcb.24.24.10584-10592.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microphthalmia transcription factor (MITF) and STAT3 are two transcription factors that play a major role in the regulation of growth and function in mast cells and melanocytes. In the present study, we explored the MITF-PIAS3-STAT3 network of interactions, how these interactions regulate gene expression, and how cytokine-mediated phosphorylation of MITF and STAT3 is involved in the in vivo interplay between these three proteins. In NIH 3T3 cells stimulated via gp130 receptor, transfected MITF was found to be phosphorylated at S409. Such phosphorylation of MITF leads to PIAS3 dissociation from MITF and its association with STAT3. Activation of mouse melanoma and mast cells through gp130 or c-Kit receptors induced the mobilization of PIAS3 from MITF to STAT3. In mast cells derived from MITF(di/di) mice, whose MITF lacks the Zip domain (PIAS3-binding domain), we found downregulation in mRNA levels of genes regulated by either MITF or STAT3. This regulatory mechanism is of considerable importance since it is likely to advance the deciphering of a role for MITF and STAT3 in mast cells and melanocytes.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Dyes
- Glutathione Transferase/metabolism
- Intracellular Signaling Peptides and Proteins/chemistry
- Intracellular Signaling Peptides and Proteins/metabolism
- Mast Cells/metabolism
- Melanocytes/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Transgenic
- Microphthalmia-Associated Transcription Factor
- Microscopy, Fluorescence
- Models, Biological
- NIH 3T3 Cells
- Phosphorylation
- Precipitin Tests
- Protein Inhibitors of Activated STAT
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytokine/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rhodamines
- Serine/metabolism
- Signal Transduction
- Transcription Factors/chemistry
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Amir Sonnenblick
- Department of Biochemistry, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|